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Abstract Sustainable energy generation is a key feature in sustainable development and
among various sources of energy electricity due to some unique characteristics seems partic-
ularly important. Optimising electricity generation mix is a highly complex task and requires
consideration of numerous conflicting criteria. To deal with uncertainty of experts’ opinions,
inaccuracy of the available data and including more factors, some of which are difficult to
quantify, in particular for environmental and social criteria, we applied grey relational anal-
ysis (GRA) with grey linguistic, and grey interval values to obtain the rank of each system.
Then the obtained ranking were used as coefficients for a multi objective decision making
problem, aimed to minimize the cost, import dependencies and emissions as well as max-
imizing the share of generation sources with better ranking. Due to existence of interval
variables multi objective grey linear programming (MOGLP) method was used to solve the
problem. Our results for the UK as a case study suggest increased role for all low carbon
energy technologies and sharp reduction in the use of coal and oil.We argue that the integrated
GRA–MOGLP approach provides an effective tool for the evaluation and optimisation of
complex sustainable electricity generation planning. It is particularly promising in dealing
with uncertainty and imprecisions, which reflect real-life scenarios in planning processes.
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1 Introduction

Uninterrupted access to energy resources is a defining factor of modern economies. Arguably
energy’s role in economic systems is even greater than that of other resources and commodi-
ties simply because of the essential role of energy for the production, transformation and
market delivery of all commodities and goods. Among energy resources, electricity is par-
ticularly important mainly for two reasons (Armaroli and Balzani 2011); firstly, because it
can potentially substitute all other fuels in the transport, buildings and industrial sectors,
and secondly because it can be generated without significant environmental emissions (Balat
2006; Kalkuhl et al. 2012). Moreover, electricity is a secondary form of energy which can
be produced by a variety of fossil fuels and renewable energy sources, making use of a wide
range of resource combinations depending on regional availability (Chalvatzis 2009).

Despite the aforementioned flexible characteristics, electricity is confronted with substan-
tial challenges, such as increasingly stricter environmental constraints (Chalvatzis and Rubel
2015), social acceptability and support mechanisms of new forms of energy production facil-
ities (Zafirakis et al. 2013), the lack of low cost storage in the electricity supply chain and the
variability of renewable energy production. Within this context, power production systems
have to comply with a complex set of regulations in addition to technical and societal con-
straints. Complexity in the power sector is arguably exacerbated with the introduction of new
technologies such as distributed renewable energy generation, energy storage and electric
private vehicles (Hofmann et al. 2016). This leads to an enormous growth in the number of
market participants and the gradual transition from the large scale utility model and even the
variability and alternation of consumer and producer roles as is possible for electric vehicles
and households to both buy electricity and sell it back to the grid (Sioshansi 2012).

While complexity in decision making for power sector planning is inherently growing the
literature offers a number of potential approaches. Linares and Romero (2000) used multi
objective linear optimization, considering electricity derived costs and emissions minimiza-
tion as their two objective functions, tried to find an optimal solution for electricity planning
in Spain. Koroneos et al. (2004) generated a number of efficient solutions for the energy
supply system of the island of Lesbos (Greece) by applying MODM linear optimization and
concluded that renewable systems are adequate to produce optimal electricity power for this
island. Unsihuay-Vila et al. (2011) proposed a Multi-Objective model for long-term expan-
sion planning of electricity generation and transmission by considering sustainable energy
development criteria. The proposedmodel is a well detailed mixed-integer linear model how-
ever all variables are considered as crisp valued and when it comes to sustainability, only
environmental criteria have been considered. A Bi-Objective Linear Programming model
was presented by Arnette and Zobel (2012) which determined the optimal mix of renewable
energy sources and existing fossil fuel facilities on a regional basis, based on minimizing the
cost and CO2 emissions as its objective functions. Perera et al. (2013) Combined MCDM
and Multi-Objective Optimization to optimize a hybrid energy system for a standalone grid
by considering levelized energy cost, unmet load fraction, wasted renewable energy and fuel
consumption as objective functions. They applied TOPSIS to evaluate the solutions obtained
in Pareto optimal front. Although applying TOPSIS for comparison in case of abundant
solutions can be tiresome and inaccurate. Similarly, Promjiraprawat and Limmeechokchai
(2013) presented a hybrid framework of multi-objective optimization and multi-criteria deci-
sion making to solve power generation expansion planning problems in Thailand. They first
appliedmulti objective genetic algorithm to produce several solutions to the problem and then
throughAnalytic Hierarchy Process (AHP) ranked the created optimized solutions. Purwanto
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et al. (2015) developed a bi-objective linear programming model which by minimizing the
cost of production and CO2 emission to compute the share of renewable energy resources
from generation mix in 2050 in Indonesia. In addition they have considered the technology
diffusion in their model and compared the share of renewables with and without technology
diffusion considerations. Sithole et al. (2016) by using an excel-based “Energy Optimisation
Calculator” and utilizing assumptions about renewable share of generation and CO2 emis-
sions restrictions required by UK government, obtained a least-cost solution for generation
mix. In order to deal with uncertainty they conducted a sensitivity analysis and considering
a ±30% margin for fuel costs factor. However there are various factors in a mixed genera-
tion model that should be considered and analysis the combinations of these factors through
sensitivity analysis is a hard task and a comprehensive analysis is difficult to reach.

Themain shortcoming in the aforementioned approaches is not to consider the uncertainty
of different factors and applying fixed and crisp values for all the factors in the model.
However, many system parameters such as costs associated with operation and maintenance,
capital costs, fuel consumption, production efficiency, demand prediction and greenhouse
gases emitted by various generation systems, as well as systems’ performance with respect
to environmental and social criteria may appear uncertain and need to be presented by fuzzy
or interval formats such as grey interval numbers. These uncertainties can have a significant
effect over the optimization results and the decision makers’ plans based on the obtained
results (Cai et al. 2007). Interval Linear programming (ILP) (also named as grey linear
programming) developed by Huang et al. (1992) is a technique to deal with situations where
we have interval values due to existence of inexact values, error measurements or performing
sensitivity analysis (Hladı 2013). Interval linear programming since then has been developed
into more complete and precise models and has proven its efficiency in solving problems in
different fields.

Huang et al. (1995) further developed the interval linear programming by considering
existence of interval variables and proposed a Grey Interval Linear Programming model
solved through an interactive algorithm which can facilitate researchers to deal with discrete
variables in allocation problems.While the most of the ILP applications have been in the field
of environmental management and allocation of water supply sources (Cheng et al. 2003;
Zhou et al. 2008; Han et al. 2011; Fan and Huang 2012), there has been few applications in
other domains. Ren et al. (2015) developed amodel for optimizing the life cycle cost of biofuel
supply chain by considering uncertainties of different factors, and attempted to minimize the
cost of the cycle. At the end they have developed a method to obtain an optimized solution
from the solution intervals by introducing uptake coefficients and trying to minimize them
so that the selected solution be more beneficial for stakeholders.

At the same time transition to a sustainable electricity sector is pressing and requires a
comprehensive evaluation of each energy source in order to investigate their performance
related to environmental and social attributes. These evaluations are a Multi Criteria Deci-
sion Making problem with often conflicting criteria being presented in different scales and
formats. Previous research in this domain investigated different energy resources against
sustainability criteria and proposed a framework for prioritizing renewable and conventional
energy resources (Stein 2013;Kabak andDağdeviren 2014;Büyüközkan andGüleryüz 2016).
However despite the mentioned researches, applying fuzzy or grey MCDM techniques can
overcome uncertainty within the decision makers’ judgments or imprecise information and
increase the validity of evaluation significantly. Sadeghi et al. (2012) applied Fuzzy AHP
to obtain the weights of each criteria and Fuzzy TOPSIS to compare 4 renewable energy
resources in Iran with respect to sustainability criteria.
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While application of fuzzy numbers and systems are numerous in prioritizing the elec-
tricity generation methods (Kaya and Kahraman 2009; Streimikiene et al. 2012; Tasri and
Susilawati 2014; Şengül et al. 2015; Afsordegan et al. 2016), Grey based methods also have
had an extensive application for evaluation of sustainable energy resources and while in the
most of the cases, the imprecise information are available in the format of uniformly dis-
tributed within a lower and upper bound, defining fuzzy membership functions for them is
a hard or impractical job. Thus application of grey numbers can have a significant advan-
tageous over fuzzy numbers in these situations. Çelikbilek and Tüysüz (2016) by applying
Grey-DEMATEL and Grey-ANP obtain the weights of criteria for assessment of sustainable
performance of renewable energy sources and through Grey-VIKOR they compute the final
ranking of the resources.

Grey relational analysis is one of the distinguishedmethod amongMCDMgrey techniques
and one of its advantageous features is the ability to assess quantitative and qualitative
relationships between factors and variables using a relatively small amount of data (Arce
et al. 2015). This method has been used by several researchers assessment of energy systems’
sustainable performance (Xu et al. 2011; Liu et al. 2013) and selecting the best technology
(Sarucan et al. 2011; Manzardo et al. 2012; Ren et al. 2012).

In this paper we propose a framework for obtaining the optimal electricity generation mix,
inwhich firstly, we have done a comprehensiveGRAbased evaluation for both environmental
and social performance of the available sources in our case study by considering various types
of data and measurements along with uncertainties associated with them. Then, by linking
the MCDM evaluations and grey linear multi objective programming (GLMOP) created an
MODM problem. MCDM evaluation of criteria and utilization of the results as coefficients
in the optimization problem can reduce the number of required objective functions and also
enable us to include more information in our model, which some of them are quantifiable
and hard to include as a separated objective function. As a result the model is going to be
smaller and easier to solve and at the same contain considerable amount of factors. Through
considering the financial aspects, emissions and sustainability score of each source, we have
covered all the sustainability aspects in our optimization and address the uncertain nature of
the problem by applying grey linear programming. In this way we provide a significantly
improved approach to those of the existing literature which are limited to either optimization
over several objectives, by limited consideration of uncertainties, or just simply ranking the
existing renewable and non-renewable sources based against various criteria.

For our case study we focus on the UK, because it combines several unique energy
policy features which provide an ideally complex testbed for our proposed methodological
approach. Some of the specificities of the UK power sector include its long-term commitment
for energy decarbonisation (Sithole et al. 2016), energy market innovations such as capacity
market and demand side management systems (Strbac 2008; Warren 2014), relatively low
capacity margin (Newbery 2016) and vocal public debate about energy policy (Lilliestam
and Hanger 2016).

This manuscript is structured as follows: after this introduction we continue in Sect. 2
where we present the integrated approach of GRA and IGLP and the process for solving
the problem as well as the methodologies applied in this paper and then following with
Sect. 3 where we present the GRA evaluation with respect to environmental and social
factors and defining the related factors and criteria. In Sect. 4 we describe the optimization
model and present the definition of all the coefficients. The results are shown in Sect. 5
and diagrams associated with them are depicted. Eventually we discuss our results and their
policy implications in Sect. 6 and in Sect. 7 we provide concluding remarks, future research
suggestions and limitations.
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2 The proposed integrated approach

In this study we applied an integrated approach of Grey numbers, grey relational analysis
and multi objective grey linear programming in order to obtain the optimized electricity pro-
duction mix from available resources in the UK. At first we used Grey Relational Analysis
to evaluate and rank the electricity generation resources with respect to environmental and
social criteria. Then the rankings were entered to aMODMproblem to determine the optimal
share of electricity that should be produced by each resource. In order to consider the uncer-
tainty of decision makers in the evaluation process, grey linguistic terms were used and to
deal with inaccurate data and approximations in the Multi Objective optimization, Grey Lin-
ear programming was applied. Figure 1 shows the solution procedure for optimizing mixed
electricity production.

Considering Criteria for Environmental and Social aspects 
of electricity generation resources

Evaluating the resources and ranking them 
against environmental criteria 

Evaluating the resources and ranking them 
against social criteria 

Formulating the Objective functions and constraints of the 
optimization problem

Solving the Multi Objective Grey Linear Problem and 
allocating the optimal amount of electricity for each source 

to produce

Assigning grey values to parameters for which exact values 
are not available and can be better utilised in interval form

Assigning grey linguistic terms for criteria which are 
qualitative or uncertain in nature
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Fig. 1 Solution procedure of GRA–MOGLP integrated approach
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2.1 Grey system theory

Grey system theory introduced by Deng (1982) is an effective model for uncertain systems
which contains known information as well as unknown information. In order to cover uncer-
tainties involved in a system, grey system uses grey numbers and grey variables. In grey
systems information classified into three categories of white (known information), black
(completely unknown information) and grey (partially known and partially unknown infor-
mation). For defining a grey number let X be the universal set and x ∈ X . Then a grey set G
of X is defined by its two mappings in Eqs. 1 and 2:

μ̄G (x) : x → [0, 1] (1)

μ
G

(x) : x → [0, 1] (2)

In the aforementioned equations, μ̄G (x) and μ
G

(x) are upper and lower membership func-
tions respectively. Generally Grey numbers are expressed as:

⊗G = G
∣
∣
μ

μ
(3)

While the lower and upper memberships can be estimated and an interval valued grey number
with lower and upper bound can be defined as:

⊗G = [

G,G
]

(4)

If we assume ⊗G1 = [

G1,G1
]

and ⊗G2 = [

G2,G2
]

two Grey interval numbers then, the
main operations on grey numbers are performed by following:

⊗G1 + ⊗G2 = [G1 + G2,G1 + G2] (5)
⊗G1 − ⊗G2 = [G1 − G2,G1 − G2] (6)
⊗G1 × ⊗G2 = [

min(G1G2,G1G2,G1G2,G2G1),max(G1G2,G1G2,G1G2,G2G1)
]

(7)

⊗G1 ÷ ⊗G2 = [G1,G1] ×
[

1

G2
,

1

G2

]

(8)

Also the lengths of a grey number can be calculated as follows:

L (⊗G) = ∣
∣G − G

∣
∣ (9)

2.2 Grey relational analysis

A multi-criteria Problem consists of a set of m alternatives (y1, y2, . . . , ym) and n criteria
(k1, k2, . . . , kn) and form a decision matrix as Eq. (10).

DM =

⎡

⎢
⎢
⎢
⎣

d11 d12 · · · d1n
d21 d22 · · · d2n
...

... · · · ...

dm1 dm2 · · · dmn

⎤

⎥
⎥
⎥
⎦

= [

di j
]

f or i = 1, 2, . . . ,m; and j = 1, 2, . . . , n,

(10)
where di j is the performance value of alternative yi against criterion k j . Final goal of all
MCDM approaches is to evaluate the alternatives with respect to the related criteria and
finally rank the alternatives or compute an evaluation score to support decision making. As
an MCDM approach, GRA is a technique to determine the relation and connection of a set
of alternatives with an aspired reference, called the ideal sequence, which is derived from
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the best performance of all the alternatives. This relation is called grey relational coefficient
and after calculating the grey relational coefficient between all the alternatives and the ideal
sequence the grey relational grades for all the alternatives are calculated and compared to
determine the ranking and score of each alternative. The steps of GRA is based on the
following:
Step 1 Normalizing the decision matrix through one of the Eqs. 11, 12 or 13 if the criteria
is belonged to benefit (higher the better), cost (lower the better) criteria or the value of the
criteria has to be closer to a Desired Amount (DA) respectively:

ri j = di j − min
(

di j , i = 1, 2, . . . ,m
)

max
(

di j , i = 1, 2, . . . ,m
) − min

(

di j , i = 1, 2, . . . ,m
)

f or i = 1, 2, . . . ,m and j = 1, 2, . . . , n, (11)

ri j = max
(

di j , i = 1, 2, . . . ,m
) − di j

max
(

di j , i = 1, 2, . . . ,m
) − min

(

di j , i = 1, 2, . . . ,m
)

f or i = 1, 2, . . . ,m and j = 1, 2, . . . , n, (12)

ri j = 1 −
∣
∣di j − DA

∣
∣

max{max
(

di j , i = 1, 2, . . . ,m
) − DA, DA − min

(

di j , i = 1, 2, . . . ,m
)}

f or i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (13)

Step 2 Defining the reference sequence (ideal sequence) R0 = (

R0,1, R0,2, . . . , R0,n
)

based
on Eq. 14 as follows:

R0, j = maxi=1,...,m
(

ri j
)

, j = 1, 2, . . . , n. (14)

Step 3 Grey Relational coefficient is being used to determine how close (more connected)
is the ri j to R0, j and the larger grey relational coefficient is, the closer ri j and R0, j are
together. Grey relational coefficient is shown by γ

(

ri j , R0, j
)

and calculated through Eq. 15
as follows:

γ
(

ri j , R0, j
) =

min
i

min
j

�i j + ζ max
i

max
j

�i j

�i j + ζ max
i

max
j

�i j
(15)

where �i j = ∣
∣R0, j − ri j

∣
∣, and ζ is the distinguished coefficient (ζ ∈ [0, 1]). Adopting

different values for distinguishing coefficient will result in compressing or expanding the
range of grey relational coefficient and usually ζ = 0.5 is being used by researchers.
Step 4 After obtaining all the grey relational coefficients, grey relational grade between
alternative i and reference sequence, which is shown by �i , is computed based on Eq. 16 as
follows:

�i =
n

∑

j=1

w jγ
(

ri j , R0, j
)

f or i = 1, 2, . . . ,m. (16)

Grey relational grades represent the level of correlation between reference sequence and
alternatives, as the larger grade between an alternative and reference sequence determine
more similarity between them; hence, the respective alternative rank higher in the evaluation.

2.3 Grey interval linear programming

Grey Interval Linear Programming (GILP) is part of an optimization category called inter-
val linear programming and the solution to it is obtained by application of interval linear
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programming concepts. A GRA model can be first introduced as Model (1).

max f : ⊗C ⊗ X

Subject to:

⊗ A ⊗ X ≤ ⊗ B Model (1)

And ⊗ X ≥ 0

In the above model,

⊗ C = {⊗ (c1),⊗ (c2), . . . , ⊗(cn)} (17)

⊗ BT = {⊗ (b1),⊗ (b2), . . . , ⊗ (bm)} (18)

⊗ XT = {⊗ (x1),⊗ (x2), . . . , ⊗ (xn)} (19)

⊗ A =

⎡

⎢
⎢
⎢
⎣

⊗ (a11) ⊗ (a12) · · · ⊗ (a1n)
⊗ (a21) ⊗ (a22) · · · ⊗ (a2n)

...
...

...

⊗ (am1) ⊗ (am2) · · · ⊗ (amn)

⎤

⎥
⎥
⎥
⎦

(20)

And as far as all the above vectors are grey for ⊗ (c j ), ⊗(bi ), ⊗(x j ) and ⊗ (

ai j
)

we have:

⊗ (c j ) = [⊗ (c j ),⊗ (c j )
] = c±

j and⊗ (c j ) = c−
j ,⊗; ∀ j,

⊗ (bi ) = [⊗ (bi ),⊗ (bi )
] = b±

i and⊗ (bi ) = b−
i ,⊗; ∀ i,

⊗ (x j ) = [⊗ (x j ),⊗ (x j )
] = x±

j and⊗ (x j ) = x−
j ,⊗; ∀ j,

⊗ (ai j) = [⊗ (ai j),⊗ (ai j)
] = a±

i j and ⊗ (ai j) = a−
i j ,⊗; ∀ i, j.

Since all the parameters in the model are in interval grey form, the optimal solution also will
be in interval grey form as follows:

⊗ f = [⊗ f,⊗]

and ⊗ X∗T = [⊗ (x∗
1

)

,⊗ (x∗
2 ), . . . , ⊗ (x∗

j )]where ⊗ (x∗
j ) =

[

⊗ x∗
j ,⊗

]

.

In order to solve model (1), Huang et al. (1992) proposed the two step method (TSM)
which transforms the main problem into two sub-models, the first for obtaining lower bound
and the second for calculating the upper bound of objective function. Later Fan and Huang
(2012) completed the TSMmethod further and called it Enhanced Two StepMethod (ETSM)
based on following. The advantageous of ETSM to TSM is that it guarantee no violation of
the solution from best-cast constraints. If both the lower and upper bounds of the objective
function ( f ±) and right hand side of the constraints (b±) are positive and for n interval
coefficients in model (1), k of them be positive (c±

j ≥ 0; j = 1, 2, . . . , k) and n − k of them

be negative (c±
j ≤ 0; j = k + 1, k + 2, . . . , n), then the first sub-model for obtaining the

lower bounds can be shown as follows:

max f − =
k

∑

j=1

c−
j x

−
j +

n
∑

j=k+1

c−
j x

+
j

Subject to:
k

∑

j=1

a+
i j x

−
j +

n
∑

j=k+1

a+
i j x

+
j ≤ b−

i f or i = 1, 2, . . . ,m, Model (2)
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x−
j ≥ 0 f or j = 1, 2, . . . , k,

x+
j ≥ 0 f or j = k + 1, k + 2, . . . , n.

Through solving model (2) lower bounds for optimum value of x±
j,opt ; j = 1, 2, . . . , k and

upper bounds for optimum value of x±
j,opt ; j = k + 1, k + 2, . . . , n can be obtained. After

solving model (2) the second sub-model for the main problem can be proposed as model (3)
and by solving it the upper bound for objective function can be achieved.

max f + =
k

∑

j=1

c+
j x

+
j +

n
∑

j=k+1

c+
j x

−
j

Subject to:
k

∑

j=1

a−
i j x

+
j +

n
∑

j=k+1

a−
i j x

−
j ≤ b+

i f or i = 1, 2, . . . ,m,

li1∑

j=1

a−
i j x

+
j +

k
∑

j=li1+1

a−
i j x

−
jopt +

li2∑

j=k+1

a−
i j x

−
j +

n
∑

j=li2+1

a−
i j x

+
jopt ≤ b+

i f or i = 1, 2, . . . ,m,

x+
j ≥ x−

j,opt f or j = 1, 2, . . . , k, Model (3)

x+
j ≤ x−

j,opt f or j = k + 1, k + 2, . . . , n,

x+
j ≥ 0 f or j = 1, 2, . . . , k,

x−
j ≥ 0 f or j = k + 1, k + 2, . . . , n,

where:

a±
j ≥ 0 j = 1, 2, . . . , li1; j = li2 + 1, li2 + 2, . . . , n,

a±
j ≤ 0 j = li1 + 1, li1 + 2, . . . , k; j = k + 1, k + 2, . . . , li2.

In the aforementioned model, x−
j,opt and x

+
j,opt are the optimum values for decision variables

after solving model (2).

2.4 Multi-objective grey interval programming

The solution to a Multi-Objective Grey Linear Programming can be obtained through a
multi-stage procedure, where at first each objective function, whether minimization or max-
imization, should be optimized separately by considering all the constraints in the model.
These optimizations can be solved by applyingmodel (1)–(3). Thenmembership functions for
maximization and minimization objective functions should be developed. Assume the opti-
mum value for lth objective function, which has to be maximized, is f ∗

l = [⊗ f ∗
l ,⊗ f ∗

l

]

, so
then the membership function can be as Eq. 21.

μl (x) =
{

1 if fl (x) ≥ ⊗ f ∗
l ,

fl (x)−⊗ f ∗
l

⊗ f ∗
l −⊗ fl∗

if fl(x) ≤ ⊗ f ∗
l .

(21)

Increase of fl (x) results in increase of the membership function of μl .
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Fig. 2 Minimization and maximization of membership functions

In the same way, assume the optimum value for lth objective function, which has to be
minimized, is f ∗

l = [⊗ f ∗
l ,⊗ f ∗

l

]

, so then themembership function can be defined as Eq. 22.

μl (x) =
{

1 if fl (x) ≤ ⊗ f ∗
l ,

⊗ f ∗
l −⊗ fl∗

⊗ f ∗
l −⊗ f ∗

l
if fl(x) ≥ ⊗ f ∗

l .
(22)

Decreasing of fl (x) leads to increasing the membership function of μl . Figure 2 shows the
diagrams for maximization and minimization membership functions.

Finally, after solving all the single objective optimization problems and formulating the
objective functions, through following the single objective model (4), the optimal answers
for our multi-objective model will be obtained.

max
p

∑

l=1

wlμl (x)

Subject to:

μl (x) ≤ 1

⊗ A ⊗ X ≤ ⊗ B, Model (4)

and ⊗ X ≥ 0.

Model (4) is interval linear programming itself and can be solved through models (1)–(3).

3 Evaluation models

As previously stated the goal of this paper is to suggest an optimal electricity sector mix based
on a range of available resources and considering sustainability criteria. Prior to designing the
optimization problem, as an essential coefficient for the model, sources have to be assessed
with respect to environmental and social factors. In order to establish an evaluation multi-
criteria model to rank the sources, defining related criteria is an important step. For this
manuscript these criteria were defined based on a review of research (Afgan and Carvalho
2002; Kaldellis et al. 2006; Wang et al. 2009; Evans et al. 2009; Conca 2012; Macknick et al.
2012; Santoyo-Castelazo and Azapagic 2014; Maxim 2014) and best practice reports in the
EU (EEA 2013; JRC 2013) and UK (DECC 2013) and expert opinion. After collecting all
the criteria being used in the literature, following criteria has been selected through Delphi
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Table 1 Environmental criteria and their descriptions

Criteria Description Measuring unit, type

Heavy metal emissions Amount of heavy metals released to the
environment by generating electricity from
fuel combustion

Interval grey number
(g/GWh)

Water consumption Water withdrawals mainly for use in cooling
systems of thermal power stations

Crisp value (m3/GWh)

Effect on global Warming Given the amount of CO2, NOx and other
greenhouse gases being released by each
system for generating one GWh electricity,
experts express their opinion on this criteria.

Linguistic term

Land use Land occupied by energy generation facilities
against their expected energy production
throughout their lifespan

Interval grey number
(m2/MWh)

Disturbance of ecological
balance

Energy Generation systems through the land
they occupy during installation and waste they
produce during their operations can cause
stress and disruption to ecosystems.

Linguistic term

Particulate matter PM10
and Particulate matter
PM25

Particulate matter emissions have been
considered separately for PM10 and PM2.5.
Particulate matter emissions pose significant
risks for human health depending on size,
distribution, microstructure and chemical
composition.

Interval grey number
(kg/GWh)

method (for more information about Delphi technique reader may refer to Sackman 1974)
by the experts as the most relevant and crucial ones to be used in our research. The criteria
selected for environmental and social evaluation and their brief definitions are available in
Tables 1 and 2.

The power production options have been evaluated against the aforementioned criteria.
For cases best described by crisp data, the precise number for the criteria has been considered.
For cases with data uncertainty or data being available in an interval range, the interval value
in form of a grey number has been used. Moreover, where the opinions of experts were
needed for the criteria, by the means of linguistic terms their opinions have been considered
and entered into the decision matrix. After that linguistic variables have been transformed
into grey numbers.

4 Optimization model

In this section Grey Multi-Objective Linear Model is proposed for resolving the problem of
optimal electricity fuel mix problem. The decision variables, objective functions, constraints
and coefficients used in our model are described in detail in the following sections. The
aim of our multi-objective approach is to share the electricity generation between seven
available systems based on different resources i.e. Coal, Oil, Gas, Nuclear, Biomass, Hydro,
Wind Power and Solar. The proposed resource mix should minimize the overall costs of
generation, the amount of imported fuel, the emissions caused by power generation and
simultaneously maximize the environmental and social benefits of installing and producing
electricity by our systems. Basics of the model is derived from previous similar research in
the field (Linares and Romero 2000; Cong 2013; Cabello et al. 2014) with few changes, some
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Table 2 Social criteria and their descriptions

Criteria Description Measuring unit, type

Job creation Energy production facilities are large infrastructure
project that employ more people during
construction phase and fewer during operation.
Here we used levelised data based on expected
energy output during project lifespan

Crisp value (job
years/GWh)

Social acceptability Social acceptability expresses the overview of
opinions related to the energy systems by the local
population regarding the hypothesized realization
of the projects under review from the consumer
point of view

Linguistic term

Mortality rate Number of deaths occurring during the production
of certain energy resources. It is
a combination of actual direct deaths and
epidemiological estimates

Interval grey number
(Deaths/GWh)

External costs associated
with health

Energy facilities are associated with numerous
externalities. Here we are only taking into
consideration those that are directly linked to
human health (excluding those linked to
ecosystem damages etc)

Interval grey number
(e/GWh)

common concepts about fixed and variables costs as well as some innovative constraints and
objective functions developed for this research. The importance weights of all the objective
functions have been considered equally throughout the multi-criteria optimization.

4.1 Decision variables

The capacity that needs to be available or be installed is our first decision variable. Being
denoted by Yi (i = 1, 2, . . . ,m) for each system i in Megawatts (MW) and called installa-
tion capacity, determines the nominal power output that can be generated by each system
type aggregated across the country. Xki (i = 1, 2, . . . ,m) represents the hourly electricity
generation of i th system in the kth period (k = 1, 2, . . . , T ). In this research time periods are
considered in intervals of 6 h from 00 am to 24 pm of each day continuously during a year.
The number of hours in the kth period is denoted by tk . Moreover, the demand for period k
is denoted by dk and is defining the overall demand in the country during period k in MWh.

4.2 Objective functions

As previously discussed, in order to optimize the electricity generation, the objective func-
tions consider financial, environmental, social and reduction of fuel import dependence. For
financial objective annual costs, for environmental objective emissions and environmental
scores and ranks, and for social objective the social scores and ranks which were obtained
through GRA in Sect. 3 have been considered.

4.2.1 Annual cost of electricity generation

Annual cost include fixed costs which are related to installation capacity and variable costs
which affect the actual produced energy. The objective function is showed in Eq. 23 and
should be minimized.
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Min (Annual Cost) :
m

∑

i=1

(CaCi + FOMi ) Yi +
m

∑

i=1

(V MCi + FuCi )

T
∑

k=1

tk Xki (23)

where CaCi capital cost for installing system i per MW, FOMi fixed operation and mainte-
nance cost for system i per MW, V MCi variable operation and maintenance cost for system
i per MW, FuCi fuel cost for system i per MW which obtained by multiplication of fuel
price and fuel consumption for system i to produce 1 MW of electricity.

Note that all the costs associated with Eq. 23 are in interval grey format to deal with
uncertainties and imprecision exist with the price fluctuations and estimations.

4.2.2 Independence from imported fuel

Minimizing the amount of energy being generated by imported fuel can reduce the depen-
dence of our grid from foreign resources and control its vulnerability. Thus this objective
function tries to minimize the amount of electricity generation by imported fuel and is based
on Eq. 24.

Min I V :
m

∑

i=1

T
∑

k=1

I Pi tk Xki (24)

where I Pi share of fuel being consumed hourly and has to be imported for system i and this
coefficient is in grey interval format.

4.2.3 Environmental consideration

In order to achieve this objective, two objective functions have been proposed in this study. In
the first objective function the emissions of CO2 (and equivalent GreenhouseGases) are being
minimized. In the second objective function the scores which were calculated in Sect. 3 for
system evaluation are being used as a weight coefficient in amaximizing objective function to
maximize the value of environmental benefits in mixed electricity generation. Equations 25
and 26 show the two proposed objective functions for environmental considerations:

Min Emissions :
m

∑

i=1

T
∑

k=1

ECO2
i tk Xki (25)

Max Environmental value:
m

∑

i=1

T
∑

k=1

Escorei tk Xki (26)

where ECO2
i CO2 being emitted by the i th generating system based on MWh electricity of

production, Escorei environmental scores obtained by GRA for each generation system.

4.2.4 Social consideration

Similar to the environmental consideration section, the scores are calculated by social eval-
uation of generation systems and are used as weight coefficient for this objective function.
The aim is to maximize the social benefits by optimising the electricity resources mix. The
objective function is shown in Eq. 27.
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Max Social score:
m

∑

i=1

T
∑

k=1

Sscorei tk Xki , (27)

where Sscore is the scores obtained by GRA for each generation system.

4.3 Constraint

A set of constraints for the optimization problem have been considered and are explained
below.

4.3.1 Electricity reliability and robustness

Solar and wind energy systems produce variable (intermittent) output as they depend on
stochastic weather. In order to guarantee generating enough power and being able to deal
with peak electricity demand at any moment, we have to install conventional electricity
generation systems (i.e. Oil, Gas, Coal and nuclear) with enough capacity to compensate for
renewable systems in emergency periods. Equation 28 shows the constraint considered for
this purpose.

I
∑

i=1

AviC Ai PEiYi ≥ d∗ (1 + S) , (28)

where PEi power efficiency of system i , that is the amount of energy produced and can be
turned into useful electricity to be supplied to the grid for system i , CAi capacity coefficient
of system i , that the fraction of the year when system i is available, Avi technical availability
factor for system i, that is the relation between number of hours that system i is connected
to the grid to the total hours in 1 year, d∗ demand at pick time, when it is mostly probable
that renewable energy systems can be unavailable, S slack coefficient, which is a reliability
coefficient in percentage and determining a confidence level for generating electricity more
than demand in case the energy demand is higher than our predictions.

4.3.2 Diversity and limitation on conventional systems

Relying on only one or a very limited number of resources for power generation is a risky
strategy due to the inherent lack of diversity it causes. This is an issue widely identified
in the energy security literature (Stirling 1994; Grubb et al. 2006) and several theoretical
proposals have been made in order to improve system diversity. Moreover, environmental
regulations force a degree of diversity by setting targets for renewable energy generation; or
else by limiting generation by conventional thermal power stations to a given share of the
total demand at period tk . The Eqs. 29 and 30 guarantee that both of the above conditions
will be satisfied.

T
∑

k=1

PEi tk Xki ≤
[

T
∑

k=1

tkdk

]

(1 + S) LSC f or i = 1, 2, . . . ,m, (29)

T
∑

k=1

PEi tk Xki ≤
[

T
∑

k=1

tkdk

]

(1 + S) Lim f or i = 1, 2, . . . , I, (30)

where LSC % limitation on producing electricity by a single source or system, Lim %
limitation on amount of electricity that should be produced by conventional systems.
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Where I ∪ V = m, i.e., I is the number of conventional generation systems, V is the
number of renewable generation systems and m is the total number of generation systems.

4.3.3 Demand satisfaction

Generated electricity at period tk by all systems has to be able to satisfy the total demand in
period tk . Equation 32 makes sure this constraint will be satisfied.

m
∑

i=1

PEi tk Xki ≥ tkdk (1 + S) f or k = 1, 2, . . . , T, (31)

Also this constraint guarantees that generated electricity by all systems to be able to satisfy
the total demand in the period we are investigating.

4.3.4 Hydro limitation

Hydro power is limited by the availability of suitable geography in the UK.

YHydro ≤ amount of available Hydro output in the country (32)

4.4 Additional constraints

In addition to the aforementioned constraints there are few more conditions that are essential
for our system to run correctly. Firstly, the technical constraint on relation between capacity
and electricity production. Equation 33 ensures that the i th available system capacity is
adequate to produce enough power to meet demand.

Xki ≤ AviC AiYi for i = 1, 2, . . . ,m and k = 1, 2, . . . , T, (33)

And finally none zero constraints based on Eq. 34 and 35.

Xki ≥ 0 (34)

Yi ≥ 0 (35)

Furthermore, the following assumptions are considered for the model development.

Assumption 1 There is no import and export of electricity in and out of the grid.

Assumption 2 75% of the demand should be satisfied by Coal, Gas, Nuclear, Oil and
Biomass systems

Assumption 3 Upper bound for electricity generation by solar system is 5% of the overall
electricity.

Assumption 4 Total available capacity to be installed by hydro system is 11,300MWh.

Assumptions 2, 3 and4 are basedon realistic estimations of experts andTheUKRenewable
Energy Strategy document.
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4.5 Data for optimization problem

Based on Fig. 1 the first step of the integrated approach of GRA–MOGLP for this research is
performing environmental and social evaluations of the generating resources to obtain Escore
and Sscore for the model’s objective functions. The decision matrix for environmental and
social evaluations are shown in Tables 3 and 4 respectively. Our alternatives are consisted of 4
conventional generation systems of Coal, Gas, Nuclear and oil (i ∈ I and i = 1, 2, 3, 4) and
4 renewable energy generation systems of Biomass, Wind Hydro and Solar (i ∈ V and i =
5, 6, 7, 8). As previously mentioned the data has been collected via experts’ opinions or
extracted from EU (EEA 2013; JRC 2013) and UK (DECC 2013).

In Tables 3 and 4 transformation of grey linguistic terms to grey interval values is based
on Table 5. The upper and lower bound of the grey interval values are determined through the
consultation of experts in order to make the best distinction between alternatives and reflect
their opinions.

After operating steps 1–4, which were previously explained in Sect. 2.2, the final results
for grey relational grade of each alternative are obtained and alternatives are ranked according
to their environmental and social performance (Table 6). Alternatives with higher grades are
ranked as better ones. There was not a significant difference between the priority of the
selected criteria in Delphi method and furthermore some of the criteria have been judged by
an independent expert in the related field so the weights for social and environmental criteria
in this research have been considered equally important. However while using the presented
approach the decision makers can reflect their opinions about the weights and they are not
necessarily equal.

The data, being used as input to our multi-objective model, were collected from various
sources. Demand data is collected from National Grid published data (“Data Explorer |
National Grid”) for the 6 months of January to the end of June for year 2016. The upper
bound and lower bound of demand is chosen 1% more and 1% less than actual demand
respectively to cover the fluctuations happening within demand. Other coefficients as well as
prices associated with different systems and their interval value ranges are based on Table 7.
These prices are based on the most recent report of UK Department of Energy and Climate
Change and the level of accuracy and ranges they have considered for the data they have
published. Each period of T for electricity generation is considered of a 6 h period, starting
from 00:00am at January 1st of 2016. So for the 6 months under investigation we have a total
of 728 time periods.

As can be seen all the prices except variable cost of operation and maintenance (VMC)
are considered in an interval form based on their nature, the location of implementation and
other conditions and can vary between an upper and a lower bound. Although the variations
of variable costs were so small that in this paper we considered them by their crisp values.

Furthermore, the information for CO2 emissions of each system is shown in Table 8.

5 Results

In order to solve the problem, we used large scale linear programing function in MATLAB
software. Each of the objective functions has been separately coded and the lower and upper
bounds of optimum solution were applied in multi-objective approach which was explained
in Sect. 2.4 and the final results were computed. The model consists of 23,317 constraints for
lower bound and 29,141 constraints for upper bound optimization problems for each single
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Table 4 Social decision matrix for evaluation process of different systems

Systems Criteria

Job creation
(Job
years/GWh)

Social
acceptability

Mortality rate
(deaths/TWh)

External costs associated
with health e/GWh

Coal 0.11 Low 10–170 10200–76500

Gas 0.11 Medium 3–5 2000–8000

Nuclear 0.14 Low 0.00001–0.09 1640–5740

Wind 0.17 High 0.15 340–1680

Hydro 0.55 High 0.00001–1.4 200–6700

Oil 0.11 Medium 36 2000–8000

Solar 0.87 High 0.44 4380

Biomass 0.21 Medium 24 1700–42500

Table 5 Grey interval numbers
for linguistic terms

Interval term Grey value

Very high [9 10]

High [7 9]

Medium high [5 7]

Medium [3 5]

Low [1 3]

Very low [0 1]

Table 6 Final results for grey relational degree of each of the systems based on environmental and social
GRA evaluation

Coal Gas Nuclear Oil Biomass Wind Hydro Solar

GRG for environment 3.5539 5.3086 6.0476 3.4192 4.1640 6.0923 6.5122 6.5809

GRG for social 1.6927 2.6927 2.6751 2.4399 2.2887 3.3487 3.4735 3.9126

objective function and 23,322 and 29,146 constraints for lower and upper bounds of multi
objective optimization problems respectively. Due to availability of demand data for the sixth
first months of the year 2016 we considered T = 728 in our model. Through solving the
problem, upper and lower bounds of final objective function indicate two different decision
options. Lower bound value of objective function by considering upper bounds of constraints’
coefficients and lower bounds of left hand side values, createsmore conservative solutionwith
lowest possible electricity generation and capacity. On the other hand, upper bound value for
objective function by considering lower bounds of constraints’ coefficients and upper bounds
of left hand side values, due to increase in feasible area of the problem represents a solution
which requires more electricity generation and consequently more capacity.

A direct comparison between the upper and lower values of the objective function can be
considered in Fig. 3a and b. The differences are subtle and at the lower bound values benefit
those resources with solar, gas, hydro, nuclear, biomass and wind.

The total electricity generation mix by each of the systems is shown in Fig. 4.
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Fig. 3 Lower and upper bounds of capacity for multi-objective approach with equal weights. a Lower bound
of capacity. b Upper bound of capacity

Fig. 4 Lower and upper bounds of electricity generation for multi-objective approach with equal weights. a
Lower bound of generation. b Upper bound of generation

123



Ann Oper Res

Fig. 5 Cost optimized lower and upper bounds of electricity generation

Each of the objective functions tries to optimize the electricity generation towards a
different perspective. Therefore, focusing on the decomposed results of each of the solutions
provided by each objective function provides a straight-forward outlook. This is particularly
important for decision makers who need valuable insights about each perspective that can
assist future planning.

Figure 5 shows the results of total electricity generation by each system during the first
6 months of a year from economical point of view and considering only minimization of
fixed and variable costs.

Higher fixed cost for renewable resources, which results in lower installation capacity,
and our second assumption lead to higher total generation by conventional systems. Among
thermal power stations, nuclear is benefitted by low production cost and as a result has the
highest share of electricity generation. Also among renewable resources, hydro by having
the costliest variable operation and maintenance (£6/MWh) has approximately zero share of
the electricity generation.

Figure 6 shows the results occurring by minimizing imports dependence. Biomass, oil
and coal have been eliminated because they are highly imported in the UK. At the same
time, gas and nuclear energy are partially imported to the UK but to a lesser extent than
the aforementioned resources. It is reminded that one of the system constrains requires that
renewable energy does not completely take over due to its intermittency; therefore, we still
have thermal power stations meeting most of the demand.

When focusing on CO2 emissions and environmental criteria the results are particularly
interesting (Figs. 7, 8). With regards to CO2 emissions, as expected, alternatives with zero
generation emissions such as nuclear and renewables prevailed. However, it is reminded that
CO2 emissions have been assessed on a lifecycle basis; therefore, nuclear has taken the lead
since it presents relatively lower levelised emissions.Moreover, for theUK standards biomass
is considered to be CO2 neutral since its direct generation emissions are approximately equal
to the CO2 that has been absorbed for biomass growth.

When evaluating power production alternatives against a broader set of environmental
criteria a more diverse fuel mix occurs (Fig. 8). That is still however, based on nuclear and
gas power generation as one of the system constraints requires a majority stake for thermal
power stations. Moving from lower bound to upper bound of demand and increasing the
feasible area for the problem wind is the most benefitted power source.
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Fig. 6 Lower and upper bounds of electricity generation by minimizing imported fuel

Fig. 7 Lower and upper bounds of electricity generation based on minimization of CO2 emission

Fig. 8 Environmental optimized Lower and upper bounds of electricity generation

With the evaluation focused on social criteria (Fig. 9) the optimized fuel mix gives very
high scores to nuclear and gas which are required to produce the majority of the required
power. At the same time, it is clear that renewable energy sources have very little varia-
tion between their upper and lower boundaries suggesting they produce at their maximum
permitted output (as occurring by the problem constraints).
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Fig. 9 Social optimized lower and upper bounds of electricity generation

6 Discussion

The actual fuel mix for the UK’s power sector was in 2015 based on 29% gas, 21% nuclear,
22% coal, 24% by renewable including biomass, wind, hydro and solar as well as 3% by
other fuels (UK Energy Statistics, 2015 & Q4 2015). The results obtained by this research
suggest that at least 28% of the total electricity supply should be produced by renewable
energy systems. This is certainly limited by problem constraints such as infrastructure cost
and upper limit to variable output energy sources. However, technology development in the
renewable energy field is rapid and offers declining installation and maintenance costs and
increased reliability.At the same timemarketmaturity for various energy storage technologies
is growing fast and brings renewables and storage hybrid solutions off their small-scale past
(Zafirakis and Chalvatzis 2014). Market ready systems provide a bundle of grid services and
through variable compensation schemes are attractive for private investment (Zafirakis et al.
2016). These gradually expand to non-traditional power supply systems such as for example
distributed industrial facilities (Zafirakis et al. 2014)

The UK is at the forefront of these developments. Firstly, by its commitment to offshore
wind energy the UK has become a world leader in installed capacity and successfully trans-
ferred its offshore engineering know-how from oil and gas to wind turbines (IRENA 2015).
Secondly energy storage has been identified as one of the key innovations for the UK’s
technological strategy (UK Government 2013). Moreover, the UK actively promotes further
development of the cross-border electricity market which enables electricity trade to improve
grid stability and lower costs with existing interconnections to France, the Netherlands and
Ireland and plans for further links to Norway and Denmark (OFGEM 2016). These connec-
tions will further increase the scope for more base-load renewables and have the potential to
impact not only on the power market but also the emissions market (Zafirakis et al. 2015).
At the same time the UK provides an interesting landscape because of its significantly devel-
opment ICT infrastructure even at household level which supports a dual purpose; that of
energy consumption and that of enabling smart energy management (Pothitou et al. 2016,
2017)

One clearer outcome of our research has been that coal as an electricity sector fuel is dif-
ficult to justify under any set of criteria. This echoes accurately with the UK Government’s
schedule for shutting down all the coal-fired power stations of the country by 2025 or even
earlier (Guardian 2016). At the same time throughout our analysis, withdrawal from coal,
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leads to large-scale reliance on nuclear energy. While there are certain benefits to nuclear
energy such as its capacity to deliver large-scale reliable power and its limited environmental
emissions, recent developments cast doubts about the future of nuclear energy. Since, the
Fukushima disaster, nuclear safety standards have been raised, and as a result led infrastruc-
ture costs to grow substantially (Boggard 2014). Furthermore, new reactor design innovations
increase project completion and cost uncertainty (Riesz et al. 2016). These issues and par-
ticularly the new increased costs have not yet been clearly incorporated in the literature and
therefore are not taken into account into our modelling. This explains the disparity between
the completely justified reluctance of the UKGovernment (Financial Times 2016) to commit
to new nuclear investment because of costs (The Economist 2016) and our decision making
modelling essentially recommending nuclear as the best option including cost parameters.

7 Conclusion

Planning for electricity generation mix is a highly complex problem which confronts deci-
sion makers with multiple conflicting priorities and potentially disproportionate objectives.
Established andmostly new technologies are coming with inherent uncertainties either due to
their complexity or due to them being untested at scale and can affect and mislead optimiza-
tion results and generation schemes. With this manuscript we put forward a new model that
can support decision making for electricity fuel mix and we demonstrated it using the UK
power sector as a case study. Apart from the aforementioned uncertainties, the UK presents
an even more challenging case because of its recent decision to leave the EU.While this is an
ongoing process, it is expected that it will stall new large-scale investment decisions which
are particularly important for the energy sector. We argue that in the face of this turbulent
environment our research provides the foundation of a flexible decision making tool that will
be of help to policy making and assessment.

We dealt with excessive and inaccurate factors by applying two evaluation processes
based on GRA to obtain the performance score of different generation systems with respect
to environmental and social criteria and used the computed scores in our optimization problem
to increase the share of power generations sources with the best environmental and social
performance. For parameters that do not have certain or fixed values both coefficients and left
hand side constraints we applied multi-objective interval grey linear programming.We found
that the application of hybrid MCDM and MODM methodology is an effective approach in
addressing complex and large-scale problems that include uncertainties.

Specifically for theUKwesuggest an increase in all three renewable sources considered i.e.
wind, solar and hydropower and significant decrease of coal and oil due to their prohibitive
environmental and social impact and reliance on imports. Our results are contextualised
and contrasted with the UK Governments’ policies as we recommend significantly stronger
support for renewable energy sources than is currently in place.

Two of the limitations of this research are inherent within our assumptions. Firstly in the
fact that we have considered the UK power system as a closed ecosystem without any cross-
border power trade which is not the case as the UK has international electricity connections
which can have an impact on the country’s power mix. Secondly, we did not consider the role
of new technologies, such as energy storage, which is forthcoming in the UK both in terms
of stationary storage and increasingly mobile storage in electric vehicles.

Therefore, future research should expand the scope of our present work to include the
interconnectors with France, Netherlands Ireland, Denmark and Norway. Moreover, we are
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looking forward to modelling the role of energy storage in power dispatching and in opti-
mising the use of indigenous resources in the UK or other countries. Finally, our modelling
approach can be enriched with weight determining techniques such as DEMATEL and AHP
in order to provide flexible planning and create a scenario development tool that will be of
direct use by policy makers and take their priorities more into account.
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