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Abstract—Although the heaving Point Absorber (PA) concept
is well known in wave energy conversion research, few studies
focus on appropriate modelling of non-linear fluid viscous and
mechanical friction dynamics. Even though these concepts are
known to have non-linear effects on the hydrodynamic system,
most research studies consider linearity as a starting point
and in so doing have a weak approach to modelling the true
dynamic behaviour, particularly close to resonance. The sole use
of linear modelling leads to limited ability to develop control
strategies capable of true power capture optimisation and suitable
device operation. Based on a 1/50 scale cylindrical heaving PA,
this research focuses on a strategy for hydrodynamic model
development and experimental verification. In this study, non-
linear dynamics are considered, including the lumped effect of
the fluid viscous and mechanical friction forces. The excellent
correspondence between the derived non-linear model and wave
tank tested PA behaviours provides a strong background for wave
energy tuning and control system design.

Index Terms—point absorber modelling, non-linear hydrody-
namics, wave tank tests, wave energy conversion.

NOMENCLATURE

Acc Accelerometer.
BEM Boundary element method.
LVDT Linear variable displacement transducer.
NMSE Normalised mean square-error.
NSEM Navier-Stokes equation method.
PA Point absorber.
PAWEC Point absorber wave energy convertor.
PS,WG Pressure sensor and wave gauge.
A(ω), A∞ Added mass and its infinite frequency value.
B(ω) Radiation damping coefficient.
Em Normalised modelling error of fln.
fc, Fc Coulomb friction force and its coefficient.
fs, Fs, Cs Stribeck friction force and its coefficients.
fd, Cf Damping friction force and its coefficient.
ff Friction force ff = fc + fs + fd.
fv, Cd Fluid viscous force and its coefficient.
fln Lumped non-linear force fln = ff + fv .
fe, fhs Excitation and hydrostatic forces.
fr, f

′

r Radiation force and its convolution term.
Gf Goodness of fit of the radiation kernel function.
Gm Goodness of matching for free-decay tests.
M, r, h, d Buoy mass, radius, height and draught.
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I. INTRODUCTION

W ITH the emergence of fossil fuel crisis, global attention
on climate change and rising levels of the carbon

dioxide emissions, renewable energy has been becoming an
important research area and researchers have been turning to
the value of harvesting energy from sea waves using Wave
Energy Convertor (WEC) systems. Various WEC technologies
and devices are reviewed in [1]–[5] and can be classified into
five predominant types: (i) oscillating wave columns, e.g. the
Mighty Whale, LIMPET; (ii) attenuator systems, e.g. Pelamis,
the McCabe Wave Pump; (iii) Point Absorbers (PAs), e.g. the
Archimedes Wave Swing, Wavebob; (iv) terminator devices,
e.g. the Salter Duck, Oyster; (v) over-topping devices, e.g.
TAPCHAN, the Wave Dragon.

Among the WECs currently being developed, a heaving
PA is one of the simplest and most promising concepts [6],
probably due to its favourable properties: ease of installation,
economic operation, reliable survivability. The heaving PA can
also be feasibly extended to form arrays and wave farms. For
the Point Absorber Wave Energy Convertors (PAWECs), four
kinds of modelling methods are widely applied in the problem
of hydrodynamic prediction, as discussed in [7]: (i) analytical
approaches, (ii) Boundary Element Methods (BEMs), (iii)
BEMs superposed on non-linear forces methods (including the
non-linear viscous, hydrostatic and Froude-Krylov forces and
etc.) and (iv) Navier-Stokes Equation Methods (NSEMs).

The analytical approaches and BEMs provide linear pre-
diction of the PAWEC hydrodynamics without considering
any non-linear dissipative forces. One main drawback of
these linear methods is that ignoring the dissipative forces
always exaggerates the PAWEC motion and power production,
especially when resonance is achieved via optimal control. If
non-linear dissipative forces are superimposed on the BEMs,
these approaches can provide more accurate PAWEC motion
prediction. The NSEMs are fully non-linear methods which
provide precise prediction of WEC hydrodynamics, especially
in extreme wave conditions. However, the NSEMs are expen-
sive in computation and their results are not straightforward for
control system design. The BEMs superimposed on non-linear
fluid viscous and mechanical friction forces are evaluated in
this study to provide more accurate PAWEC motion prediction.

Non-linear effects of fluid viscosity, end-protection and hy-
draulic Power Take-Off (PTO) system are studied in [8]. These
non-linear effects are superimposed on a linear PAWEC model
to evaluate phase control performance. The mechanical friction
force is modelled as a pure damper in [8]. The importance of
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Fig. 1. A 1/50 PAWEC prototype installed for wave tank tests.

non-linear fluid viscous force is outlined experimentally in [9],
[10]. For numerical modelling, the viscous force is linearised
as an equivalent damper in [9], [10]. In this work, a non-
linear PAWEC model is derived and validated considering the
non-linear effects of both the fluid viscosity and mechanical
friction. The fluid viscous force is modelled as the drag term
in the Morison equation [11] with a semi-empirical viscous
coefficient discussed in [12], [13]. The Tustin model [14] is
used to represent the mechanical friction force for the PAWEC
shown in Fig. 1. The fluid viscous and mechanical friction
forces cannot be decoupled and in this work their summation
is defined as a lumped non-linear force. Via the comparison
between the numerical and experimental data, the mechanism
by which these non-linear effects influence PAWEC motion
and power dissipation is detailed in this work.

A 1/50 scale cylindrical heaving buoy (see Fig. 1) has
been designed and constructed for wave tank tests, model
verification and control system design. A wide variety of wave
tank tests are conducted to validate the proposed lumped non-
linear force model and the derived non-linear PAWEC model.
The numerical results of the proposed models show a high
accordance with the experimental data of wave tank tests.

The paper is structured as follows. In Section II, the wave-
buoy interaction is studied to derive linear and non-linear mod-
els to represent the PAWEC dynamics. Section III describes
the wave tank structure and the experimental configuration.
Numerical results of the proposed models are compared with
the experimental data in Section IV. Essential remarks and a
concluding discussion are drawn up in Section V.

II. NUMERICAL MODELLING OF PA HYDRODYNAMICS

The hydrodynamics of the 1/50 scale heaving PAWEC are
described in this Section. A linear model is derived to represent
the buoy motion as a starting point with the radiation force
approximated by a third order system, detailed in Section II-B.
A non-linear model is proposed in Section II-C by considering
the fluid viscous and mechanical friction forces.

A. Heaving Point Absorber Hydrodynamics

For a heaving cylindrical buoy excited by incident waves,
the motion obeys Newton’s second law [15], given as:

Mz̈(t) = fe(t)+fr(t)+fhs(t)+ff (t)+fv(t)+fpto(t), (1)

where fe(t) is the excitation force due to the incident wave;
fr(t) is the radiation force related to the buoy velocity; fhs(t)
is the hydrostatic force to represent the mismatch between the
buoyancy and the gravity. ff (t) and fv(t) are the unavoidable
mechanical friction and fluid viscous forces, respectively.
fpto(t) represents the PTO force. M is the buoy mass and
z(t) is the PAWEC heaving displacement with the positive
direction defined as upward in heave motion. For simplicity,
only the heave motion is investigated in this paper and the
PTO force is not considered since this paper focuses on the
buoy hydrodynamics.

B. Linear Modelling of Heaving Point Absorber
1) Linear Hydrodynamics of Heaving Point Absorber:

Based on the assumptions of (i) ideal fluid (inviscid, in-
compressible and irrotational), (ii) linear wave theory (Airy’s
wave theory) and (iii) small body motion [15], [16], Newton’s
second law in Eq. (1) can be rewritten as:

Mz̈(t) = fe(t) + fr(t) + fhs(t) + fld(t), (2)

where fld(t) represents the linear dissipative force considered
as a combination of the linear mechanical friction [8] and the
equivalent linearised fluid viscous force [9], [10]. Thus the
linear dissipative force can be represented as:

fld(t) = −Cldż(t), (3)

where Cld is the equivalent linearised damping coefficient
which can be determined via wave tank tests.

For a vertical cylinder, the hydrostatic force fhs(t) is
proportional to the displacement z(t), as:

fhs(t) = −ρgπr2z(t) = −Khsz(t), (4)

where ρ = 1000kgm−3, g = 9.81ms−2 are the water density
and gravity constant, respectively. r and Khs = ρgπr2 repre-
sent the buoy radius and hydrostatic stiffness, respectively.

The excitation force fe(t) is viewed as the system input and
can be computed according to its analytical representations in
[17], [18]. The radiation force fr(t) can be written in the time-
domain, according to the Cummins equation [19]:

fr(t) = −A∞z̈(t)− kr(t) ∗ ż(t), (5)

where A∞ = 6.58kg is the added mass at infinite frequency
and kr(t) is the Impulse Response Function (IRF) of the radia-
tion force, also known as the kernel function. X ∗Y represents
the convolution operation between X and Y . Alternatively, the
radiation force can be written in the frequency-domain as:

Fr(jω) = (ω2A(ω)− jωB(ω))Z(jω), (6)

where ω is the angular frequency. Fr(jω), A(ω), B(ω) and
Z(jω) are the frequency-domain representations of the radia-
tion force, added mass, radiation damping and buoy displace-
ment, respectively. The relationship between the time- and
frequency-domain coefficients is derived in [20] and referred
to as the Ogilvie relation, given as:

A(ω) = A∞ −
1

ω

∫ ∞
0

kr(t)sin(ωt)dt, (7)

B(ω) =

∫ ∞
0

kr(t)cos(ωt)dt. (8)
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Fig. 2. IRFs of NEMOH results and the identified systems.
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Fig. 3. Radiation coefficients of NEMOH results and the identified systems.

The hydrodynamic coefficients are obtained by solving a
boundary value problem in the BEM code NEMOH [21]. It
provides an alternative to commercial BEM packages, like
WAMIT R© and AQWATM. The simulation in NEMOH is
based on the 1/50 scale PAWEC in Fig. 1, which is a
semi-submerged buoy with a radius r = 0.15m, a draught
d = 0.28m and a mass M = 19.79kg. The time-domain
radiation force IRF is shown in Fig. 2 and Fig. 3 illustrates
the frequency-domain added mass and radiation damping
coefficient. The convolution operation associated with the ra-
diation force in Eq. (5) is inconvenient for buoy hydrodynamic
analysis and control system design. Hence, it is important to
approximate the convolution term with a finite order system.

2) Finite Order Approximation of Radiation Force: For
control system design, time-domain models are preferred.
Finite order approximations of the radiation force are proposed
for offshore structure motion prediction in [22], [23]. For
PAWEC system analysis, it is common to approximate this
convolution term by a finite order transfer function or state-
space model using system identification methods [24], [25].
The radiation force causality is proved in [26]. In this work,
the realisation theory is applied to deduce a linear state-space
model from the radiation force IRF.

The convolution term is defined as a subsystem f
′

r(t) as:

f
′

r(t) = kr(t) ∗ ż(t) =

∫ t

0

kr(t− τ)ż(τ)dτ. (9)

The IRF kr(t) in Eq. (9) is obtained from NEMOH and shown
in Fig. 2. The realisation theory is applied to deduce a linear
state-space model directly with MATLAB R© function imp2ss
[27] from the Robust Control Toolbox. Thus the convolution
term can be approximated as:

ẋr(t) = Arxr(t) +Br ż(t), (10)

f
′

r(t) ≈ Crxr(t), (11)

where xr(t) ∈ Rn×1 is the state vector for the identified
system and n is the system order. ż(t) is the buoy velocity.
Ar ∈ Rn×n, Br ∈ Rn×1, Cr ∈ R1×n are the system matrices.

The order of the initially identified system is quite high and
model reduction is required and achieved by the square-root
balanced model reduction method with MATLAB R© function
balmar [28]. To determine the system order n, a goodness of
fit Gf is defined with a cost-function of the Normalised Mean
Square-Error (NMSE), as:

Gf = 1−
∥∥∥∥kr(t)− kr,i(t)
kr(t)− k̄r(t)

∥∥∥∥2
2

, (12)

where ‖X‖2 is the 2-norm operation of X; k̄r(t) is the mean
value of kr(t); kr,i(t) is the identified IRF. Gf tends to 1 for
close model-data matching and tends to −∞ for poor model-
data matching.

The IRFs of the second, third and fourth order identified
systems are compared with the original IRF from NEMOH in
Fig. 2. The values of Gf are 0.9680, 0.9991 and 0.9992 for the
second, third and fourth order systems, respectively. The third
order system IRF matches the original IRF well and a further
increase of system order introduces extra system complexity
without further improvement of the approximation accuracy.

A simple validation of the time-domain IRF identification
technique can be achieved by checking the frequency-domain
radiation coefficients. According to the Ogilvie relation [20],
the added mass and radiation damping coefficient of the
identified systems can be computed according to Eqs. (7) and
(8), which are compared with the NEMOH results in Fig.
3. The second order system cannot represent the radiation
coefficients accurately at low wave frequencies, especially for
ω ≤ 5rad/s. The third and fourth order systems approximate
the NEMOH results with a high goodness of fit, both in the
time- and frequency-domains.

Therefore, n = 3 is selected and a third order state-space
model is adopted to replace the convolution term in Eq. (5)
to provide a straightforward and convenient representation for
the PAWEC numerical modelling and control system design.
The system matrices of Eqs. (10) and (11) are given as:

Ar =

 −3.1848 −4.3372 −3.1009
4.3372 −0.0875 −0.3882
3.1009 −0.3882 −2.8499

 , (13)

Br =
[
−40.6964 5.9737 16.2722

]>
, (14)

Cr =
[
−0.4070 −0.0597 −0.1627

]
. (15)
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3) A Linear Model of Heaving Point Absorber: According
to Eq. (2), if the wave excitation force is viewed as the input
and the buoy displacement is set as the output, a linear model
from the wave excitation force to the buoy motion, referred to
as the force-to-motion model, is written as:

x(t) =
[
xr(t) z(t) ż(t)

]>
, (16)

ẋ(t) = Ax(t) +Bfe(t), (17)
z(t) = Cx(t), (18)

with

A =

 Ar 0 Br

0 0 1

− Cr

M+A∞
− Khs

M+A∞
− Cld

M+A∞

 , (19)

B =
[

0 0 0 0 1/(M +A∞)
]>
, (20)

C =
[

0 0 0 1 0
]
. (21)

If a non-zero initial condition x(0) and an excitation force
fe(t) ≡ 0N are applied to excite the linear model at time
t = 0s, the system response is called the zero-input response,
identified here as the free-decay test, written as:

z(t) = CeAtx(0). (22)

C. Non-linear Modelling of Heaving Point Absorber

For most offshore structures, the linear assumptions can
be satisfied and thus the linear modelling approach can pro-
vide accurate hydrodynamic prediction. However, the PAWEC
motion can be very large when the resonance is achieved
by optimal control strategies. In this situation, the relative
velocity between the PAWEC and the water around it is large
and thus the fluid viscous force cannot be ignored. For the
1/50 PAWEC, the mechanical friction force is not negligible
compared with the wave conditions during tank tests. In this
work, the quadratic fluid viscous force is modelled as the
drag force term in the Morison equation [11]. Whilst, the
mechanical friction force is modelled as a combination of the
Coulomb, Stribeck, and damping forces [14]. The summation
of the fluid viscous and mechanical friction forces is defined
as the lumped non-linear force and is the focus of this Section,
leading to a more applicable non-linear PAWEC model.

1) Modelling of Fluid Viscous Force: As suggested in [7],
[8], [29], the viscous force fv(t, x) follows the drag term in
the Morison equation [11], given as:

fv(t, x) = −0.5ρCdπr
2(ż(t)− u(t))|ż(t)− u(t)|, (23)

where Cd is the viscous coefficient; u(t) is the vertical velocity
of water particles around the buoy. Cd is a function of the
Keulegan-Carpenter number Kc, the Reynolds number Re and
the roughness number Kr [12]. As suggested in [12], the
empirical value of Cd varies from 0.6 to 1.2. For small Kc

(Kc ≈ 3.67 for the 1/50 PA), the appropriate range of Cd

from 0.8 to 1 is commonly acceptable [13]. In this study, Cd

is evaluated experimentally in Section III-C.

Fig. 4. Sketch of the Tustin model with continuous approximation (inset).

2) Modelling of Mechanical Friction: Several mechanical
friction models are reviewed in [30]. Among these, the Tustin
model is expressed as the combination of the Coulomb,
Stribeck and damping forces in [14], [30]–[32]. As shown in
Fig. 4, the friction force components can be expressed as:

fc(t, x) = −svFc, (24)
fs(t, x) = −svFse

−Cs|ż(t)|, (25)
fd(t, x) = −svCf |ż(t)|, (26)

where sv = sgn(ż(t)) is the sign of the buoy velocity; fc(t) is
the Coulomb friction force with its coefficient Fc; fs(t) is the
Stribeck friction force with its coefficient Fs and shape factor
Cs; fd(t) is the damping friction force with its coefficient
Cf . The negative symbol means that the friction force always
impedes the PAWEC velocity.

As shown in Fig. 4, the Tustin model is expressed as:

ff (t, x) = −sv(Fc + Fse
−Cs|ż(t)| + Cf |ż(t)|). (27)

The Stribeck shape factor can be determined by the velocity
Vmin which corresponds to the minimum friction in Fig. 4,
given as:

Cf − FsCse
−CsVmin = 0. (28)

In this study, Vmin, Cf and Fs are determined experimentally
and thus Cs is obtained by solving Eq. (28).

A key characteristic of this model is that the friction is
discontinuous at the zero-velocity point. The discontinuity may
cause difficulties for numerical modelling of the friction force.
The mechanical friction force can be estimated from the veloc-
ity measurement made during wave tank tests. Measurement
noise is unavoidable and has a significant influence on the
friction modelling, especially when the velocity is close to
zero. Therefore, a velocity threshold Vth is applied to the
Tustin model in this work to improve its continuity within
the zero-velocity region. As shown in the inset in Fig. 4, the
continuous formulation of the Tustin model can be rewritten
as:

ff (t, x) =

{
−sv(Fc + Fse

−Cs|ż| + Cf |ż|), |ż| ≥ Vth;

−sv(Fc + Fse
−CsVth + CfVth) |ż|Vth

, |ż| < Vth.

(29)
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Fig. 5. Sketch of the wave tank and the device installation.

Vth is always set with a very small value. In the friction model
in Eq. (29), there are five unknown parameters (Fs, Fc, Cf ,
Vth and Vmin) to be determined experimentally.

3) A Non-linear PAWEC Model: During wave tank tests,
the fluid viscous and mechanical friction forces are lumped
and cannot be decoupled from each other. Therefore, a lumped
non-linear force fln(t, x) is defined as the summation of
fv(t, x) and ff (t, x), given as:

fln(t, x) = fv(t, x) + ff (t, x). (30)

Substituting Eq. (30) into Eq. (1) gives:

Mz̈(t) = fe(t) + fr(t) + fhs(t) + fln(t, x). (31)

Thus the buoy dynamics can be expressed as a non-linear
model in a state-space formulation as:

ẋ(t) = Ax(t) +Bfe(t) +Bfln(t, x), (32)
z(t) = Cx(t). (33)

III. FLUME TESTS AND MODEL VERIFICATION

For model validation, a variety of free-fall and free-decay
tests are conducted in a wave tank. This Section details the
experimental configuration, the free-fall and free-decay tests.

A. Experimental Configuration

As shown in Fig. 5, the wave tank is 13m in length, 6m in
width and 2m in height (water depth 0.9m). Up to 8 pistons
can be selected to generate regular/irregular waves.

The 1/50 scale buoy is installed in the centred area of
the wave tank. Five Wave Gauges (WGs) are mounted to
measure the water elevation in real-time. Five Pressure Sensors
(PS1-5) are installed at the PAWEC base to measure the
dynamic pressure acting on the hull. To investigate the buoy
motion, a Linear Variable Displacement Transducer (LVDT)
is connected to the buoy rigidly to record the displacement
and a 3-axis Accelerometer (Acc) is mounted at the top of the
buoy to measure the buoy heaving acceleration. All the sensing
signals are collected via a 16-bit data acquisition system (USB-
6210) connected with LABVIEWTM. The sampling frequency
is 100Hz.
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Fig. 6. Free-fall tests to determine the Coulomb and damping coefficients.

B. Free-fall Tests

The mechanical friction profile can be estimated experimen-
tally. In free-fall tests, the buoy is lifted into the air (above
the water), held stable for a short period and then released
suddenly. The free-fall motion fits Newton’s second law and
hence the mechanical friction force can be “pseudo” measured
as ff,m(t), written as:

ff,m(t) = −Mg −Mam(t), (34)

where am(t) is the measured heaving acceleration. Meanwhile,
the LVDT records the buoy displacement to provide “pseudo”
velocity measurement vm(t) via the difference method.

The free-fall test results are shown in Fig. 6. According
to the displacement and velocity measurements, the buoy is
released at t = 17.20s and then experiences free acceleration
until t = 17.51s, within which the measured velocity increases
stably. After t = 17.51s, the buoy hits the wave tank gantry.

The parameters of the Coulomb and damping forces in Eq.
(29) are obtained via linear least-squares fitting applied to the
measured friction and velocity data within the time interval
from t = 17.30s to t = 17.51s. The resulting parameters are:

ff,m(t) = Fc − Cfvm(t) = 2.6579− 2.988vm(t). (35)

Thus Fc = 2.6579N and Cf = 2.988Nsm−1 are chosen for
the mechanical friction model.

C. Free-decay Tests

As defined in Eq. (22), free-decay tests are conducted in
the wave tank. The buoy is pushed down to a non-zero initial
position, held stable for a short term and then released. During
free-decay tests, the lumped non-linear force is “pseudo”
measured as fln,m(t), given as:

fln,m(t) = Mam(t)− πr2p̄(t), (36)

where p̄(t) is the mean value of PS1-5 measurements. The
pressure is not evenly distributed on the wet surface of
the buoy and thus πr2p̄ in Eq. (36) only gives a simple
approximation of the wave-buoy interaction.
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Fig. 7. Zero-crossing point to determine the Stribeck force parameters.

During a free-decay test, the buoy oscillates several times
and is damped to its equilibrium point. The point where vm(t)
changes its direction is defined as the zero-crossing point.
Within the zero-crossing point vicinity, the measured velocity
is close to zero and hence the fluid viscous force is small
enough to be ignored. Therefore the friction parameters in Eq.
(29), Fs and Vmin, can be observed from the measurements
of fln,m(t) and vm(t). According to the comparison between
the experimental data and the Tustin model in Fig. 7, the
parameters Fs, Vth and Vmin are written as:

Fs = |f1 − f2|/2− Fc, (37)
Vth = |v2 − v1|/2, (38)

Vmin = |v4 − v3|/2, (39)

where f1, f2, v1, v2, v3 and v4 correspond to the experimental
data shown in Fig. 7. The average values of Fs = 3.5574N,
Vth = 0.0398ms−1 and Vmin = 0.0838ms−1 are computed
from ten zero-crossing points leading to the data in Table I (see
Section IV-B). Solving Eq. (28) then gives Cs = 48.37sm−1.

Since the friction model is determined, the viscous coef-
ficient Cd is the only unknown parameter in the non-linear
PAWEC model expressed in Eqs. (32) and (33). To estimate
Cd from the free-decay tests, the non-linear least-squares data
fitting method is applied to minimise the displacement error
between numerical and experimental data, given as:

Cd = min
Cd

‖dtt − dnm(Cd)‖22, (40)

where dtt and dnm are the normalised tank test displacement
and the corresponding non-linear model simulation. For ten
free-decay tests with initial displacements from zi = −2cm
to zi = −20cm, the average value of the viscous coefficient
is Cd = 0.9382.

IV. RESULTS COMPARISON AND DISCUSSION

In this Section, the modelled and tested lumped non-
linear force results are compared in Section IV-A. Further
comparison is made by the normalised displacement responses
between free-decay tests and the linear/non-linear modelling
in Section IV-B. The comparison emphasises the importance
of the non-linear fluid viscous and mechanical friction forces
and the way in which they influence the PAWEC dynamics.
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A. Model Verification of Lumped Non-linear Force

The power dissipated by the mechanical friction can be
decomposed according to the friction components, as:

Pc(t) = |fc(t)ż(t)| = Fc|ż(t)|, (41)
Ps(t) = |fs(t)ż(t)| = Fse

−Cs|ż(t)||ż(t)|, (42)
Pd(t) = |fd(t)ż(t)| = Cf |ż(t)|2, (43)

where Pc(t), Ps(t) and Pd(t) represent the dissipated power
by the Coulomb, Stribeck and damping forces, respectively.

In free-decay tests, the velocity of water particles is small
enough to be ignored and hence Eq. (23) can be rewritten as:

fv(t) = −0.5ρCdπr
2ż(t)|ż(t)|. (44)

Thus the associated power dissipation Pv(t) is given as:

Pv(t) = |fv(t)ż(t)| = 0.5ρCdπr
2|ż(t)|3. (45)

The comparison between these power dissipations are
shown in Fig. 8. According to Fig. 8, the fluid viscous and
Coulomb forces are important since they dissipate significant
power. The damping friction force does not consume as much
power as the fluid viscous and Coulomb forces but cannot be
neglected when the velocity is large. When the velocity decays
to a small amount, the Stribeck force is an important factor that
impedes the buoy motion back on returning to the equilibrium
point. Therefore, the lumped non-linear force is modelled as
a combination of the fluid viscous, Coulomb, Stribeck and
damping forces in Eq. (30).
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TABLE I
NORMALISED MODELLING ERROR/GOODNESS OF THE LUMPED

NON-LINEAR FORCE/NON-LINEAR MODEL.

Initial Em Gm Initial Em Gm

Position Eq. (48) Eq. (49) Position Eq. (48) Eq. (49)

−2cm 1.40% 0.9540 −12cm 3.41% 0.9614

−4cm 1.61% 0.9713 −14cm 3.72% 0.9704

−6cm 4.63% 0.9697 −16cm 2.33% 0.9805

−8cm 4.84% 0.9869 −18cm 3.46% 0.9839

−10cm 1.73% 0.9841 −20cm 1.67% 0.9685

For a free-decay test with initial position −18cm, the
measured and simulated results of the lumped non-linear
force are shown in Fig. 9. The buoy is released at time
tr = 10.12 s (defined as the releasing time tr) and is damped
to its equilibrium point at time ts = 15.56 s (defined as the
settling time ts). The simulation results of the lumped non-
linear force fit the experimental measurements to a high degree
(with a normalised modelling error Em = 3.46%).
Em is defined as the normalised modelling error of the

lumped non-linear force by means of the average dissipated
power from the releasing time tr to the settling time ts, as:

Pms =

∫ ts
tr
vm(t)flnms(t)dt

ts − tr
, (46)

Pmd =

∫ ts
tr
vm(t)flnmd(t)dt

ts − tr
, (47)

Em =

∣∣∣∣Pmd − Pms

Pms

∣∣∣∣ · 100%, (48)

where flnms(t) is measured lumped non-linear force; flnmd(t)
is the modelled lumped non-linear force; Pms and Pmd are
the average values of the measured and modelled power
dissipations from tr to ts, respectively.

A wide range of free-decay tests are conducted to check
the modelling accuracy of the lumped non-linear force. Table
I shows that the mathematical model of the lumped non-
linear force fits the experimental measurements with a very
small error (< 5%). Thus this lumped non-linear force model
is accurate and useful for deriving a practical non-linear
numerical solution for the buoy motion prediction.

B. Free-decay Test Results Comparison

For the free-decay tests with initial displacements of −3cm,
−8cm and −18cm, the normalised displacement responses
of the linear and non-linear models are compared with the
experimental data and shown in Fig. 10. For the linear model
in Eqs. (17) and (18), the equivalent linearised damping
coefficient Cld is optimised for the −8cm free-decay test and
is determined as Cld = 21.50Nsm−1. The non-linear model
considering the fluid viscous and mechanical friction forces is
expressed in Eqs. (32) and (33). Fig. 10 indicates:
• The proposed linear model with equivalent linearised

damping coefficient gives the same normalised displace-
ment response for all free-decay tests regardless of initial
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Fig. 10. Comparison of normalised displacement between numerical and
experimental results.

displacements. The linear model shows a high correspon-
dence to the −8cm free-decay test, since Cld is optimised
at this initial condition. However, this linear model cannot
fit the −3cm and −18cm free-decay tests. To gain a
more accurate PAWEC motion prediction, the equivalent
linearised damping coefficient should be optimised at
each initial displacement of free-decay tests.

• Compared to the linear model, the non-linear model
represented in Eqs. (32) and (33) fits the experimental
data well with a wide range initial displacements. As
shown in Fig. 10, the linear and non-linear models give
almost the same results as the experimental data for the
free-decay test initialised at −8cm. Furthermore, for the
−3cm and −18cm free-decay tests, the non-linear model
maintains a high correspondence to the experimental
data, whilst the correspondence between the linear model
simulations and the free-decay tests varies according to
initial displacements. This is to be expected since the
non-linear model in terms of the fluid viscous and Tustin
friction corresponds closely with the non-linear behaviour
of the experimental tank data, whilst the linearised model
is only valid for small perturbations around the chosen
displacement datum or equilibrium.

For the −3cm, −8cm and −18cm free-decay tests, the
dissipated power defined in Eqs. (41), (42),(43) and (45) are
compared in Fig. 11, which illustrates that:

• For the −3cm free-decay test, the Coulomb friction force
dissipates most power. Only a small amount power is
consumed by the Stribeck, damping and viscous forces.

• For the −8cm free-decay test, the Coulomb and fluid
viscous forces consume the main part of power and the
rest is dissipated by the damping friction force.

• For the −18cm free-decay test, the fluid viscous force
uses most of power and the rest is dissipated by the
Coulomb and damping friction forces. From the view-
point of power dissipation, the influence of the Stribeck
friction force can be ignored in this test.

• From the viewpoint of the normalised displacement re-
sponse, the Stribeck friction force is important to damp
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the buoy back to its equilibrium point when the velocity
is small. This is illustrated by the −3cm free-decay test
results and shown in Fig. 10.

The influence of the dissipative forces on the PAWEC
dynamics are studied in terms of the normalized displacement
response and power dissipation, shown in Figs. 10 and 11. To
evaluate the model-data matching of the normalised displace-
ment, a goodness of matching Gm is defined by the NMSE
cost-function as:

Gm = 1−
∥∥∥∥dtt(t)− dnm(t)

dtt(t)− d̄tt(t)

∥∥∥∥2
2

, (49)

where dtt(t) and dnm(t) are the normalised tank test displace-
ment and the corresponding non-linear model simulation.

The free-decay tests are conducted with a wide range of
initial displacements from −2cm to −20cm. The goodness
of matching of the non-linear model is shown in Table I. The
non-linear model simulation results fit well with the free-decay
tests, with a goodness of matching over 0.95. Therefore, it is
concluded that the proposed non-linear model represents the
1/50 scale prototype dynamics accurately for a wide range of
free-decay tests.

V. CONCLUSION

A non-linear model is proposed to represent the PAWEC
dynamics by considering the fluid viscous and mechanical
friction forces. A 1/50 scale heaving PAWEC prototype has
been constructed for model verification and the non-linear
model simulation results fit the experimental data to a high
extent (Gm > 0.95). Thus Eqs. (32) and (33) provide a
straightforward and accurate non-linear representation for the
PAWEC dynamic modelling and control system design.

The non-linear influence of the Coulomb, Stribeck, damping
and fluid viscous forces on the PAWEC dynamics is investi-
gated in terms of normalised displacement response and power
dissipation, shown in Figs. 10 and 11. For a wide variety of
free-decay tests, the modelled lumped non-linear force fits the

experimental data well and the normalised modelling error
is within 5% (see Table I). Thus the proposed model of the
lumped non-linear force in Eq. (30) can represent the non-
linear phenomena of the 1/50 prototype for free-decay tests.
For the PAWEC oscillation under wave excitation, the validity
of Eq. (30) needs more numerical and experimental study. It is
understood that for the scaled system the mechanical friction
effect can be proportionally greater than that for the full size
PAWEC system. However, the effect of the non-linear fluid
viscous force will still be significant in the full scale system
for which this approach will still be of considerable value.

One main drawback of the proposed model is that the input
is the wave excitation force rather than incident waves. The
wave excitation force is actually unmeasurable whilst waves
are measurable. Ongoing work focuses on the system iden-
tification of the wave excitation force to derive a non-linear
wave-to-motion model of the PAWEC system. The parameters
may drift over time and can thus be considered as an incipient
fault effect either considered together or individually. An on-
line machine learning technique together with fault tolerant
control is to be used for drift compensation (by updating the
PAWEC model).

ACKNOWLEDGMENT

B. Guo and S. Jin thank the China Scholarship Council
and the University of Hull for joint scholarships. Thanks are
expressed to Dr Stuart McLelland and Mr Brendan Murphy
of the School of Environmental Sciences for the help and
supervision in using the Hull University wave tank. Sincere
thanks are expressed to the reviewers and the editor for
their constructive comments which are useful and helpful for
improving this paper to current quality.

REFERENCES

[1] A. d. O. Falcao, “Wave energy utilization: A review of the technologies,”
Renew. Sust. Energ. Rev., vol. 14, no. 3, pp. 899–918, 2010.

[2] A. Babarit, J. Hals, M. Muliawan, A. Kurniawan, T. Moan, and
J. Krokstad, “Numerical benchmarking study of a selection of wave
energy converters,” Renew. Energ., vol. 41, pp. 44–63, 2012.

[3] B. Drew, A. Plummer, and M. N. Sahinkaya, “A review of wave energy
converter technology,” P. I. Mech. Eng. A-J. Pow., vol. 223, no. 8, pp.
887–902, 2009.

[4] T. Thorpe, “An overview of wave energy technologies: status, perfor-
mance and costs,” Wave power: moving towards commercial viability,
vol. 26, pp. 50–120, 1999.

[5] A. Clément, P. McCullen, A. Falcão, A. Fiorentino, F. Gardner, K. Ham-
marlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini et al., “Wave
energy in europe: current status and perspectives,” Renew. Sust. Energ.
Rev., vol. 6, no. 5, pp. 405–431, 2002.

[6] P. Ricci, J. Lopez, M. Santos, J. Villate, P. Ruiz-Minguela, F. Salcedo,
and A. d. O. Falcao, “Control strategies for a simple point-absorber
connected to a hydraulic power take-off,” in Proc. EWTEC, 2009, pp.
7–10.

[7] Y. Li and Y.-H. Yu, “A synthesis of numerical methods for model-
ing wave energy converter-point absorbers,” Renew. Sust. Energ. Rev.,
vol. 16, no. 6, pp. 4352–4364, 2012.

[8] H. Eidsmoen, “Simulation of a slack-moored heaving-buoy wave-energy
converter with phase control,” Division of Physics, NTNU, Trondheim,
Norway, Tech. Rep., 1996.

[9] D. Son, V. Belissen, and R. W. Yeung, “Performance validation and
optimization of a dual coaxial-cylinder ocean-wave energy extractor,”
Renew. Energ., vol. 92, pp. 192–201, 2016.

[10] G. Bacelli, R. G. Coe, D. Patterson, and D. Wilson, “System identifi-
cation of a heaving point absorber: Design of experiment and device
modeling,” Energies, vol. 10, no. 4, p. 472, 2017.



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 9

[11] J. Morison, J. Johnson, and S. Schaaf, “The force exerted by surface
waves on piles,” J. Pet. Technol., vol. 2, no. 05, pp. 149–154, 1950.

[12] O. T. Gudmestad and G. Moe, “Hydrodynamic coefficients for calcula-
tion of hydrodynamic loads on offshore truss structures,” Mar. Struct.,
vol. 9, no. 8, pp. 745–758, 1996.

[13] T. Sarpkaya, “Force on a circular cylinder in viscous oscillatory flow at
low keulegan–carpenter numbers,” J. Fluid Mech., vol. 165, pp. 61–71,
1986.

[14] A. Tustin, “The effects of backlash and of speed-dependent friction on
the stability of closed-cycle control systems,” Journal of the Institu-
tion of Electrical Engineers-Part IIA: Automatic Regulators and Servo
Mechanisms, vol. 94, no. 1, pp. 143–151, 1947.

[15] J. Falnes, Ocean waves and oscillating systems: linear interactions
including wave-energy extraction. Cambridge University Press, 2002.

[16] F. Fusco and J. V. Ringwood, “Hierarchical robust control of oscillating
wave energy converters with uncertain dynamics,” IEEE Trans. Sust.
Energ., vol. 5, no. 3, pp. 958–966, 2014.

[17] J. N. Newman, “The exciting forces on fixed bodies in waves,” Journal
of Ship Research, vol. 4, pp. 10–17, 1962.

[18] M. Greenhow and S. White, “Optimal heave motion of some axisym-
metric wave energy devices in sinusoidal waves,” Appl. Ocean Res.,
vol. 19, no. 3-4, pp. 141–159, 1997.

[19] W. Cummins, “The impulse response function and ship motions,” DTIC
Document, Tech. Rep., 1962.

[20] T. F. Ogilvie, “Recent progress toward the understanding and prediction
of ship motions,” in 5th Symposium on naval hydrodynamics, vol. 1.
Bergen, Norway, 1964, pp. 2–5.

[21] A. Babarit and G. Delhommeau, “Theoretical and numerical aspects of
the open source bem solver nemoh,” in Proc. EWTEC, 2015.

[22] R. Taghipour, T. Perez, and T. Moan, “Hybrid frequency–time domain
models for dynamic response analysis of marine structures,” Ocean Eng.,
vol. 35, no. 7, pp. 685–705, 2008.

[23] T. Perez and T. I. Fossen, “A matlab toolbox for parametric identification
of radiation-force models of ships and offshore structures,” Modeling,
Identification and Control, vol. 30, no. 1, p. 1, 2009.

[24] Z. Yu and J. Falnes, “State-space modelling of a vertical cylinder in
heave,” Appl. Ocean Res., vol. 17, no. 5, pp. 265–275, 1995.

[25] E. Kristiansen, Å. Hjulstad, and O. Egeland, “State-space representation
of radiation forces in time-domain vessel models,” Ocean Eng., vol. 32,
no. 17, pp. 2195–2216, 2005.

[26] J. V. Wehausen, “Causality and the radiation condition,” J. Eng. Math.,
vol. 26, no. 1, pp. 153–158, 1992.

[27] S.-Y. Kung, “A new identification and model reduction algorithm via
singular value decomposition,” in Proc. Asilomar Conf. on circuits,
systems and computers, 1978, pp. 705–714.

[28] M. Safonov and R. Chiang, “A schur method for balanced model
reduction,” in Proc. ACC. IEEE, 1988, pp. 1036–1040.

[29] J. V. Ringwood, G. Bacelli, and F. Fusco, “Energy-maximizing control of
wave-energy converters: the development of control system technology
to optimize their operation,” IEEE Contr. Syst. Mag., vol. 34, no. 5, pp.
30–55, 2014.

[30] B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, “A survey of
models, analysis tools and compensation methods for the control of
machines with friction,” Automatica, vol. 30, no. 7, pp. 1083–1138,
1994.

[31] B. Armstrong, “Friction: Experimental determination, modeling and
compensation,” in Proc. IEEE Int. Conf. Robot. Autom. IEEE, 1988,
pp. 1422–1427.

[32] L. Marton and B. Lantos, “Modeling, identification, and compensation
of stick-slip friction,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.
511–521, 2007.

Bingyong Guo graduated at Northwestern Polytech-
nical University with BEng and MSc degrees in In-
formation Countermeasure Technology and Under-
water Acoustics, in 2010 and 2013, respectively. He
is a current PhD student in Electronic Engineering
in the University of Hull. Ongoing research interests
lies in the numerical modelling, experimental veri-
fication and optimal control system design of wave
energy conversion devices.

Ron Patton was born in Peru in 1949. He graduated
at Sheffield University with BEng, MEng and PhD
degrees in Electrical & Electronic Engineering and
Control Systems, in 1971, 1974, and 1980, respec-
tively. He currently holds the Chair in Control &
Intelligent Systems Engineering at Hull University.
He has made a substantial contribution to the field
of modelling and design of robust methods for Fault
Detection and Isolation (FDI) and Fault tolerant
Control (FTC) in dynamic systems as author of 348
papers, including 128 journal papers and 6 books.

His research interests are: Robust, multiple-model and de-centralized control
strategies for FTC systems and he has a growing interest in FTC methods for
renewable energy. He is Life Fellow of IEEE, Senior Member of AIAA and
Fellow of the Institute of Measurement and Control.

Siya Jin received her B.Eng., M.Eng. degrees in
Aeronautics School from the Northwestern Poly-
technical University, Xian, P.R. China, in 2012 and
2015, respectively. She began her Ph.D. in Control
& Intelligent Systems Engineering Research Group,
University of Hull (UoH), Hull, UK, since 09/2015
sponsored by China Scholarship Council (CSC) and
UoH joint scholarships. Her current work focuses
on numerical simulations and overall mathematical
model development for wave energy convertors.

James Gilbert completed a bachelors degree in
control and robotics at the University of Hull in
1986 and proceeded to complete a PhD in Non-linear
control of a robot in 1989 at the same institution.
Since 1989 he has been a Lecturer, Senior Lecturer
and Professor in Engineering at the University of
Hull. His research has focused on non-linear control,
instrumentation and energy harvesting systems.

Dan Parsons is a Professor in Process Sedimentol-
ogy at the University of Hull, the Director of the
University Research Institute on Energy & Envi-
ronment. He completed his PhD at the University
of Sheffield in 2004 and worked on Post-Doctoral
post at the University of Leeds. Dan spent a year at
the University of Illinois, USA, before returning to
Leeds in 2010. In 2011 Dan moved to the University
of Hull, where he is actively researching in several
areas related to fluvial, estuarine, coastal and deep
marine environments, both looking into the impact

of climate change of these sensitive systems and also using information
gleaned on modern systems to aid interpretations of the geological record.


