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Abstract This research proposes a novel hybrid control technique based on Nonsingular Terminal Sliding Mode 
(NTSM) Control, meta-heuristic optimization algorithms and adaptive super-twisting based on Lyapunov stability 
analysis for controlling Quanser aero simulator helicopter. Firstly, the NTSM and NTSM Super Twisting (NTSTW) 
controllers are designed followed by optimization of the designed controllers using Grey Wolf Optimizer (GWO), 
Whale Optimization Algorithm (WOA), Salp Swarm Algorithm (SSA) and Ant Lion Optimizer (ALO). Qualitative and 
quantitative comparisons among the results obtained from optimized controllers are then thoroughly 
investigated. Simulation results confirmed that the Optimized NTSTW (O-NTSTW) based on GWO demonstrated 
overperformance compared with other controllers. In order to further improve its   performance while ensuring   
robustness, this controller is hybridized with an adaptive Lyapunov super-twisting algorithm resulting in a novel 
controller named as Adaptive O-NTSTW (AO-NTSTW). Visualization using ROS-Gazebo is done while validating 
AO-NTSTW and O-NTSTW. Simulation results demonstrated the effectiveness and the superiority of AO-NTSTW 
compared to O-NTSTW. 
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1. Introduction  

Today, Unmanned Aerial Vehicles (UAVs) have widespread applications both in civilian and military 
domains such as, surveillance, monitoring, firefighting, cinematography, search and rescue etc. [1-2].  
In order to facilitate their use, various configurations of these systems have been considered such as 
birotor, quadrotor, hexarotor, fixed wing, and so on. Among the most popular configuration, the 
traditional Sikorsky helicopter has occupied privilege position. This type exhibits a prominent profile 
due to some interesting features such as, having a miniature tail and consuming moderate power 
consumption due to the two rotors structure. UAV simulators are laboratory devices allowing the safe 
validation of control laws under investigation. Indeed, the use of these systems makes it possible to 
closely mimic the real UAV dynamics and at the same time minimize the cost of experiments by 
avoiding  damage to real systems and reducing the risks associated with flight tests [3]. Several 
helicopter simulators can be found in the literature such as 2-DOF helicopter TRMS [4] or Aero Quanser 
[5-6], 3-DOF hover [7], 3-DOF helicopter [8], etc.  

Quanser aero is one of the newest helicopter simulators [9-10]. This device is a Multi-Inputs Multi-
Outputs (MIMO) system with two inputs and two outputs, characterized by several nonlinearities such 
as, cross coupling, unstable dynamics in open loop, unmolded dynamics, etc. Dynamic modelling of the 
system is a highly challenging task due to the presence of high interactions among the various process 
variables and the non-accessibility of certain states. These properties allow researchers to validate the 
designed control approaches [11]. Technically, this system can move freely in horizontal as well as in 
vertical plane. Quanser aero has been used in several research works involving controllers such as 
testing based on trajectory tracking [9], using surface stabilization approach [12] for improving 
performance, realizing intelligent active force control laws [10] and so on. Control of a 2-DOF helicopter 
simulator is generally the subject of several approaches like, MIMO-PID (Proportional Integral 
Derivative), neural network, integral back stepping, higher order Sliding Mode Control (SMC) etc. In 
[6], a MIMO PID based control law has been proposed for a Quanser aero system i to simulate and 
experimentally demonstrate a Linear Quadratic (LQ) controller.  Since the controller is linear, it can 
only tackle a small region of the system dynamics. In [13], an adaptive neural network controller is 
proposed to deal with backlash-like hysteresis and output constraints. The neural network was used 
to estimate nonlinear system dynamics. A discrete higher order SMC combined with LQR controller is 
proposed in [14]. A multi-objective optimization was adopted in this work. The robustness in controller 
due to SMC  deals with the uncertainties while  the Linear Quadratic Regulator (LQR) was used to 
guarantee the control performance. Back stepping with augmented dynamic model is proposed for a 
Two Rotor Aero-dynamical System (TRAS) in [15]. The actuators dynamic was considered in this work. 
The main problem of the aforementioned controllers is their design complexity. 

Classical SMC cannot ensure finite time convergence to equilibrium states point [16]. This control 
approach can only guarantee asymptotic stability [17]. Terminal SMC (TSMC) is based on nonlinear 
sliding surface and may ensure finite time convergence. However, this approach suffers from a 
singularity drawback. In order to deal with this limitation, Nonsingular Terminal SMC (NTSMC) is 
proposed in [18]. Recently, Nonsingular TSMC (NTSMC) has drawn a significant attention in the control 
community [19]. NTSMC design is based on the same principle as that of the classical SMC i.e., forcing 
the dynamics of a given nonlinear system to follow a particular nonlinear surface in state space. Once 
the sliding surface is reached, the control maintains the system dynamics close to the sliding surface. 
Therefore, the control design is realized in two steps [20]. The first step involves choosing a sliding 
surface such that the desired specifications defined by the sliding surface parameters are satisfied. The 
second step involves the design of a control law to achieve the required performance while 
simultaneously guaranteeing the closed-loop stability. For the studied class of systems, SMC and its 
variants have been considered in some works. SMC has been considered in [5] to control a 2-DOF 
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(Degree Of Freedom) Quanser helicopter aero system. In [21], TSMC  has been proposed, the controller 
is applied after linearization of the system dynamics. An adaptive Radial Basis Function Neural Network 
(RBFNN) global Fast-NTSMC for a twin rotor MIMO system is proposed in [22]. The objective was to 
mitigate the wind effects. Experimental results were reported though  the work does not involve 
optimization.  
 
The bio-inspired algorithms have become very promising and attractive in the engineering and allied 
domains. These algorithms are based on simple behaviors inherited from nature. In addition, they are 
easy to implement and permit finding an optimum solution for any objective or multi-objective 
functions. These algorithms mimic biological life or physical phenomena to solve optimization 
problems. Several methods have been proposed, among the most used optimization methods, we can 
find, Genetic Algorithms (GA) [23], Ant Colony Optimization (ACO) [24], Particle Swarm Optimization 
(PSO) [25], Ant Colony Bee (ACO) [26,27], Bat Algorithm (BA) and Cuckoo Research (CS) [28], Grey Wolf 
Optimizer (GWO)[29, 30], Ant Lion optimizer (ALO) [31], Whale Optimization Algorithm (WOA) [32], 
Salp Swarm Algorithm (SSA)  [33] , JAYA algorithm [34] and Grasshopper optimization [35], etc.  

 
The parameter determination of many control methods is based on the  trial and error approach and 
thus finding the best parameter combination is difficult.  In this fact, the application of bio-inspired 
algorithms for optimization of robust control parameters is a recent research domain. These 
algorithms offer a useful tool because of their ability to optimize nonlinear problems, which are 
difficult to deal using analytical methods. The optimization of NTSMC is a recent approach that allows 
to; (i) Find optimized controller parameters automatically through a stochastic research procedure 
[23,26,36], (ii) Resolve the optimal control problem of nonlinear systems by defining one or several 
fitness function(s) without involving complicated mathematics [28,37] and (iii) Provide the possibility 
to compare between several vectors of optimized parameters obtained from the same algorithm or 
from different optimization algorithms  and/or one or more fitness functions.  

Many meta-heuristic algorithms can address this problem; in the present research, the GWO, WOA, 
SAA and ALO are selected because of their global optimization ability, ease in implementation, low 
information requirements (low parameters to run them) and probabilistic nature. All these algorithms 
are proposed by Mirjalili et al. in [29,31,32,33]. WOA and GWO are inspired from the search and the 
hunt behaviors of the whales and wolves respectively. SAA is based on leader-followers principle of 
salps in the sea. ALO mimics the ingenious hunting procedure of ant lion insect. These algorithms have 
been used to find solutions of many real-world optimization problems like the optimization of a 
piezoactuated micropuncture mechanism [9], quadrotor systems [28], robotic systems [23,30,36], etc.  

Quanser aero system is a MIMO inherently unstable system with highly coupled dynamics that leads 
to having  cross-coupling terms in the designed controllers. The controller parts are skillfully related to 
all the dynamic terms of the system. This can cause intersection problem related to the choice of the 
control parameters. In addition, the motors actuating the system are subject to physical limitations i.e. 
these motors cannot surpass input voltages of [-24,24] volts, which imposes constraints in control 
parameters selection particularly through the objective function. The optimization procedure may be 
interrupted after  some time due to premature stagnation of the algorithm. This stagnation is caused 
by random initialization of the control parameters, or by the situations involving inappropriate 
parameters in the research process. The aerodynamic system is subject to several internal and external 
disturbances such as, wind disturbances  and parametric variations. These issues are considered in the 
control design in the present study. 

To the best of authors’ knowledge,  the hybrid, optimized and adaptive Lyapunov controllers  for the 
Sikorsky helicopter simulator have not been studied. To obtain the proposed controller, three steps 
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are needed: (i)  analytical design  the MIMO controller (ii) finding the parameters  through an 
optimization procedure  (iii) finding the adaptive control form using the  adaptive Lyapunov theorem. 
In this work, these algorithms are used to optimize Nonlinear Terminal Super Twisting (NTSTW) control 
approach to solve trajectory tracking problem of an aero Quanser simulator. In addition, an adaptive 
optimized controller is designed. The key contributions of the present research are listed below:  

I. Proposing an optimized MIMO NTSTW (O-NTSTW) control based on GWO, WOA, ALO and SSA 
for trajectory tracking of Quanser Aero simulator.  

II. Qualitative and quantitative comparison of GWO, WOA, ALO and SSA algorithms in case of 
NTSTW parameters optimization. 

III. Formulation of new adaptive-optimized controller called AO-NTSTW for the Quanser aero 
simulator with stability guaranteed based on Lyapunov theory. 

IV. Visualization using ROS-Gazebo is presented where AO-NTSTW and O-NTSW are also 
implemented.  

The control law is obtained in two phases; first, optimization based on the aforementioned algorithms 
and then adaptation of the gains using the Lyapunov theory has been carried out.  

The remaining of the paper is outlined as follows; Section 2 presents background to the research study 
Section 3 details GWO, WOA, ALO and SSA algorithms. Controller design is presented in Section 4 while 
simulation results are discussed in Section 5. Finally, Section 6 concludes the paper.   

2. Background  

In this section, firstly, a literature review of the recent algorithms and their variants applied for 
optimizing NTSMC is presented. This is followed by developing the dynamic model of the Quanser aero 
system.  

2.1. Literature review  

 Table 1 lists a collection of recent and prominent works about NTSMC based on some bio-inspired 
optimization algorithms such as, GWO, WOA, ALO and SSA and their variants.  

 Table 1. State-of-the-art of the recent NTSMC based meta-heuristics works    
Report
ing 
year 

Used meta-heuristic 
algorithm 

Plant Description Reference 

2022 JAYA algorithm Planar cable-driven 
parallel robots 

Jaya optimizer is utilized to select membership functions 
of the fuzzy SMC. 

[34] 

2022 Grasshopper 
optimization 

Planar cable-driven 
parallel robots 

Determination of an optimal fuzzy membership functions 
in order to have hybrid fuzzy SMC. 

[35] 

2022 GA Medical parallel 
robotic system 

Optimization of the TSMC parameters. [23] 

2022 JAYA algorithm & ABC  Tank system Global optimization of second-order sliding mode 
controller parameters using a new sliding surface. 

[26] 

2021  ABC optimization 
algorithm 

Micro-grid system Optimization of terminal SMC.  [27] 

2021 WOA Lower limb 
rehabilitation robot 

Optimization of Integral SMC.  [36] 

2021 WOA Unstable processes Optimal values of unknown parameters of Variable 
Structure Control (VSC) are obtained using WOA. 

[37] 

2021 WOA Delta wing aircrafts Fast terminal super twisting SMC. [28] 
2021 Grey wolf and 

Weighted whale 
algorithm 

Nonlinear dynamic 
system (validation to 
robot manipulator) 

Fractional-order sliding mode backstepping controller and 
the fuzzy logic system parameters optimized via a grey 
wolf and weighted WOA. 

[39] 

2021 PSO  Ego vehicle Optimization of Fast terminal SMC parameters.  [40] 
2021 GWO Quadrotor UAV 

system 
TSMC sliding surface parameters and certain control 
parameters have been tuned by using GWO. 

[41] 
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2020 Improved PSO Train traction 
braking system 

A NFTSM control method based on the improved multi-
strategy particle swarm optimization (IMPSO) algorithm 
and the Radial Basis Function Neural Network (RBFNN) is 
proposed for the key nonlinear network control system. 

[42] 

 

2.2. System description and modeling  

Quanser aero system (Fig. 1) [43] used in this study consists of two rotors; a main rotor and a 
tail rotor. The rotors reside at the ends of the beam and are driven by a DC motor [6] with the 
voltage in ± 24 V range.  The system can perform two angular movements such as pitch and yaw. 
The physical parameters of the system are summarized in Table 2.  

Table 2. Quanser AERO parameters 

Description Symbol Value Unit 
Mass 𝑚𝑚 1.075  𝑘𝑘𝑘𝑘 
Pitch directional viscous damping  𝐷𝐷𝑝𝑝 −7.59  𝑁𝑁/𝑉𝑉 
Yaw directional viscous damping  𝐷𝐷𝑦𝑦 15.8    𝑁𝑁/𝑉𝑉 
Pitch inertia  𝐽𝐽𝑝𝑝 2.15 × 10−2  𝑘𝑘𝑘𝑘𝑚𝑚2 
Yaw inertia  𝐽𝐽𝑦𝑦 2.37 × 10−2  𝑘𝑘𝑘𝑘𝑚𝑚2 
Drag/air resistance coefficient  𝑘𝑘𝑑𝑑 1 × 10−5  𝑁𝑁𝑚𝑚 
Acceleration due to gravity 𝑘𝑘 9.81  𝑚𝑚𝑠𝑠−2 
Distance between center of mass and origin of B (see fig.2) 𝑙𝑙𝑐𝑐 0.002  𝑚𝑚𝑚𝑚 

 

Figure 1. Quanser Aero apparatus [43] 

The forces expressed in the fixed frame of the system are shown in Fig 2. The voltage 𝑉𝑉𝑝𝑝 is applied to 
the pitch motor, and its rotational speed is transformed into a force 𝐹𝐹𝑝𝑝 that acts normal to the body at 
a distance 𝑟𝑟𝑝𝑝 from the pitch axis. Similarly, the yaw motor causes a force 𝐹𝐹𝑦𝑦 which acts on the body at 
the distance 𝑟𝑟𝑦𝑦 from the yaw axis as well as a torque around the pitch axis. The propeller rotation 
generates torque around the pitch rotor motor that governs motion around the yaw axis. Thus, the 
rotation of the pitch propeller causes not only a movement around the pitch axis but also around the 
yaw axis.  

In order to develop the Quanser aero nonlinear model, the following assumptions are taken into 
account : (i) Main and tail rotors are of the same dimensions and are equidistant from the center of 
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rotation, (ii) Pitch propeller is parallel to the ground when the pitch angle is zero, (iii) Pitch angle 
increases positively when the front rotor is moved up, the body rotates counterclockwise around the 
y-axis, and the front rotor voltage is positive, and (iv) Yaw angle increases positively when the body 
rotates counterclockwise around the z-axis. In this case, the tail rotor voltage is positive. 

 

Figure 2. Schematic diagram showing the forces applied to the Quanser Aero 

The fixed body center of mass is represented in Cartesian coordinates by 

 �
𝑥𝑥𝑐𝑐 = 𝑙𝑙𝑐𝑐 cos𝜓𝜓 cosθ
𝑦𝑦𝑐𝑐 = 𝑙𝑙𝑐𝑐 sin𝜓𝜓 cosθ
𝑧𝑧𝑐𝑐 = 𝑙𝑙𝑐𝑐 sinθ

 (1) 

So, the total potential energy (𝐸𝐸𝑝𝑝) of the system due to the gravitational effect is, 

 𝐸𝐸𝑝𝑝 = 𝑚𝑚𝑘𝑘𝑙𝑙𝑐𝑐 sin𝜃𝜃 (2) 

The total kinetic energy (𝐸𝐸𝑐𝑐) of the system is the sum of rotational kinetic energies on the pitch  (𝐸𝐸𝑐𝑐1) 
and yaw axes �𝐸𝐸𝑐𝑐2� and the kinetic energy generated by the translational movement of the center of 
mass (𝐸𝐸𝑐𝑐3).  Thus, 

 𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑐𝑐1 +  𝐸𝐸𝑐𝑐2 + 𝐸𝐸𝑐𝑐3 (3) 

where 

⎩
⎪
⎨

⎪
⎧ 𝐸𝐸𝑐𝑐1 =

1
2
𝐽𝐽𝑝𝑝�̇�𝜃

2

𝐸𝐸𝑐𝑐2 =
1
2
𝐽𝐽𝑦𝑦�̇�𝜓

2

𝐸𝐸𝑐𝑐3 =
1
2
𝑚𝑚𝑙𝑙𝑐𝑐

2 �
(− sin(𝜓𝜓) cos(𝜃𝜃) �̇�𝜓 − cos(𝜓𝜓) sin(𝜃𝜃) �̇�𝜃)2

+(sin(𝜓𝜓) sin(𝜃𝜃) �̇�𝜃 − cos(𝜓𝜓) cos(𝜃𝜃)�̇�𝜓) + (cos(𝜃𝜃) �̇�𝜃)2�

 

Using these values of kinematic energies, (3) can be rewritten as,  

 𝐸𝐸𝑐𝑐 =
1
2

(𝐽𝐽𝑝𝑝�̇�𝜃2 + 𝐽𝐽𝑦𝑦�̇�𝜓2 + 𝑚𝑚𝑙𝑙𝑐𝑐
2�̇�𝜓2𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 + 𝑚𝑚𝑙𝑙𝑐𝑐

2�̇�𝜃2) (4) 
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Lagrange's equation is used to find the equations of motion for the pitch and yaw propellers as, 

 

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑑𝑑𝑑𝑑
𝑑𝑑�̇�𝜃
� −

𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

= 𝑄𝑄1

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑑𝑑𝑑𝑑
𝑑𝑑�̇�𝜓

� −
𝑑𝑑𝑑𝑑
𝑑𝑑𝜓𝜓

= 𝑄𝑄2
⎭
⎪
⎬

⎪
⎫

 (5) 

where  𝑄𝑄1 and 𝑄𝑄2 are the forces acting on the pitch axis and the yaw axis respectively. 𝑑𝑑 is the 
Lagrangian operator. 

 
𝑄𝑄1 = 𝜏𝜏𝑝𝑝 − 𝐷𝐷𝑝𝑝�̇�𝜃
𝑄𝑄2 = 𝜏𝜏𝑦𝑦 − 𝐷𝐷𝑦𝑦�̇�𝜓

� (6) 

where  

 
𝜏𝜏𝑝𝑝 = 𝐾𝐾𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝 + 𝐾𝐾𝑝𝑝𝑦𝑦𝑉𝑉𝑦𝑦
𝜏𝜏𝑦𝑦 = 𝐾𝐾𝑦𝑦𝑝𝑝𝑉𝑉𝑝𝑝 + 𝐾𝐾𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦

� (7) 

 

where 𝜏𝜏𝑝𝑝 and 𝜏𝜏𝑦𝑦 are the torques generated by the pitch and yaw motors respectively. 
𝐾𝐾𝑝𝑝𝑝𝑝,  𝐾𝐾𝑝𝑝𝑦𝑦,  𝐾𝐾𝑦𝑦𝑝𝑝  and 𝐾𝐾𝑦𝑦𝑦𝑦 are respectively torque thrust gains from the pitch rotor, cross-torque thrust 
gain acting on the pitch from the yaw rotor, cross-torque thrust gain acting on the yaw from the pitch 
rotor and torque thrust gain from the yaw rotor. Based on the Lagrangian formulation (5), the system 
dynamics can be derived as given in (8). 

 

�
�𝐽𝐽𝑝𝑝 + 𝑚𝑚𝑙𝑙𝑐𝑐

2��̈�𝜃 = �𝐾𝐾𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝 + 𝐾𝐾𝑝𝑝𝑦𝑦𝑉𝑉𝑦𝑦 − 𝐷𝐷𝑝𝑝�̇�𝜃 − 𝑚𝑚𝑘𝑘𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃) −𝑚𝑚𝑙𝑙𝑐𝑐
2�̇�𝜓2𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃)�

�𝐽𝐽𝑦𝑦 + 𝑚𝑚𝑙𝑙𝑐𝑐
2𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃)� �̈�𝜓 = �𝐾𝐾𝑦𝑦𝑝𝑝𝑉𝑉𝑝𝑝 + 𝐾𝐾𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 𝐷𝐷𝑦𝑦�̇�𝜓 + 2𝑚𝑚𝑙𝑙𝑐𝑐

2�̇�𝜃�̇�𝜓𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃)�
 (8) 

 

Choosing [𝜃𝜃 �̇�𝜃 𝜓𝜓 �̇�𝜓] = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4] as state space variables, (8) can be rewritten as (9). 

 

⎩
⎨

⎧
�̇�𝑥1 = 𝑥𝑥2                                  
�̇�𝑥2 = 𝑓𝑓1 + 𝑘𝑘11𝑉𝑉𝑝𝑝 + 𝑘𝑘12𝑉𝑉𝑦𝑦
�̇�𝑥3 = 𝑥𝑥4                                  
�̇�𝑥4 = 𝑓𝑓2 + 𝑘𝑘21𝑉𝑉𝑝𝑝 + 𝑘𝑘22𝑉𝑉𝑦𝑦

    𝑎𝑎𝑠𝑠𝑑𝑑 �
𝑦𝑦1 = 𝑥𝑥1
𝑦𝑦2 = 𝑥𝑥3 (9) 

   

with 𝑘𝑘11 = 𝐾𝐾𝑝𝑝𝑝𝑝
�𝐽𝐽𝑝𝑝+𝑚𝑚𝑙𝑙𝑐𝑐2�

 ;  𝑘𝑘12 = 𝐾𝐾𝑝𝑝𝑝𝑝
�𝐽𝐽𝑝𝑝+𝑚𝑚𝑙𝑙𝑐𝑐2�

 ;  𝑘𝑘21 = 𝐾𝐾𝑝𝑝𝑝𝑝
�𝐽𝐽𝑝𝑝+𝑚𝑚𝑙𝑙𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃)�

 ;  𝑘𝑘22 = 𝐾𝐾𝑝𝑝𝑝𝑝
�𝐽𝐽𝑝𝑝+𝑚𝑚𝑙𝑙𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃)�

 

𝑓𝑓1 = −𝐷𝐷𝑝𝑝𝑥𝑥2−𝑚𝑚𝑚𝑚𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2)−𝑚𝑚𝑙𝑙2𝑥𝑥42𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1)
�𝐽𝐽𝑝𝑝+𝑚𝑚𝑙𝑙𝑐𝑐2�

 ; 𝑓𝑓2 = −𝐷𝐷𝑝𝑝𝑥𝑥4+2𝑚𝑚𝑙𝑙𝑐𝑐2𝑥𝑥2𝑥𝑥4𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1)

�𝐽𝐽𝑝𝑝+𝑚𝑚𝑙𝑙𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃)�
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3. GWO, WOA, ALO and SSA algorithms 

In this section, the mathematical formulation of GWO, WOA, ALO and SSA algorithms are given in 
detail. Explanation of the optimization mechanism for each algorithm is presented.  
 

3.1. Grey Wolf Optimizer (GWO) 
 
GWO has been proposed in 2014 by Mirjalili et al. [29]. GWO simulates the process of gray wolves 
hunting.  The wolves are classified into alpha (α), beta (β), delta (δ), and omega (ω). Wolves go through 
a search or exploration stage followed by an exploitation or hunting stage. Their hunting strategy can 
be summarized in three stages: pursue, encircle, and attack. After following the prey, they circle 
him/her until the prey is constrained to move and finally, they attack the prey.  

The optimal solution is represented by the prey, and each wolf corresponds to a potential solution. As 
the wolves shift their positions, they aim to move closer to the optimal solution for convergence . In 
order to mimic the encircling behavior of wolves, (10) and (11) are proposed. 

 𝐷𝐷��⃗ = �𝐶𝐶 × 𝑋𝑋𝑝𝑝����⃗ (𝜕𝜕) − �⃗�𝑋(𝜕𝜕)� (10) 

 �⃗�𝑋(𝜕𝜕 + 1) = 𝑋𝑋𝑝𝑝����⃗ (𝜕𝜕) − 𝐴𝐴 × 𝐷𝐷��⃗  (11) 

where �⃗�𝑋 is the position of the gray wolf, 𝑋𝑋𝑝𝑝����⃗  is the position of the prey, 𝜕𝜕 is the current iteration and 
t+1 is the next iteration, 𝐷𝐷��⃗  is the distance between �⃗�𝑋 and 𝑋𝑋𝑝𝑝�����⃗ ,  𝐴𝐴 and 𝐶𝐶 are the coefficients given in 
(12) and (13) respectively. 

 𝐴𝐴 = 2 × 𝑎𝑎 × 𝑟𝑟1���⃗ − 𝑎𝑎 (12) 

where �⃗�𝑎  = 2(1 − 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙_𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠𝑐𝑐𝑠𝑠
max _𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠𝑐𝑐𝑠𝑠

)                                                     

 𝐶𝐶 = 2 × 𝑟𝑟2���⃗  (13) 

where 𝑟𝑟1 and 𝑟𝑟2 are random values in the range [0, 1]. Since there is no a-priori knowledge about the 
optimal point (prey) in the solution space, the hunting behavior is estimated with the three best 
solutions found among the wolves. Thus, the proposed hunting behavior is given in (14). 

 

𝐷𝐷𝛼𝛼�����⃗ = �𝐶𝐶 × 𝑋𝑋𝛼𝛼����⃗ (𝜕𝜕) − �⃗�𝑋(𝜕𝜕)�          𝐷𝐷𝛽𝛽�����⃗ = �𝐶𝐶 × 𝑋𝑋𝛽𝛽����⃗ (𝜕𝜕) − �⃗�𝑋(𝜕𝜕)� 
𝐷𝐷𝛿𝛿�����⃗ = �𝐶𝐶 × 𝑋𝑋𝛿𝛿����⃗ (𝜕𝜕) − �⃗�𝑋(𝜕𝜕)�        𝑋𝑋1����⃗ (𝜕𝜕 + 1) = 𝑋𝑋𝛼𝛼����⃗ − 𝐴𝐴1����⃗ × 𝐷𝐷𝛼𝛼�����⃗  
𝑋𝑋2����⃗ (𝜕𝜕 + 1) = 𝑋𝑋𝛽𝛽����⃗ − 𝐴𝐴2����⃗ × 𝐷𝐷𝛽𝛽�����⃗         𝑋𝑋3����⃗ (𝜕𝜕 + 1) = 𝑋𝑋𝛾𝛾����⃗ − 𝐴𝐴3����⃗ × 𝐷𝐷𝛾𝛾����⃗  

�⃗�𝑋(𝜕𝜕 + 1) =
𝑋𝑋1����⃗ (𝜕𝜕 + 1) + 𝑋𝑋2����⃗ (𝜕𝜕 + 1) + 𝑋𝑋3����⃗  (𝜕𝜕 + 1)

3
 

(14) 

Given that the position of the prey is unknown, the initial position is randomly determined. 
For this reason,  𝑋𝑋𝑝𝑝�����⃗ (𝜕𝜕) vector is multiplied with random value  𝐶𝐶 indicated by (13). 𝐷𝐷𝛼𝛼 �����⃗ , 𝐷𝐷𝛽𝛽����⃗  and 
𝐷𝐷𝛾𝛾����⃗  respectively represent the distances between 𝑋𝑋𝛼𝛼 �����⃗ , 𝑋𝑋𝛽𝛽 �����⃗ , and 𝑋𝑋𝛾𝛾 �����⃗  with reference to  rest of 
the prey (the 𝜔𝜔 wolves)denoted as 𝑋𝑋(𝜕𝜕)��������⃗ . It is also important to indicate that the designation 
of 𝑋𝑋𝛼𝛼 �����⃗ , 𝑋𝑋𝛽𝛽 �����⃗  and 𝑋𝑋𝛾𝛾 �����⃗  are obtained from different values of the objective function, when 𝑋𝑋𝛼𝛼 �����⃗ , 𝑋𝑋𝛽𝛽 �����⃗  
and 𝑋𝑋𝛾𝛾 �����⃗  correspond to the best three values of the objective function. 
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The algorithm divides the search process into two main parts: exploration and exploitation: 

- Exploration is the search for prey. In this phase, search process is based on the position of alpha (𝛼𝛼), 
beta (𝛽𝛽) and delta (𝛿𝛿) wolves. The last kind of wolves diverge to search and converge to attack the 
prey. In GWO, the magnitude of 𝐴𝐴 is used to model this phenomenon. If |𝐴𝐴|>1, the wolf diverges from 
the prey (search for another prey) to find a solution. In order to avoid stagnation at a local optimum, 
another random parameter 𝐶𝐶 is introduced. 

- Exploitation consists of prey attacking. This task is modeled by decreasing the value of 𝑎𝑎 in (12), which 
restricts the variation interval of 𝐴𝐴 in [−𝑎𝑎,𝑎𝑎]. When the random values of |𝐴𝐴|<1, the wolf is forced to 
attack towards the prey. 

3.2. Whale optimization algorithm (WOA) 
 
Whales are mammals that exhibit emotional behavior and communicate with one another.  Whales 
hunting process is quite interesting; they hunt their prey near the water surface creating bubbles. The 
prey of whales is small herds of fish. WOA mimics the whale hunting behavior  as highlighted  by 
Mirjalili and Andrew in  [32]. Although the formulation of WOA is quite similar to that of GWO, the use 
of a spiral to simulate the attacking step is the main specialty of WOA. Their hunting plan consists of 
three steps; encircling prey, spiral bubble net feeding maneuvering, and searching for prey. They 
recognize their prey, create spiral bubbles and surround them like the wolves do. In WOA, the global 
optimum is not known a-priori, the prey is indicated by the best accepted optimal solution as in GWO. 
The population positions are updated to the best optimal solution as given in (15) and (16). 

 𝐷𝐷��⃗ = �𝐶𝐶 × 𝑋𝑋∗����⃗ (𝜕𝜕) − �⃗�𝑋(𝜕𝜕)� (15) 

 �⃗�𝑋(𝜕𝜕 + 1) = 𝑋𝑋∗����⃗ (𝜕𝜕) − 𝐴𝐴 × 𝐷𝐷��⃗  (16) 

where 𝐷𝐷��⃗  is absolute distance between the prey and the whale. 𝜕𝜕 and 𝜕𝜕 + 1 are the current and the 
next iterations respectively. 𝑋𝑋���⃗  is the position vector of the whales, and 𝑋𝑋∗����⃗  is the position of the best 
solution reached until a particular iteration and updated at each iteration. 𝐴𝐴 ���⃗ and 𝐶𝐶 are coefficients 
vectors calculated by (12) and (13) respectively. 
 

The whales' bubble strategy is also simulated in the algorithm in the present research as given in (17) 
and (18). In this algorithm, both strategies are used with 50% chance, the whales choose between 
encircling or spiraling to update their positions as given in (19). 

𝐷𝐷′����⃗ = �𝑋𝑋∗(𝜕𝜕)����������⃗ − 𝑋𝑋(𝜕𝜕)��������⃗ � (17) 

𝑋𝑋(𝜕𝜕 + 1) =  𝐷𝐷′𝑒𝑒𝑏𝑏𝑙𝑙 cos(2𝜋𝜋𝑙𝑙) + 𝑋𝑋∗(t) 
(18) 

�⃗�𝑋(𝜕𝜕 + 1) = �
𝑋𝑋∗����⃗ (𝜕𝜕) − 𝐴𝐴.𝐷𝐷��⃗                𝑠𝑠𝑓𝑓 𝑝𝑝 < 0.5

𝐷𝐷′����⃗ 𝑒𝑒𝑏𝑏𝑙𝑙 cos(2𝜋𝜋𝑙𝑙) + 𝑋𝑋∗����⃗ (t)   𝑠𝑠𝑓𝑓 𝑝𝑝 > 0.5 
 (19) 

 

where 𝑝𝑝 is a random number in the range [0,1]. 𝑙𝑙 is a random number in [−1,1],  𝐷𝐷′ indicates the 
distance of 𝑠𝑠𝑎𝑎ℎ whale by rapport of the actual prey position. 𝑏𝑏 is a real-numbered constant. 
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The shrinking of the encirclement and the continuous influx of the spiraling bubbles are both intended 
for exploitation. Some random moves are also accepted to have an exploration behavior as given in 
(20) and (21). 

 𝐷𝐷��⃗ = �𝐶𝐶 × 𝑋𝑋𝑖𝑖𝑎𝑎𝑠𝑠𝑑𝑑�����������⃗ (𝜕𝜕) − �⃗�𝑋(𝜕𝜕)� (20) 

 �⃗�𝑋(𝜕𝜕 + 1) = 𝑋𝑋𝑖𝑖𝑎𝑎𝑠𝑠𝑑𝑑�����������⃗ (𝜕𝜕) − 𝐴𝐴.𝐷𝐷��⃗  (21) 

where 𝑋𝑋𝑖𝑖𝑎𝑎𝑠𝑠𝑑𝑑�����������⃗   is a random position vector (a random whale) which is chosen from the current 
population. 

3.3. Salp Swarm Algorithm (SSA) 
 
Salps usually create chains and move cooperatively. SSA is one of the recent nature-inspired 
optimization algorithms developed by Mirjalili et al. [33]. SSA mimics the foraging behaviors of salps. 
In SSA, salps are classified into two groups: leader and followers. SSA has only one parameter to adapt 
and is easy to implement. The followers follow the position of the salp leader. The position of the 
leading salp is updated using (22).  
  

 𝑥𝑥𝑗𝑗1 = �
𝐹𝐹𝑗𝑗 + 𝑐𝑐1��𝑢𝑢𝑏𝑏𝑗𝑗 − 𝑙𝑙𝑏𝑏𝑗𝑗�𝑐𝑐2 + 𝑙𝑙𝑏𝑏𝑗𝑗�;    𝑠𝑠𝑓𝑓 𝑐𝑐3 ≥ 0
𝐹𝐹𝑗𝑗 − 𝑐𝑐1��𝑢𝑢𝑏𝑏𝑗𝑗 − 𝑙𝑙𝑏𝑏𝑗𝑗�𝑐𝑐2 + 𝑙𝑙𝑏𝑏𝑗𝑗�;    𝑠𝑠𝑓𝑓 𝑐𝑐3 < 0

 (22) 

 

where 𝑥𝑥𝑗𝑗1 is the position of the leading salp, 𝐹𝐹𝑗𝑗 is the position of the food source, both of these positions 
are in the 𝑗𝑗𝑎𝑎ℎ dimension. In addition, 𝑢𝑢𝑏𝑏𝑗𝑗 and 𝑙𝑙𝑏𝑏𝑗𝑗  represent respectively the upper bound and the 
lower bound of the 𝑗𝑗𝑎𝑎ℎ dimension respectively. 𝑐𝑐1 is calculated using (23). 𝑐𝑐2 and 𝑐𝑐3 are random 
numbers. In addition, the followers salps update their position using (24). 

 𝑐𝑐1 = 2 ∗ 𝑒𝑒−(4𝑡𝑡𝑇𝑇 )2           (23) 

  𝑥𝑥𝑗𝑗𝑠𝑠 = 1
2
𝑎𝑎𝜕𝜕2 + 𝑣𝑣0𝜕𝜕  (24) 

where 𝜕𝜕 is the current iteration, 𝑇𝑇 is the maximum of iteration. 𝑣𝑣0 is the initial velocity, 𝑎𝑎 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝑎𝑎

=
𝑣𝑣𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 − 𝑣𝑣0 is the acceleration (with 𝛿𝛿𝜕𝜕 = 1) and  𝑣𝑣𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 = 𝑥𝑥 − 𝑥𝑥0. Replacing these terms in (24), the 
positions of the follower salps can be calculated by (25). 

 𝑥𝑥𝑗𝑗𝑠𝑠 =
1
2 �
𝑥𝑥𝑗𝑗𝑠𝑠 + 𝑥𝑥𝑗𝑗𝑠𝑠−1� 

(25) 

where 𝑥𝑥𝑗𝑗𝑠𝑠 is the position of 𝑠𝑠𝑎𝑎ℎ follower salp in 𝑗𝑗𝑎𝑎ℎ dimension and 𝑠𝑠 ≥  2. 

 3.4. Ant Lion Optimizer (ALO) 
 
Ant Lion Optimizer (ALO) is inspired by the hunting behavior of antlion insect.  ALO is another nature-
inspired optimization algorithm developed by Mirjalili especially for the solution of continuous 
optimization problems [31]. ALO mimics the interaction between antlions and ants. Thus, the artificial 
ants move in the search space and the antlions are allowed to hunt them. Since ants move 
stochastically in nature for searching food, a random move (walk) is chosen to model their movement. 
The ants’ random movements (walks) are updated with (26). 

 𝑋𝑋𝑠𝑠𝑎𝑎 =
�𝑋𝑋𝑠𝑠𝑎𝑎 − 𝑎𝑎𝑠𝑠� × (𝑑𝑑𝑠𝑠 − 𝑐𝑐𝑠𝑠𝑎𝑎)

(𝑑𝑑𝑠𝑠𝑎𝑎 − 𝑎𝑎𝑠𝑠)
+ 𝑐𝑐𝑠𝑠 

(26) 
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where 𝑋𝑋𝑠𝑠𝑎𝑎 is the normalized position of the ant, 𝑎𝑎𝑠𝑠  and 𝑑𝑑𝑠𝑠  are respectively the minimum and the 
maximum of the random walk in the 𝑠𝑠𝑎𝑎ℎ variable and 𝑐𝑐𝑠𝑠𝑎𝑎and 𝑑𝑑𝑠𝑠𝑎𝑎  are respectively the minimum and the 
maximum of the random walk of the 𝑠𝑠𝑎𝑎ℎ variable for iteration 𝜕𝜕. 
 𝑐𝑐𝑠𝑠𝑎𝑎 = 𝑓𝑓𝑗𝑗𝑎𝑎 + 𝑐𝑐𝑎𝑎 (27) 

 𝑑𝑑𝑠𝑠𝑎𝑎 = 𝑓𝑓𝑗𝑗𝑎𝑎 + 𝑑𝑑𝑎𝑎 (28) 

where 𝑐𝑐𝑎𝑎 and 𝑑𝑑𝑎𝑎  are respectively the minimum of all variables and the vector representing the 
maximum of all variables, 𝑐𝑐𝑗𝑗𝑎𝑎 is the minimum of all variables for jth ant and  𝑑𝑑𝑗𝑗𝑎𝑎 is the maximum of all 
variables for 𝑗𝑗𝑎𝑎ℎ ant, 𝑓𝑓𝑗𝑗𝑎𝑎 represents the position of the selected 𝑗𝑗𝑎𝑎ℎ antlion, all of these parameters are 
obtained at 𝜕𝜕𝑎𝑎ℎ   iteration.  
 

 
4. Control Design  

In this section, we present NTSMC, O-NTSMC, and AO-NTSTW in detail. For optimization purposes, an 
objective fitness function based on the addition of ITAE (Integral of Time multiplied by Absolute Error) 
and ISCO (Integral of Squared Control) also will be described.    
 
4.1. NSTSMC 
The terminal sliding surfaces associated with each subsystem is given as, 

𝑆𝑆𝑥𝑥1 = |𝑥𝑥2|𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2) + 𝜆𝜆1𝑥𝑥1
𝑆𝑆𝑥𝑥2 = |𝑥𝑥4|𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4) + 𝜆𝜆2𝑥𝑥3

� 
(29) 

where 𝜆𝜆1, 𝛾𝛾1, 𝜆𝜆2 and 𝛾𝛾2 are positive real values. 
 
 
The time derivative of (29) gives,  

 
�𝜆𝜆1�̇�𝑥1 + 𝛾𝛾1|𝑥𝑥2|𝛾𝛾1−1�̇�𝑥2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)
𝜆𝜆2�̇�𝑥3 + 𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1�̇�𝑥4𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)� = �00� 

(30) 

 
Replacing (9) into (30) yields  
 

�
𝜆𝜆1𝑥𝑥2 + 𝛾𝛾1|𝑥𝑥2|𝛾𝛾1−1�𝑓𝑓1 + 𝑘𝑘11𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘12𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)
𝜆𝜆2𝑥𝑥4 + 𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1�𝑓𝑓2 + 𝑘𝑘21𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘22𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)

� = �00� 
 

(31) 

 
This implies, 
 

 
�
𝜆𝜆1𝑥𝑥2 + 𝛾𝛾1|𝑥𝑥2|𝛾𝛾1−1𝑓𝑓1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)+�𝑘𝑘11𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘12𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�𝛾𝛾1|𝑥𝑥2|𝛾𝛾1−1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)
𝜆𝜆2𝑥𝑥4 + 𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1𝑓𝑓2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4) + �𝑘𝑘21𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘22𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)

� = �00� 

 

(32) 

Some terms of (32) can be transferred to the second member as, 
 

�
�𝑘𝑘11𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘12𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�𝛾𝛾1|𝑥𝑥2|𝛾𝛾1−1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)
�𝑘𝑘21𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘22𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)

� = −�
𝜆𝜆1𝑥𝑥2 + 𝛾𝛾1|𝑥𝑥2|𝛾𝛾1−1𝑓𝑓1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)
𝜆𝜆2𝑥𝑥4 + 𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1𝑓𝑓2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)� 
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Terms 𝛾𝛾1|𝑥𝑥4|𝛾𝛾1−1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2) and 𝛾𝛾2|𝑥𝑥4|𝛾𝛾2−1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4) can be transformed to the second part of the 
equation which yields, 
 

�
�𝑘𝑘11𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘12𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�
�𝑘𝑘21𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 + 𝑘𝑘22𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝�

� = −�
�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

� 
 
(33) 

The first term of (33) can be written in matrix form as  
 

�
𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22� �

𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝
𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝

� = −�
�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

� 

This implies, 
 

�
𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝
𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝

� = − �
𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22�

−1
�
�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

� 
 
(34) 

 

It is now easy to calculate the inverse of �
𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22� as, 

 

�
𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22�

−1
=

1
𝑘𝑘12𝑘𝑘21 − 𝑘𝑘11𝑘𝑘22

�
𝑘𝑘22 −𝑘𝑘12
−𝑘𝑘21 𝑘𝑘11 � 

 
(35) 

By replacing (35) in (34), we obtain the equivalent controller,  
 

⎩
⎪
⎨

⎪
⎧𝑉𝑉𝑝𝑝𝑖𝑖𝑝𝑝 =

1
𝑘𝑘12𝑘𝑘21 − 𝑘𝑘11𝑘𝑘22

�
𝑘𝑘22�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
−𝑘𝑘12�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

�

𝑉𝑉𝑦𝑦𝑖𝑖𝑝𝑝 =
1

𝑘𝑘12𝑘𝑘21 − 𝑘𝑘11𝑘𝑘22
�
−𝑘𝑘21�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
+𝑘𝑘11�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

�
 

 

 
(36) 

 

4.2. O-NTSTW 
NTSTW is the algebraic sum of the equivalent control and the discontinuous control. In this research, 
the discontinuous control part is replaced by a super twisting controller. The final control law is given 
as, 

 

⎩
⎪
⎨

⎪
⎧𝑉𝑉𝑝𝑝 = �

1
𝑘𝑘12𝑘𝑘21 − 𝑘𝑘11𝑘𝑘22

�
𝑘𝑘22�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
−𝑘𝑘12�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

��+ ∆𝑉𝑉𝑝𝑝

𝑉𝑉𝑦𝑦 = �
1

𝑘𝑘12𝑘𝑘21 − 𝑘𝑘11𝑘𝑘22
�
−𝑘𝑘21�𝑓𝑓1 + 𝜆𝜆1𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�
+𝑘𝑘11�𝑓𝑓2 + 𝜆𝜆2𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)�

��+ ∆𝑉𝑉𝑦𝑦

 (37) 

where 𝛽𝛽1, 𝛽𝛽2,𝛼𝛼1 and 𝛼𝛼2 are positives reals values. The discontinuous control part is a STW controller 
such that,   

 

⎩
⎪
⎨

⎪
⎧∆𝑉𝑉𝑝𝑝 =

−𝛼𝛼1
2

|𝑆𝑆1|
1
2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑆𝑆𝜃𝜃) −

𝛽𝛽1
2
� 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠�𝑆𝑆𝑥𝑥1�
𝑎𝑎𝑓𝑓

0
𝑑𝑑𝜕𝜕

∆𝑉𝑉𝑦𝑦 =
−𝛼𝛼2

2
|𝑆𝑆2|

1
2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠�𝑆𝑆𝜓𝜓� −

𝛽𝛽2
2
� 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠�𝑆𝑆𝑥𝑥2�
𝑎𝑎𝑓𝑓

0
𝑑𝑑𝜕𝜕

 (38) 
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Remark 1: We can remark that the sliding surfaces (29) have a sign function, this term conserves the 
real sign of the state variables 𝑥𝑥2  and 𝑥𝑥4 while avoiding the singularity of the sliding variables if one of 
𝑥𝑥2 or 𝑥𝑥4 value is negative. Moreover, the sign function may cause the chattering phenomenon. This 
chattering is attenuated at the same time by |𝑥𝑥2|𝛾𝛾1 and |𝑥𝑥4|𝛾𝛾2 respectively. Same explanation is given 
for the control (36), where signals generated by 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2) and 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4) will be attenuated respectively 
by|𝑥𝑥2|2−𝛾𝛾1 and |𝑥𝑥4|2−𝛾𝛾2. 

Objective function 

The objective function considered in this work is a sum of two performance indices, which are ITAE  
and ISCO. The ITAE based objective function have the following advantages; (i) Minimizing the 
stabilization time since the time is included in the criterion, and (ii) Minimizing the maximum overshoot 
because of the multiplication of the time by the absolute error. ISCO is used in order to avoid a large 
control effort, which can damage the system actuators. In addition, ISCO permits the optimization of 
the energy consumption. 

 𝐽𝐽(𝑒𝑒,𝑢𝑢) = � (𝜕𝜕𝑇𝑇𝑄𝑄|𝑒𝑒| + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢)𝑑𝑑𝜕𝜕
𝑎𝑎

0
 (39) 

The matrix 𝑄𝑄 ∈ 𝑅𝑅+𝑠𝑠×𝑠𝑠 is chosen to guarantee the precision, rapidity in a minimum stability time. The 
matrix 𝑅𝑅 ∈ 𝑅𝑅+𝑠𝑠×𝑠𝑠  ensures that control inputs do not exceed their maximum values. Thus, 𝑅𝑅 can 
safeguard the system actuators.   

Remark  2: O-NTSTW controller parameters  𝜆𝜆1, 𝜆𝜆2, 𝛼𝛼1, 𝛽𝛽1, 𝛼𝛼2 and 𝛽𝛽2 in (29) and (38)  are replaced 
respectively by 𝜆𝜆1∗ , 𝜆𝜆2∗ ,𝛼𝛼1∗,𝛽𝛽1∗,𝛼𝛼2∗ and 𝛽𝛽2∗. These new parameters are optimized by GOW, WOA, ALO or 
SSA.  

4.3. AO-NTSTW   

Control of uncertain and perturbed nonlinear systems is a challenging task [44]. In order to improve 
performance particularly in terms of precision, and to remedy uncertainties, we propose a 
combination of O-NTSTW controller with an adaptive super twisting one [45]. The new approach has 
an optimized O-NTSTW sliding surface and its adaptive parameters are initialized with those obtained 
through the optimization step. The proposed controller makes it possible to attenuate chattering and 
guarantees rapid convergence in finite time. The gain of the new controller AO-NTSTW are given by 
(40) 

 
�̇�𝛼 = �𝜔𝜔1�

𝛾𝛾1
2
𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(|𝑆𝑆|− 𝜇𝜇), 𝑠𝑠𝑓𝑓𝛼𝛼 > 𝛼𝛼𝑚𝑚
𝜂𝜂, 𝑠𝑠𝑓𝑓𝛼𝛼 ≤ 𝛼𝛼𝑚𝑚

 

𝛽𝛽 = 2𝜀𝜀𝛼𝛼 

(40) 

where 𝜔𝜔1,𝜂𝜂, 𝜀𝜀, 𝛾𝛾1,𝛼𝛼𝑚𝑚 and 𝜇𝜇 are positive real constants, |𝑆𝑆(0)| > 𝜇𝜇 and 𝛼𝛼(0) > 𝛼𝛼𝑚𝑚. 

The design philosophy of the AO-NTSTW control is to dynamically increase the controller gains 𝛼𝛼(𝜕𝜕) 
and 𝛽𝛽(𝜕𝜕) until the sliding mode is established. Then the gains start to decrease. This gains reduction 
must change its direction when the sliding variable or its derivative begins to deviate from the 
equilibrium point. This makes it possible to reduce the amplitude of the chattering since the gains are 
not overestimated, instead they are adjusted to handle uncertainties and disturbances. The structure 
of the AO-NTSTW controller is shown in Fig 3. 
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Figure 3. Structure of the AO-NTSTW controller 

In order to have a controller that is both optimal and adaptive, we initialized the gains of the AO-
NTSTW with the O-NTSTW optimal parameters. This avoids the problem of finding the initial 
parameters for the adaptive control. The optimal adaptive gains are given by   

 
𝛼𝛼1∗(𝜕𝜕) = 𝛼𝛼1(𝜕𝜕) + 𝛼𝛼1∗ ∧ 𝛽𝛽1∗(𝜕𝜕) = 𝛽𝛽1(𝜕𝜕) + 𝛽𝛽1∗ 

 𝛼𝛼2∗(𝜕𝜕) = 𝛼𝛼2(𝜕𝜕) + 𝛼𝛼2∗ ∧ 𝛽𝛽2∗(𝜕𝜕) = 𝛽𝛽2(𝜕𝜕) + 𝛽𝛽2∗ 
(41) 

where 𝛼𝛼1∗,𝛽𝛽1∗,𝛼𝛼2∗,𝛽𝛽2∗are the O-NTSTW parameters determined in the optimization step. 
𝛼𝛼1(𝜕𝜕),𝛽𝛽1(𝜕𝜕),𝛼𝛼2(𝜕𝜕),𝛽𝛽2(𝜕𝜕) are obtained through (40). The details on system stability are given in [45]. 
The designed control law for AO-NTSTW is given in (42). 

 

𝑉𝑉𝑝𝑝 = �
1

𝑘𝑘12𝑘𝑘21 − 𝑘𝑘11𝑘𝑘22
�𝑘𝑘22�𝑓𝑓1 + 𝜆𝜆1∗𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)�

− 𝑘𝑘12�𝑓𝑓2 + 𝜆𝜆2∗𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)��� + ∆𝑉𝑉𝑝𝑝(𝜕𝜕) 

𝑉𝑉𝑦𝑦 = � 1
𝑚𝑚12𝑚𝑚21−𝑚𝑚11𝑚𝑚22

�−𝑘𝑘21�𝑓𝑓1 + 𝜆𝜆1∗𝛾𝛾1−1|𝑥𝑥2|2−𝛾𝛾1𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥2)� + 𝑘𝑘11�𝑓𝑓2 +

𝜆𝜆2∗𝛾𝛾2−1|𝑥𝑥4|2−𝛾𝛾2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑥𝑥4)���+∆𝑉𝑉𝑦𝑦(𝜕𝜕) 

(42) 

where, 

 

⎩
⎪
⎨

⎪
⎧∆𝑉𝑉𝑝𝑝(𝜕𝜕) =

−𝛼𝛼1∗(𝜕𝜕)
2

|𝑆𝑆1|
1
2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑆𝑆𝜃𝜃) −

𝛽𝛽1∗(𝜕𝜕)
2

� 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠�𝑆𝑆𝑥𝑥1�
𝑎𝑎𝑓𝑓

0
𝑑𝑑𝜕𝜕

∆𝑉𝑉𝑦𝑦(𝜕𝜕) =
−𝛼𝛼2∗(𝜕𝜕)

2
|𝑆𝑆2|

1
2𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠�𝑆𝑆𝜓𝜓� −

𝛽𝛽2∗(𝜕𝜕)
2

� 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠�𝑆𝑆𝑥𝑥2�
𝑎𝑎𝑓𝑓

0
𝑑𝑑𝜕𝜕

 (43) 

The new AO-NTSTW control approach can be written as Theorem 1. 

Theorem 1: An AO-NTSTW control (42) exists for the system (9) and satisfies the adaptive Lyapunov 
stability-based law (34) with the optimization parameters (40) obtained by GOW, WOA, ALO or SSA. 
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Remark 2: Since 𝛼𝛼1∗,𝛽𝛽1∗,𝛼𝛼2∗,𝛽𝛽2∗ are used as the initial condition of (39), these will not affect the closed-
loop stability of the system (9).  

5. Simulation Results  

This section aims to present the simulation results of the synthesized controllers. In order to make a 
credible comparison among the proposed optimization algorithms. First, the results of the objective 
function optimization to improve the convergence speed and the energy consumption are presented. 
Second, several different control laws were applied to the system. Third, the proposed new controller 
is simulated and compared with the best-performing commands resulting from the optimization. 

In order to find the best algorithm to adopt for the Quanser aero system, four meta-heuristic 
algorithms such as: GWO, WOA, SSA, and ALO were used to provide the O-NTSMC, O-STW, and O-
NTSTW parameters. Optimizations are performed in order to find the optimal control parameters that 
minimize the objective function. The experiment was repeated ten (10) times for each algorithm, in 
order to avoid local minima, premature convergence of the algorithms as well as having best results. 
The objective function used, in which it is given in its general form by (39), in this case of study it 
becomes, 

 
𝐽𝐽(𝑒𝑒,𝑢𝑢) = � �[𝜕𝜕 𝜕𝜕]𝑅𝑅 �

�𝑉𝑉𝑝𝑝�
�𝑉𝑉𝑦𝑦�

� + [𝑉𝑉𝑝𝑝 𝑉𝑉𝑦𝑦]𝑄𝑄 �
𝑉𝑉𝑝𝑝
𝑉𝑉𝑦𝑦
��

𝑎𝑎𝑓𝑓

0
𝑑𝑑𝜕𝜕 

(44) 

with: 

𝑅𝑅 = �10
0
1�, 𝑄𝑄 = �0.0015 0

0 0.0015� , 𝜕𝜕𝑓𝑓 = 20 𝑆𝑆𝑒𝑒𝑐𝑐, using these parameters' 𝐽𝐽 can be written as:  

 𝐽𝐽(𝑒𝑒,𝑢𝑢) = � 𝜕𝜕|𝑒𝑒𝜃𝜃| + 𝜕𝜕�𝑒𝑒𝜓𝜓� + 0.0015𝑉𝑉𝑝𝑝
2 + 0.0015𝑉𝑉𝑦𝑦

2𝑑𝑑𝜕𝜕
𝑎𝑎𝑓𝑓

0
 

 

(45) 

The choice of Q values  prevent the control inputs 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑦𝑦  from exceeding their maximum values of 
[−24 24] volts. With 𝑒𝑒𝜃𝜃 = 𝜃𝜃 − 𝜃𝜃𝑑𝑑 and 𝑒𝑒𝜓𝜓 = 𝜓𝜓 −𝜓𝜓𝑑𝑑. 

Each algorithm is tested 10 times under the following conditions: (1) Number of research agents: 30, 
(2) Number of iterations: 50, (3) Same objective function 𝐽𝐽. Used PC (Personal Computer) technical 
characteristics are: Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 8G of RAM. The sampling 
time of the control system in simulation results is 0.01 Sec. The results of the objective function 
optimization are presented in the tables 3, 4 and 5. Three values of the objective function were 
presented in these tables such as: the best value and the corresponding experiment number where it 
was obtained, the worst value, as well as the average of the objective functions over 10 trials. These 
results values helped to determine the best algorithm, in an effective way. 

Table 3. Objective function values in the case of O-NTSMC 
Algorithm Best value of 

𝑱𝑱(𝒆𝒆,𝒖𝒖) 
Worst value of 

𝑱𝑱(𝒆𝒆,𝒖𝒖) 
Average value of 
𝑱𝑱 (over 10 trials) 

experiment 
number where 

the best value of 
𝑱𝑱 was obtained  

GWO 2,80034044 2,85683905 2,81685419 4 
WOA 2,85374485 2,95269486 2,87405766 1 
SSA 2,8317953 7,03750848 3,60071992 1 
ALO 2,81980906 5,63474808 3,54016723 8 
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Table 4. Objective function values in the case of O-STW 
Algorithm Best value of 

𝑱𝑱(𝒆𝒆,𝒖𝒖) 
Worst value of 

𝑱𝑱(𝒆𝒆,𝒖𝒖) 
Average value of 
𝑱𝑱(𝒆𝒆,𝒖𝒖) (over 10 

trials) 

experiment 
number where 

the best value of 
𝑱𝑱 was obtained  

GWO 2,51585141 2,52280305 2,51784165 1 
WOA 2,51922217 2,59324303 2,53927148 7 
SSA 2,51776391 2,69928311 2,55970367 8 
ALO 2,52657595 2,64169054 2,55694725 8 

 
(a) 

 
(b) 
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(c) 

Figure 4. Objective function 𝐽𝐽 (a) O-NTSMC (b) O-STW and (c) O-NTSTW 
 

Table 5. Objective function values in the case of O-NTSTW 
Algorithm Best value of 

𝑱𝑱(𝒆𝒆,𝒖𝒖) 
Worst value of 

𝑱𝑱(𝒆𝒆,𝒖𝒖) 
Average value of 
𝑱𝑱(𝒆𝒆,𝒖𝒖) (over 10 

trials) 

experiment 
number where 

the best value of 
𝑱𝑱 was obtained  

GWO 2,51631223 2,52738979 2,518 3 
WOA 2,5231548 2,56126206 2,53344082 7 
SSA 2,52004681 2,65526602 2,55480261 3 
ALO 2,53813251 2,68847387 2,58276923 5 

 
The optimization algorithms are classified in table 6 according to the values of the objective 
function of each controller. Table 7 gives a ranking of the means of 𝐽𝐽 for the different 
algorithms and for the different applied controllers. 
 

Table 6. Ranks of objective functions  
Controllers GWO WOA ALO SSA 
O-NTSMC 1 3 2 2 

O-STW 1 3 4 2 
O-NTSTW 1 3 4 2 

 

Table 7. Rank of objective function Means of 10 tests  
Controllers GWO WOA ALO SSA 
O-NTSMC 1 2 3 4 

O-STW 1 2 3 4 
O-NTSTW 1 2 4 3 
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According to Table 6 and Table 7, the worst results in terms of minimum value of the objective function 
are obtained by the WOA and ALO algorithms, while GWO has achieved minimum values of the 
objective function in most cases. In addition, the GWO algorithm performed better in term of the best 
average over 10 trials. The WOA algorithm obtains a reasonable value of the average objective function 
over 10 trials. On the other hand, the highest average values were given by the SSA and ALO algorithms. 
Based on this, we can confirm that the GWO algorithm showed superior performance compared to the 
WOA, SSA and ALO algorithms. 
 
A peculiarity is noticed in these results concerning the SSA algorithm, this algorithm begins to converge 
after few number of iterations. The most visible case is the SMC controller SSA based optimization, 
where the algorithm starts to converge after the 18 iterations, this represents 36% of the total number 
of iterations, which is not negligible. 
 
Fig. 4 shows the best values of the objective function per iteration, for the four optimization 
algorithms. In the three controllers, it is noticed that SSA-based optimization is the slowest compared 
to the other optimization algorithms (for example, in the case of O-NTSTW, it reaches its minimum, 
after 26 iterations, this represents more than 50% of the numbers of iterations). We notice that WOA 
and ALO converge quickly. GWO algorithm presents a good convergence speed to reach the minimum 
of the objective function (for example in the case of SMC and NTSMC it reaches its minimum 
respectively just after 16 and 10 iterations, this represents 32% and 20% from all iterations, 
respectively). 
 
The use of 50 iterations for all algorithms helps to obtain a high degree of effectiveness of the results. 
Were, it is noticed that the objective functions for all results reach their minimum values before the 
50 iterations for the 10 trials.  
 
Application of the best controllers  

In order to compare the best optimized controllers (i.e., best parameters for each controller according 
to the minimum value of the objective function), the angular responses, sliding surfaces and the 
control voltages for the pitch and yaw outputs are presented in Fig. 5, Fig. 6 and Fig. 7 respectively. 
Results of classical optimized PID and optimized SMC with linear sliding surfaces, also, are included in 
this section.  
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(a) 

 

(b) 
  

Figure 5. Responses of (a) pitch angle and (b) yaw angle of optimized O-PID, O-SMC, O-NTSMC, O-
STW, O-NTSTW controllers 
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(a) 

 

(b) 

Figure 6.  Control signals (a) pitch and (b) yaw for the optimized O-PID, O-SMC, O-NTSMC, O-STW, O-
NTSTW controllers 
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(a) 

 

(b) 

Figure 7. Sliding surfaces (a) pitch (b) yaw of O-PID, O-SMC, O-NTSMC, O-STW, O-NTSTW controllers 
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Table 8. Comparison between the different control laws 
 
 
 
 
 
 
 
 
 
Table 8 summarizes the obtained performances using the four optimization algorithms. This table 
helps to compare these controllers with more punctuality. It is noted that in terms of rapidity of 
convergence, the two algorithms O-STW and O-NTSTW reached minimum values of RT and TS with a 
small advantage for the O-NTSTW in pitch, whose values are 0.6646 sec and 1.0132 sec, respectively. 
On the other hand, in yaw the advantage is for the O-STW with the values of RT=0.7299 sec and ST= 
1.127 sec, which has a significant improvement in these performances in the case of these controllers 
compared to the O-NTSMC. However, it is noticed that O-NTSMC has a zero overshoot, which is logical, 
because this controller does not contain the integrator function. Moreover, the overshoots found are 
very small, which do not affect the behaviour of the system. The steady-state error (Table 8) has been 
improved by a significant value especially in pitch, it is around 100% of improvement in the case of O-
STW and O-NTSTW. The energy consumption is almost the same in all cases and the differences are 
negligible. On the other hand, in the case of O-NTSMC the control signals have some chattering effect. 
The O-STW controller contains small fluctuations, which might affect the actuators of the robot in long 
time. While, the O-NTSTW controller is the best in this context, as it does not present any visible 
chattering. This is interpreted by the influence of the equivalent O-NTSMC-based control and the 
super-twisting part. 
 
Comparison of O-NTSTW and AO-NTSTW 
  
In this section, a comparison between O-NTSTW and AO-NTSTW is addressed. The chosen adaptive 
control parameters are given in table 9. Uncertainties and disturbances are a principal issue in the 
control of such system. Since sliding mode approaches are robust against these issues. It is specified 
that disturbance must has an upper bound. In the simulation phase the assessed controllers (O-
NTSTW and AO-NTSTW) are examined against perturbations and uncertainty. 
 
 Table 9. Parameters of the AO-NTSTW 

 𝝎𝝎𝟏𝟏 𝜼𝜼 𝜺𝜺 𝜸𝜸𝟏𝟏 𝝁𝝁 𝜶𝜶𝒎𝒎 
Pitch  0.001 0.0001 0.02 2 0.02 0.0001 
Yaw 0.001 0.0001 0.05 2 0.06 0.0001 

 
In this experiment, the system is examined in regulation mode. The system is disturbed with two pulses 
for a duration equal to 0.5 sec. The first disturbance is applied to the pitch angle at t=5 sec and the 
second is applied to the yaw angle at t=12 sec. This allows to examine the controller robustness from 
the cross-coupling effect and the external disturbance. Obtained results are presented in Fig. 8, 9 and 
10.  

 Controller RT (s) ST (s) OS (%) State Error (°)  ISCO 
Pitch O-NTSMC 1.1970 1.8914 0 3.766-E06 645.318 

O-STW 0.7010 1.0720 0.5920 4.067 E-12 631.540 
O-NTSTW 0.6646 1.0132 0.3835 7.552 E-12 631.878 

Yaw O-NTSMC 1.3726 2.3906 8 e-06 9.311 E-12 1051.912 
O-STW 0.7299 1.1279 0.3241 5.214 E-12 1002.800 

O-NTSTW 0.7374 1.1457 0.2388 1.469 E-09 1003.799 
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(a) 

 
(b) 

Figure 8. Step response (a) pitch (b) yaw for AO-NTSTW and O-NTSTW controllers 
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(a) 

 
(b) 

Figure 9. Control signals AO-NTSTW and O-NTSTW (a) Pitch (b) Yaw 
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Figure 10. Adaptive gains evolution 
 
In this part, we tested O-NTSTW and AO-NTSTW for a trajectory that contains a combination of 
constant, variable positions (speed profile). This scenario allows to assess the controllers' effectiveness 
against coupling dynamic effects. 

 
(a) 

0 5 10 15 20 25

Time [Sec]

4.085

4.09

4.095

4.1

4.105

4.11

4.115
1

(t)

0 5 10 15 20 25

Time [Sec]

0.2075

0.208

0.2085

1
(t)

0 5 10 15 20 25

Time [Sec]

45.445

45.45

45.455

45.46

45.465

45.47

45.475

2
(t)

0 5 10 15 20 25

Time [Sec]

7.9675

7.968

7.9685

7.969

7.9695

7.97

7.9705

2
(t)

0 20 40 60 80 100 120 135

Time [Sec]

-1

5

10

12

Pi
tc

h 
[D

eg
re

e]

Reference

AO-NTSTW

O-NTSTW



26 
 

 

(b) 

Figure 11. System responses of AO-NTSTW and O-NTSTW controllers (a) Pitch (b) Yaw 
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(b) 

Figure 12. Control signals in the case of the speed profile (a) pitch (b) yaw  

Figure 13. Evolution of the adaptive gains of the AO-NTSTW control (speed profile) 
 

Table 10. Performances of O-NTSTW & AO-NTSTW in regulation mode 
Angle Controller ISE  ISCO 

Pitch O-NTSTW 0.0121 792.08 
AO-NTSTW 0.0118 792.42 

Yaw O-NTSTW 0.0130 1252.05 
AO-NTSTW 0.0127 1256.41 
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Table 11. Performances of O-NTSTW & AO-NTSTW in trajectory tracking 
Angle Controller ISE ISCO 

Pitch O-NTSTW 0.0020 4227.22 
AO-NTSTW 8.872 e-05 4227.31  

Yaw O-NTSTW 4.718 e-07 6367.30 
AO-NTSTW 2.272 e-07 6368.24 

 
In the case of regulation mode, the results illustrated in Figures 11-13 help to understand and verify 
the principle of the AO-NTSTW control. In addition, this simulation allows us to examine the two 
controllers AO-NTSTW and O-NTSW. When the system is far from the desired signal, the adaptive gains 
are increased between 0 sec and 0.7 sec, and when the desired signal is reached, the adaptive gains 
try to decrease it, this can be seen after 0.7 sec. 
 
As shown in Fig. 8, the AO-NTSTW handles the effect of coupling and disturbance rejection more 
effectively than the O-NTSTW. The system rectifies its position and returns fast to the desired signal. 
Also, the gains begin to decrease until a new disturbance is added. In this simulation, the behaviour of 
adaptive gains and control signals can be observed between 5 sec and 12 sec, between 5 sec and 5.5 
sec, and between 12 sec and 12.5 sec. From Table 10 and Table 11, the AO-NTSTW minimizes the ISE 
index compared to the O-NTSTW by 2.54% and 2.3% for the pitch and yaw, respectively. This can be 
justified by the decrease in the chattering amplitude. However, the energy consumption increased by 
0.34% for yaw brought by the AO-NTSTW, this small over consumption is caused by the improvement 
of the precision. 
 
Also, in trajectory tracking mode, the AO-NTSTW is more efficient than O-NTSTW. According to Fig. 11. 
We can see that the O-NTSTW control struggles to follow the trajectory, especially in pitch angle due 
to the gravitational effect and the axis coupling effect because the torque generated by the yaw motor 
affects the pitch axis considerably. AO-NTSTW gives an amplitude chattering, which is remarked by the 
increase in ISCO index. At the same time, the ISE index decreased considerably by 34.36% and 29.36% 
by the AO-NTSTW for the pitch (in regulation and in trajectory tracking, respectively). In the case of 
yaw, practically, there is no improvement of ISE and ISCO. 
 
In order to test the proposed controller against disturbances and uncertainties the following 
experience is carried out, mass payload is added to the system which represents 10% of the total mass 
of the Quanser aero, hence the total mass is becomes 𝑚𝑚𝑇𝑇 = 𝑚𝑚𝑝𝑝𝑐𝑐 + 0.1 × 𝑚𝑚𝑝𝑝𝑐𝑐 , where: 𝑚𝑚𝑇𝑇 is the total 
mass of the Quanser aero and the load mass, 𝑚𝑚𝑝𝑝𝑐𝑐 is the quanser aero mass. At the same time, a wind 
disturbance is applied to the output of the system. Mathematically this wind is modeled by the 
equation (46) as :  

𝑑𝑑 = [0.01(𝑠𝑠𝑠𝑠𝑠𝑠(0.5𝜕𝜕) + 𝑠𝑠𝑠𝑠𝑠𝑠(0.2𝜕𝜕)) 0.01(𝑠𝑠𝑠𝑠𝑠𝑠(0.5𝜕𝜕) + 𝑠𝑠𝑠𝑠𝑠𝑠(0.2𝜕𝜕))]𝑎𝑎                                     (46) 

Equation (46) has two terms first term is the disturbance applied to the pitch movement and the other 
disturbance is applied to the yaw movement. These uncertainty and disturbance are applied to the 
Quanser aero in the trajectory tracing mode. The obtained results are given is the figures 14-16. Table. 
12 summarizes the obtained performances. 
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(a) 

 

(b) 
Figure 14. System responses of AO-NTSTW and O-NTSTW controllers against mass uncertainty and 

wind perturbation (a) Pitch (b) Yaw 
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(a) 

 

(b) 
Figure 15. Control signals in the presence of mass uncertainty and wind disturbance (a) pitch (b) yaw  
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Figure 16. Evolution of the adaptive gains of the AO-NTSTW control in the presence of mass 
uncertainty and wind disturbance  

Table 12. Performances of O-NTSTW & AO-NTSTW in the presence of mass uncertainty and wind disturbance 
Angle Controller ISE  ISCO 

Pitch O-NTSTW 0.009 5.3163 103 
AO-NTSTW 6.1554 10-4 5.3140 103 

Yaw O-NTSTW 3.5692 10-7 8.0077 103 
AO-NTSTW 1. 7702 10-7 8.0051 103 

 
From the accuracy pointview it is clear that the AO-NTSTW controller has given better results than the 
O-NTSTW, this results is remarkable from the response of the pitch angle where we can see that the 
ISE performance is equal to 6.1554 10-4, however for the same angle ISE is equal to 0.009 in the case 
of O-NTSTW. Adaptive parameters have played a central role in the adjustment of the control signals. 
The adaptive gains were decreased from their initial values. The control signals have an acceptable 
fluctuation for this class of system. In order to deal with the uncertainty and disturbances the adaptive 
control signals have more fluctuation then the O-NTSTW, this is justified by the adaptability effects.    

 
In Fig. 6 the chattering effect has occurred which can be a destructive effect for the system. This 
phenomenon is caused by the discontinuous control part (-𝑘𝑘𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠(𝑠𝑠)), in order to resolve this major 
drawback, the STW and the adaptive STW approaches (results in fig. 12) have been proposed; it is 
interesting here to indicate that these controllers or any other higher order sliding mode controllers 
can only attenuate the chattering and do not remove it totally. The fluctuation appeared in this result 
are coming from the nature of the imposed trajectory which is characterized by some changes of 
directions. From the practice perspective, the amplitude of these fluctuations is supportable by the 
actuator of this system. 
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Visualisation system  
 
In order to have the visualization of the results, in this Subsection, a 3D model of the Aero Quanser is 
developed and then simulated using Gazebo environment in parallel with MATLAB/Simulink. We 
developed a ROS package on MATLAB/Simulink's environment to send position commands to Gazebo's 
controller. Figure 17 illustrates the developed software modules in order to apply the AO-NTSTW that 
we proposed using ROS. Fig. 18 shows the results of the simulation, the Figure 18a represents the 
starting position of the robot while Figure 18b represents its final position.  
 

 
Figure 17. A schema of the developed software using Matlab/Simulink and Gazebo 

 

 
(a)                                                    (b) 

Figure 18. Quanser aero in Gazebo environnement (a) initial position (b) final position 
 

6. Conclusion  
 
In this paper, a new Adaptive Optimal Nonsingular Terminal Super Twisting (AO-NTSTW) controller was 
proposed for Quanser aero helicopter simulator. We have developed and compared optimisation 
results based on four metaheuristic algorithms. The results demonstrated that NTSTW based GWO is 
the most efficient algorithm compared to the WOA, SSA and ALO algorithms from the point of view of 
the objective function's optimal solution of the used ITAE and ISCO . The objective function was 
carefully chosen in order to guarantee a compromise between precision and control robustness. 
Where, the obtained results show that the GWO-based NTSTW control performs better than the O-
NTSMC and O-STW controls in most aspects. Finally, the O-NTSTW command was compared to the AO-
NTSTW controller subjected to numerous robustness assessments. The AO-NTSTW proposed 
controller, in this article, showed a significant superiority on all levels (i.e., performance and 
robustness) in both regulation mode and trajectory tracking. 
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