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Abstract

Aims We aim to characterize the clinical and proteomic profiles of patients at risk of developing heart failure (HF), with and
without coronary artery disease (CAD) or prior myocardial infarction (MI).
Methods and results HOMAGE evaluated the effect of spironolactone on plasma and serum markers of fibrosis over
9 months of follow-up in participants with (or at risk of having) CAD, and raised natriuretic peptides. In this post hoc analysis,
patients were classified as (i) neither CAD nor MI; (ii) CAD; or (iii) MI. Proteomic between-group differences were evaluated
through logistic regression and narrowed using backward stepwise selection and bootstrapping. Among the 527 participants,
28% had neither CAD or MI, 31% had CAD, and 41% had prior MI. Compared with people with neither CAD nor MI, those with
CAD had higher baseline plasma concentrations of matrix metalloproteinase-7 (MMP-7), galectin-4 (GAL4), plasminogen acti-
vator inhibitor 1 (PAI-1), and lower plasma peptidoglycan recognition protein 1 (PGLYRP1), whilst those with a history of MI
had higher plasma MMP-7, neurotrophin-3 (NT3), pulmonary surfactant-associated protein D (PSPD), and lower plasma tu-
mour necrosis factor-related activation-induced cytokine (TRANCE). Proteomic signatures were similar for patients with CAD
or prior MI. Treatment with spironolactone was associated with an increase of MMP7, NT3, and PGLYRP1 at 9 months.
Conclusions In patients at risk of developing HF, those with CAD or MI had a different proteomic profile regarding inflam-
matory, immunological, and collagen catabolic processes.
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Introduction

Many patients with heart failure (HF) have coronary artery
disease (CAD), which may lead to myocardial dysfunction that
may or may not be preceded by a clinically overt myocardial
infarction (MI).1,2,3 Clinically overt HF is often preceded by a

prodrome characterized by sub-clinical myocardial dysfunc-
tion and congestion, leading to atrial dilation and a rise in
natriuretic peptides.4 Differences in pathophysiological
pathways leading from cardiac dysfunction to HF might
be reflected in the proteome. Patients with HF exhibit
unique proteomic profiles, reflecting differences between
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ischaemic- and non-ischaemic pathophysiological
pathways,5,6 and further helping risk stratification7,8 and the
development of new therapeutic targets.9 HF
disease-modifying drugs exert pleiotropic effects, including
an associated change in proteomics that additionally helps
further our understanding of the mechanisms behind the
prognostic benefits of treatment.10,11,12,13

In this post hoc analysis of the Heart ‘OMics’ in AGEing
(HOMAGE) trial, we investigated differences in the clinical
characteristics, plasma proteins, and collagen metabolism
among participants classified by the presence or absence of
CAD and MI.

Materials and methods

Trial design, population, and randomization

The design of the HOMAGE trial has been previously
described.14,15 Briefly, HOMAGE was a prospective, random-
ized, open-label, blinded-endpoint (PROBE) multi-centre trial
that evaluated the effects of spironolactone on markers of fi-
brosis and cardiac structure and function in people at risk of
developing HF (ClinicalTrials.gov Identifier: NCT02556450).15

The trial was approved by relevant ethics committees and
regulators. All participants provided written informed con-
sent to participate in the trial.

HOMAGE included people aged 60 years or older with es-
tablished CAD or at least two risk factors for CAD, namely,
type 2 diabetes mellitus, hypertension, microalbuminuria, or
abnormal electrocardiogram, who had an increased plasma
concentration of natriuretic peptides (N-terminal pro-B type
natriuretic peptide [NT-proBNP] between 125 and 1000 ng/
L or B-type natriuretic peptide [BNP] between 35 and
280 ng/L).14,15 Patients with known HF, an estimated glomer-
ular filtration rate < 30 mL/min/1.73 m2, serum potassium >

5.0 mmol/L, left ventricular (LV) ejection fraction < 45%,
atrial fibrillation, HF diagnosis, prescribed loop diuretics, or
cardiovascular events in the prior 3 months were excluded.15

Patients were randomly allocated to either spironolactone
or control in addition to their background medical therapy.
Spironolactone was initiated at 25 mg/day and titrated to
50 mg/day, if tolerated, on top of usual care.

After randomization, patient visits were scheduled at 1 and
9 months, for clinical assessment, collection of blood sam-
ples, electrocardiogram, and echocardiographic examination.

Clinical classification of participants

In this analysis, patients were classified as having (i) ‘no CAD/
no MI’—with neither documented CAD nor prior MI, but hav-
ing multiple risk factors for CAD; (ii) ‘CAD’—with known CAD
but without prior MI; (iii) ‘MI’—prior MI, based on clinical his-

tory, supported by evidence of disease or procedures in med-
ical records.

Proteomic biomarkers

Plasma samples collected at baseline, month 1 and month 9
(or last) visits were analysed by the TATAA-biocenter using
the Olink® Proseek Multiplex cardiovascular II, cardiovascular
III, and inflammation panels, resulting in a total of 276 pro-
teins, as previously described.10,14,15 The abbreviations, re-
spective full names, and Olink multiplex panels used are de-
scribed in Table S1. Olink uses a proximity extension assay
technology with dual-recognition DNA-coupled readout,
where 92 oligonucleotide-labelled antibody probe pairs are
allowed to bind to their respective targets in the sample.10

All proteomic assays were blinded to randomization and clin-
ical data. Protein expressions are log2-transformed and pro-
vide relative quantification (NPX).10

Laboratory assays

Serum procollagen type III N-terminal peptide (PIIINP) and
carboxy-terminal telopeptide (CITP) were measured by
radioimmunoassay (Orion DiagnosticaVR), procollagen type I
carboxy-terminal propeptide (PICP) by enzyme immunoassay
(METRA; Quidel CorporationVR) and galectin-3 by enzyme-
linked immunosorbent assay (ELISA) (BGMedicineVR). Plasma
NT-proBNP, high-sensitivity troponin T (hsTnT) and growth
differentiation factor 15 (GDF-15) were measured by electro-
chemi-luminescence (ELECSYSVR 2010 analyser: Roche Diag-
nostics, Mannheim, Germany). All laboratory assays were
done blinded to randomization or clinical data and intra-assay
variations were < 10%.14

Statistical analysis

Categorical variables are expressed as counts and percent-
ages and continuous variables as median and interquartile
range. Missing values were imputed with median of
non-missing values for continuous variables and mode for
categorical variables. The absolute frequencies and relative
percentages of missing values are listed in Tables S2 and S3.

Baseline characteristics were compared between partici-
pants with neither CAD nor MI, CAD or MI, using Pearson’s
χ2 test or Kruskal–Wallis rank sum test for categorical and
continuous data, respectively. Statistical significance was as-
sumed if P < 0.05.

Using logistic regression models, protein expression at
baseline was compared between (i) ‘no CAD/no MI’ and
‘CAD’; (ii) ‘no CAD/no MI’ and ‘MI’; and (iii) ‘CAD’ and ‘MI’.
Each protein was adjusted by the following clinically relevant
variables: sex, age, waist circumference, diabetes, heart rate,
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systolic blood pressure, estimated glomerular filtration rate,
blood potassium, haemoglobin, and urea.

The panel of differently expressed proteins (DEPs) was
then narrowed through backward stepwise selection, using
a P-value < 0.05 and lower Akaike information criteria for
protein retention. This showed the subset of proteins (‘prote-
omic profile’) associated with the presence of CAD and MI.
Statistical correlation of the resulting proteomic profile was
assessed through Pearson correlation. A bootstrap resam-
pling with replacement (5000 bootstraps) was then applied
to rank the most relevant proteins within each profile. For
each bootstrap, we fitted a logistic regression model of the
selected protein adjusted by clinically relevant variables, re-
covered raw P-values, and corrected for multiple testing
using a false discovery rate of 5%. Proteins associated with
CAD or MI in at least 80% of the bootstrapped models were
retained for mechanistic exploration.16

The effect of treatment with spironolactone on the change
of all differentially expressed proteins was evaluated through
an analysis of covariance. A linear regression model was
fitted with each protein change (calculated as the protein ex-
pression at baseline subtracted from protein expression after
1 or 9 months of treatment) as the dependent variable, and
treatment (spironolactone or usual care) plus the protein
level at baseline as independent variables.

The influence of CAD and MI on the effect of
spironolactone on the trial outcomes (systolic blood pressure,
PICP, CITP, PIIINP, NT-proBNP, LV mass, and left atrial vol-
ume) was investigated through an analysis of covariance
model. A linear regression model was fitted with each end-
point change (calculated by subtracting each measurement
after 1 and 9 months of treatment minus its baseline value)
as the dependent variable, and its baseline value plus an in-
teraction term between treatment and the presence of CAD
or MI as independent variables.

Statistical analyses were performed using R statistical soft-
ware, version 4.1.12.17,18,19,20

Results

Baseline characterization of the population

A total of 527 participants was included, of whom 148 (28%)
had no history of CAD or MI (‘no CAD/no MI’ group), 165
(31%) had CAD without MI (‘CAD’ group), and 214 (41%)
had a previous MI (‘MI’ group). The population by groups is
shown in Table 1.

Compared with ‘no CAD/no MI’, CAD subjects were youn-
ger, more frequently men and current or past smokers, and
less frequently hypertensive and diabetic, had higher
haemoglobin levels and lower total cholesterol, had lower
LV mass index, tricuspid annular plane systolic excursion

and E/e’ (early diastolic tissue velocity) ratio, and higher E/
A ratio, were more frequently medicated with anti-platelet
agents (including aspirin), beta-blockers and lipid-lowering
agents, and less frequently medicated with
angiotensin-converting enzyme inhibitors (ACEI) or angioten-
sin receptor blockers (ARB), and thiazides.

Compared with ‘no CAD/no MI’, MI participants were
younger, more frequently men and current or past smokers,
and less likely to be hypertensive or diabetic, had lower total
cholesterol and higher haemoglobin levels, had lower LV
mass, a lower E/e′ and higher E/A ratios. Patients with previ-
ous MI were more often treated with aspirin and other
antiplatelets, beta-blockers, lipid-lowering agents, and less
frequently thiazides.

Compared with CAD group, participants withMI were youn-
ger, less frequently hypertensive, and more frequently medi-
cated with ACEI or ARB, beta-blockers, and lipid-lowering
drugs. Participants with prior MI also had higher TAPSE values.

Association between proteomics and coronary
disease

Proteins found differentially expressed between groups are
listed in Table 2, while the full list of proteins is shown in
the Tables S4 to S9.

Twenty-five differentially expressed proteins (DEPs) at
baseline were found between ‘no CAD/no MI’ and CAD. Of
these, eight were retained in the ‘proteomic profile’ by
stepwise selection, and further narrowed to four after
bootstrapping. CAD participants had higher levels of
matrilysin (MMP-7), galectin-4 (GAL4) and plasminogen
activator inhibitor 1 (PAI), and lower levels of peptidoglycan
recognition protein 1 (PGLYRP1). After adjusting for baseline
medication (aspirin, other anti-platelets, beta-blockers, thia-
zides, ACEI/ARB, and lipid-lowering agents) in the logistic
regression, differences in MMP7, GAL4, and PAI remained
statistically significant, but not PGLYRP1 (Table S7).

Twenty-nine DEPs were found between ‘no CAD/no MI’
and MI before spironolactone treatment (or control strategy).
Of these, six were retained in the ‘proteomic profile’, and fur-
ther narrowed to four after bootstrapping. MI participants
had higher levels of MMP-7, neurotrophin-3 (NT3) and pul-
monary surfactant-associated protein D (PSPD), and lower
levels of tumour necrosis factor-related activation-induced
cytokine (TRANCE). The differences in proteins were also
statistically significant in a logistic regression model adjusted
for baseline medication (Table S8).

Seven DEPs were found between CAD and MI groups
before HOMAGE intervention. Of these, three were selected
in the initial stepwise analysis, but none was retained from
the bootstrapped models.

No significant statistical correlation was found between
proteins included the proteomic profile (Table S10).
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Changes in proteomic profile with treatment

The effect of treatment with spironolactone on the main pro-
tein changes described above is summarized in Table 3.
Treatment with spironolactone increased the circulating
levels of NT3, MMP-7 and PGLYRP1 at month 9.

Influence of coronary disease and HOMAGE
results

The impact of atherosclerotic group on study endpoints is
detailed in Table 4. There was no influence of group on the
effect of spironolactone on the change of systolic blood pres-

Table 1 Description of the population by group (‘no CAD/no MI’, ‘CAD’, ‘MI’)

Characteristic No CAD/no MI (N = 1481) CAD (N = 1651) MI (N = 2141) P-value2

Men 86 (58%) 129 (78%) 177 (83%) <0.001
Age (years) 77 (71, 81) 73 (69, 78) 71 (67, 76) <0.001
Body mass index (kg/m2) 28.8 (25.7, 32.7) 28.1 (25.8, 30.6) 27.8 (25.2, 31.5) 0.3
Waist circumference (cm) 103 (97, 113) 102 (95, 110) 102 (94, 109) 0.088
Smoker (current or past) 82 (55%) 119 (72%) 148 (69%) 0.004
Arterial hypertension 146 (99%) 131 (79%) 136 (64%) <0.001
Diabetes mellitus 116 (78%) 50 (30%) 51 (24%) <0.001
Stroke/TIA 7 (4.7%) 10 (6.1%) 11 (5.1%) 0.9
COPD 6 (4.1%) 9 (5.5%) 18 (8.4%) 0.2
Standing heart rate (b.p.m.) 68 (62, 77) 64 (57, 72) 63 (57, 70) <0.001
Standing SBP (mmHg) 142 (132, 157) 140 (127, 158) 133 (120, 152) <0.001
Standing DBP (mmHg) 76 (70, 83) 78 (72, 87) 80 (72, 88) 0.038
Potassium (mmol/L) 4.2 (4.0, 4.4) 4.3 (4.2, 4.6) 4.3 (4.1, 4.6) <0.001
Haemoglobin (g/dL) 13.5 (12.4, 14.4) 14.1 (13.3, 15.1) 14.3 (13.4, 15.1) <0.001
Cholesterol (mg/dL) 158 (155, 193) 155 (135, 174) 155 (134, 166) <0.001
Creatinine (μmol/L) 0.9 (0.8, 1.2) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) 0.7
Urea (mmol/L) 8.2 (6.2, 11.2) 6.7 (5.6, 9.7) 6.6 (5.5, 9.6) <0.001
eGFR-MDRD (mL/min/1.73 m2) 71 (55, 84) 72 (63, 81) 73 (63, 86) 0.2
Aspirin 68 (46%) 135 (82%) 170 (79%) <0.001
Other antiplatelets 15 (10%) 33 (20%) 51 (24%) 0.004
Anticoagulant 8 (5.4%) 8 (4.8%) 13 (6.1%) 0.9
Beta-blocker 65 (44%) 124 (75%) 176 (82%) <0.001
Thiazides 45 (30%) 21 (13%) 19 (8.9%) <0.001
ACEI or ARB 131 (89%) 109 (66%) 176 (82%) <0.001
Statin/lipid-lowering agent 80 (54%) 146 (88%) 205 (96%) <0.001
CCB 38 (26%) 33 (20%) 37 (17%) 0.15
Randomized to spironolactone 75 (51%) 78 (47%) 112 (52%) 0.6
Galectin-3 (μg/L) 17.5 (15.0, 21.4) 15.6 (13.2, 18.6) 15.5 (13.1, 19.3) <0.001
GDF-15 (ng/L) 1.939 (1.298, 2.664) 1.347 (1.061, 1.656) 1.400 (946, 1.812) <0.001
NT-proBNP (ng/L) 264 (176, 442) 240 (166, 362) 263 (146, 422) 0.4
MMP-1 (μg/L) 10.9 (7.0, 17.7) 9.8 (6.5, 14.1) 10.0 (6.6, 16.1) 0.2
PIIINP (μg/L) 3.9 (3.2, 4.8) 3.9 (3.3, 5.0) 3.9 (3.0, 5.0) 0.5
PICP (μg/L) 81.4 (64.8, 98.6) 79.2 (66.9, 96.8) 80.6 (64.9, 95.5) 0.7
CITP (μg/L) 4.1 (3.0, 5.9) 3.8 (2.9, 4.8) 3.5 (2.7, 4.5) 0.001
QRS duration (ms) 90 (82, 118) 92 (85, 104) 92 (84, 102) 0.7
LVEDVI (mL/m2) 42 (35, 45) 42 (36, 48) 43 (38, 51) <0.001
LVEF (%) 63 (62, 65) 63 (62, 66) 63 (58, 64) 0.004
LVMI (g/m2) 97 (88, 114) 94 (79, 108) 95 (82, 103) 0.003
Men 98 (89, 120) 95 (79, 108) 95 (84, 110) 0.022
Women 96 (86, 109) 90 (72, 104) 86 (79, 95) 0.018
LAVI (mL/m2) 30 (27, 35) 30 (27, 34) 30 (26, 35) 0.9
E (m/s) 0.7 (0.6, 0.8) 0.7 (0.6, 0.8) 0.7 (0.6, 0.8) 0.066
A (m/s) 0.8 (0.8, 1.0) 0.8 (0.7, 0.9) 0.8 (0.6, 0.9) <0.001
E/A ratio 0.77 (0.63, 0.92) 0.84 (0.72, 1.03) 0.83 (0.68, 1.02) 0.003
E/e′ ratio 9.6 (8.4, 12.1) 9.3 (8.0, 10.8) 9.3 (7.5, 10.8) 0.005
TAPSE (mm) 22.1 (19.3, 26.9) 19.9 (16.2, 24.4) 22.1 (19.3, 25.9) <0.001

Statistically significant P-values are presented in bold.
1n/N (%); Median (interquartile range).
2Pearson’s chi-squared test; Kruskal–Wallis rank sum test.
A, late wave mitral valve flow velocity; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB,
calcium-channel blockers; CITP, collagen type-1 C-terminal telopeptide; COPD, chronic obstructive pulmonary disease; DBP, diastolic
blood pressure; E, early wave mitral valve flow velocity; e′, early diastolic tissue velocity; eGFR-MDRD, estimated glomerular filtration rate,
modification of diet in renal disease; GDF-15, growth differentiation factor 15; LAVI, left atrial volume index; LVEDV, left end-diastolic
volume index; LVEF, left ventricular ejection fraction (biplane); LVMI, left ventricular mass index; MMP-1, matrix metalloproteinase-1;
NT-proBNP, N-terminal pro-brain natriuretic peptide; PICP, procollagen type-I C-terminal pro-peptide; PIIINP, procollagen type-III
N-terminal pro-peptide; SBP, systolic blood pressure; TAPSE, tricuspid annular plane systolic excursion; TIA, transient ischaemic attack.
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sure, PICP, CITP, PIIINP, NT-proBNP, LV mass, or left atrial vol-
ume (interaction P > 0.1 for all).

Discussion

This study shows that the plasma proteome of patients at risk
of developing HF but without history of CAD or MI differs
substantially from those with clinical CAD with or without
previous known MI. Several mechanisms of disease may be
implied in these differential processes towards HF, including
differential activity of proteins involved in inflammatory and

immunological pathways, as well as collagen catabolic pro-
cesses (Figure 1).

Proteomic differences may reflect distinct participants’
characteristics. Those with CAD and MI were more likely to
be men and to have a smoking history, but had a lower
prevalence of hypertension and diabetes mellitus, when com-
pared with those with no overt coronary disease. These dif-
ferences may reflect the trial design, as part of the inclusion
criteria was the presence of risk factors, such as hypertension
and diabetes, in the absence of known CAD. Additionally,
baseline medication was also different between groups,
reflecting an underlying condition - specifically, more anti-
platelet, lipid-lowering, and beta-blocking agents in both

Table 2 Proteins included in the logistic regression model, adjusted for the defined clinically relevant variables#.

CAD (vs. no CAD/no MI) MI (vs. no CAD/no MI)

Protein OR (95% CI) z P Protein OR (95% CI) z P

MMP71,2 4.37 (2.32, 8.85) 4.3 <0.001 MMP71,2 3.27 (1.85, 6.01) 4.0 <0.001
GAL41,2 3.06 (1.66, 5.83) 3.5 <0.001 NT31,2 3.06 (1.64, 5.98) 3.4 <0.001

OSM 0.55 (0.37, 0.81) �3.0 0.003 PSPD1,2 1.92 (1.31, 2.85) 3.3 0.001
PAI1,2 1.65 (1.19, 2.31) 2.9 0.003 CTSD 3.04 (1.54, 6.19) 3.1 0.002
TGF-α 0.25 (0.10, 0.64) �2.9 0.004 KIM1 1.82 (1.25, 2.70) 3.1 0.002

TRANCE 0.51 (0.31, 0.81) �2.8 0.006 GRN 4.21 (1.67, 11.03) 3.0 0.003

PGLYRP1,2 0.42 (0.23, 0.77) �2.8 0.006 OPG 4.03 (1.60, 10.57) 2.9 0.004
TPA 1.84 (1.20, 2.88) 2.7 0.006 TRANCE1,2 0.48 (0.29, 0.78) �2.9 0.004

CD8A1 0.55 (0.35, 0.84) �2.7 0.007 TPA 1.58 (1.09, 2.34) 2.4 0.018

GRN1 3.61 (1.44, 9.57) 2.7 0.008 ADA 2.21 (1.15, 4.35) 2.3 0.019
ADAMTS13 5.62 (1.57, 21.69) 2.6 0.010 UPA 2.00 (1.08, 3.58) 2.3 0.020
PCSK9 3.24 (1.35, 8.09) 2.6 0.010 GDF15 1.89 (1.08, 3.32) 2.2 0.026

TNFRSF9 0.45 (0.24, 0.82) �2.5 0.012 ACE2 1.68 (1.07, 2.69) 2.2 0.027
CCL23 0.44 (0.22, 0.86) �2.4 0.017 AGRP 1.88 (1.08, 3.33) 2.2 0.028
MCP1 2.69 (1.20, 6.32) 2.3 0.020 IL8 1.63 (1.06, 2.56) 2.2 0.028
GIG 1.37 (1.06, 1.79) 2.3 0.021 PCSK9 2.51 (1.10, 5.85) 2.2 0.030

IGFBP2 0.53 (0.30, 0.91) �2.3 0.024 CCL16 1.61 (1.04, 2.50) 2.2 0.031
OPN 0.50 (0.27, 0.91) �2.2 0.025 VWF 1.29 (1.02, 1.64) 2.1 0.036
CST51 0.54 (0.30, 0.94) �2.1 0.033 NTproBNP (log)1 1.59 (1.03, 2.49) 2.1 0.040

TLT2 0.51 (0.27, 0.94) �2.1 0.034 IL51 0.75 (0.57, 0.99) �2.1 0.040
CASP3 1.24 (1.02, 1.53) 2.1 0.038 HSTNT (log) 1.90 (1.03, 3.58) 2.0 0.042
HSP27 1.95 (1.03, 3.79) 2.0 0.043 HAOX1 1.27 (1.01, 1.60) 2.0 0.042
PECAM1 1.47 (1.01, 2.15) 2.0 0.044 MMP12 1.58 (1.02, 2.49) 2.0 0.042
MMP9 0.37 (0.14, 0.97) �2.0 0.048 BLMHYDROLASE 2.02 (1.04, 4.06) 2.0 0.043

MMP11 0.76 (0.58, 1.00) �2.0 0.050 GAL4 1.74 (1.02, 3.04) 2.0 0.045
CXCL6 1.36 (1.01, 1.86) 2.0 0.046

MI vs. CAD BNP 1.32 (1.01, 1.74) 2.0 0.047
Protein OR (95% CI) z p TNFRSF10A 2.37 (1.02, 5.67) 2.0 0.048
MMP91 2.29 (1.26, 4.47) 2.60 0.010 IGFBP7 2.64 (1.03, 7.11) 2.0 0.049
NTproBNP (log) 1.45 (1.03, 2.06) 2.10 0.036

PAI1 0.80 (0.64, 0.99) �2.10 0.038

MB 1.49 (1.03, 2.21) 2.10 0.040
IL7 0.75 (0.57, 0.99) �2.10 0.041
CHI3L11 1.28 (1.01, 1.63) 2.00 0.042
KIM1 1.35 (1.00, 1.83) 2.00 0.049

Only proteins with P < 0.05 are shown.
CI, confidence interval; OR, odds ratio.
#Sex, age, waist circumference, diabetes, heart rate, systolic blood pressure, estimated glomerular filtration rate, blood potassium,
haemoglobin, and urea).

1Proteins selected by stepwise backward.
2Proteins retained by bootstrapping (FDR < 0.05 in at least 80% of bootstrapped models). Proteins common to both phenotypes are
highlighted.
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CAD and MI groups, following the ischaemic
cardiomyopathy’s usual care,21,22,23 and higher use of thia-
zides among the more frequently hypertensive ‘no CAD/MI’
patients. Total serum cholesterol was lower in patients with
CAD or MI, as they were more likely to be prescribed
lipid-lowering therapies.24

The echocardiographic data (Table 1) show that the ‘no
CAD/no MI’ group had a higher LV mass index and E/e′ ratio,
and a lower E/A ratio, reflecting higher LV filling pressures,
hypertrophy and diastolic dysfunction consistent with the
higher prevalence of diabetes and hypertension in this
group,25,26,27 and perhaps suggesting a different pathway to-
wards HF in this subset.

Several DEPs were identified between groups at baseline,
with clustering around collagen and inflammatory response

processes. MMP-7 was higher in those with coronary dis-
ease, whether or not they had a prior known MI, compared
with the ‘no CAD/no MI’ group. MMP-7 is high in both re-
mote and infarct regions after MI.28,29 The role of MMP-7
in cardiovascular disease is controversial: although in animal
models MMP-7 gene knockout reduces atherosclerotic bur-
den, mice with the knockout have a greater risk of sudden
death and cardiac fibrosis. MMP-7 activity after MI may thus
prevent excessive fibrosis.30 However, other models suggest
that the absence of MMP-7 has positive effects on LV
remodelling post-MI, as well as increasing survival and myo-
cardial conduction.28,31 MMP-7 also mediates cardiac ad-
verse remodelling in uraemic mice,32 and higher MMP-7 ex-
pression was associated with greater risk of death and HF
hospitalization in patients with HF with preserved EF in the

Table 4 Effect of treatment with spironolactone vs. control in patients classified by the presence of CAD and MI

Month 1 Month 9

Group β (95% CI) z P β (95% CI) z P

SBP No CAD/no MI �3.74 (�8.31, 0.84) �1.6 0.50 �6.83 (�11.60, �2.06) �2.8 0.16
CAD without MI �6.46 (�10.80, �2.12) �2.0 �12.83 (�17.35, �8.31) �5.6
MI �7.11 (�10.91, �3.30) �3.7 �8.16 (�12.12, �4.19) �4.0

PICP No CAD/no MI �5.36 (�10.73, 0.02) �2.0 0.83 �6.82 (�13.54, �0.09) �2.0 0.94
CAD without MI �6.35 (�11.45, �1.26) �2.5 �8.30 (�14.67, �1.94) �2.6
MI �4.25 (�8.72, 0.21) �1.9 �7.07 (�12.65, �1.48) �2.5

CITP No CAD/no MI 0.08 (�0.38, 0.54) 0.3 0.27 0.54 (�1.34, 0.27) �1.3 0.22
CAD without MI 0.20 (�0.24, 0.63) 0.9 0.30 (�0.46, 1.06) 0.8
MI 0.54 (0.16, 0.93) 2.8 0.30 (�0.37, 0.97) 0.9

PIIINP No CAD/no MI �0.13 (�0.56, 0.30) �0.6 0.89 �0.36 (�0.87, 0.15) �1.4 0.23
CAD without MI �0.19 (�0.59, 0.21) �0.9 0.23 (�0.25, 0.71) 0.9
MI �0.06 (�0.41, 0.30) �0.3 �0.19 (�0.61, 0.24) �0.9

NT-proBNP No CAD/no MI �17.27 (�28.04, �6.50) �3.2 0.080 �14.34 (�24.70, �3.98) �2.7 0.23
CAD without MI �9.18 (�19.40, 1.03) �1.8 �2.88 (�12.71, 6.94) �0.6
MI �1.37 (�10.34, 7.60) �0.3 �4.37 (�13.00, 4.25) �1.0

LVM No CAD/no MI �3.35 (�6.66, �0.05) �2.0 0.23 �0.14 (�3.57, 3.29) �0.1 0.39
CAD without MI �0.10 (�3.23, 3.04) �0.1 �3.38 (�6.63, �0.13) �2.0
MI 0.17 (�2.58, 2.92) 0.1 �1.36 (�4.21, 1.50) �0.9

LAV No CAD/no MI �1.39 (2.86, 0.09) �1.8 0.26 �1.7 (�3.26, �0.13) �2.1 0.42
CAD without MI 0.32 (�1.08, 1.71) 0.4 �2.3 (�3.78, �0.81) �3.0
MI �0.37 (�1.59, 0.86) �0.6 �0.98 (�2.28, 0.32) �1.5

Results reported as β coefficients, z-score, and P-value for the interaction.
CITP, collagen type-1 C-terminal telopeptide; LAV, left atrial volume; LVM, left ventricular mass; NT-proBNP, N-terminal pro-brain natri-
uretic peptide; PICP, procollagen type-I C-terminal pro-peptide; PIIINP, procollagen type-III N-terminal pro-peptide; SBP, systolic blood
pressure.

Table 3 Changes in protein concentrations after 1 and 9 months of treatment with spironolactone (vs. control)

Month 1 Month 9

Protein Associated with β (95% CI) z P β (95% CI) z P

GAL4 CAD 0.03 (�0.04, 0.09) 0.7 0.48 0.04 (�0.03, 0.11) 1.1 0.27
PGLYRP1 CAD 0.07 (0.00, 0.14) 1.8 0.068 0.12 (0.04, 0.21) 3 0.003
PAI CAD 0.05 (�0.09, 0.18) 0.6 0.53 0.09 (�0.05, 0.24) 1.3 0.20
NT3 MI 0.03 (�0.05, 0.11) 0.7 0.47 0.11 (0.02,0.19) 2.5 0.012
PSPD MI �0.05 (�0.14, 0.03) �1.2 0.22 �0.08 (�0.17, 0.01) �1.7 0.083
TRANCE MI �0.02 (�0.09, 0.06) �0.5 0.65 �0.01 (�0.09, 0.07) �0.2 0.84
MMP7 CAD & MI 0.01 (�0.06, 0.08) 0.3 0.78 0.10 (0.02, 0.17) 2.6 0.009

Results reported as β coefficient (95% CI), z-score and P-value for the treatment variable. Statistically significant P-values are presented in
bold.
GAL4, galectin-4; MMP7, matrilysin; NT3, neurotrophin-3; PAI, plasminogen activator inhibitor 1; PGLYRP1, peptidoglycan recognition
protein 1; PSPD, pulmonary surfactant associated protein D; TRANCE, tumour necrosis factor-related activation induced cytokine.
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TOPCAT trial.33 GAL4, a lectin mostly expressed in the gas-
trointestinal tract and involved in immunoregulatory
functions,34 was increased in CAD group. Plasma concentra-
tions of this protein are elevated in patients with HF,35 espe-
cially if they have diabetes,36 and is associated with worse
prognosis.35,37 Higher plasma GAL4 in the general popula-
tion is associated with all-cause and cardiovascular mortality,
coronary events and incident HF.38 PAI—a fibrinolysis
regulator39—was also higher in patients with CAD. Higher
PAI concentrations are associated with a higher risk for
MI,39 as well as with adverse cardiac events in HF patients.40

Plasma PGLYRP1 was lower among patients with CAD
without MI. Higher plasma concentrations of this immune
system protein are associated with both acute and chronic
CAD, as well as HF. Long-term administration of recombi-
nant PGLYRP1 leads to atherogenesis and LV systolic
dysfunction in animal models.41 Also, in a healthy popula-
tion study, higher PGLYRP1 was associated with an increased
risk of atherosclerotic cardiovascular events.42

PSPD was overexpressed in participants with MI, versus
‘no CAD/no MI’. The impact of this inflammatory protein on
cardiovascular disease is controversial—although most stud-
ies demonstrate that higher PSPD levels are associated with
a greater risk of cardiovascular events (including HF hospital-
ization, sudden cardiac death, MI, and stroke),43 others have
shown that it is not linked to the development of subclinical
atherosclerosis.44 TRANCE was lower among those with prior
MI. Lower concentration of this cytokine involved in immune
response regulation, angiogenesis, and bone remodelling45

has also been associated with a greater risk of cardiovascular
disease in patients with psoriasis.46

There were no DEPs after bootstrapping between CAD and
MI groups. This suggests that the pattern of gene expression
seems to be similar in all patients with clinical evidence of
coronary disease, regardless of previous overt acute coronary
ischaemic events.

Treatment with spironolactone changed the plasma con-
centrations of proteins associated with the presence of CAD
regardless of prior MI. Spironolactone significantly increased
serum MMP-7, unravelling a potential anti-fibrotic mecha-
nism of the drug, as described above.30 NT3 is also increased
by MRA use, which is a neurotrophic factor that has been
shown to be reduced in experimental models of HF.47

Spironolactone increased circulating levels of PGLYRP1, a
pro-inflammatory protein with atherogenic properties, as
described above.42 Further studies should follow regarding
the impact of modulating these proteomic pathways and HF
progression.

There was no significant interaction between treatment
with spironolactone and the presence of CAD or MI on the
HOMAGE trial endpoints. This suggests that the effect of
spironolactone on systolic blood pressure, PICP, CITP, PIIINP,
NT-proBNP, LV mass, or left atrial volume is not influenced by
underlying atherosclerotic/ischaemic presentation.

Clinical perspectives

The majority of HF trials have focused on symptomatic
phases of the disease (ACC/AHA stages C and D48), and there
are few data on pre-HF patients (ACC/AHA stage B48), in
whom preventive strategies are more relevant. One promis-
ing study suggests that spironolactone may induce reversal
of subclinical LV dysfunction.49

Further understanding of the proteomic pathways leading
to HF in an asymptomatic phase helps clarify the underlying
mechanisms involved, improving diagnosis and risk stratifica-
tion, and may, ultimately, lead to new pharmacological
approaches to limit disease progression. The present analysis
identified seven DEPs in people with raised natriuretic
peptides and a previous history of CAD or MI versus those
with atherosclerotic risk factors but no documented CAD or

Figure 1 Differentially expressed proteins in CAD and MI participants, when compared with ‘no CAD/no MI’ group, and respective pathways involved.
Arrows indicate higher or lower proteins levels. Dashed red boxes indicate proteins that were increased with spironolactone treatment. GAL4, galectin-
4; MMP7, matrilysin; NT3, neurotrophin-3, PAI, plasminogen activator inhibitor 1; PGLYRP1, peptidoglycan recognition protein 1; PSPD, pulmonary
surfactant-associated protein D; TRANCE, tumour necrosis factor-related activation-induced cytokine.
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MI. The effect of spironolactone was not affected by the
presence of coronary disease, consistent with the view that
current drug therapy for HF should not restricted by
aetiology.48,50

Limitations

Being a post hoc analysis of a randomized trial, our findings
are exploratory and hypothesis-generating. Subgroup divi-
sion was based only on the available clinical data. As there
was no systematic investigation to exclude coronary disease
and prior MI in all patients, some participants classified as
‘no CAD/no MI’ might, in fact, have had subclinical coronary
atherosclerosis or have previously suffered from silent MI,
possibly causing grouping misclassification. Additionally, co-
variate adjustment influenced directionally some of the as-
sociations, suggesting that these biomarker associations
should be interpreted in light of patients’ characteristics.
No information was available regarding the exact time be-
tween MI and trial inclusion, although any history of vascu-
lar (including coronary) events in the previous 3 months was
part of the exclusion criteria. In consequence, we cannot an-
alyse temporal proteomic variation after coronary events.
Moreover, some of the differences between groups might
reflect interaction between cardiovascular risk factors and
usual medication—although this was partially corrected in
the adjusted logistic regression model, the potential effect
of non-included variables cannot be foreseen. Finally, car-
diac amyloidosis is a common undiagnosed entity leading
to HF in a more elderly population, and no systematic stud-
ies were carried out in HOMAGE to exclude the diagnosis
formally. It is possible that some participants with subclinical
cardiac amyloidosis might have been included and be un-
evenly distributed throughout group classification, poten-
tially influencing the proteomic results. However, as we have
excluded patients with NT-proBNP >1000, it is very unlikely
we have included anyone with clinically significant cardiac
amyloidosis.

Conclusions

This analysis found differentially expressed proteins
associated with clinical CAD, with or without a history of
MI, consistent with abnormalities in the immune system
and collagen catabolism. Treatment with spironolactone in-
creased plasma/serum concentrations of MMP7, NT3, and
PGLYRP1. The presence of CAD or MI did not influence the ef-
fect of spironolactone in HOMAGE endpoints, namely systolic
blood pressure, PICP, CITP, PIIINP, NT-proBNP, LV mass, or
left atrial volume.
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Table S1.Protein names and corresponding Olink panel, in al-
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Table S2. Absolute and relative frequencies of missing clini-
cal, analytical and echocardiographic data.
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tein data. Full names of proteins can be found in supplemen-
tal table 1.
Table S4. Proteins included in the logistic regression model,
adjusted to the defined clinically relevant variables,
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comparing ‘CAD’ versus ‘no CAD/no MI’ participants. Full
names of proteins can be found in supplemental table 1.
Table S5. Proteins included in the logistic regression model,
adjusted to the defined clinically relevant variables, compar-
ing ‘MI’ versus ‘no CAD/no MI’ participants. Full names of
proteins can be found in supplemental table 1.
Table S6. Proteins included in the logistic regression model,
adjusted to the defined clinically relevant variables, compar-
ing ‘MI’ versus ‘CAD’ participants. Full names of proteins
can be found in supplemental table 1.
Table S7. Proteins included in the logistic regression model,
adjusted to the defined clinically relevant variables and med-

ication, comparing ‘CAD’ versus ‘no CAD/no MI’ participants.
Full names of proteins can be found in supplemental table 1.
Table S8. Proteins included in the logistic regression model,
adjusted to the defined clinically relevant variables and med-
ication, comparing ‘MI’ versus ‘no CAD/no MI’ participants.
Full names of proteins can be found in supplemental table 1.
Table S9. Proteins included in the logistic regression model,
adjusted to the defined clinically relevant variables and med-
ication, comparing ‘MI’ versus ‘CAD’ participants. Full names
of proteins can be found in supplemental table 1.
Table S10. Pearsons’ correlation coefficient between proteins
included in the proteomic profile.
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