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Abstract
This paper investigates the possibility of a frequentist interpretation of imprecise probabilities, by
generalizing the approach of Bernoulli’s Ars Conjectandi. That is, by studying, in the case of
games of chance, under which assumptions imprecise probabilities can be satisfactorily estimated
from data. In fact, estimability on the basis of finite amounts of data is a necessary condition
for imprecise probabilities in order to have a clear empirical meaning. Unfortunately, imprecise
probabilities can be estimated arbitrarily well from data only in very limited settings.
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1. Introduction

Imprecise probabilities mostly have a subjective, epistemic interpretation (Walley, 1991; Troffaes
and de Cooman, 2014), while in this paper we will study the possibility of a frequentist, empirical
interpretation for them. As regards precise probabilities, empirical interpretations are dominant in
science and statistics. They are usually related to Bernoulli’s law of large numbers, which connects
the probabilities of events with the relative frequencies of the events’ occurrence in sequences of
independent repetitions of experiments.

This connection can be used asymptotically, by defining probabilities as limits of relative fre-
quencies (Venn, 1866; von Mises, 1928, 1957; Reichenbach, 1935, 1949), but the empirical mean-
ing of such probabilities for finite samples is then problematic. In order to have probabilities with
a direct empirical meaning, the connection in Bernoulli’s law of large numbers can be used in a
finite-sample way, by defining probabilities as approximately equal to relative frequencies in large,
but finite samples. The difficulty of this approach comes from the fact that the exact meaning of
“approximately equal” is probabilistic, and therefore this definition of probability is circular.

A possible answer to this circularity consists in accepting it and interpreting probability as an
abstract concept, whose meaning comes from the possibility of statistically falsifying probabilistic
statements (Popper, 1935, 1959). An alternative, but related answer to the above circularity is the
original approach of Bernoulli (1713, 2006): define probability only for games of chance (where
the definition is unproblematic) and extend it to other fields by analogy. This analogy is empirically
meaningful because Bernoulli’s law of large numbers provides a way of estimating probabilities
arbitrarily well (and thus also a way of statistically falsifying probabilistic statements).

In this paper, we will see if Bernoulli’s approach can be extended to imprecise probabilities.
That is, practically we will focus on games of chance: for example drawing colored marbles at
random from a bag. In this situation, the precise probability of a certain color corresponds to the
proportion of marbles of this color in the bag, and if we draw several marbles (with replacement)
from the bag, we obtain probabilistic independence automatically from the noninteraction of the
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drawings. How should we interpret an imprecise probability in this setting? We will see that several
different interpretations may be reasonable.

The spectacular achievement of Bernoulli was to prove, through his law of large numbers, that
precise probabilities are estimable from finite amounts of data, and therefore have an empirical
meaning. Analogously, a frequentist, empirical interpretation of imprecise probabilities is possible
only if these are estimable from finite amounts of data. The core of the present paper consists
of mathematical results about the estimability of imprecise probabilities, depending on their exact
interpretation in the case of games of chance. These results are given in Section 3 (due to space
limitations, proofs are omitted, and will appear only in an extended version of the paper), while the
next section provides a quick overview of frequentist interpretations, and the last section concludes
the paper and points to an open problem.

2. Interpretations of Imprecise Probabilities

The interpretations of (precise) probabilities can be roughly grouped in two main classes, often
called subjective and frequentist (see for example Gillies, 2000). With a subjective (or epistemic,
Bayesian, personalistic, . . . ) interpretation, probabilistic statements are about the degrees of belief
or knowledge of an individual. By contrast, with a frequentist (or empirical, objective, scientific, . . . )
interpretation, probabilistic statements are about the material world. For this reason, frequentist
interpretations of probabilities are the dominant interpretations in science and in statistics.

In particular, according to the subjective interpretation of de Finetti (1931, 1974–1975), a prob-
ability is an individual’s fair price for a bet. This interpretation can quite naturally be extended to an
interpretation of lower and upper probabilities as an individual’s maximum buying price and mini-
mum selling price for a bet (Williams, 1975, 2007; Walley, 1991; Troffaes and de Cooman, 2014).
In fact, it can certainly be argued that with this subjective interpretation, imprecise probabilities are
more natural than precise ones. However, the topic of the present paper is frequentist interpretations
for imprecise probabilities, which, contrary to what happens for precise probabilities, are far less
common than subjective ones.

Since usual imprecise probability measures correspond mathematically to sets of precise ones,
they appear often in classical statistics, which is based on frequentist interpretations of probabilities.
In particular, imprecise probabilities can be used to describe what has been learnt so far from data
(see for example Cattaneo and Wiencierz, 2012; Antonucci et al., 2012), but in this case their inter-
pretation is in reality epistemic, although more properly intersubjective than subjective. However,
a truly frequentist interpretation is indeed obtained in classical statistics when imprecise probabili-
ties do not describe what has been learnt, but what can potentially be learnt from infinite amounts
of incomplete data (see for instance Manski, 2003; Dempster, 1967). Anyway, this frequentist in-
terpretation of imprecise probabilities is limited to particular situations involving incomplete data,
while we are looking for a generally valid interpretation.

In general, frequentist interpretations of precise probabilities are related to laws of large num-
bers implying that the relative frequency of an event’s occurrence in a sequence of independent
repetitions of an experiment converges to the probability of the event. Although laws of large num-
bers have been generalized to the case of imprecise probabilities (Walley and Fine, 1982; Cozman
and Chrisman, 1997; Marinacci, 1999; de Cooman and Miranda, 2008; Peng, 2010; Chen and Wu,
2011), the generalization of frequentist interpretations is not straightforward.
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If we would simply interpret the probability of an event as the limit of the relative frequency of
its occurrence in an infinite sequence of independent repetitions of an experiment (Venn, 1866; von
Mises, 1928, 1957; Reichenbach, 1935, 1949), then we could interpret lower and upper probabilities
as limits inferior and superior of such a sequence, respectively. That is, the imprecise probability
interpretation would extend the precise one to the case of nonconvergent sequences of relative fre-
quencies, and also with this frequentist interpretation (besides the above subjective one) it could be
argued that imprecise probabilities are more natural than precise ones. However, this interpretation
is problematic for imprecise as well as precise probabilities, since no finite part of a sequence of rel-
ative frequencies has any connection at all with the limit of the sequence, and thus strictly speaking
the interpretation has no empirical meaning.

In order to have an empirical meaning, a frequentist interpretation must make probabilistic state-
ments falsifiable on the basis of finite amounts of data. Of course, probabilistic statements are in
general not strictly falsifiable, but they can be methodologically falsifiable in the sense of Popper
(1935, 1959) if they can be rejected through some reasonable statistical test with arbitrarily low
significance level (see also Gillies, 1995, 2000). Such a test for the probability of an event could
be based on Bernoulli’s law of large numbers, which is a probabilistic statement connecting the
probability of the event to the relative frequency of the event’s occurrence in a finite sequence of
independent repetitions. That is, we could consider frequentist probability as an abstract concept
deriving its meaning from the theory surrounding it, which makes probabilistic statements (method-
ologically) falsifiable.

However, in the present paper we will follow a related, but more direct approach to frequentist
probability, corresponding to the original interpretation of Bernoulli’s law of large numbers in the
Ars Conjectandi (Bernoulli, 1713, 2006). This book represents the starting point of modern prob-
ability theory, and interestingly also the (temporary) end point of imprecise probability (Shafer,
1978). Citing Sylla (2014): “before Bernoulli’s work, there existed a mathematics of games of
chance but that mathematics did not involve probability—not the Latin word probabilis, not relative
frequencies and not degrees of certainty.”

Bernoulli’s law of large numbers is a theorem in the mathematics of games of chance. That is,
a theorem about probabilities interpreted as ratios between the numbers of favorable and possible
outcomes. Bernoulli extended the concept of probability to other fields by analogy with games of
chance, an idea already present in the Logique de Port-Royal (Arnauld and Nicole, 1662, 1996).
According to this approach, the probability of an event is interpreted through an analogy with a
game of chance: for example as corresponding to the probability of drawing a black marble at
random from a bag containing white and black marbles. Bernoulli’s law of large numbers implies
that it is possible to learn with arbitrarily high precision the probability of an event from the relative
frequency of its occurrence in sufficiently many independent repetitions of an experiment.

3. Empirical Meaning of Imprecise Probabilities

The approach to frequentist probability of the Ars Conjectandi consists of two parts: the interpreta-
tion of probabilities by analogy with games of chance, and their estimability on the basis of finite
amounts of data. In this section we will study how far this approach can be generalized to the case
of imprecise probabilities. For the sake of simplicity, we will focus on a sequence of Bernoulli
trials, whose outcomes are described by the binary random variables X1, X2, . . . ∈ {0, 1} (that is,
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we consider only the interpretation and estimability of imprecise probabilities of single events, not
of whole imprecise probability measures on arbitrary sample spaces).

Each Bernoulli trial corresponds for instance to drawing a black or white marble (described by
Xi = 1 or Xi = 0, respectively) at random from a bag containing only white and black marbles
with a proportion pi ∈ [0, 1] of black ones (strictly speaking, all probabilities should be rational
numbers, but for the sake of simplicity we will ignore this technical detail, since rational numbers are
dense in the reals). The sequence of Bernoulli trials corresponds thus to drawings from a sequence
of bags with possibly different proportions of black marbles. The noninteraction of the drawings
corresponds to an assumption of independence of the random variables Xi, in the usual sense of
(precise) probability theory (see also Chen and Wu, 2011; De Bock and de Cooman, 2012). We
have a precise probability model when pi = p does not depend on i, and an imprecise one when
pi ∈ [p, p] is not completely determined.

For example, in Section 2 we have considered two ways in which imprecise probability mea-
sures often appear in classical statistics. The first one, related to an intersubjective epistemic in-
terpretation, is as descriptions of what has been learnt so far from data: this would be the case for
instance if [p, p] was obtained as a confidence interval for the precise probability p. The second one,
related to a truly frequentist but limited interpretation, is as descriptions of what can potentially be
learnt from infinite amounts of incomplete data: this would be the case for instance if Xi = 1 and
Xi = 0 were observed with probabilities p and 1− p, respectively, while with probability p− p we
would have a missing observation (independently of i). In this case, without making any assump-
tions about the noninformativity of the missing data, [p, p] is the identification region of the precise
probability p: that is, values of p in this interval cannot be discriminated on the basis of any amount
of (incomplete) data.

In the general case without missing data, there are several possible interpretations of an impre-
cise probability [p, p] with 0 ≤ p ≤ p ≤ 1 (where p = p corresponds to the case of a degenerate
interval representing a precise probability). In particular, Walley and Fine (1982) distinguish be-
tween an ontological indeterminacy interpretation, where

pi ∈ [p, p] (1)

is the only assumption about the sequence pi, and an epistemological indeterminacy interpretation,
where

pi = p ∈ [p, p] (2)

does not depend on i. The latter can also be seen as the special case in which the sequence of draw-
ings (with replacement) is from the same bag, which contains a not completely determined propor-
tion of black marbles. The interpretations (1) and (2) appear also in the theory of Markov chains
with imprecise probabilities (which can be seen as generalizations of sequences of Bernoulli trials):
for example in Hartfiel (1998) and Kozine and Utkin (2002), respectively. Moreover, the ontological
indeterminacy interpretation (1) plays a prominent role in the theory of probabilistic graphical mod-
els with imprecise probabilities (which can be seen as further generalizations of Markov chains):
see for instance Cozman (2005).

From the point of view of the estimability of the imprecise probability [p, p], both interpretations
(1) and (2) are problematic, because in general the sequence pi does not determine the interval [p, p].
That is, with these interpretations the imprecise probability is only partially identified and therefore
cannot in general be estimated with arbitrarily high precision. In order to make the imprecise prob-
ability identifiable, we can interpret it as allowing only the sequences pi ∈ [p, p] that determine in
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a certain sense the interval [p, p]. However, we would most likely betray the intuitive meaning of
imprecise probabilities if we would exclude any starting sequence p1, . . . , pn ∈ [p, p]. Similarly,
assigning some kind of degree of plausibility to the starting sequences p1, . . . , pn ∈ [p, p] would
also lead to a new model, different from the one of imprecise probabilities (such as the chaotic
probability model of Fierens et al., 2009).

On the basis of these considerations, we obtain an identifiable ontological indeterminacy inter-
pretation, where

pi ∈ [α(p1, p2, . . .), α(p1, p2, . . .)] = [p, p] (3)

is a condition on the sequence pi, determined by two functions α, α : [0, 1]N → [0, 1] that do not
depend on any finite number of their arguments (that is, each function would assign the same value
to sequences differing only at a finite number of positions). These functions are considered to be
fixed, but we do not need to further specify them in order to obtain the results of the present paper
(that is, these results are valid for any particular choice of the above functions α, α). An example of
such pairs of functions is the limits inferior and superior of the sequence pi, implying that the whole
width of the interval

[p, p] =

[
lim inf
i→∞

pi, lim sup
i→∞

pi

]
(4)

is used by the sequence pi, and infinitely many times (in the sense that the sequence gets infinitely
many times arbitrarily close to both endpoints of the interval). A related example is the limits
inferior and superior of the Cesàro means of the sequence pi (that is, the limits inferior and superior
of the averages of the starting sequences p1, . . . , pn), implying that the whole width of the interval

[p, p] =

[
lim inf
n→∞

1

n

n∑
i=1

pi, lim sup
n→∞

1

n

n∑
i=1

pi

]
(5)

is used by the sequence pi, not only infinitely many times, but also not too rarely (in order to bring
not only the sequence, but also its Cesàro means infinitely many times arbitrarily close to both
endpoints of the interval).

However, it is intuitively clear that imprecise probabilities are not estimable in full generality,
because for instance any finite amount of data from Bernoulli trials would always be perfectly com-
patible with the vacuous imprecise probability [0, 1], independently of the considered interpretation
(1), (2), or (3). This difficulty in discriminating between the vacuous and other imprecise prob-
abilities is related to the more general difficulty in comparing imprecise probability models with
different degrees of imprecision (see also Seidenfeld et al., 2011; Cattaneo, 2013). Anyway, impre-
cise probabilities are estimable under additional assumptions about the possible intervals [p, p]. Let
I be the set of all imprecise probabilities that are considered possible in a given situation: that is,
let I be a nonempty set of intervals of the form [p, p] with 0 ≤ p ≤ p ≤ 1.

Bernoulli’s law of large numbers implies the uniformly consistent estimability of the precise
probability pi = p ∈ [0, 1] on the basis of the outcomes X1, X2, . . . of the Bernoulli trials. An
estimator πn : {0, 1}n → [0, 1] (or more precisely, a sequence of estimators πn) of p is said to be
uniformly consistent when for all ε > 0 and all δ > 0 there is an N such that

P
(∣∣πn(X1, . . . , Xn)− p

∣∣ > ε
)
≤ δ (6)

for all n ≥ N , all [p, p] ∈ I, and all (precise) probability measures P corresponding to the se-
quences pi compatible with the imprecise probability [p, p] according to the considered interpre-
tation (1), (2), or (3) (since we are in the setting of games of chance, the interpretation of P is
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unproblematic: probabilities are ratios between the numbers of favorable and possible outcomes).
The definition of a uniformly consistent estimator πn of p is analogue, and [p, p] ∈ I is said to be
uniformly consistently estimable when there are uniformly consistent estimators πn and πn of p and
p, respectively.

The uniform consistency of an estimator πn of p is particularly important, because it implies that
[πN (X1, . . . , XN )− ε, πN (X1, . . . , XN ) + ε] is a confidence interval for p with coverage proba-
bility at least 1 − δ (an analogous result is implied by the uniform consistency of an estimator πn

of p). That is, uniformly consistent estimators provide us with arbitrarily short confidence intervals
of arbitrarily high confidence level, when we have a sufficiently large amount of data. In this sense,
uniformly consistent estimability endows imprecise probabilities [p, p] ∈ I with a clear empirical
meaning. However, the next theorem states that this is the case only when all nondegenerate inter-
vals in I are isolated in I. An interval [p, p] ∈ I is said to be nondegenerate when p < p, and it is
said to be isolated in I when there is a γ > 0 such that [p − γ, p + γ] does not intersect any other
interval in I (degenerate or nondegenerate). If all nondegenerate intervals in I are isolated in I,
then all intervals in I (degenerate or nondegenerate) are pairwise disjoint, while the converse is not
true. For example, if I consists of the nondegenerate interval [0, 12 ] and all the degenerate intervals
[p, p] with 1

2 < p ≤ 1, then all elements of I are pairwise disjoint, but [0, 12 ] is not isolated in I.

Theorem 1 The following four statements are equivalent:

(i) [p, p] ∈ I is uniformly consistently estimable under the ontological indeterminacy interpre-
tation (1),

(ii) [p, p] ∈ I is uniformly consistently estimable under the epistemological indeterminacy inter-
pretation (2),

(iii) [p, p] ∈ I is uniformly consistently estimable under the identifiable ontological indeterminacy
interpretation (3),

(iv) all nondegenerate intervals in I are isolated in I.

Theorem 1 implies in particular Bernoulli’s law of large numbers, which corresponds to the case
where I is the set of all degenerate intervals [p, p] with p ∈ [0, 1]. More precisely, Bernoulli (1713,
2006) proved the result only in the case where I is the set of the m + 1 degenerate intervals [p, p]
such that p ∈ [0, 1] is a rational number with (arbitrarily large) denominator m. For this case, he
also provided an explicit way of calculating a value for the quantity N appearing in the definition of
uniform consistency (6), thus obtaining a clear empirical meaning for precise probabilities through
what we now call confidence intervals. Anyway, Theorem 1 shows that this is possible for imprecise
probabilities only in very limited settings, independently of their exact interpretation.

In order to endow imprecise probabilities with a clear empirical meaning in more general set-
tings, we can moderate our requirements for their estimability. In particular, Walley and Fine (1982)
introduced the concept of strong estimability, which weakens uniformly consistent estimability (6)
by allowing N to depend on the interval [p, p], besides on ε and δ. When we weaken strong estima-
bility further by allowing N to depend also on the probability measure P , we get the concept of con-
sistent estimability. That is, strong estimability lies between consistent estimability and uniformly
consistent estimability, and must not be confused with strongly consistent estimability (which cor-
responds to consistent estimability when convergence in probability is replaced by almost sure con-
vergence). Anyway, strong estimability can also be interpreted as the generalization of consistent
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estimability to imprecise probabilities: in fact, strong estimability and consistent estimability are
equivalent when all intervals in I are degenerate (that is, in the case of precise probabilities).

Theorem 2 The following four statements are equivalent:

(i) [p, p] ∈ I is strongly estimable under the ontological indeterminacy interpretation (1),

(ii) [p, p] ∈ I is strongly estimable under the epistemological indeterminacy interpretation (2),

(iii) [p, p] ∈ I is strongly estimable under the identifiable ontological indeterminacy interpreta-
tion (3),

(iv) all intervals in I (degenerate or nondegenerate) are pairwise disjoint.

Contrary to uniformly consistent estimability, strong estimability does not guarantee the exis-
tence of arbitrarily short confidence intervals of arbitrarily high confidence level for p and p, but is
nonetheless important because it is required in order for imprecise probabilities to be empirically
recognizable, in the following sense. Given an imprecise probability [p, p] ∈ I and a desired level of
precision for the estimators, we can choose n such that if the data X1, . . . , Xn are generated accord-
ing to [p, p] (that is, according to any sequence pi compatible with it), then [p, p] can be estimated
to the desired level of precision on the basis of X1, . . . , Xn (in other words, an imprecise proba-
bility can be recognized arbitrarily well on the basis of finite amounts of data generated according
to it). However, Theorem 2 shows that imprecise probabilities are empirically recognizable only
in very limited settings, independently of their exact interpretation. In fact, requiring only strong
estimability instead of uniformly consistent estimability as in Theorem 1 weakened only slightly the
necessary and sufficient condition on I. As a side result, the following corollary of Theorem 2 com-
pletes a basic result of Walley and Fine (1982) about the strong estimability of imprecise probability
measures on finite sample spaces.

Corollary 3 The necessary condition in Theorem 5.1 of Walley and Fine (1982) is sufficient as well,
also in the case of infinitely many imprecise probability measures.

Although consistent estimability (with respect to precise probability measures) is too weak to
endow imprecise probabilities with a clear empirical meaning (in the sense that it does not guarantee
their empirical recognizability), for completeness we can look at the consequences of requiring only
this level of estimability. The next theorem shows that there is no difference between consistent
estimability and strong estimability of imprecise probabilities, when only the interpretations (1) and
(2) are considered. However, there is a difference when the identifiable ontological indeterminacy
interpretation (3) is considered, as we will see in a moment.

Theorem 4 The following three statements are equivalent:

(i) [p, p] ∈ I is consistently estimable under the ontological indeterminacy interpretation (1),

(ii) [p, p] ∈ I is consistently estimable under the epistemological indeterminacy interpretation
(2),

(iii) all intervals in I (degenerate or nondegenerate) are pairwise disjoint.
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Theorems 1, 2, and 4 give necessary and sufficient conditions for the estimability of imprecise
probabilities, but there is a difference between knowing that something is estimable and knowing
how to estimate it. The next theorem closes this gap by explicitly giving examples of estimators
with the required properties.

Theorem 5 The following estimators of p and p satisfy all the properties considered in Theorems
1, 2, and 4, when the corresponding necessary and sufficient conditions on I are fulfilled:

πn(x1, . . . , xn) = inf

{
p : [p, p] ∈ I, p+ cn >

1

n

n∑
i=1

xi

}
, (7)

πn(x1, . . . , xn) = sup

{
p : [p, p] ∈ I, p− cn <

1

n

n∑
i=1

xi

}
, (8)

for all x1, . . . , xn ∈ {0, 1}, where cn is any sequence of real numbers such that limn→∞ cn = 0
and limn→∞

√
n cn = +∞, while inf ∅ and sup∅ can be defined arbitrarily.

The estimators (7) and (8) exploit the fact that the relative frequency 1
n

∑n
i=1Xi of the occur-

rence of the event Xi = 1 will lie in [p − cn, p + cn] with arbitrarily high probability when n is
sufficiently large, independently of the considered interpretation (1), (2), or (3). Theorems 4 and 5
imply that when all intervals in I (degenerate or nondegenerate) are pairwise disjoint, the estima-
tors (7) and (8) are also consistent under the identifiable ontological indeterminacy interpretation
(3), since this property is weaker than the consistency under the ontological indeterminacy inter-
pretation (1). However, the next theorem implies that the pairwise disjointness of the intervals in
I is not a necessary condition for the consistent estimability of [p, p] ∈ I under the identifiable
ontological indeterminacy interpretation (3), because it is sufficient that all nondeterministic inter-
vals in I (degenerate or nondegenerate) are pairwise disjoint. An interval [p, p] ∈ I is said to be
nondeterministic if it is not one of the two degenerate intervals [0, 0] and [1, 1].

Theorem 6 A sufficient condition for [p, p] ∈ I to be consistently estimable under the identifiable
ontological indeterminacy interpretation (3) is that all nondeterministic intervals in I (degenerate
or nondegenerate) are pairwise disjoint, while a necessary condition is that I does not contain at the
same time the interval [0, 1] and another nondeterministic interval (degenerate or nondegenerate).

The following estimators of p and p are consistent under the identifiable ontological indetermi-
nacy interpretation (3), when the above sufficient condition on I is fulfilled:

π′
n(x1, . . . , xn) =

{
1 if x1 = · · · = xn = 1,
πn(x1, . . . , xn) otherwise,

(9)

π′
n(x1, . . . , xn) =

{
0 if x1 = · · · = xn = 0,
πn(x1, . . . , xn) otherwise,

(10)

for all x1, . . . , xn ∈ {0, 1}, where πn and πn are the estimators (7) and (8), respectively.

Theorems 1, 2, and 4 characterize three different levels of estimability of imprecise probabilities
according to three different ways of interpreting them. Only one of the nine possible characteriza-
tions is missing: the one of consistent estimability under the identifiable ontological indeterminacy
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interpretation (3), because the necessary and sufficient conditions in Theorem 6 are different. In
fact, this characterization seems to be much more difficult than the other eight, also because the
exact meaning of the interpretation (3) depends on the functions α, α considered. In particular, for
the limits inferior and superior of the sequence pi (4), it seems plausible that the sufficient condition
of Theorem 6 is also necessary, but the proof does not seem to be straightforward.

In general, the results of the present section show that an empirical interpretation of imprecise
probabilities is possible only in very limited settings, because imprecise probabilities cannot be
estimated satisfactorily on the basis of finite amounts of data. This is hardly surprising when con-
sidering that imprecise probabilities are not identifiable in general under the interpretations (1) and
(2), and only asymptotically identifiable under the interpretation (3). For these reasons, it can be
interesting to study the estimability of the actual, finite-sample imprecise probabilities: that is, the
estimability of min{p1, . . . , pn} and max{p1, . . . , pn} on the basis of the outcomes X1, . . . , Xn of
the corresponding Bernoulli trials.

The concepts of uniformly consistent estimability, strong estimability, and consistent estima-
bility of the finite-sample imprecise probabilities [min{p1, . . . , pn}, max{p1, . . . , pn}] can be ob-
tained by replacing p with min{p1, . . . , pn} in (6), and p with max{p1, . . . , pn} in the analogue
expression for πn (the resulting concepts generalize the usual ones, since min{p1, . . . , pn} and
max{p1, . . . , pn} are not necessarily constant). The next theorem implies that also the finite-sample
imprecise probabilities have a very limited empirical meaning, since they can be estimated satisfac-
torily only when they are known to be precise.

Theorem 7 The following six statements are equivalent:

(i) [min{p1, . . . , pn}, max{p1, . . . , pn}] is uniformly consistently estimable under the ontologi-
cal indeterminacy interpretation (1) of [p, p] ∈ I,

(ii) [min{p1, . . . , pn}, max{p1, . . . , pn}] is uniformly consistently estimable under the identifi-
able ontological indeterminacy interpretation (3) of [p, p] ∈ I,

(iii) [min{p1, . . . , pn}, max{p1, . . . , pn}] is strongly estimable under the ontological indetermi-
nacy interpretation (1) of [p, p] ∈ I,

(iv) [min{p1, . . . , pn}, max{p1, . . . , pn}] is strongly estimable under the identifiable ontological
indeterminacy interpretation (3) of [p, p] ∈ I,

(v) [min{p1, . . . , pn}, max{p1, . . . , pn}] is consistently estimable under the ontological indeter-
minacy interpretation (1) of [p, p] ∈ I,

(vi) all intervals in I are degenerate.

The estimability of [min{p1, . . . , pn}, max{p1, . . . , pn}] under the epistemological indetermi-
nacy interpretation (2) is uninteresting, since it corresponds to the estimability of precise proba-
bilities, which is implied by Bernoulli’s law of large numbers. Of the other six possible charac-
terizations, the only one missing is again the one of consistent estimability under the identifiable
ontological indeterminacy interpretation (3): in fact, it can be shown that under this interpretation,
the consistent estimabilities of [min{p1, . . . , pn}, max{p1, . . . , pn}] and [p, p] are equivalent, and
so we are back to the difficulties of Theorem 6.
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4. Conclusion

We have seen that in particular situations involving incomplete data, imprecise probabilities can
have a clear empirical meaning as identification regions of frequentist, precise probabilities. Unfor-
tunately, such situations are exceptional, and imprecise probabilities do not have a generally valid,
clear empirical meaning, in the sense discussed in this paper.

Imprecise probabilities can be interpreted in several ways in terms of precise probabilities,
as done for example in the imprecise versions of the theories of Markov chains and probabilistic
graphical models. However, all these interpretations have a very limited empirical meaning, since
imprecise probabilities are strongly estimable (that is, empirically recognizable) only in situations
in which they are known to belong to a given set of pairwise disjoint imprecise probabilities. These
results get even worse when we consider the actual, finite-sample imprecise probabilities, instead
of the virtual, asymptotic ones. Anyway, examples of estimators have been given explicitly in this
paper for the cases in which imprecise probabilities are satisfactorily estimable.

A mathematically interesting open problem is the question for a necessary and sufficient condi-
tion on a set of possibly degenerate probability intervals [p, p], in order for them to be consistently
estimable on the basis of any sequence of independent Bernoulli trials with precise probabilities of
success pi ∈ [p, p] such that the sequence pi has p and p as limits inferior and superior, respectively.
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