
Combining depth and intensity images to produce 

enhanced object detection for use in a robotic colony 

Steven Balding1 and Darryl N. Davis 

Faculty of engineering and computer science, University of Hull. 

S.Balding@2013.hull.ac.uk 

D.N.Davis@hull.ac.uk 

Keywords: Anchoring, Robotic Vision, Sobel, Depth map, Robotic Colony 

Abstract. Robotic colonies that can communicate with each other and interact 

with their ambient environments can be utilized for a wide range of research and 

industrial applications. However amongst the problems that these colonies face 

is that of the isolating objects within an environment. Robotic colonies that can 

isolate objects within the environment can not only map that environment in de-

tail, but interact with that ambient space. Many object recognition techniques ex-

ist, however these are often complex and computationally expensive, leading to 

overly complex implementations. In this paper a simple model is proposed to 

isolate objects, these can then be recognize and tagged. The model will be using 

2D and 3D perspectives of the perceptual data to produce a probability map of 

the outline of an object, therefore addressing the defects that exist with 2D and 

3D image techniques. Some of the defects that will be addressed are; low level 

illumination and objects at similar depths. These issues may not be completely 

solved, however, the model provided will provide results confident enough for 

use in a robotic colony.   

1 Introduction 

Robotic colonies are an important part of modern robotics research and are becoming 

used more and more in industry. A robotic colony provides a collection of agents that 

can work uniformly and autonomously to survey and interact with their environment 

[1]. However for a robot to interact with other agents and the ambient environment the 

robot must find a relationship between the perceptual data it gathers and a symbolic 

representation of objects within the environment [2][3][4]. The perceptual data gath-

ered is only useful for anchoring, however, if an object can be isolated within the data. 

Methods proposed for isolating object within an image are often computational expen-

sive and complex, with techniques such as Convolution Neural Networks becoming 

popular[5]. However for a robotic agent to detect objects within the environment sim-

pler methods, such as kernel filters, can be used to separate and classify objects by 
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features or light intensity. These less complex methods have issues which are addressed 

in the paper. 

 

 

Detecting objects within a 2D image is a common practice with good results [6] [7] 

achieved using Kernel filters such as Sobel operators providing not just edge detection 

but also the orientation of the edge [7][8]. Vision processing using just Sobel filters can 

handle image noise relatively well, and as such, have been commonly used for quick 

moving detection, such as license plate recognition [9]. Canny edge detection is another 

popular method that gives a more refined edge information at the expense of computa-

tional time [10][11]. This technique has been used in conjunction with convex hulls to 

remove isolate objects form the background [12].More expansive techniques allow an 

object to be described in 3D, using binocular images to estimate distance. However 

both 2D and 3D techniques suffer from similar problems. The images need to have a 

contrast on the edge for an edge to be found. The images being analysed might not yield 

edges due to images with little to no definition or object occlusion and even reducing 

noise with a Gaussian distribution filter could leave the image with edges that are not 

identified. There have been 2D and laser range finder combinations [1] used to success, 

however this will still leave problems with object occlusion and does not account for 

the 3D world. 

In contrast 3D cameras, such as the Kinect, are being used commonly for computer 

vision [13]. The resulting image form a 3D camera can still be a 2D matrix but rather 

than an intensity or a colour, instead there is the depth of any given x, y pixel. Plotting 

this result as a 3D point cloud, objects can be identified and mapped using the resulting 

vectors. However, problems still arise when considering an image that is contains mul-

tiple objects at the same depth, classifying these with depth alone is a rather difficult 

task that requires high resolution equipment.  

 

In this paper, a model is proposed incorporating simple 2D and 3D techniques for 

producing a probability mapping of an objects outline, this data can then be used to 

isolate an object and tag that isolated object. The model will achieve this by normalize 

the colour based image and the depth image and run separate filters on the receptive 

image to detect edges within each image, the intensity of the edge will also act as our 

probability of an object at that point. Analysing the results of both image filters will 

produce a probability map that will show where an object or its boundary is likely to be 

regardless of stacked objects or poor lighting, while being computationally inexpensive 

and simple to implement. The object can then be classified based on simple pre-defined 

characteristics such as volume or color.  
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2 Sobel Operator 

2.1 Overview of Sobel operator 

When detecting edges in an image, often the process is approximating the first order 

derivatives by convolving a set kernel with the original image. With a Sobel operator 

(or filter) [14], kernels are used for both the horizontal and vertical plane, as shown in 

Figure 1. This will return the local derivative of that kernel for vertical and horizontal 

respectively. To obtain the absolute magnitude edge gradient of that pixel: 

𝐺 =  √𝐺𝑥
2 + 𝐺𝑦

2  

Gx = Left Sobel filter. 

   Gy = Right Sobel filter. 

 

Because the horizontal and vertical plane are observed it is possible to also find the 

orientation of that edge pixel with: 

𝜃 = tan−1
𝐺𝑦

𝐺𝑥

 

 

-1 0 1 

-2 0 2 

-1 0 1 

 

 Table 1. Kernel for Vertical (left) and Kernel for Horizontal (right) 

 

After these operations, there will be a maximum response from the vertical and hori-

zontal plane, a final edge gradient and angle of orientation. This spatial information is 

very useful for identifying an object. Not only do these operations leave us with a clear 

edge, the angle of neighboring pixels can be observed to find recognizable shapes and 

curves; this will further help isolate object in a picture. This operation also includes 

average factoring which helps reduce some of the low level noise of the image by taking 

a more balanced view of the entire image.  

-1 -2 -1 

0 0 0 

1 2 1 
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For any modern robot this will also not prove to be too computationally expensive 

as the kernels can be decomposed as products of an interpolation and a differentiation 

kernel, and could even be possible from a video feed. 

There are issues however, and these issues fall into two main categories; the first 

being image noise and the second being intensity of edge being detected.  

2.2 Problems of Sobel operators 

The problem of noise in images is a common one - image noise can come in many 

forms, usually coming down to white noise or salt and pepper noise. Sobel operators, 

as stated before, can naturally deal with some amount of noise and post-processing with 

filters such as Gaussian which can further reduce the image noise and better detect 

edges. Methods for Sobel noise reductions have been proposed [15], but these can be 

computationally expensive with a lot of post or pre-processing. In the model proposed, 

noise will be reduced by comparing edges from 2D and 3D images.  

 

Edge detection, at its core, is looking at the difference of intensity of neighboring pixels 

in order to find an edge. For this to be successful, a clear change in light intensity is 

required. Considering an image that is only partial lighted, will show sections of the 

object within the image that produce a false edge.  

 

There are ways to deal with this in the context of robotic agents identifying the object, 

for example using neural networks or convolution networks might mean training an 

image to be recognised from a partial image. However this could take a lot of sample 

images and long training time, more over this could still be inaccurate if there is a large 

percentage of the image covered in darkness or the shape left behind could look like 

another object.  

 

Fig. 1. a) Good lighting b) Poor lighting c) Good edge detection d) Poor edge detection 

a)                                                b) 

 

 

 

 

 

 

 

     c)                                                   d) 
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It should also be noted that it is not just light that can cause edge detection to be unre-

liable, stacked objects of the same or similar colour can sometimes cause issues. 

The system proposed will not intrinsically solve this problem, although dues to its 

probabilistic nature, it could highlight areas of potential for a more thorough inspection. 

It should be considered, however, that two object at the same distance same colour and 

out of reach of haptic feedback would be difficult for us as humans to differentiate 

between, so expecting a robot to perform that type of recognition would be very diffi-

cult.  

3 Depth Image mapping 

3.1 Depth Image Overview  

3D depth cameras offers robotics sight with reasonably accurate depth analysis. This 

one of a few major branches in robotics and AI that does not consider how a human 

perceives the world, but rather uses technology to surpass that of our vision. It is still a 

relatively new field for computer vision, with most offers in the past favoring 2D im-

ages, but with the reduction of price of the cameras, more and more example of vision 

processing with RBG-D images are occurring.  

3D cameras will return a depth value fort each x and y in an image, this is usually 

converted to either an intensity value, giving a grayscale image of depth or a point 

cloud, where by the pixels are mapped in 3D Cartesian space.  

In a paper regarding depth kernels [16],one of the feature detection methods men-

tioned is edge detection over depth maps, and although the results are good, the problem 

of object occlusion and same depth objects is not covered.  

There are other examples of 3D object classification that use point could data to good 

effect. Some opting for measuring similarities between point descriptors of curated 3D 

models and real world point cloud data [17] and some using custom 3D Convolution 

Neural Networks (CNN) [5]. These approaches are very successful, however they are 

computationally complex, and, in the case of the CNN, they lack information contained 

within the pixel.  

 

It is proposed that the model in this paper will help reduce computational complex-

ity, store angular and spatial information of a given pixel and produce a strong proba-

bilistic assessment of an objects border. It is also still unclear in these results if this type 

of network or feature descriptors can separate and classify stacked and same depth ob-

jects 
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Fig. 2. a) Colour picture of two stacked objects b) Depth map of two stacked objects               

c) Colour picture of two separated objects d) Depth map of two separated objects 

 

3.2 Sobel filter with depth map 

In this paper the model that is proposed will take edge detection values from a 2D 

image using a Sobel filter, but also values from an RGB-D image of the same perspec-

tive of the original 2D image. To achieve this there are 3 stages; 

First is to downsize the image from the camera to the same resolution of the RBG-

D images. In the case of a Kinect V2 camera (V1 performs poorly in low light condi-

tions) this is 512 x 424. The colour image can be recorded at 1920 x 1080. The Kinect 

has a built in function to deal with this conversion called the ‘ICoordinateMapper’, 

other cameras might have to manually preform registration.  

Then a grey scale images will be produced where by the intensity of light (from 0 – 

255) of any given pixel will be the value of the depth of that pixel. The Kinect gives 

precision of 11 bits (211 = 2048), this means that the pixel depth can be scaled to the 

light intensity value which is 0 – 255. When this has been processed, the resulting image 

will be a depth map similar to that of a grey sale image, but rather than considering 

light, depth is the focus. 

 

a) 

b) 

c) 

d) 
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Fig. 3. Image of grayscale depth map 

Finally, running the Sobel operator over the created depth map, treating it as before. 

This will yield a value of an edge that is not based on the derivative of light intensity 

(although we are creating an artificial grey scale for the Sobel filter), but rather a re-

sponse to the difference on the depth of an image. The values given back from this 

operation that highlight edges on object that are not illuminated, something that cannot 

be ascertained from just processing a 2D image. 

 

Fig. 4. Image of filter over depth map 

After obtaining an edge detection image on both a 2D light intensity image and 3D 

depth map, the data points for both images can be combined to ascertain the probability 

space.  
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4 Probability Mapping 

4.1 Probability weighting 

At the point of obtaining the two images of the same resolution, it is possible to take 

the newly found edge intensity value and combine both value to form the likelihood of 

that edge existing. However, the higher the intensity the more weight should be placed 

on its value, moreover, if the light source for the image is good then weighting more 

towards these probabilities would act as more realistic impression of an objects edge, 

as using the difference in light intensity is more reliable than just depth detection.  

Object in a real dynamic environment tend to collide and often exists at very similar 

depths (for example, a shelf of books). A rudimentary approach is proposed to account 

for the quality of the light source and weight the values in favour of well illuminated 

images. 

 To determine the weighting of the probability map the over quality of the light 

source must be determined. In this paper, the proposed method is basic, more complex 

methods could be implemented for better accuracy. To obtain the light source rating a 

relative luminance calculation will be performed on each pixel in the original colour 

2D image, these values will then find the arithmetic mean to find a finale weighting for 

the probability mapping. 

 

𝐿 =  
∑ (∑ 0.2126𝑅𝑖𝑗 + 0.0722𝐵𝑖𝑗 + 0.7152𝐺𝑖𝑗

𝑞
𝑗=1 )

𝑞
𝑖=1

𝑞
 

q = Pixel count of the image 

R = Red pixel intensity for given x,y coordinate   

B = Blue pixel intensity for given x,y coordinate  

G = Green pixel intensity for given x,y coordinate  

 

After the calculating the coefficient for the weighting, it is possible to produce the 

probability map using the following to give a scaled balanced return. 

𝑎 ∗ (
𝑙

255
)

2

+ 𝑏 ∗ (
𝑑

255
)

2

𝑎 + 𝑏
 

a = weighting for 2D image 

b = weighting for 3D image 

l = pixel intensity for 2D (light based) image. 

d = pixel intensity for 3D (depth based) image. 
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The weighting on the combined probability calculation will be set for 5 for depth 

map images and scaled from 1 – 10 for the relative luminance, this will account for an 

image with high and low quality light sources. The depth could be called higher, maybe 

as a result of objects distance from the camera. 

 

 

Fig. 5. a) Graph of probability map a = 5, b = 5 b) Graph of probability map a = 10, b = 5                   

c) Graph of probability map a = 1, b = 5 

4.2 Object detection 

There are many different methods for recognizing an object from edge detection [18] 

and more complex methods that will deal with partial and complex outlines [19], the 

output from the model proposed in this paper could also fit into other models, using the 

probability map instead of an edge intensity map. However, because the spatial and 

orientation data is kept (due to the Sobel operator) for each pixel in both the light and 

depth map image, a 5 dimensional set can be produced for any given pixel in the image: 

𝑆 = {𝑝, 𝑙, 𝑙𝜃, 𝑑, 𝑑𝜃} 

S = Set of values stored within each pixel 

p = Value from probability map at given X, Y. 

l = Value from 2D Sobel filter map at given X, Y. 

l𝜃 = Orientation angle from 2D Sobel filter at given X, Y. 

d = Value from 3D Sobel filter map at given X, Y. 

d𝜃 = Orientation angle from 3D Sobel filter at given X, Y. 

 

With this complete information about any given pixel it is possible to classify an 

object in an image more clearly. An example; a football is taken as the object, the ball 

is white and written in the center, in black, is the name of the manufacturer. 
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 Given only 2D edge detection producing a convex hull of this image might produce 

one for the outline of the ball and another for the writing, with the information given in 

this model it is possible to ask, is this writing the same depth as the object it is placed 

on. This extra level of information can further help isolate, classify and tag an object in 

an image and further more reduce high level noise.   

 

5 Results 

The probability map that is returned from the depth and colour images can be placed 

through a threshold operator, in this case hysteresis, to return an images that gives a 

solid line that represents the object. An advantage of this probability map is that the 

thresholds can be adjusted to suit the needs, using the probability of a line becoming 

the threshold. This final image can then be classified from features such as convex hull 

area, corners, histogram features or many other feature descriptors, in this case we use 

a simple convex hull area technique.  

 

   

Fig. 6. Left: colour image. Middle: Probability mapping. Right: Finally tagged image. 

Another aspect of this model was it simplicity, not only to implement, but for com-

putational speed. Below are the results of a timed run using a simple Sobel operator as 

the benchmark.  
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Table 2. Showing task complete times, Measured with the Chrono library 

 

6 Conclusion  

The model presented in this paper should find use as a simple and quick to implement 

solution for multi agent swarm. This model can classify images quickly and loosely, 

whilst making up for some of the issues of the incorporated techniques.  

One of the advantages that this system conveys is, each pixel can still contain depth, 

light intensity and orientation within each pixel. This in turn meant that classification 

algorithm can work with more than just the outline of an image. 

In further work objects will not just be classified as simple objects, but rather, ac-

count for the potential of sentience in the perceived data. This would add another di-

mension of functionality, as well as adding further accuracy to the classification.  
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