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Abstract—The use of average data for dependability assess- G;
ments results in a outdated system-level dependability estimation 7T,
which can lead to incorrect design decisions. With increasing

availability of online data, there is room to improve traditional
dependability assessment techniques. Namely, prognostics is an

%

TE

emerging field which provides asset-specific failure information Input(G;)
which can be reused to improve the system level failure es- Orig(T;)

timation. This paper presents a framework for prognostics- Dest(T;)

updated dynamic dependability assessment. The dynamic be-

haviour comes from runtime updated information, asset inter-
dependencies, and time-dependent system behaviour. A case study

As

from the power generation industry is analysed and results H
confirm the validity of the approach for improved near real-time

unavailability estimations. w
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YSTEM dependability is a term that encompasses a rangesessment process integrating up-to-date health data and
of attributes which include safety, reliability, availtyi, likely future degradation predictions. We will not focus on
maintainability, confidentiality, and integrity [1]. We Ivhot maintenance planning, but obtained results can be used for

consider confidentiality and integrity attributes becasseu- predictive and condition-based maintenance planning. [14]
rity aspects are outside of the scope of this paper. In thePrognostics is a relatively immature field, where few suc-
nuclear industry, a key tool for dependability assessmentdessful industrial implementations exist [12] while degeinil-

a process called Probabilistic Safety Assessment (PSA). PBy analysis and PSA are well-known areas where many suc-
employs a combination of Event Tree Analysis (ETA) andessful implementations exist across different industfie].
Fault Tree Analysis (FTA) to address reliability and safetylthough the two share the goal of improving dependability
In their traditional forms, both techniques are inadeqaet@ attributes, there are differences between prognosticsP&#d
inaccurate when dealing with dynamic failure scenarios amechniques. Table | summarizes these differences in f@aasar
system operation. Classical FTA is a combinatorial tealjg scope of application, inputs, supported maintenancecsfies,
i.e., focused on analysis of combinations as opposed toaad outcomes.

sequence of failures and does not have effective means for

representation of mode and state changes. Classical ETA TABLE |
explores successful or failed responses to a sequence of  PROGNOSTICS VSDEPENDABILITY ANALYSIS AND PSA
failures t.)ut,.mathemaucally speaking, sequences argette Properties Prognostics Dependability Analysis
as combinations of events [2]. and PSA

To enable a more accurate analysis of dynamic scenarioas;;ﬁcpaetigrf] Components Components and systems
th_at include mode anql state changes as well as sequencing-6t Operational data, Component fallure data,
failures, several techniques for dynamic dependabiliglysis Inputs component degradation | system fault propagation
have emerged as alternatives to a classical PSA. Dynamit Fau equations models

. Condition-based and .

Trees and Boolean Driven Markov Processes are examples predictive maintenance Predetermined
of prominent emerging techniques [3]. Despite the advande®laintenanc¢  based on parameter m’;‘t?]'grfgﬁcr‘;epf’;;;ggozf
made in this field, even recent dynamic techniques only der;r‘;r&';‘imgfg:‘eiast maintenance schedules
prov_ldg a prediction of the dependability th_at is estalglish Prolonged useful Tife, Global prediction and
a priori, i.e., before system deployment using average pastutcomes | increased reliability and | management of reliability
operational data typically drawn from reliability databss availability of components] and safety of the system

This prediction, however, leads to inaccurate estimates of

system dependability attributes such as system safety andhere are several asset-specific prognostics applications

reliability that ignore the operational history and state geported in the literature. For instance, transformer posg

components used in the specific system. tics has the potential to improve maintenance planning and
In this paper, we argue that the increasing capabilities fpotentially extend the useful life of power transformers][1

condition monitoring and the availability of operationaitd However, the effects of prognostics at the system-levehoan

in many engineering fields [4]-[6] create opportunities fobe easily or automatically established and quantified. &her

changing this situation by forming a more accurate pictidre are many elements in a power network, so the improve-

the health of the system as it evolves during operation. Dateent achieved in the performance of a specific asset via

from multiple sensors and monitoring systems can impropeognostics does not automatically lead to understandieg t

dependability prediction and inform maintenance planning positive effects in the system context. This latter knowked
Prognostics and Health Management (PHM) is a collectiasimportant for gaining assurance about dependabilityfand

of activities focused on the system degradation managemdasigning system-level prognostic and maintenance gteste

including the following main groups of activities [7], [8]: in a rational, evidenced way that verifiably achieves imprbv
« Anomaly detection: monitoring and detection of abnoitrade-offs between costs and system dependability.
mal conditions in the system operation. The input data for prognostics comes from sensors and
« Diagnosis: if an anomaly is detected, diagnose the causegradation equations that determine the asset-specgia-de
of the fault. dation behaviour, whereas for system dependability aisalys
« Prognostics: predict the likely future degradation of thestimates of component failure probability are establishe
component and estimate its remaining useful life. from generic databases with population-based component re

« Operation and maintenance planning: mitigate the effediability values. From the viewpoint of system dependapili
of failure and reduce unnecessary planned maintenanesgineering, refining the estimates with real-time or neat-r

PHM techniques have emerged as promising solutions fiime condition monitoring asset-specific information wboke
cost-effective asset management. Traditionally a subiatanbeneficial, as it would provide a more realistic quantificatbf
focus of PHM has been on anomaly detection and diagnotiie system failure probability, and accordingly a more aatu
techniques applied in different fields such as nuclear [@jygr dependability assessment [17].
transmission [10], or spacecraft [11]. During the last gear The planning of maintenance supported by prognostics and
there has been an increased interest in prognostics acmegendability analysis is different [18], [19]. Dependiypi
different fields [12], [13]. The focus of this paper is orapproaches support predetermined maintenance stratiegies
prognostics because it can be used within the dependabikiycordance with established intervals of time, but withpret
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vious condition investigation. Prognostics integratesfulty

) e - - / Qualitative System -
with predictive and condition-based maintenance teclesqu ( Dependability |«€— Design —>
Assessment

extending the useful life of assets by postponing the replac
ment instant where possible within acceptable threshaids a
reducing maintenance costs. However, prognostics foauses Dynamic
components and ignores the system effects of maintenance.| Dependability (Prognostics Techniques )
Finally, in terms of outcomes prognostics results are nor-|___ Model
mally focused on the estimation and improvement of the |' Prognostics Results |J
remaining useful life of a component, whereas dependsgbili 7
analysis uses system models to establish global estimétes 0
dependability attributes such as reliability, availakjlimain-
tainability, and safety. Activity T parametrized J
This paper presents work which develops a state-of-the-amt  werworks Prognostics Results

dynamic system dependability analysis technique to imgrov

[ Assess ]|

Stochastic

accuracy of prediction via component-level prognostics. [ Prognostics-updated SAN model _ |
We use the Boolean Driven Markov Process (BDMP) for- Y

malism [20] for expressing a system dependability preolicti

model that can be developed by designers and analysts of the

system. BDMP is a strong dynamic dependability technique | System-level Results |

sometimes considered as a generalization of Dynamic Fault es-updated d i dependability ai h
Trees [20] but does not currently support the integration 6ff- 1 Prognostics-updated dynamic dependability aimgpproach.
prognostics concepts. To address this need, we connect this
framework to the formalism of Stochastic Activity Networks The first step of the prognostic sequenceasset selectian
(SAN) [21]. SAN is supported by a powerful computationafFor the differentassetsthat constitute the system design, the
tool that can quantitatively analyse models and establesh dlesigner may have different degradation specifications. To
pendability estimates using simulation techniques [22Fhis  specify a prognostics model, degradation equations otaun-
approach, prognostics results are regularly extracteidgitine failure data are compulsory [13]. Therefore, tHuset selection
system operation and are used to update component faildtgivity for prognostics evaluation is driven by the avhilidy
probabilities in the system dependability prediction modeof data or equations. According to the available resources
Using new observations of a plant, the dependability esémadifferent prognostics techniquesan be considered to design
for the future trajectory of the system can be updated. Thisprognostics model for each asset.
approach provides improved prediction of dependabilitye T At the system level, in order to perform the dynamic
approach has been applied to a case study from the nuclgé@pendability analysis, the first step is tipealitative depend-
power industry. ability assessmentn dynamic dependability analysis we are
The main contribution of this paper is the integration of mterested in finding the minimal (temporal) combination of
state-of-the-art dynamic dependability analysis techaigyith failures of assets that causes the system failure, i.eimmaln
prognostics. The second contribution of the paper is thie-tecut-sequence sets [23]. A number of techniques have been
nical model transformation algorithm from BDMP models int@roposed for calculating these sets, so in this paper we
SAN models which enables computational operationalimatigyill focus on the prognostic-updated quantification of athg
of the proposed approach, but can also be useful in a broadstablished minimal cut-sequence sets.
context. Minimal cut-sequence sets are represented witlyrmamic
The rest of this article is organized as follows. Section Hependability modetiefining the system failure behaviour as
presents the approach for prognostics-updated dynamic defunction of assets failure occurrences linked with terapor
pendability analysis. Section Ill includes a case studynfrooperators. In the dynamic dependability model the failure
the power generation industry. Section IV discusses thikwospecification of each asset is initialized with averageblity
in the context of other relevant work. Finally, Section Vadis  values taken from reliability databases. BDMP is the formal

conclusions and identifies future research challenges. ism used in this paper for the representation and evaluafion
the dependability of complex dynamic systems.
Il. AN APPROACH TODYNAMIC DEPENDABILITY Moving back to the prognostic sequenpeggnostics results
ANALYSIS ENCOMPASSINGPROGNOSTICS depend on the nature of the prognostics estimation tech-

Fig. 1 sketches the proposed prognostics-updated dynamigue. Different approaches provide alternative repregiems
dependability analysis approach. Tisgstem desigrnis the of the remaining useful life which may include uncertainty
starting point of the dependability analysis process. fings representation mechanisms. In order to connect asseifispec
the functional operation of the system specifying how &ssetsults of any prognostics technique with system-levalltges
are arranged to perform the system function. Two paralleh adaptationactivity is essential. This activitparametrizes
sequences of activities on system dependability modedlitd) prognostics resultso that they can be used directly to update
prognostics follow the system design and at some point joitynamic dependability evaluation models.
to complete the approach. To evaluate prognostics-updated system-level failurdpro
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ability, the transformationfrom the dynamic dependability the possible variability of the system and the deterministi
evaluation model intoStochastic Activity Networks (SAN)RUL specifies a single point estimation [28]. Parametrized
model is performed. SAN has a generic and flexible semantiistributions are necessary to model, integrate, and gatpa
framework that allows the encoding of a range of differemtrognostics results into dynamic dependability models.
dynamic dependability and performance evaluation forsnadi ~ The deterministic RUL estimation is used together with
[24]-[26]. Accordingly, we can define transformation rufes the exponential distribution assuming that the constahtréa
the transformation of these formalisms into SAN genenadjzi rate is the inverse of the RULA(~ 1/RUL) [29]. In
the application of the approach. This way, we avoid restigct this case, it is assumed that a component with an estimated
our approach to the assumptions of different dynamic deperdnstant value of RUL, fails in time following the exponexhti
ability evaluation techniques. distribution with a constant failure rate af~ 1/RU L. When

Taking the parametrized prognostics results, the dynantiee deterministic RUL is obtained with confidence interyals
dependability evaluation model in SAN igpdatedthrough the same adaptation is applied, but this time calculatirg th
advanced simulation practices. The updated SAN model iminimum and maximum failure rates that correspond to the
cludes mechanisms to resample dynamically the probabilitgnfidence intervals.
distribution parameters during the simulation time, emapl When the prognostics technique provides the PDF of the
the integration of parametrized prognostics results atimen RUL, it can be adapted with a generic probability distribati

Finally the system-levedvaluationis performed to quantify to specify the failure behaviour of an asset. The Weibull PDF
the combination of assets that lead the system to failuis.considered general enough to integrate different disfions
The system-level results are specified with the Cumulatife.g., exponential, Rayleigh) [30]. However, if the RUL is
Distribution Function (CDF) of the system failure probdlil estimated from physics-of-failure equations (i.e., mdukded
Using basic reliability theory, it is possible to extracteth prognostics approaches), the PDF should be chosen in agree-
Probability Density Function (PDF) of the system, from whic ment with the asset-specific prognostics degradation &gjuat
system reliability, availability, and where appropriatgfety When adapting the RUL with the failure PDF, the variance
can be estimated. of the PDF specifies the degradation behaviour of the asset.
For instance, if the variance of the RUL is narrow (which is
common for accurate RUL predictions) its corresponding CDF
ffodels an asset that degrades almost instantaneous|yhee.
time from failure-free operation to the total-failure ogton

The main output of prognostics techniques is the Remainizggdetermined by this variance) and vice versa.
Useful Life (RUL), i.e., prediction of the time to failure @h  For a real-time risk monitor reaction times are crucial to
asset which is deployed in some specific conditions at a spgke timely remedial actions. As the system assets deséeior
cific time instant. Prognostics techniques require a ptidic early indicators are needed to prevent the occurrence terays
model of the asset degradation process and a failure tHeeshailure events. If the PDF of the RUL has a narrow variance
to determine the remaining time to failure of the asset froen tand this PDF is used as the failure specification of the asset,
current prediction instant. Prognostics techniques cadd® this specification may prevent the designer from estallgshi
sified into data-driven and model-based approaches basedaasafety failure threshold and acting accordingly.
the available engineering resources, i.e. run-to-faillata and ~ Therefore, depending on the available RUL specifications
physics-of-failure equations respectively. Hybrid agmioes design decisions need to be adopted between the direct trans
result from the combination of data-driven and model-bas¢stmation of the RUL via Weibull regression [31] and asset-
prognostics techniques. See [12], [13] for an overview @pecific physics-of-failure degradation equation aceuydo
prognostics techniques. the variance of the PDF of the RUL estimation.

Depending on the nature of the prognostics technique the
RUL is estimated in different formats. Depending on th
format, different transformation steps would be needed
integrate prognostics results into the dynamic depenithabil Once the component failure data has been updated with
analysis model. A review of formats and examples of tecRrognostics, system-level dependability analysis cafovol
niques for the RUL specification are given in [27]; they itdu The BDMP is chosen as a dynamic dependability model for
deterministic RUL value (e.g. calculated employing neurdis purpose. BDMP is a powerful development in the state-
networks [12]), deterministic RUL value with confidencé@f-the-art which can be seen as a generalization of various
intervals (e.g. estimated with autoregressive-movingrage types of recent proposed notations for representing Dymami
models [12]), or PDF of the RUL (e.g. derived using particl&ault Trees and therefore deemed appropriate for the pespos
filters [16]). of this work.

When predicting the future behaviour of the system via 1) Preliminaries on BDMP:A BDMP model [32] is de-
prognostics, there are different sources of uncertaingt ttfined by a 4-tuple(L, G, T, T'E) where:
influence the RUL prediction. Therefore, uncertainty has an. L = {L;} is the set of leaves which can be of two types:
important role when estimating the system RUL. Accordingly  F'leaves (failure can occur only in active modgr) and
the PDF of the RUL is preferable to the fixed constant SF leaves (failure can occur only in active and standby
RUL estimation because the PDF includes information about mode -Lgp): L = Lgp U Lp.

A. Prognostics Techniques and Adaptation of Prognosti
Results

%). Dynamic Dependability Models
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« G = {G,;} is the set of fault tree gates which can bés not operating actively. Once leaf A fails, leaf B and leaf C
of two types: OR and ANDG = Gor U Ganp. Each change their operation to the required mode (i.e., procéss 1
gate G; has at least two inputs which are defined b¥ig. 2 (a)) and they operate actively with their correspagdi
InputdG;) C N. The set of noded’ = LUG in a BDMP failure and repair rates. If leaf A is repaired before théufai
model are defined as the union of leaves and gates. of leaf B or leaf C, both leaf B and leaf C return back to

o T ={T;} is the set of triggers of a BDMP model. A trig-operate according to the process 0. The top-event occuns whe
gerT; has an origirOrig(7;) and a destinatiobes(7;). leaf A is in a failed state and simultaneously leaf B or leaf C
Both these elements are nodes frdvn A trigger T; is fails. The model is formally defined a& = {L 4, Lg, Lc};

defined by a 2-tupleQrig(7;), Des(T;)) € N2. G ={Gor,Ganp}; T ={T1}; whereTy, = {L4,Gor}.
« TE is the top-event, i.e., failure of the modelled system.
Dynamic dependencies in BDMP come from the trigger (W] Q
mechanism which combines fault trees and Markov mode|caves | Process 0 Process 1 TE

AND Q

1

with flexible mathematical properties [20]. The triggerrsad As
is activated by a Boolean function determined by the failur%f C@_T)CFD
occurrence of its origin elements (which can be comprised p
a leaf or more generally origin elements can be subsystemsg: o @._® A % %
including interconnected leaves, gates and triggers).afie  [FLef . B C
vation of the trigger affects the destination leaves by givamn .
the Markovian process associated with each leaf. ggmzﬂe.(a) BDMP leaves and associated Markov processesBRHP
Namely, each leafl; of the BDMP tree is represented
with a Markov procesd>; called a triggered Markov process The numerical solution of BDMP models focus on the
[20]. P; is comprised of the following set of elementsguantification of the underlying overall Markovian model.
{Z8(t), ZE(), fo1, Fisot- Owing to the mathematical properties of BDMP, the state-
{Zi(t), Zi(t)} are two homogeneous Markov processespace is decreased by trimming irrelevant events and negluci
For k € {0,1}, the state-space dfZ{(t), Zi(t)} is Ai. For the combinatorial explosion [20]. Using the KB3 tool the
eachA! (i € L,k € {0,1}) we will need to refer to a part BDMP model is automatically transformed into the Figaro
F} of the state spacd . Generally,F} will correspond to the language which can be solved analytically or via Monte Carlo
failure states of the component or subsystem modelled by #isulation depending on the properties of the BDMP model
processk;. [33].
fé, and fi_, are two probability transfer functions de- BDMP is a strong dynamic dependability analysis formal-
fined as follows: ism with well-defined mathematical properties [20]. Howgve
. foranyz € A}, fi_,,(x) is a probability distribution on Fo the best_ of authors’ knqwledge .th_ere i; no possibility Fo
A, such that ifz € Fi, then Pri_,(z) € Fi)=1 |_ntggr§1te directly prognosucs_predmtlons_ |nt_o BDMP. ghi
. foranyz € Al, fi_,(z) is a probability distribution on Ilmltathn comes fro.m the dem_slon of d_eS|gn|ng a high-leve
A, such that ifz € F¥, then Pri_o(z) € Fi)=1 dynamic d(_apendgbnlt_y anaIyS|s_ formalism. BDMP encodes
tre dynamic logic with user-friendly modelling constructs

The trigg_ered Markov process swit_ches instantaneou Yiggers and leaves) simplifying the design of dynamic de-
from one of its modes to the other one, via the relevant teans gndability models

function, according to the state of some externally defin
Boolean variable, i.e. process selectors or triggers.

Fig. 2 (a) shows the Markov processes for an SF leaf akd Transformation into Stochastic Activity Networks
an F leaf. Informally we can denote process 1 as a requiredn order to integrate runtime information of prognostics
mode and process 0 as a non-required mode. In the requineoldels into the dynamic dependability evaluation model, it
mode both leaves transit from the working to the failed staie necessary to regularly update component failure priedist
with the corresponding failure rate(process 1 in Fig. 2 (a)). according to prognostics. The Stochastic Activity Netvgork
In the non-required mode, the SF leaf can also transit fram tformalism provides a sufficient modelling and analysis mech
standby state to the failed state with. This is not possible in anism to integrate prognostics results into the dynamic de-
the case of the F leaf, as it does not have a standby state inghadability evaluation model intuitively [21].
non-required mode and only the transition from failed state 1) Preliminaries on Stochastic Activity NetworkStochas-
working state is allowed in this mode (process 0 in Fig. 2.(a)jic Activity Networks (SAN) was first introduced in the mid-
Both leaves pass from the failed state to working (process 1980s [34] and it has been used for many different appli-
or standby states (process 0) according to the repair rdte (cations. For the sake of readability and simplicity we will

Fig. 2 (b) shows an example of a BDMP model with amtroduce the main SAN modelling constructs informally in
actively operating leaf A (initially with process 1 in Fig(é)) this subsection. For a formal definition of the SAN main
whose failure affects leaf B (F leaf process 0 in Fig. 2(aponstructs refer to the Appendix.
and leaf C (SF leaf process 0 in Fig. 2(a)) via the trigger SAN extends stochastic Petri Nets generalizing the stechas
mechanism (graphically depicted with a dashed arrow).IUntic relationships and adding mechanisms to construct hiera
the failure occurrence of leaf A, leaf B cannot fail and leaf €hical models. Fig. 3 shows SAN modelling primitives [21].

]
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Standard Place |Extended Place | Input Gate | Output Gate function and they are defined based on:

. 4 > « the marking of the netstate reward functiop e.g.

Instantancons Timed Atomic/ quantification of the probability for being in a specific
1me .
Activity Activity Join Compci)sled place,l ¢ pul df "

i mmode « completion of activities ilnpulse reward function e.g.

I [ Submodel count the number of times an activity triggers within a
time interval.

Fig. 3. Notation of SAN elements. . . .
9 In order to alleviate substantially the state explosionbpro

lem SAN makes use of reduced base models [35]. This concept

Places represent the state of the modelled system. EafRables the implementation of join operators and hieraathi

place contains a certain number of tokens defining the markiffodelling of complex systems. _
of the place. Astandardplace contains an integer number F19- 4 shows a simple repairable system example (i.e.
of tokens, whereasxtendedplaces contain data types othePT0C€sS 1 in Fig. 2 (a)). In this case the SAN places are

than integers (e.g., floats, array). We will denote the nmayki Initialized to working state<m(W, m(F)> = <1, 0>. The
function of the placex as mk), e.g., mk)=1 means that the token will move fromWto the F place according to the CDF
placex has a marking equal to 1. determined by thé aul t timed activity. The time to failure

There are two types ofctivities instantaneouswhich will be calculated with the parameters of thaul t activity
complete in negligible amount of time, artimed whose and after the time to failure has elapsed the system will move

duration has an effect on the system performance and th?-ghe failed state<0, 1>. After moving to the failure state

completion time can be a constant or a random value. Wh t.ime. to repair will be calc_ulated from theepai r timed
it is a random value, it is ruled by a probability distributio 9'Stribution and the token will move frorft to the Wplace

function defining the time to fire the activity. after the calculated time to repair has elapsed.

Activities fire based on the conditions defined over the

marking of the net and their effect is to modify the marking of State Machine SAN mode _ Reward function examples
the places. The completion of an activity of any kind is erdbl w fault if (m(F)==1)
by a particular marking of a set of places. The presence of at fault F Rew+=1;
least one token in each input place enables the firing of the e @ e iF (m(W)==1)
activity removing the token from its input place(s) and piac W Rew+=1;

repair

them in the output place(s).

Each activity has aeactivation functiorthat defines when
the activity is aborted and a new activity time is immediatel
obtained from the activity time distribution. The reactioa In this paper we focus on Monte Carlo simulations for
function provides a mechanism for restarting activitieatththe quantification of different probabilities. If we want to
have been activated, either with the same or a different digzaluate the unavailability or availability we can use tasard
tribution. To this end it is necessary that both the reattva functions indicated in Fig. 4 witff_Rew and W Rew reward
predicate holds for the new marking and for the marking Wariables respectively. These statements are evaluated fo
which the activity was originally activated; and the adiivi large number of Monte Carlo trials and the expected value of
remains enabled (see Figure 8 for an example). these random variables evaluated at different time instaiit

Another way to enable a certain activity consistsimfut give the unavailability and availability indicators. Noteat
gatesandoutput gatesinput and output gates make the SANhe required number of iterations will depend on the reglire
formalism general and powerful enough to model complexnfidence level for the reward variables.
real situations. They determine the marking of the net basedrhe inverse transform sampling method [36] extracts the
on user-defined C++ rules. stochastic occurrence times of timed activities using Mont

Input Gates (IG)control the enabling of activities andCarlo simulations. LetCDF be a cumulative distribution
define the marking changes that will occur when an activifyunction, » be a random variable drawn from the uniform
completes. A set of places is connected to the input gate afigtribution » ~ U([0,1]), and TTF the time to fire the
the input gate is connected to an activity. A Boolean coaditi activity. Then, the inverse sampling method applies thetia
(or guard) enables the activity connected to the gate andra’(r) = TTF to draw the time to fire according to the CDF.
function determines the effect of the activity completiom 0 The SAN models which include the specified SAN el-
the marking of the places connected to the g&etput Gates ements are modelled in a SANtomic model(see Fig. 5
(OG) specify the effect of activity completion on the markingReusable Bloclkcolumn). Thejoin operator links through a
of the places connected to the output gate. An output functioompositional tree structure different SAN models in a uriq
defines the marking changes that occur when the actividgmposed modehs shown in Fig. 6 places of different atomic
completes. models are joined to represent interactions between differ

The performance measurements are carried out througAN models. It is possible to link atomic models, composed
reward functionsdefined over the designed model. Rewarthodels, or combinations thereof. In the tree structure, the
functions are evaluated as the expected value of the rewammposed and atomic SAN models are linked through join

Fig. 4. Repairable system example in SAN.
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operators using shared places between the composed arBDMP leavesTrl and Tr2 are modelled using thE leaf
atomic SAN models. Thus, the analyst can focus on speciS8&N building block. The trigger that goes fromrl to Tr2 is
characteristics of the system behaviour through fit-fappse modelled using thdrig construct, sharingict and deact
atomic and composed models and later join independengifaces of thelrig model (activated by th& place of theTrl)
validated models to obtain a more complex composed systerith theact anddeact places ofTr2 model. That is, when
model. the failure of Trl occurs this activate3r2 and whenTrl is

The SAN model in Fig. 4 can be reused so as to linlepaired the trigger deactivat@s2.
the places with other components. For instance, if we wantThen, the reusable composed SAN modeli g_Tr is
to initiate another (timed or immediate) activity in anatheconnected with theAND gate to create th&E. That is, AND
component when the failure of the model in Fig. 4 occurs, wgill be true (i.e. ml)=1 in Fig. 5 second row) when both
can join theF place with the destination SAN model throughTrl and Tr2 are in failed state simultaneously, i.e. F)¥1
the SAN join mechanism (see Fig. 6 for an example). For the Fig. 6. Generalizing this simple example, it is possilde t
composed system the quantification of system probabiliesparse systematically a BDMP model to find its equivalent SAN
exactly the same as for the simple system in Fig. 4. model.

2) Transformation from BDMP into SANFig. 5 shows the  As the BDMP model is acyclic, the failure logic is calcu-

BDMP to SAN dictionary including: state machine modelgated at each level starting from the bottom leaf-level up to
SAN models with input and output gate specifications, and thige top-event level. Algorithm 1 defines the synthesis msce
reusable building block which is later on used to synthesizgsuming that all the gates are ordered hierarchicallphmntt
BDMP models from SAN models. For clarity we do not havgp (for clarity we have not included shared states in the
named instantaneous activities in the SAN models. algorithm, but these are shared as depicted in Fig. 6) using
The only difference betweef and SF leaves is the inclu- 3 set of functions subsequently defined.
sion of the transition from Standb) to the Failed F) state Algorithm 1 uses the following set of functions:
caused by thé aul t g 4py timed activity (see dashed lines in
Fig. 5). Initially leaves can be either in Workingy(or standby ¢ h tr T T with ‘ destinati
state. Accordingly, the markings of SAN places are initial- ?r eact _trlgger i f tr\1NI ﬁa (:[;afetﬁs ta' es |(;1a |0nt
zedio CmW, m(S) M), mact ) mideact )-) WokING tne leaf-evel and saves the new BDMP modelnt,.
<1, 0,0, 0, &); or standby €0, 1, 0, 0, &) states. The IG ) . X L )
and OG specification determines the marking changes that are Aftér propagating the trigger, the destination elements of
done when the activity linked to the IG (or OG) fires. Thatis,  €ver trigger will be leaves, e.g., in the BDMP model of
the marking will be updated according to tBheck Deact Fig. 2 (b), the t”gger that goes from_ le&f to the OR
output gate when theepai r activity fires. Besides, note that gate is replaced with two triggers going from leafto
if m(W=1 and m@eact )=1 then mB)=1 instantaneously. leaf B_and leafC. _
If the F leaf is not the destination element of a trigger, then * Oufi=Transform{n,, In,); transforms each BDMP el-

the SAN model reduces to the model shown in Fig. 4, i.e. €mentin modelin, (L; € L, G; € G, T; € T) into
always in required mode or process 1 in Fig. 2 (a). If Ehe a vectorOut; with SAN equivalent elements using the

leaf is the destination element of a trigger, as shown in Fig. given transformation dictionargn, (cf. Fig. 5). With this

we use a standby state to model the situation in which the leaf functlon.we get a set of m_dependent BDMP model; n
is operating in non-required mode or process 0 in Fig. 2 (a). SAN- Hierarchical information of the BDMP model is
The detailed behaviour of the Boolean (AND, OR) gates stored in the input and outpgt of gates and triggers.

is described by the state machine, where a doubled cir-* OutlzLeaves(l'nl)_; stores in Out, all the leaves

cle indicates the failure state, and. and R, indicate the (L; € L) that are in the vectofm as SAN _elements.

failure and repair events of the componentrespectively. « Out1=Inputs(n,, Iny); stqres iNOut, the input nodes

For both gates the initial state is assumed to be healthy ©f the gateln, located in the vectorin, as SAN

(<m(A), mB), m(Y)> = <0, 0, 0>). These gates can be eIementg. . -

easily generalized adding more places to the SAN model and Outy=Join(Iny, Iny,. .. Iny); implements the join oper-

changing the IG specification accordingly. ation between the inputdny, Ins,... Iny}, an_d creates
Finally, a simplified version of the BDMP’s trigger consttuc the re_usable composed SAN r_n(,)mtl (cf. ,F',g' 6).

is modelled. It is assumed that the trigger has an originteven® SetinitStatelny, init); sets the initial state tait to the

Fr which activates and deactivates the trigger. In SAN an extra leaf In;. ) i . )

place is needed to control the status of the trigger,s.eact , ¢ Out1=0r|g(_ln1); finds the origin node of the triggdin,

s_deact places for activation and deactivation respectively. and stores 'rO“tl_' L .

Note that theact anddeact places cannot be used because * O“tlzDeSt(lnl)% finds the destination node of the trigger

these are shared with the destination element that will be 171 @nd stores irDut;.

triggered. . Out1=gethbtree(n1, Ins); e>_<tracts the sub_treé)utl
Any BDMP model can be synthesized into an equivalent oM the given treeln,, starting from the given node

SAN model using the building blocks in Fig. 5 and based on Iny downwards until the leaf-level.

the shared places and hierarchical modelling concepts bf. SA Algorithm 1 proceeds as follows in the BDMP model shown

Fig. 6 shows an example of the composition of SAN modelm Fig. 6:

« Outy=PropagateTrigger{n,); in the BDMP modelin,,
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BDMP State Machine SAN model - IG/OG Specification Reusable Block
ot act w faule
N au Vif (m(deact)==1)1
| e @ G Dm®=1 1
SF leaf y m(W)=0; : SF Leaf
d & S . | m(deact)=0;}
Nl ”@\“’” (] repai e I
25 | e e/ Foorm®=0; F Leaf
P R e m(W)=1;} 1
F leaf aultggpy ~ \‘l/ L e oo
faultsgp,
Y Yif (m(A)==1 && m(B)==1"
| &&m(Y)==0) :
~ i
6 1if ((m(A)==0 || m(B)==0), A v
1 &&m(Y)==1) 1 >
5 IR H Y - g
y Vif ((m(A)==11 m(B)==1)
, &&m(Y)==0) 1 Submodel
@ | m(Y)=1; 1 OR
1if (m(A)==0 && m(B)==0 : A
OO0 I &&m(Y)==1) > Y
AB ' my=0; | N OR =
Vif (m(Fp)==1 && m(s_act)==0)
RS I
m(deact)=0; o
I m(s.deact)=0; | Trig
i Trig | £ “(llgsimt))zxfg (s.deact)==0)
if (m == m(s_deact)==0), -
* : {mEict):());1 1 F-T> Trig [ Deact
m(deact)=1; |
1 m(s_act)=0; 1 P Adt
L m(s_deact)=1;} 1

Fig. 5. BDMP to SAN dictionary: building blocks.

« Li ne 2:thereis no need to further propagate the triggeise of SAN constructs to extend the formalism and analyse
effect. situations which cannot be handled with BDMP, e.g., dynam-
o Li ne 3: the variablevec BDMP_SANI s set according ically updated dependability estimates.
to the dictionary in Fig. 5yec BDMP_SAN = [Tr1, Tr2,

Trig, AND]. . . .
o Li ?.]e 4 ]the variabletree SAN is directly assigned: D. Prognostics-updated Failure Specification of Assets
tree SAN ={[Tr1], [Tr2] }. BDMP leaf nodes model the assets under study and these are

« Lines 5-9:the BDMP model consists of a single gatedefined by a triggered Markov process (see Subsection 1I-B1)
Thus, the SAN tree variables are updated@sut nodes Depending on the type of the leaf and if the leaf node is a
= [Trl, Tr2]; subtreg = [join, AND, Trl, Tr2]; and destination element of a trigger mechanism or not, the -state

tree_SAN = subtree space of the leaf is different.
o Lines 10-14: the initial state ofTrl is set toActive In the most complex case (see Fig. 5, first row) the BDMP
andTr2 is set toStandby leaf includeswor ki ng, fail ed and st andby places,

 Lines 15-17: the unique trigger in the BDMP modelf aul t,r epai r andf aul t s; anaby timed activities, and also
is created linking origin and destination variablesact anddeact instantaneous activities. In the simplest case,
subtreg = [Trl]; subtreey = [Tr2]; trigger = [join, Trig, i.e. a F leaf node without trigger influence, the leaf model in
Trl, Tr2]. Fig. 5 is reduced to the model shown in Fig. 4.
o Line 18:the SAN trigger variable is added to the pre- In both cases, the transition from working(to failed )
viously created SAN tree of the BDMP modé&ke SAN state is triggered by &aul t timed activity. Ther epai r
= {ljoin, Trig, Tr1, Tr2], [join, AND, Trl, Tr2]}. timed activity can transit from failedF) to standby ) or
The synthesis Algorithm 1 along with the BDMP to SANworking (W state depending on if the leaf is the destination
dictionary in Fig. 5 presents the correspondence betweelement of a trigger mechanism or not respectively. Both
BDMP and SAN models. This transformation has benefits fémilure and repair timed activities are fully specified byeth
both formalisms. SAN is a generic and powerful formalisfeDF of the failure and repair distribution.
that can be adapted to model different dynamic dependabilit Prognostics studies are performed regularly throughaait th
models. However, this generality comes with modelling sostifetime of the asset, and updated with online information.
The proposed transformation process enables the synitfesihe link between prognostics and dynamic dependability
SAN models that implement BDMP models, which alleviateassessment addressed in this paper focuses on updatingrthe d
the modelling costs and enables the analysis of complp&ndability model with asset-specific characteristicsaivigd
systems in a user-friendly manner. BDMP models can makem prognostics analyses. That is, the CDF parameterseof th
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Algorithm 1 Synthesis of SAN models from a BDMP model

1: function SYNTHESIZE_SAN(BDMP_model, dictionary)

2: BDMP2=PropagateTriggefBDMP_model);

10: for eachL; € L do
11: SetlnitStatéree SAN(L;), ‘Active’);

12: end for

13: for eachT; € T do

vec BDMP_SAN=TransforniBDMP2, dictionary);

tree SAN=Leave$vec BDMP_SAN);

for eachG; € G do
input_nodes=InputyG;, tree SAN);
subtreg=Join(vec BDMP_SAN(G;), input_nodes);
tree SAN=tree SAN U subtreg¢

end for

> propagate triggers’ destination to the leaf level
> transform BDMP elements into SAN
> store all the leaves in the vector
> parse all the gates bottom-up
> take all input SAN elements of the gafé
> link gate G; with inputs in SAN
> nest in the tree the generated subtree in SAN

> at this point the BDMP model is created without triggers amitlal states

> set the initial state of every leaf initially to active

> now add the trigger effects and standby states

14: SetlnitState(treeSAN(Dest(;)), ‘StandBy’); > set to standby destination leaves
15: subtreg=getSubtre@Orig(7;), tree SAN); > get SAN subtree of the origin of the trigger
16: subtreg=getSubtre@est(l;), tree SAN); > get trigger destinations, i.e., SAN leaves
17: trigger=Join(Trig, subtreg, subtreg); > join via trigger origin and destination
18: tree SAN=tree SAN U trigger > nest in the tree

19: end for

20: return tree_ SAN

21: end function

————————
- ~.

Submodel

failure distribution can be updated with prognostics pcgdn
results.

To this end, the following steps are implemented in SAN
and repeated until reaching the mission timg (Ef. Fig. 7):

(a) pause the simulation time at the prognostics prediction
time (Tp);

(b) read and parametrize prognostics results;

(c) update the failure distribution parameters, resangpiire
failure CDF according to the prognostics estimations.

After each update a new prognostics prediction time is ob-
Submodel shared place del_jnew pame tained from T’
AND _ _/ Trl_Fail, A | Trig_Tr, AND| Trl_Fail ’
N Submodel Tr2 Fail, B | Trig Tr, AND| Tr2 Fail
~Trig Tr_ ~ Y AND TE (b) Read (©)

l Run to
- failure data
Prognostics

Shift CDF time to T;,

Trl

Fig. 6. BDMP synthesis example.

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 Trig_Tr 1 Model Physics of
. | ;
i |[shared piace]_submodel | new name _ |
I F.F | Trig,Trl | Trl Fail el I
. Tig 1
: act ir{gs ir; Tr2_act Submodel 1 Submodel 1 Parametrize RUL
1 deact rig, Tr2 | Tr2_deact Trl T2 1
! F Tr2 Tr2_Fail !
= : €D
1w fault Py 1
1  Fp 1
1 1
| <actact> 1 F_ig. 7 L_deate process: (a) SAN engine; (b) prognosticsimgadc) resample
. <F, Fp> 1 distribution.
1 2N <deact,deact>| 1
‘e . . 1 " — . .
| N s_act | deact; , Conditional distributions are needed to integrate theltgsu
1 o Trig ' with the corresponding time shift because the updatin c
1 1

is performed at different time instants. In this case, we

have updated the results according to the conditional Weibu

distribution given by

—[(FerttyB _(Ter)B)
n n

F(T.) =1—¢ 1)
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Tanbda o
{ m(Lambda)=Predvalues(1); Reactivate

Weibull distribution respectively, and; is the elapsed time

_{' i Lontrgk §
. o | m(Reactivate)=1;} i .M PredTines |2
of operation up to the start of the new missiont 480]. 1 else if (time==predTines(2)) || K pertat= - “\gereavarves|q
The updating process is implemented in SAN with sorre{i {:E;:iij);z‘;ivlél}ues(z)? ] <miaman), m(reactivare)>
advanced simulation practices. Based on the simulatioa, tim i eise m(React ivate)=0; | oo
prediction times, and prognostics results; reactivatioedp i m(check)=1t | > React=m(react ivate) |
cates are determined so that the leaf takes new firing tinmes — T toTire Timing Diagram Comments
(i.e., time to fire of thef aul t activity in Fig. 5) ruled by TTF, it
the updated distribution function at the prognostics-iset (@) TTF=F(r, Ao) r~U[0,1] [~ 1 tme | activity time
prediction times. T ——
For instance, if we assume that a component degrades [@g:|(b)| TTF,=F(r, A,) r~U[0,1] H‘ = time PredTimes(1)=t,
cording to the exponential distribution, the failure distition 2 &t;r; Predvalues()=h
parameters of théaul t activity are updated dynamically 3 resampling #2:

—>((c)| TTF,=F(r, A\,) r~U[0,1] I:I time | PredTimes(2)=t,,
PredValues(2)=A,

6t
Ao 0<t<Ty, TTF
A=y =1 @ @ Tr=Fr M) U104 [ TJume | 250 timing
¢ Pi to ts

where) is the initial failure rate estimate typically taken fromF, 8. Distributi i |

a reliability databaseT, is thei-th prediction time instant, 9. €. HIStrbion resampiing example.

and )\; is the failure rate at-th prediction time instant. The

number of prediction time instants depends on the specifitognostics prediction results, e.g(t) andn(t) parameters

prognostics application (and available data) varying floap  for the conditional Weibull distribution as defined in (1).

to P prediction instants = {1,..., P}. Using the SAN reactivation mechanism along with the
Fig. 8 shows a reactivation function example for @rognostics prediction information for each leaf, we can up

non-repairable asset witlK and KO places initialized to date the underlying triggered Markov process to include new

<m(K)=1, mKO=0> and afail timed activity defined failure distribution parameters when prognostics préofist

with an exponential distribution, with an initial failurate \o.  are performed.

Any timed activity in SAN has the possibility to reactivateda

resample its distribution function, obtaining a new timdite I1l. CASE STUDY: POWER SUPPLY OFELECTRIC

[21]. In Fig. 8 this happens when the reactivation predicate DISTRIBUTION BOARD

is trgle (hmReapt.i vat e)=_1)f.a(rjld the_ markhing conditti)?nskto The electric distribution board supplies power to the com-
ena e the ?th'Y'thy ?]re sqtls 1€ b(fmk_lr?' T iasi%td ocd ponents which support the cooling and the control functions
Is connected with theoni t or block throughlLanbda and ¢ 5 1y clear reactor core. Fig. 9 shows the configuration of

Re_a_ct_i vat e places. Th“"?”i t_or block is executed deter'éhe power supply of an electric distribution board [32].
ministically everyDel t aT time instant. The code embedde

in the Cont r ol output gate evaluates if the simulation time Electric Electric
(ti me) matches with prediction timesP{edTi nes) and Transformer ~ Transformer

; ; ; ; - Trl ™| 400 kV
accordingly (i) enables the resampling of thRai | activity — 6kV
through theReact i vat e place and (ii) updates the marking
of the failure rate through theanbda place.Pr edTi mes 12 ‘
andPr edVal ues store different prediction time instants and DBB1 ‘ 2 Diesel
values in numeric vectors, respectively. B o

The time to fire (TTF) of the activity changes throughout
the mission time: (a) atq the initial TTF, is drawn from DBA] L ===
the exponential distribution with ratay; (b) at t,, a new
TTF, is obtained from the exponential distribution with rat&ig- 9. Power supply of an electric distribution board [32].
A1 extending the time to fire untils; (c) att,. a newTTFy
is obtained from the exponential distribution with raie
extending the time to fire untit;; (d) the overallTTF of A. Dynamic Dependability Evaluation Model
the activity lastsI'T'F' = t5 — to. This update process results Failure to supply the power results in hazardous conse-
in updating the failure distribution at the stated readira quences for the nuclear power plant. Fig. 10 shows the
time instants (e.g. see an example in Fig. 18). correspondent BDMP model of the power supply divided into
Note that the example in Fig. 8 models the resamplifgerarchical levels [32].
process for the exponential distribution. Due to the memory Failure of the active transformdrl activates the standby
less property of this distribution, there is no need to abarisi transformefr2. Anytime when thelrl is repaired]Tr2 returns
conditional distributions. However, if other distributi® are to the standby (or dormant) state. When the transforniets (
deemed more appropriate, the corresponding conditioilal faand Tr2), distribution board PBBI), or circuit breaker €B1)
ure distribution parameters need to be updated accordingfdd (see Fail_PS DBB1 gate in Fig. 10), the standby diesel
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Levels A « Line 4: tree SAN={[DBA1], [CB1], [DBB1], [Tr1],

% i [Tr2], [CB2], [Diesel] }.

o Lines 5-9: tree SAN=subtreg subtreg={join, OR1,
DBA1, subtreg}; subtree={join, AND1, subtreg

QFail_Supply_DBAl i subtreq}; subtreg={join, OR2, CB1, DBB1, subtrgk

Fail DBAI 4

subtreg={join, OR3, CB2, Diesél subtreg={join,
AND2, Trl, Tr3.

« Lines 10-14: initial state ofTrlis set to active, initial
states ofTr2, CB2 andDieselare set to standby.

[ N
Fail_PS DBB1/ Fail_PS Diesel/

(" “\Fail_Supply_DBBI mh o Lines 15-17: triggerl = [join, Trigl, Trl, Tr3;
trigger2 = [join, Trig2, subtree3, CB2 trigger3 = [join,
AN N B Trig3, subtree3, dieskl
@ 0 o Line 18: tree SAN={[join, Trigl, Trl, Tr3, [join,
DBAl  CBI  DBBI  Trl Tr2 CB2 Diesel Trig2, subtree3, CBR [join, Trig3, subtree3, diesgl
subtreg}.

Fig. 10. BDMP model of the power supply in Fig. 9 [32]. )
Fig. 11 shows the resultant composed SAN model. For

simplicity, in this figure we have omitted the atomic
supply is activated, comprised of a circuit breakd2 and a models of trigger and Boolean gates and we have only
Diesel generator. When any of the primary supply elemenghown the atomic models of F and SF leaves created
are repaired (so thaail_PS DBB1=0); thenCB2 andDiesel in Line 3 of the Algorithm 1 using the dictionary in
return to standby state. Note that theeselsupply can fail in Fig. 5. Note that bothtri gger2 and tri gger 3 mod-
standby mode (SF leaf) whilér2 cannot (F leaf). els contain theFai | _PS_DBB1 model, which is shared
Table 1l displays the failure rate figures used for the quamhen linking with Fai | _PS_Di esel via ANDL gate to
titative assessment assuming a mean time to repair of one @egate theFai | _Suppl y_DBALl model. Accordingly, the

for each asset. Fai | _PS_DBB1 model contains th&ai | _Suppl y_DBB1
model showed in Fig. 6. For clarity, we have omitted the sthare
TABLE I states, but these also need to be created as showed in Fig. 6.
FAILURE RATE VALUES OF THE ASSETS INFIG. 9.
Asset )\ (year-l) Sudel Join
Circuit breakers (CB1, CB2) 6.2e-1 y' [17] Submodel JI Submodel
Transformers (Tr1, Tr2) 1.2264e-2 ¥ [17] DBAI  Fail Supply DBAI
i L
— Diesel 4.6428 " [37]
Distribution boards (DBB1, DBA1) 8.76e-7 ¥ [38] Fail,supily,DBAl
. . Submodel Joi Submodel
Note that the life expectancy of power transformers is much Fa_lilPDesel ._ANDI
longer than circuit breakers, diesel generators, andildligion T
boards with an average lifetime of over fifty years [39], [40] ﬁ ‘
Submodel Submodel
trigger3 trigger2
B. Transformation into SAN Submodel IR Join J[Sibmode! B Join
i . . . Trig3 Trig2
The BDMP model in Fig. 10 is solved using the KB3 work- Fail-pe piese! | CTEIE ENIECE || ETEE) EYEREED
bench through Monte Carlo simulations [33]. We generate — I
the equivalent Stochastic Activity Networks model apptyin jSubmode |
the synthesis Algorithm 1 to the BDMP model in Fig. 10 as A
- Submodel Joi Submodel Joi Submodel
follows: 0 - " o > aiLSpDBBl
« Line 2:noneed to propagate the triggligl from Trl ST SREEEC | SRl STt
to Tr2. Propagate the trigger effects in the BDMP model _
w  fault act W faultf— [, W fault

from Fail_PS DBB1 to CB2 and Diesel leaves through
dedicated trigger3rig2 and Trig3, respectively.

%

o Line 3: generate low-level equivalent SAN atomic @r ’ _ _
models using the dictionary in Fig. %ec BDMP_SAN= repait gy ‘ e reneir .
[DBA1, CB1, DBB1, Trl, Tr2, CB2, Diesel, Trigl, Trig2, s F w
Trig3, AND1, AND2, OR1, OR2, OR3vhere: deact 12| | |deact faultsny
CB2 iesel|
— F leaf: DBAL, CB1, DBB1, Trl, Tr2, CB2 =
— SF leaf:Diesel Fig. 11. SAN composed model of the power supply in Fig. 9.
— Trigger: Trigl, Trig2, Trig3
— AND: AND1, AND2 In order to validate the proposed algorithm and models, we

OR: OR1, OR2, OR3 have quantified the BDMP model in Fig. 10 through the KB3
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tool [33] and the equivalent SAN model in Fig. 11 using the 40 + Ambient Temperature 8900 -
Mbbius tool through Monte Carlo simulations [22]. In SANZ 35/ + Top Gil Temperature - N
the system-level unavailability is calculated by evalogtihe 53 30r . 4 é 88007
occurrence of the top-event (i.€OR1 submodel in Fig. 11) <2 ' = ﬁf#
through reward variables (see Subsection 1I-C1). Fig. Titvsh = 20 z 8700 - %:ﬁ
the system’s unavailability obtained using BDMP and thg! A &ﬁi
equivalent SAN model. E 10r g 8600 - *
s
- 0; - : : 8500 5!
22(105 50:;555 Z8 Qg ‘§ ;8 5 <ta§§ g? é)ampleNumblego
(2) (b)

Fig. 13. (a) Transformer top oil and ambient temperaturepdasn (b) Circuit
breaker SE density data.

Unavailability

The monitored variables include the current loading, tdp-o
temperature and ambient temperature (see Fig. 13 (a)).

0.5l ——e— SAN estimate: mean value . .
. BDMP estimate: mean value In parallel, 60 years after the installation of the power
—————— BDMP estimate: confidence intervals transformers, the previous circuit breakers were replag#ud
050 20 e 0 100 1o 140 160 1so 200 New ones which had monitoring sensors [41]. In this case, one

Time (Years) year of Sk gas density data was calculated from measured gas
_ o o , pressure and ambient temperature. The density gfg8B is
Fig. 12. Unavailability of the model in Fig. 10 solved via Bvand SAN. used to interrupt current flow in a circuit breaker [42]. When

The unavailability of the SAN model falls within the bounddS density drops to a predefined lockout level (i.e., 8192

of the BDMP estimation. Therefore, the values obtained Wimbar) it is no longer able to operate.

BDMP and SAN are equivalent. Although evaluatingalifetim% The f|rst_step was to analyse if a gas 'e?k exits or not.
S . S o enerally, in the case of a leak, §Gas density decreases
of 200 years in industrial practice is unrealistic, we have . . .
; linearly [43]. In order find an appropriate prognostics nlpde
deliberately evaluated the performance of the model for the L
. e evaluate the monotonicityiono of the data as follows
long term so as to validate the created model. Both mod A
are evaluated with a confidence level of 0.99 and a confidence™"
interval of 1e-6. Table IIl displays the mean values shown in
#positive% #negative%

Fig. 12. mono = mean(] h (3)
n n
TABLE llI wheren is the number of data windows in the dataset and
MEAN VALUES IN FIG. 12 is the time scale.

Time (Years) SAN (X10°9) BDMP (x10-7) With a window ofn = 10 samples, the monotonicity of
5 1.49 1.47 the available dataset izono = 0.81 which confirms that the
%8 igé i-ig degradation trend is linear. Based on the prognostics igaan
30 149 W selection approach in [13], we select linear regressionras a
40 153 1.69 appropriate technique for the problem under study.
50 1.49 1.36 Therefore, the initial S§ gas density data was divided
igg ig% 1:4512 into blocks of data points, and a linear regression model
300 153 146 was applied to see the degradation over time [43]. This step

requires fitting a generic linear function to the data witlk th
With a repair rate of one day, transformer failure haf®rm

little influence on the system unavailability. However, thee

repair rate for this size of transformer can be up to one year g=mx+nzxsd (4)

[_39]’ [40]. Therefore RL,JL predlctlons_ should b_e In-a S'm'la{}vhereg is the predicted value of the dependent variable,

timescale for timely maintenance action planning. is the slope of the liney is the independent variable,is the

y-intercept, andd is the standard deviation of the density

C. Asset-level Prognostics Models and Parametrization

For this case study, it is assumed that condition monitoring sd =/ El(x —7)?] )
is focused towards the end of expected life of the assets. wherez is the density data samplg,is the mean value of the
Accordingly, 59 years after the installation of the transdataset and” denotes the expected value.
formers, different data-gathering systems were instal@ue The linear regression involves finding the valuesrofand
year of data was used to diagnose the current health statso that the sum of the squared prediction ersarE is
and predict the remaining useful life of the transformersinimized
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where©y is the hotspot temperature fiC.
The probabilistic degradation of the system was analysed
based on the Bayesian particle filtering approach [16]. To

] . o this end, it is necessary to rewrite the physics-of-failure
where M is the dataset lengthy, is the historical value of the jegradation equation (7) as a recurrence relation [16],
dependent variable, anf] is as defined immediately above.

The slope parametern, was used to characterize the ¢SF B [(15000+a)(ﬁ—ﬁ)]
gas changes over time. If the slope was steeper than a certain Ly=1Lia—e ' (8)
threshold, it was considered a true indicator of $ak [43]. wheret is the time in service in hourg;, is the RUL at time,

Fig. 13 (b) shows an example true indicator of arns $ak @ is the hotspot temperature at timeand¢; is the process
and Fig. 14 shows the RUL estimation based on the linegise.
regression with different data samples. The process noise models the variation in lifetime reductio
for a given hotspot temperature. This is caused by the small
® . Shdmiyanamles - gitferances in the activation energy required to breakutese
Ry, T T Standard deviation chains. Therefore the process noise must account for the
uncertainties surrounding the activation energy proc&é$ [
In this case a normal distribution with"(0,20) was used.
The transformer hotspot temperature is not directly measur

M
SPE=> (yi — i)’ (6)
i=1

% SF; density data samples
. Fitted linear function 8800
- — —Standard deviation jro N

Lockout level Lockout level "3

o 8200 s 8200 NN
RUL L RUL Ll L
o e o7 sise  able and it is inferred from other parameters [46],
8000550 abo_ 60 80 7oo0 1200 200 200 700 500 800 1000
Time (days) Time (days)

®H = 6to + (80 - A(aifo/a,R) X K2m (9)

Fig. 14 (_Zircuit breaker prognostics results with predicsi at different
prediction times. (a) g; = 50 days. (b) }, = 63 days. where©,, is the measured top oil temperatur®®,,, r is
di h dicted | ¢ ) he lock the difference in temperature between top oil and ambient at
I E>|<tenf ing the predicte miar unctlonlup t%_t T ocd OYbted current/s is the ratio of measured load to rated load,
evsl (cf. Fig. 14), we get the RUL values displayed in,q,., is related to the cooling mode of the transformer.
Table IVv. The patrticle filter model is based on many different simula-
tions (i.e., particles) with different initial conditiorend state
TABLE IV N o . L
PARAMETERIZATION OF RESULTS INFIG. 14 transition probabilities. At each simulation time stepe tiew
state of the system is evaluated given the previous statéhand

Trp (ciaé% Ru'il(fgys) SDé%ays) probability of each particle is weighted using the likelitio
TS: =63 844 50 function so as to evaluate the true current state of the syste

See [16] for more details about the transformer degradation

In this specific case, it can be seen that with more availafi@d particle filtering implementation. _
data the asset-degradation slope increases and the \ariand hrough the repeated application of (8) and (9) with the
decreases. The slope increment is caused by an increased¥§@rly historical load current and ambient and oil temperat
gas leakage. However note that this is not a generalizapiéasurements (see Fig. 13 (a)), the Bayesian particle filter
effect and the asset-degradation depends on the assc'a‘te,spéBOde' predicts the effect of various possible future caodg
operation. The reduction of the variance comes from ti9d the transformer life.
increased certainty level of the predicted data which reduc N particular, we can assess the effect of overload condi-
with more available data in this case. tions on the transformer RUL estimation. We have evaluated

Through the application of the linear regression model vdifferent hypothetical future operation conditions atfeliént
obtain single point RUL estimates. Accordingly when upagti prediction times, including overload conditions caused by
the failure distributions of the circuit breakers we use th@ochastic external events, which require additionaliogah
values in Table IV as failure rate parameters of the expdalenth® power station by increasing the load up to 120%.
distribution (see Subsection 1I-A). NamelgB1 and CB2 are o 1},,=3y : 90% loaded for 3 years.
implemented in SAN as BDMP F leaf models (see Fig. 10) « 1,,,=12y: 90% loaded for 11 years, 120% for others.
using Algorithm 1 and the dictionary in Fig. 5. As shown « 7,,=15y: 90% loaded for 11 years, 120% for others.
in Fig. 11, the SAN models o€B1 and CB2 are different  « 7,,=20y: 90% loaded for 14 years, 120% for others.
becauseCB1 is not affected by the trigger mechanism. Note that these scenarios summarize the overall condijtions

The prognostics model of the transformer is based on that overload events can occur at different time instanté wit
aging of paper insulation which is the most critical faildioe  different durations, e.g. one year of total overloadljp can
power transformers [40], [45]. With time the paper becomes originated from three overload events occurring at 4nd, a
more brittle, insulation integrity is lost, and the transh@r 10 year time instants which last for four months each.
ceases its operation. IEEE C57.91 defines a paper agingig. 15 shows the PDF of the transformers’ RUL estimations
acceleration factor [46], at different prediction times .

According to the analysed overload scenarios, we can

(7) confirm that the increased overload condition has a direct

[15000_ 15000 ]
Faq = el 385 Ttep
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0.3 +{{'§E’L§$ﬁf:3y rapidly due to the low variance of the RUL estimation.
0al g mm——— Egial$p2:gy Given that the transformer's paper degradation process is
- t = . .
RULat Ty =20y , governed by the exponential law in (8), we have also modelled
025 i the corresponding degradation behaviour in Fig. 17 usieg th
1 . . . .
2 0o i maximum likelihood RUL value as the failure rate parameter.
= 0T i
2 i
o.15- ] Ir
= !
1
0.1 1
]
1
0.05F i
17 H
200 210 220 230 240 250 260

R |
160 170 180 190
RUL (months)

Fig. 15. Transformer RUL values at different prediction ésn

impact on the transformer degradation and RUL prediction, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
0 50 100 150 200 250 300 350 400 450 500

in agreement with (8). Time (months)
Based on the RUL estimations in Fig. 15 we update the
unavailability of the transformers in the dynamic deperiuldab':ig- 17. Non-repairable transformer CDF using exponertisiribution.
|tythr20tdel gzgésl&eaﬁg thczl (2Ifeedretnc:s d'\lffvcl-:‘trher:?e r;nboa?t? l_ For this case study the exponential degradation is coresider
without upd ) ve evall wo ,p ) |'Jnore representative than the Weibull distribution. Beside
ity distributions for the update of the transformer’s fadu : : I .
o . ) ) note that if the Weibull RUL estimations are used with the
distribution with prognostics values (Subsection Il-Apet . : . o
e . ) o BDMP failure logic (cf. Fig. 10), it is always the case that
exponential distribution with maximum likelihood RUL and, . - -
ariance values and the Weibull distribution with its sha Fail_Supply_DBB1 = 0 because thér2 is in standby
\(/ﬂ)l and svcallje 0 arametersl l'JI'abI:a \'/ l:jls Iach, el . alep peration until the failure of'r1. This scenario makes over-
P : ISplays equiv Iﬁ'lapping failures ofT'r1 and T'r2 impossible at any point in

distribution parameters of PDFs in Fig. 15. time, i.e., Fail_Supply DBB1 = 0.,
TABLE V Therefore we will use the exponential distribution with
PARAMETERIZATION OF PDFS IN FIG. 15 XTp,) = 1/RUL f_or the.fallure rate update of circuit breakers
and transformers including the different prognostics ltegor
Tp (M) Max. (m) Dev. (m) B n ; ;
T =3 A3 353 AT o3 circuit breakers (Table 1V) and transformers (Table V).
Tp, = 144 233.47 36 2334 170.3
Tp, =180 193.39 3.25 193.4 164.7 D. Prognostics-updated Unavailability Estimations
Tp, = 240 166.21 3.06 166.2 110.8 . i . o
First we will focus on the prognostics-updated unavailgbil

Assuming non-repairab]e events, the cumulative distidlout estimations at the asset level and then we will evaluate the
function of the Weibull and exponential distributions ase e System level unavailability according to the BDMP model in

pressed through (1) with,; = 0, and with7,; = 0 andnp = 1, Fig. 10. In order to compare the results we will also calcu-

respectively. Fig. 16 and Fig. 17 show the correspondit@fe asset and system level unavailability without progines
information directly with parameters taken from Table II.

cumulative distribution functions with the parametersasted
Let us first focus on the unavailability of transformers. The

from prognostics estimations.
failure behaviour of the transformers is defined in Fig. 10 as
1 : 7 the Fail_Supply DBB1 event and this subsystem was previ-
—Tp, .' ously developed in Fig. 6. The SAN modelsBf1 and 72
_08r _'_,':,'_:_'}gi ! are shown in Fig. 11. InitiallyZ'r1 is in working state and
%O()» Tps ! Tr2 is in standby state. The synthesis example in Fig. 6 shows
g : which places are linked through the SAN join operator. When
?5»0_4, : Trl fails, Tr2 transits from standby to working state due to the
B i activation signal sent by the trigger mechanism and whieh
[ . . .
021 i is repaired,Tr2 returns back to standby state (see triggered
/ Markov processes in Subsection 1I-B1).
O TR0 020020 I 0 2% 250 260 Apart from the BDMP constructs validated in Fig. 12,
Time (months) . .
we update dynamically the failure rate of the transformer
Fig. 16. Non-repairable transformer CDF using Weibull ritisttion. as specified in Subsection 1I-D with prognostics prediction
results. Namely, up to the first prediction instant, we use th

In Fig. 16, we can see that the use of the Weibull distrib@verage failure rate displayed in Table Il. After predigtthe
tion results in an asset degradation behaviour which clendg®JL at the first prediction time instant, we update the inhitia
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failure rate with the newly obtained RUL value. We apply the ;xi0”
same update process for the subsequent prediction instaghts
values shown in Table V.

It is necessary to shift by 60 years the prediction instamts i 1.5
Fig. 15 because the transformer monitoring data was olstaing
at this time instantZ},, =60y+3y=756m},, =60y+12y=864m,
T,,=60y+15y=900m, T},,=60y+20y=960m. Fig. 18 shows’
asset-level unavailability results fdfr1 with exponential
update parameters. Vertical dashed lines indicate predict .| "

instants and updates. Confidence intervals are obtained by n ,
" CB1: Prognostics Updated

A P g

labil

Unavai

= = = CB1: Reliability Database

using the maximum and minimum RUL deviation values JR— CB1: Prognostics Updated - Confidence Interval
(RUL + Dev) in Table V as the failure distribution parameters. o — : . ' : :
720 730 740 750 760 770 780
Time (months)
0.07r ——Trl: Prognostics Updated P
— — —Trl: Prognostics Updated Confidence Interval 7~ Fig. 19. Unavailability with exponential update: CircuiteBikerCB1
0.06 — — Trl: Reliability Database

o

S

v
T

‘ estimate updated with real-time information. ThegStata

} shown in Fig. 13 (b) and Fig. 14 was captured during normal

\ operation and does not include stress conditions such as the

} overload cases applied to the transformer.

} In Figs. 18 and 19 we can see that the proposed approach

\ is able to update the average failure rate estimations using

0% o0 %0 500 %0 oh0 prognostics information at the asset level. Depending @n th
Time (months) specific usage of the asset the updated unavailability can be

higher (transformer) or lower (circuit breaker) than therage

failure rate estimations. The same update process applies t

In Fig. 18 we can see that there is a noticeable differen€eB2 and T'r2.
between the reliability database estimate and the progsest 1he asset level models can be connected according to
updated failure estimation using particle filtering resyief. the dynamic system failure logic so as to define the system
Table V). The biggest differences can be identified;gt(756 |evel failure occurrence and evaluate the system unavtitjab
m) andT},, (900 m) due to the difference with the reliabilityAccordingly using the SAN model shown in Fig. 11 with
database information and applied overload conditionpees the update process reported in Subsection II-D we have
tively. In this case the reliability database informatisrbelow €valuated the system-level unavailability. For circuieders
the prognostics-updated unavailability estimation beeahis (CB1, CB2) and transformers (Trl, Tr2) we update the initial

information does not take into account the specific overlod@flure rate in Table Il using the prognostics results digpd
conditions applied to the model in (8) and (9). in Table IV and V as shown in Figs. 18 and 19. For the

The asset-level unavailability estimation process forutr €St of assets (DBB1, DBAL, Diesel) we have taken failure

breakers is similar to the transformers. The failure rataesg rates displayed in Table II. Fig. 20 shows the system-level
are updated with the circuit breaker prognostics predictidnavailability.
parameters in Table IV. The failure behaviour of the cir-
cuit breakers is defined in Fig. 10 and the SAN modelss x 107 — T mean: Prognostics Updated
are shown in Fig. 11CB1 operates actively, whereas the — — — TE mean: Prognostics Updated Confidence Interval
activation of CB2is dependent on the trigger occurrence, i.e. 4 — — TE mean: Reliability Database
the Fail_PS Dieselevent occurrence. When this event occur§
CB2is activated until therail_PS Dieselevent is repaired. =3

In the circuit breakers’ case it is necessary to shift by
61 years the prognostics prediction instants because tize d&?
gathering architecture for circuit breakers was instalied1 !
years: T),, =61y+50d=734mT,,=61y+63d=734.5m. Fig. 19 '[ [ " ‘ o 1 ‘
shows asset-level unavailability results for the circugdker 720 750 800 850 900 950
C'B1 with exponential update parameters. Time (months)

Fig. 19 also ShO\,NS ,that there I_S a,ConSIderable d'f_fere”ﬁg. 20. Power supply of the distribution board: prognastipdated system-
between the unavailability of the circuit breaker updatéthw |evel unavailability.
linear regression compared with the static reliabilityreation
using database values. As opposed to the previous case, tHeig. 20 confirms that the average estimate of the unavailabil
circuit breaker unavailability estimation using the dasdin- ity of the system changes when online prognostics inforonati
formation is more conservative compared with the probigbiliis integrated. After applying the system failure logic show

Unavailability
(=]
(=)
=

o
=
s

0.02

Fig. 18. Unavailability with exponential update: Transfar Trl.
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in Fig. 10, the prognostics-updated system-level unaviditta before failure occurrence and adopting maintenance action
estimation changes dynamically with asset-specific pregnan a timely manner. On the other hand, it is possible to
tics prediction update values. When updating the unauvéiiab save maintenance costs by evaluating the effect of asst-le
values with the circuit breaker results (t=734 m, t=734.8me) prognostics-updated unavailability estimations on thetesy-
prognostics-updated results are lower, whereas when ingdatevel unavailability, by implementing waiting options ira
with the transformer prediction results (t=756 m, t=864 ngritical asset failure occurs.

t=900 m, t=960 m) the prognostics-updated unavailabibty i
higher.

. - IV. RELEVANT WORK
Table VI displays mean values shown in Fig. 20.

Dynamic dependability models analyse reliability, avail-

TABLE VI ability, maintainability and safety attributes (confidatity
MEA“;)VALUES'N FIG. 20 USING DATABASE AND and integrity are outside the scope of this work). There are
ROGNOSTICSUPDATEDESTIMATIONS dependability models that analyse these attributes from a
Time (m) | Database (x10~°) | Prognostics-updated (x 10— °) combinatorial failure logic perspective such as Fault $ree
;ig igi i-gg Reliability Block Diagrams, or Event Tree Analysis [47].
750 71 115 However, the failure of some systems (such as reconfigurable
760 1.69 152 and fault-tolerant systems) is caused by time-orderedtesesn
800 1.52 2.58 guences and conditional triggering events which combitalto
g?g 11.673 3:13 logic is not powerful enough to model [26], [48].
910 1.66 337 Dynamic dependability models enable the modelling and
950 1.85 3.64 probabilistic analysis of dynamic failure logic system&ete
ggg i;g i:gg are a range of dynamic dependability models that address

stochastic and temporal dependencies: BDMPs [20], Dynamic

The unavailability calculation of asset-level and systenfrault Trees (DFT) [49], [50], Dynamic Bayesian Networks
level failure occurrences is performed by monitoring thEl], [52], Dynamic Reliability Block Diagrams [53], State
marking of the failure place (see Subsection II-C1). That iEvent Fault Trees [54], Temporal Fault Trees [55], or hybrid
for Trl and CB1 we monitor the marking of thé place DFT models [56] (see [3] for a more complete overview of
of the corresponding SAN model (see Fig. 11), and for tH/namic dependability models).
system-level failure occurrence we monitor the marking of For most of the dynamic dependability models the dynamic
the top event gate which links all the asset-level models aftteria come from temporal and stochastic dependencigs an
intermediate failure logic. In this case the top-event gaten they assume priori established dependability estimates. The
OR gate (se€ail_DBA1in Fig. 10, andOR1 in Fig. 11) and Proposed approach can be situated within a recent body of
we monitor the marking of the placé (Fig. 5 third row). work aiming to integrate asset-specific operational dath wi

It is possible to calculate the PDF of the remaining usefdependability models.
life at the system-level by calculating the derivative o th The link between Fault Tree Analysis (FTA) and condition
unavailability shown in Fig. 20. However, the PDF of thénonitoring was introduced with the concept of condition-
RUL is not representative on this occasion because the Cb#&sed FTA (CBFTA) [57]. Failure rate values of the ex-
is almost stable at a fixed value after each update step (dugemential distribution were updated with predefined asset-
the assets’ repair processes). specific equations. Although this approach addressesarev

The prognostics-updated unavailability estimations sttbwproperties for the integration of condition monitoring aat
in Figs. 18-20 impact directly on the different dependapili prognostics and dynamic dependability concepts are not con
attributes considered in this paper. The dynamic depelityabisidered.
model quantifies the probability of occurrence of hazardousA Dynamic Bayesian Networks (DBN) centred method for
events. With the consideration of prognostics informatiopre-warning of complex systems is introduced in [58]: Hdzar
from the point of view of safety, a better picture of theind Operability Study (HAZOP) is used to identify the DBN
system health is obtained which can help to improve tistructure; Markov chains are used to model the degradation
definition of safety margin values and avoid hazardous copased on condition monitoring data, and a DBN is used to
sequences through up-to-date operational informatiore Tavaluate conditional dependencies over different nodegyus
dynamic dependability model also includes repair actiorthie condition monitoring data. The safety assessment isdbas
and accordingly, the proposed approach provides indisaten the inference of hidden states and prognostics focuses on
to track the evolution of reliability and availability. Irhis future reliability assessment.
paper we have shown unavailability estimations, but aBsgss Authors in [59], [60] integrate prognostics concepts with
the probability of being in the working state (see Fig. System-level FTA for system level RUL estimation assuming
first row) would lead directly to the availability assessmenthat asset-specific prognostics results are representdd wi
Finally, from the point of view of maintainability, the proped Gaussian probability density functions. The transfororati
approach quantifies the effect of asset-specific progreostprocess from prognostics results into FTA is not addresedd a
predictions on the system unavailability. On the one harid, i for the system-level reliability analysis classical n@pairable
possible to minimize the RUL waste by defining a threshoETA is used.
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Similarly, Kim et al. in [61] integrate prognostics resultsintegrate the physics-of-failure models of all the compuse
with static FTA and ETA models to implement a real-time risland their interactions. Besides, the system failure cardit
monitor. The update process is governed by Bayes’ law, whialhich determines the final RUL varies from system to system.
uses prognostics results as prior estimations. It provadedid Sometimes it can be defined as a performance indicator of
direction for the analytic computation of prognostic-ufgth the system [66], [67], but there are situations in which time
parameters. Nonetheless, the static nature of the systlmefa dependent failure occurrences of assets are needed totbause
model may be too limiting for time-dependent scenarios. system failure [64], [65] and this complicates the anabjtic

Likewise, a dynamic failure methodology for the chemicdateatment of the problem. In these situations, the applitab
industry was presented in [62] comprising the followingpste of analytic equations for system-level RUL is challenging.
Initially, ETA is used to identify failure scenarios and Besjan In summary, although there is work in linking condition
prior estimations are initialized using generic data. Th@m monitoring and prognostics to static dependability arialys
posterior estimation is computed based on the likelihoadodel, very little has been done with dynamic models.
function. Finally, the process is updated with plant-sfieci Accordingly, we have focused on simulation technigues to
information. Dynamics come from the plant-dependent dataddress dynamic asset dependencies while including asset-
but the failure specification logic is static and dependesicispecific prognostics results updated at runtime. We focosed
between failures of different events are not considered.  Stochastic Activity Networks because they are able to iatieg

Pattisonet al. in [63] use DBN to represent the failurenot only the Bayesian update process, but more complex
behaviour of wind turbines and update the conditional faiscenarios [69]. Our goal has not been to adhere to a single
ure probabilities of DBN nodes with condition monitoringporognostics technique, but instead establish a transtama
data estimated through a Kalman filter. Although dynamlayer to use the results of any prognostics approach. Tiweref
dependencies between assets are not modelled, assdiespebe proposed framework is able to integrate independent
information is used to update system-level failure prolitgtbi prognostics results into the dynamic dependability model.
calculations.

It has been demonstrated that the Bayesian framework pro-
vides a solid theoretical framework to perform dependsbili
analyses with time-updated data. To this end, mathematicallhe study confirms the hypothesis that the proposed frame-
expressions are required to specify the prior informatiod awork can be used to improve the dependability analysis in the
the likelihood function for the posterior estimation. Hoxeg context of time-dependent scenarios compared with estima-
when including dynamic asset dependencies, mathematical #ons which use database reliability figures and staticeldg-
pressions become complicated for complex systems. Seg [@4ndability assessment techniques. As shown in Fig. 2@ ther
[65] for the algebraic framework of non-repairable dynamiis room to adopt fit-for-purpose operational and mainteaanc
dependability. decisions accounting for real-time system operation condi

Although prognostics technigues have been focused on tins. However, the accuracy of the system-level unaviiiipb
component-level [12], [13], the system-level RUL prediati estimation and the application of the framework for remaleti
problem is starting to attract the interest of researchigmigle risk monitoring tasks can be limited by the different issues
et al. in [66] proposed a distributed RUL estimation methodiscussed in this section.
computed through the unscented Kalman filter and analytic
equations. The system RUL is defined as a violation of pre-
specified system behaviour constraints and this is prajecte
into individual subsystems. A valve model is analysed thfou  System-level prognostics estimation is an open problem in
decomposing the system health into four health state estintlade PHM field [6]. The system RUL prediction is more than
tors and then the estimators are combined into two predictia simple combination of individual component failures [27]
models. Finally, the system RUL is computed as the minimuf7] because there are stochastic and temporal dependencie
of all the distributed subsystem RULs, which are computed retween assets that need to be taken into account.
parallel through distributed stochastic simulations. In this direction, analytical techniques overcome time-

Recently Khorasganet al. in [67] proposed a system-consuming simulation issues and they can integrate complex
level RUL prediction approach based on physics-of-failudetailed dependencies between variables. For simplersgste
equations. The approach is applied to a rectifier case stutlg use of analytic solutions may be feasible and provides
comprised of a transformer, two diodes, three capacitods am faster solution. However, as the complexity of the system
an inductive load. Particle filtering is first applied to esdte increases, the implementation of analytical solutions tgem
the system health state and then an extended version of thallenging. Analytical solutions become too complex for
first-order reliability method [68] is used to estimate theystems which include for each asset or subsystem: time-
system RUL based on the ripple factor of the output curremtependent behaviour, inter-dependencies, and alteenativ
The system degradation is modelled through the physics-phir strategies. If we include the complexity of the system
failure equations of capacitors, but the degradation nsodel itself which can be comprised of many different assets and
transformers and diodes are not considered. subsystems (depending on the industry) it is not difficult

Analytic equations are an elegant solution for the systent see the advantage (and necessity) of using simulation
level prognostics problem, but it is not always feasible tmethods. Although detailed solutions to this problem have

V. DISCUSSION

Accuracy of the System-level Prognostics Assessment
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been proposed recently [67], we think that the scalability @rediction results and this will incur a continuous change i
the approach can be an issue for complex systems. the asymptotic behaviour (Fig. 20).
The same situation happens with traditional dependability The applicability of the method for real-time risk monitogi
and PSA techniques (see Table I). Although some of the Iamnd maintenance planning is determined by the relation be-
level details may be lost, the analyst obtains a manageabieen simulation time and the prognostics prediction tooriz
system-level approach. Accordingly the proposed modgllitwith a long term prognostics prediction horizon the simiolat
process is inspired from well-defined dynamic dependabilitime is not an issue, but as we reach the end of life of a system,
analysis techniques. the simulation time can become critical. However, note also
In the proposed framework we have combined dynamibat for real-time risk monitoring tasks the predictiondl Wwe
dependability models with prognostics results so as toimbtdocused on the short-term horizon and there is no need for
an up-to-date dependability assessment while accounting fong-term predictions (e.g. months ahead as in Fig. 20) lwhic
temporal and stochastic dependencies. To this end, we heaa reduce substantially the computational complexity.
used BDMP and its trigger mechanism to capture depen-
dencies between assets, but it is possible to apply the same
framework with other dynamic dependability formalisms.too In this paper we have presented a framework which in-
Accordingly, the proposed solution enables the systemat&grates traditional dynamic dependability assessmesit- te
assessment of the system-level unavailability based on thigues with prognostics estimations. The main benefit of the

VI. CONCLUSIONS

following steps (Fig. 1): proposed solution is the more realistic and accurate piiedic
« Asset prognostics predictions and parametrization. ~ Of the system unavailability. We have focused on general
. Basic-events failure rate update. properties so that it is possible to integrate other prognos
« System-level dynamic failure logic. tics and dynamic dependability analysis formalism into the
« Top-event failure occurrence quantification. framework. To this end, it is necessary to adapt prognostics

The asset prognostics prediction model depends on the s -UItS(’j ?Jnld dfefme I_trans_,ft?[rmat:con rull_es ”OPT ;"’?y dgln artnlc
cific asset under study. These results need to be parantetriz&Pc"Ca lity formalism into a formalism which is able to

according to the degradation behaviour so as to updatafefailI tegrate prognostics and any time-dependent failureclogi
distributions of assets (see Subsection 1I-D). The sydeaer tochastic Activity Networks have shown to be valid for #hes

o : : : als.
dynamic failure logic defines the system degradation moo%q)Another important aspect arising from this work is the adap-

including the interactions between assets. For systee1—|e¥ tion bet i it dd i d dabil
failure modelling and top-event failure occurrence quarati lation between prognostics resulls and dynamic depenrdabi

tion we use BDMP [20] and SAN [21] models because thj?/ analysis techniques. For deterministic Remaining Ukef

are able to model dynamic and dependency properties wit |£e (RUL) prognostics estimations it is reasonable to use
well-defined underlying mathematical foundation the exponential distribution with the RUL estimation as a

We acknowledge that all the low-level interactions magilure rate parameter. However, the use of the Probability

not be taken into account with the proposed framework, b {er!sity Functi_on (PDF) should be gnalysed on a case-by-case
this is a conscious trade-off decision that we adopt to ena asis depending on the degradation of the asset and target

the systematic probabilistic assessment of prognospdsitied alf)mcag%lm ftrt]ﬁ dgg\[n:jc ?epe.ndabtlﬁ:ty modgl. Tthe var]tcatr;]
complex systems. of the of the etermines the warning time of the

asset, i.e., with higher variance the warning time is longer
and vice versa. For safety applications in which the designe
B. Simulation Time needs a timely warning of the system degradation based on

The duration of the Monte Carlo simulations depends on tfflure thresholds, the narrow variance of RUL may prevent
complexity of the system and the required level of accuratiye raising of a timely alarm. Therefore, it is necessary to
of the results. For all the presented results, the confideridentify the degradation pattern of the system and model the
level is 0.99 and confidence interval is 1e-6. When updatiggsets’ failure behaviour accordingly.
unavailability estimates with prognostics predictionules the  As for the future research activities we have identified four
resampling mechanism also adds computational complémity.key areas:
the case study, the results start to converge after Se@idtesa  « Analysis of analytic techniques: study possible comple-
and simulation times can go up to 3 hours with a standard mentary techniques in order to find a feasible direction
desktop Intel i7 with 8 cores and parallel computing. for online risk estimation.

For repairable Markov processes it is possible to improvee Add more flexibility to the framework: although the
the efficiency of the simulations based on the asymptotic Weibull distribution is considered a general probability
unavailability of the model [70] and this can be applied te th distribution, it is possible to add more flexibility to the
BDMP models in Fig. 12. However, this cannot be applied framework through customized distributions.
for all the cases analysed in this work because the asyroptotie Analysis of the uncertainty propagation: evaluate other
behaviour depends on the prognostics prediction instants. methods to propagate prognostics results, e.g. multiagent
Some of the models quickly reach the asymptotic behaviour systems [6].

(Fig. 19), but generally the proposed method will require « Comparison of maintenance strategies with respect to
updating the unavailability estimates with new prognastic  dependability and cost.
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APPENDIX reviewers for their valuable comments that helped to imgrov

Before formally defining a Stochastic Activity Networksthe clarity and completeness of the paper.
model, let us define concepts related with the marking of
the net. LetP denote the set of places of the network. If
S is a set of placesq C P), a marking ofS is a mapping
S — N. Similarly, the set of possible markings 8fis the  [1] A. Avizienis, J.-C. Laprie, B. Randell, and C. LandwelBasic concepts
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