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A B S T R A C T   

Gasification, a highly efficient method, is under extensive investigation due to its potential to convert biomass 
and plastic waste into eco-friendly energy sources and valuable fuels. Nevertheless, there exists a gap in 
comprehension regarding the integrated thermochemical process of polystyrene (PS) and polypropylene (PP) and 
its capability to produce hydrogen (H2) fuel. In this study a comprehensive process simulation using a quasi- 
equilibrium approach based on minimizing Gibbs free energy has been introduced. To enhance H2 content, a 
water-gas shift (WGS) reactor and a pressure swing adsorption (PSA) unit were integrated for effective H2 
separation, increasing H2 production to 27.81 kg/h. To investigate the operating conditions on the process the 
effects of three key variables in a gasification reactor namely gasification temperature, feedstock flow rate and 
gasification pressure have been explored using sensitivity analysis. Furthermore, several machine learning 
models have been utilized to discover and optimize maximum capacity of the process for H2 production. The 
sensitivity analysis reveals that elevating the gasification temperature from 500 ◦C to 1200 ◦C results in higher 
production of H2 up to 23 % and carbon monoxide (CO). However, generating H2 above 900 ◦C does not lead to a 
significant upturn in process capacity. Conversely, an increase in pressure within the gasification reactor is 
shown to decrease the system capacity for generating both H2 and CO. Moreover, increasing the mass flow rate of 
the gasifying agent to 250 kg/h in the gasification reactor has shown to be merely productive in process capacity 
for H2 generation, almost a 5 % increase. Regarding pressure, the hydrogen yield decreases from 22.64 % to 17.4 
% with an increase in pressure from 1 to 10 bar. It has been also revealed that gasification temperature has more 
predominant effect on Cold gas efficiency (CGE) compared to gasification pressure and Highest CGE Has been 
shown by PP at 1200 ◦C. Among the various machine learning models, Random Forest (RF) model demonstrates 
robust performance, achieving R2 values exceeding 0.99.   

1. Introduction 

The exploration of alternative and environmentally sustainable en-
ergy sources has gained significant attention from researchers due to the 
growing energy demand, global warming, and the increased consump-
tion of fossil fuels [1]. To eliminate the heavy dependency on conven-
tional fuels, there is a pressing need for the development of renewable 
and environmentally friendly fuel, and energy production techniques. 
Pyrolysis and gasification emerge as promising technologies in meeting 
these dual criteria, owing to their versatile application with diverse 
carbon-based resources [2]. 

Plastic has mainly replaced texture, wood, and ceramic in a variety of 

industries due to low production cost and durability [3]. From 270 
million metric tons (MMT) in 2000, global plastic production increased 
to 367 MMT in 2020, and predictions indicate that this upward trend is 
likely to be sustained, reaching 445 MMT by 2025 and 590 MMT by 
2050 [4]. The utilization of plastics, despite their widespread demand, 
has been associated with potential environmental hazards due to their 
non-biodegradable nature [5]. The inability of plastics to decompose 
naturally has led to the aggregation of plastic waste in various ecosys-
tems, leading to adverse effects on the environment [6]. These effects 
include the pollution of water resources and soil, the endangerment of 
wildlife, and the disruption of terrestrial and aquatic ecological balance 
leading to a significant disadvantage of plastic usage [7]. It has been 
shown that a notable amount of plastic waste generated globally, 
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approximately 70 %, is expected to be deposited in landfills that have 
limited potential for recycling [8]. Typical methods like burning are 
insufficient in addressing the disposal needs of waste plastics due to their 
technical limitations [9]. 

Polystyrene (PS) and PS-based plastics, despite their widespread 
usage, around 9 % in the European Union, have a 0.9 % recycling rate 
and recycling these specific types of plastics through the mechanical 
process would cause the polymer characteristics to deteriorate 
throughout the reprocessing, leading to a decrease in the overall quality 
of the recycled products [10,11]. Polypropylene (PP) significantly con-
tributes to the plastic waste crisis, accounting for 29.6 % of all plastic 
waste demand [12]. Additionally, the recycling rate for PP is a mere 0.6 
%, highlighting the potential environmental hazards associated with this 
material [10]. 

Thermochemical conversion of plastics emerges as a promising 
method for recycling plastics and waste management due to their high 
carbon (C) content and significant calorific value. Furthermore, the 
method offers the potential to recover heat and produce electricity using 
an internal combustion engine (ICE), making it suitable for decentral-
ized power generation [13]. The three primary forms of thermochemical 
conversion encompass combustion, pyrolysis, and gasification [14]. The 
pyrolysis process of plastic has the potential to generate oil, char, and 
gas, while plastic gasification mainly yields syngas rich in H2 [15,16]. 
Previous studies have demonstrated that the co-pyrolysis of PP and PS 
exhibits a thermal cracking enhancement effect, resulting in synergistic 
improvements in the production yields of H2, light hydrocarbons (HC), 
and overall syngas compared to their pyrolysis processes [17,18]. 
Gasification is noteworthy as it converts plastic waste into synthetic gas, 
a potential energy source, thereby demonstrating a commitment to 
sustainability. Additionally, gasification diminishes dependence on 
traditional waste disposal methods, steering nations closer to a circular 
economy [19]. Moreover, as fossil fuels diminish and their environ-
mental consequences become more evident, there is a growing imper-
ative to explore substitute energy sources like hydrogen. This element is 
highly valued for its environmentally friendly combustion process. 
Additionally, hydrogen derived from the gasification of plastics and 
biomass possesses a lower heating value. Its combustion results in the 
production of only water, rendering it a versatile and economically 
efficient fuel [20]. Numerous articles have emphasized the economic 
benefits of utilizing fluidized bed gasification in the thermochemical 
conversion of waste. Studies have confirmed its economic feasibility 
even when considering dual fluidized bed gasification. These results 
imply that fluidized bed gasification technologies present promising 
economic opportunities for hydrogen production [21]. In fluidized bed 
gasification systems, a bed material is employed to facilitate the fluid-
ization of biomass within the reactor. The augmentation of fluidization 

enhances the homogeneous distribution of materials and heat, and im-
proves reaction efficiency. Compared to fixed-bed and plasma gasifica-
tion systems, fluidized bed gasification stands out with its high 
efficiency, uniform temperature distribution, and economic advantages 
[22,23]. 

Syngas, composed primarily of H2, CO, CH4, and CO2, demonstrates a 
robust association between its yield and composition and multiple 
operational variables. These factors encompass the characteristics of the 
feedstock, the composition and ratio of feedstock employed, reaction 
temperature, and the specific gasifying agent utilized [18]. Notably, H2 
possesses dual significance as a high energy carrier and a vital feedstock 
within the chemical industry. Its versatile applications include the 
synthesis of valuable products through hydrogenation and hydrotreat-
ment processes, contributing to its pivotal role in various industrial 
contexts [9]. In the past few years, numerous investigations have been 
undertaken to anticipate the optimal operational parameters and per-
formance of systems, relying on diverse gasification agents including air 
[24,25], pure steam [26–28], mixtures of air and steam [29,30], oxygen 
and steam [31], and carbon dioxide [18]. 

In recent studies, the main focus has been directed towards the 
thermomechanical conversion of biomass or mixed plastics and biomass 
when employed as a feedstock [32,33]. For instance, in gasification of 
mixed rice husk and groundnut shell and palm oil decanter cake and 
alum sludge, reducing feedstock sizes enhances specific surface area, 
thereby promoting higher rates of heating and gasification, ultimately 
leading to increased yields of H2 and improved efficiencies in carbon 
conversion [34,35]. Zallaya et al. [36] have demonstrated that elevating 
the gasification temperature during steam gasification of polyethylene 
(PE) and polyethylene terephthalate (PET) leads to a reduction in H2 
content and an increased presence of CH4 in the resulting gas phase. 
Yang et al. [37] compared the performance of ANN, SVM and MLR using 
1855 data points, on coal and biomass gasification, highlighting the 
accuracy of ANN and SVM compared to MLR. 

In a comparative study conducted by Mojaver et al. [38], it was noted 
that biomass gasification leads to greater CO2 emissions in comparison 
with different plastic materials. The co-utilization of plastic and biomass 
presents plausible environmental risks. However, it’s crucial to 
emphasize that the use of biomass is constrained, especially in terms of 
land availability [39]. Moreover, the existing research concerning the 
pyrolysis and co-gasification of PS and PP plastics is limited, particularly 
in terms of investigating the ideal operating conditions for generating 
hydrogen-rich syngas. The efficacy of the gasification process is mainly 
influenced by a range of process parameters, including the type of 
biomass, flow rate of the gasifying agent, elemental composition of the 
biomass, configuration of the gasifier, nature of the gasifying agent, 
operating temperature, pressure, and the ratio of fuel to feedstock [40]. 

Nomenclature 

ANN Artificial neural network 
CART Classification and regression tree 
CGE Cold gas efficiency 
FC Fixed carbon 
GBR Gradient boosting regression 
GI Gini index 
GP Gaussian process 
HC Light hydrocarbons 
HHV Higher heating value (MJ/kg) 
HTS High-temperature shift 
KNN K-nearest neighbour 
LHV lower heating value (MJ/kg) 
LTS Low-temperature shift 
ML Machine learning 

np Numpy 
NRMSE Normalized root mean square error 
pd Pandas 
PET Polyethylene terephthalate 
PSA Pressure swing adsorption 
PS Polystyrene 
PP Polypropylene 
QET Quasi-equilibrium temperature 
R2 Regression co-efficient 
RF Random Forest 
RSM Response surface methodology 
SVM Support vector machine 
SVR Support vector regression 
VM Volatile matter 
WGS Water gas shift  
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Machine learning (ML) has become increasingly popular due to its 
effectiveness in handling huge quantities of data and facilitating pre-
dictions and optimization [41]. The adoption of ML has garnered 
considerable recognition for its significant benefits in the area of data 
analysis, enabling the optimization of thermomechanical conversion 
processes for various materials while uncovering complicated data 
patterns rather than conventional time-consuming techniques and 
empirical approaches [42–44]. Furthermore, conventional methods of 
optimization face the ongoing challenge of accurately predicting system 
performance when multiple operating parameters vary simultaneously, 
and they struggle to forecast gas product distribution and process per-
formance during the blending of two distinct feedstocks [45]. A signif-
icant portion of the recent scientific investigations associated with the 
utilization of ML techniques in thermomechanical conversion processes 
has primarily focused on the optimization of biomass gasification or 
pyrolysis [37,46–48]. Kim et al. [49] utilized ML techniques, specifically 
Random Forest (RF), Artificial Neural Network (ANN) and Support 
Vector Machine (SVM) using 484 data points, to forecast the production 
of syngas in fluidized bed reactors, focusing on the utilization of wood 
and agricultural residue as combined feedstock. ANN and RF exhibited a 
remarkable level of accuracy in their individual investigations compared 
to SVM, shedding light on crucial variables within the gasification 
process. Fang et al. [50] utilized Monte Carlo approach and RF for 
optimizing fixed bed air gasification with wood as a feedstock. The RF 
model indicated a significant impact of particle size, reaction tempera-
ture, and water content on the syngas yield. Likewise, better perfor-
mance by ANN has been demonstrated by the study conducted by Hai 
et al. [51] on optimization of biomass gasification for electricity gen-
eration to predict optimal process condition compared to SVM. 

Despite the potential benefits that can arise from this approach, a 
limited number of scholarly investigations have examined the critical 
parameters and optimization techniques related to the thermochemical 
conversion of plastic using ML methods. Mojaver et al. [52] undertook 
an investigation focusing on the enhancement of gasification processes 
for polypropylene, polyethylene, polycarbonate, and polyethylene 
terephthalate (PET) plastics using the Taguchi method. The findings 
indicated that the steam-to-plastic fraction, the temperature of gasifi-
cation, and the type of plastic are significant factors influencing the 
production of hydrogen-rich syngas. Moreover, the study highlights a 
notable decrease in CO2 generation with increasing gasification tem-
perature. Ayodele et al. [53] investigate ML modelling for the 
co-gasification of rubber and plastics with the objective of predicting the 
H2 percentage in syngas. The study achieved a remarkably high pre-
diction accuracy of 0.99 by including four specific conditions as input 
variables. In the investigation of pyrolysis oil yield from different types 
of plastic, Cheng et al. [54] utilized ANN, Gaussian Process (GP), and 
Support Vector Machine (SVM) methodologies. The results indicated 
that among these models, ANN and SVM demonstrated superior per-
formance with R-squared values of 0.98 and 0.92, respectively. The 
operating temperature and residence time have been also mentioned as 
key operating parameters. 

These studies lacked comprehensive findings regarding the co- 
gasification of PP and PS plastics, as well as a comprehensive assess-
ment of how the operating conditions influence the outcomes of the 
process. Response surface methodology (RSM) has been used to opti-
mize microwave-assisted co-pyrolysis of PS and PP plastics with a high 
accuracy of 0.99 by Kamireddi et al. [17]. Hence, a lack of reliable in-
formation exists regarding the precise optimization approach for the 
pyrolysis and co-gasification of plastics. Consequently, Additional 
investigation is essential to assess the effectiveness of various ML models 
in the co-pyrolysis and co-gasification of PP and PS plastics. The deter-
mination of operational parameters plays a pivotal role in attaining the 
highest H2 Production. Nonetheless, this task poses a significant chal-
lenge owing to the nonlinear characteristics of the process, making it 
difficult to accomplish using conventional approaches. Hasanzadeh 
et al. [55] enhance the gasification of PE plastic using RSM. The results 

have shown the RSM accuracy in predicting the syngas yield with RMSE 
smaller than 1. In this investigation, the foremost intention is to design a 
comprehensive steady state model utilizing the ASPEN Plus V12.1 
simulation program. The model is designed to depict the pyrolysis and 
steam co-gasification processes of two plastics, namely PP and PS, in a 
ratio of 2:3 (40 % PP and 60 % PS). The highest level of cooperative 
enhancement in H2 generation was observed when co-gasification 
blends of PP and PS containing 40 % PP composition [18]. This pro-
cess holds a significant promise for both waste plastic management and 
the generation of hydrogen-rich syngas. Through sensitivity analysis, 
the study examined the effects of operational variables, encompassing 
the temperature and pressure within the gasification unit, and the flow 
rate of steam, which influenced the composition of the generated syngas. 
This research also developed inclusive ML models that effectively opti-
mize the co-gasification processes of PS and PP plastics. The dataset 
employed in this study has been obtained from the Aspen. Furthermore, 
the analysis has been conducted on various models used by previous 
studies to identify the most optimal model capable of clarifying the in-
fluence of input factors on the process’s overall outcome. 

2. Machine learning models 

2.1. Random Forest (RF) 

RF utilizes a collection of decision trees, making it applicable for 
both regression and classification tasks [56,57]. This approach involves 
generating multiple subsamples from a dataset consisting of n input 
variables and m associated features, and each tree in the RF is trained on 
one of these subsamples [49]. The subsamples are further divided into 
in-bag and out-of-bag data, with a ratio of 0.67:0.33 [58,59]. Out-of-bag 
data is used as an expansion of the decision tree without a pruning 
approach, while in-bag data has been used for the regression model 
[56]. The RF method also employs a preventive approach against 
overfitting compared to individual decision trees through the imple-
mentation of bagging techniques, while achieving this by training 
multiple decision trees on randomly selected subsamples from the 
training data (bagging techniques) and having limited tree depth [60]. 

2.2. Artificial Neural Network (ANN) 

ANN is a computational model inspired by the human brain. It finds 
widespread application in various domains, including signal processing, 
and simulating processes [47]. ANN typically comprise a minimum of 
three layers and the initial layer establishes a connection with the input 
dataset, while subsequent layers are obtained through the process of 
multiplying a weight matrix and incorporating a bias term [61]. Various 
activation functions are then employed to iteratively adjust the weight 
and bias to reduce the sum square difference (error) between the pre-
dicted model and real data observed from a known set of training data 
[49]. In the context of thermochemical conversion where the relation-
ship among input parameters, such as reactor temperature and pressure, 
and process output is quite intricate, ANN can effectively model the 
process since it does not require to understand the underlying mecha-
nism [62]. The model in this investigation consists of a single hidden 
layer with ten neurons, while the input layer has a dimension of three, 
corresponding to the number of variables. 

2.3. Gradient Boosting Regression (GBR) 

GBR has been traditionally found beneficial in classification tasks, 
yet its efficacy in regression analysis has attracted significant attention 
because of its exceptional precision [63,64]. It employs a boosting 
strategy in combination with gradient descent to train the datasets, and 
the initial GBR model is optimized by following the negative gradient 
direction of the primary model [65]. Then, the tree is developed in each 
step using an average of output values as an input to calculate the error 
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of the tree and the process continues until there is no considerable res-
idue [66]. Like RF, GBR is a tree-based approach to fit the data for 
regression techniques, and the number of decision trees and maximum 
depth are crucial factors [67]. 

2.4. Classification and Regression Tree (CART) 

CART algorithm represents a combined approach of the classification 
decision and regression tree algorithms [68]. The algorithm partitions 
the original dataset into two distinct subsets by utilizing either the Gini 
index (GI) or the towing indices, and these indices serve as indicators of 
the impurity level present within the data [69]. The smaller value of GI 
demonstrates the high purity of nodes, and the process stops when 
reaching a specific tree depth, minimum number of data points in a 
node, and high level of purity [70]. 

2.5. K-nearest neighbour (KNN) 

KNN algorithm is a known technique in the field of ML. It possesses 
several notable strengths, including its ability to deliver accurate pre-
dictions, robustness against outliers, and efficient training speed [71]. 
This approach is based on the nearest neighbour and the distance which 
can be determined by the below criteria [72]. 

Euclidean distance=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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By utilizing the distances of the k nearest samples to the target 
sample and computing their weighted average, it becomes possible to 
figure out the estimated value of the sample, which can then be 
employed in determining the ultimate prediction value [73]. 

2.6. Support Vector Regression (SVR) 

SVR is an enhanced algorithm derived from the Support Vector 
Machine (SVM) framework, specifically designed to address regression 
tasks with a powerful binary classification model that operates as a 
linear classifier, distinguishing between two classes by maximizing the 
margin in the feature space [74]. It employs the nonpragmatic regres-
sion model to ascertain the distance to the adjacent data points, 
commonly referred to as support vectors [75]. To address the challenges 
posed by non-linearly separable problems, SVR employs the utilization 
of kernel function pairs to facilitate the mapping of samples from lower 
latitudes to higher latitudes [74]. This approach enables SVR to effec-
tively handle complex data distributions that do not exhibit linear 
separability. The kernel functions ‘rbf’, ‘linear’, and ‘poly’ are frequently 
employed in various computational tasks [75]. 

3. Methodology 

3.1. Process simulation 

The plastics gasification system was represented in a flowsheet, as 
depicted in Fig. 1. The initial stage of the gasification procedure, 
involving drying and pyrolysis, was simulated. To enhance H2 yield and 
reduce CO concentration, two WGS units were implemented. Further-
more, the separation unit block was examined, initially focusing on the 
PSA unit. Fig. 2 represents the schematic of the plastic gasification 
system. 

The gasification process was modelled with the following assump-
tions, which were taken into consideration: 

Fig. 1. Aspen plus flowsheet evaluated in this study.  

Fig. 2. The diagram illustrating the process of plastic gasification for 
hydrogen production. 
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• The process operates under steady-state conditions and isothermal. 
• Drying and pyrolysis reactions occur immediately, resulting in vol-

atile products primarily composed of H2, CO2, CH4, CO, and H2O.  
• The char produced includes only carbon and ash.  
• All gases involved in the process exhibit ideal behaviour.  
• Negligible tar formation attributed to operating at elevated 

temperatures. 

Table 1 presents a comprehensive inventory of components 
employed in the simulation model. The characterization of plastics is 
achieved through both ultimate and proximate analyses, and plastics are 
categorized as nonconventional elements. Detailed specifications of the 
feedstock utilized are documented in Table 2. The HCOALGEN and 
DCOALIGT models play a crucial role as they are utilized to precisely 
determine not only the enthalpy but also the density of plastics and ash. 
The Peng-Robinson equation of state with Boston- Mathias (PR-BM) 
modification due to accuracy in high-temperature processes including 
gasification is used to determine the thermodynamic characteristics of 
the conventional material in Aspen Plus. 

To simulate the drying process of PS plastic and reduce the moisture 
content, the RSTOIC reactor model is employed. Control over the drying 
operation is established by incorporating a FORTRAN statement within 
the calculator block. After the drying process, the moisture content is 
removed and isolated through a separation step using a separator. The 
resulting dried plastic is then subjected to preheating at a temperature of 
700 ◦C via a heater block. The other stream (PP) undergoes direct pre-
heating to the same temperature using a separate heater block. It is 
worth noting that Thermal degradation of PP and PS plastics occur be-
tween 563 ◦C and 763 ◦C [18]. In the subsequent step, two RYIELD re-
actors are employed to facilitate the pyrolysis of the dried plastics into 
its constituent components, leading to the formation of primary outputs 
such as H2O, H2, C, O2, N2, S, and ash. The FORTRAN instruction is 
specifically designed to define the distribution of yield for plastics into 
the resulting products [78]. 

Following the pyrolysis process, the resulting streams are combined 
to form the feed for the gasifier. Subsequently, the stream containing the 
pyrolysis products undergoes a conversion process within an RGIBBS 
(GASIFI) reactor, where the components are transformed into a mixture 
of gas and solid utilizing a gasification agent, namely steam. The gasifier 
was simulated using the quasi-equilibrium temperature (QET) approach, 

which is a highly effective method for modelling fluidized-bed gasifi-
cation. This approach offers a precise characterization of the syngas 
composition [1]. The reactions taking place inside the gasification 
reactor, as detailed in Table 3, are carried out at their corresponding 
QET values, not at the reactor’s real temperature. A CYCLONE unit 
separates the gas products from the char in the subsequent stage. Table 4 
provides a summary of the blocks utilized within this simulation study. 

The syngas generated from the gasifier is subjected to the water-gas 
shift reaction, denoted as Reaction R5. This reaction occurs in two 
distinct reactors: the high-temperature shift (HTS) reactor and the low- 
temperature shift (LTS) reactor. The utilization of these two reactors 
stems from the fact that the water-gas shift reaction is moderately 
exothermic. In accordance with Le Chatelier’s principle, when temper-
atures are increased, the reaction tends to favour the reverse direction, 
impeding full conversion. While the HTWGS reactor facilitates the initial 
conversion of CO due to its fast kinetics, it still falls short of surpassing 
the equilibrium point. Therefore, the LTWGS reactor becomes crucial for 
achieving additional conversion [1,29]. 

The gas exiting these two reactors primarily consists of H2, CO2, N2, 
and small quantities of CH4, CO, and O2. To obtain pure H2, it becomes 
necessary to separate these gases. Therefore, the gas stream following 
the WGS reactors is directed into a PSA system to achieve the desired 
purification and obtain pure H2. The H2 yield is determined using the 
following equation [84]: 

Hydrogen yield=
Hydrogen mass flow in gasifier reactor output

(
kg
h

)

Feedstock mass flow (dry basis)
(

kg
h

) (4)  

3.2. Performance parameter 

Cold gas efficiency (CGE) stands as a key metric for assessing the 
gasifier’s effectiveness in adapting to alterations in the operational pa-
rameters of the gasification process [85]. It is calculated by determining 

Table 1 
The list of components.  

Component ID Type Component Name 

H2 Conventional Hydrogen 
N2 Conventional Nitrogen 
O2 Conventional Oxygen 
CH4 Conventional Methane 
CO2 Conventional Carbon dioxide 
C Solid Carbon-Graphite 
H2O Conventional Water 
CO Conventional Carbon monoxide 
S Conventional Sulfur 
Polypropylene (PP) Non-conventional – 
Polystyrene (PS) Non-conventional – 
Ash Non-conventional –  

Table 2 
The proximate and ultimate analyses conducted on the feedstocks employed in this investigation.  

Plastic Proximate content Ultimate Analysis HHVc (MJ/kg) Ref  

VMa FCb ASH Moisture H N C S O 

PP 96.48 2.63 0.89 0 13.99 0.09 85.03 – – 46.79 [76] 
PS 98.31 0.8 0.1 0.79 5.74 – 93.76 – 0.5 41.1 [77]  

a Volatile matter. 
b Fixed carbon. 
c Higher heating value. 

Table 3 
Primary heterogeneous and homogeneous gasification reactions [79–84].  

Reaction 
No. 

Reaction Reaction name Heat of reaction 
(MJ kmol− 1) 

R1 C + O2 →CO2 Carbon total combustion − 394 
R2 C + 0.5 O2 → CO Carbon partial 

combustion 
− 111 

R3 CO + 0.5 O2 →CO2 Carbon monoxide partial 
combustion 

− 283 

R4 C + H2O ⇌ CO + H2 Water-gas 131 
R5 CO + H2O ⇌ CO2 +

H2 

Water-gas shift − 41.2 

R6 C + CO2 ⇌ 2CO Boudouard 172 
R7 C + 2H2 ⇌ CH4 Hydrogasification − 74.8 
R8 CO + 3H2 ⇌ CH4 +

H2O 
Methanation − 206 

Pyrolysis 
R9 Dry feedstock + Heat 

→ Char + Volatiles 
Thermal decomposition NAa 

NAa = Not Available. 
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the ratio of syngas energy to feedstock energy as shown in Eq. (5): 

CGE=
Msyngas x LHVSYNGAS

MFeedstock x LHVFeedstock
(5)  

where M represents the mass flow rate, and LHV signifies the lower 
heating value. The Lower Heating Value (LHV) of the feedstock is ob-
tained from prior studies conducted by Li et al. [18]. The LHV of syngas 
signifies the energy released during the complete oxidation of syngas, 

omitting the heat related to water vaporization in combustion products. 
This specific value for the LHV of syngas can be accessed in the stream 
characteristics section of Aspen PLUS. 

3.3. Machine learning methodology 

The field of ML encompasses a diverse array of algorithmic ap-
proaches, which can be broadly classified into four distinct categories 
including supervised, semi-supervised, unsupervised, and reinforced 
learning [66,86]. Supervised learning is an approach to ML in which a 
model is trained to learn the mapping between input data and the 
associated outputs. This is achieved by providing the model with 
input-output pairs, which it uses to iteratively adjust its internal pa-
rameters and improves its ability to accurately predict outputs for new 
inputs [86]. Despite the numerous advantages of machine 
learning-driven models, a dearth of comparative analysis persists 
regarding H2 production from PP and PS plastics. Fig. 3 illustrates a 
systematic machine learning-driven approach aimed at optimizing the 
co-gasification of two plastic materials through the utilization of mul-
tiple techniques. 

3.4. Data preparation and dataset compiling 

Previous researchers have identified gasification reactor tempera-
ture, pressure, and mass flow rate of the gasifying agent as the key 
variables that have an important influence on the process product [52, 
87]. In this investigation, the Python programming language has been 
employed to utilize the numpy (np), pandas (pd), and sklearn 

Table 4 
ASPEN Plus flowsheet unit operations description in the developed model.  

Aspen plus 
name 

Block ID Description 

RGibbs GASIFI Gibb’s free energy reactor - controls chemical 
equilibrium of the main reactions (Temperature =
900 ◦C; Pressure = 1 bar) 

Rstoic DRYER Depletes the moisture content of plastic (PS) through a 
drying process (Heat Duty = 0 kJ/h; Pressure = 1 bar) 

Sep SEP1 Extracts water from plastic (PS) through separation  
PSA Obtains pure H2 through extraction 

Heater HEATER1 Raises the temperature of the dried plastic (PS) to 
meet the required temperature in the pyrolysis reactor 
(Temperature = 700 ◦C; Pressure = 1 bar)  

HEATER2 Increases the temperature of the plastic (PP) to meet 
the required temperature in the pyrolysis reactor 
(Temperature = 700 ◦C; Pressure = 1 bar)  

HEATER3 Elevates the temperature of water to achieve the 
steam phase  

HEATER4 Brings the temperature of the recycle steam to the 
required temperature in the HTWGS reactor  

COOLER1 Lowers the temperature of syngas to the prescribed 
level in the HTWGS reactor (Temperature = 400 ◦C)  

COOLER2 Decreases the temperature between HTWGS and 
LTWGS 

RYield DECOMP1 Converts the non-conventional stream (PS) into its 
conventional components (Heat Duty = 0 kJ/h; 
Pressure = 1 bar)  

DECOMP2 Converts the non-conventional stream (PP) into its 
conventional components (Heat Duty = 0 kJ/h; 
Pressure = 1 bar) 

Mixer MIXER Mixes the pyrolysis products 
Cyclone CYCLONE Separates the products of gasification 
REquil HTWGS Simulates the water-gas shift reaction under high- 

temperature conditions  
LTWGS Simulates the water-gas shift reaction under low- 

temperature conditions 
Compr COMP Increases the gas pressure preceding the PSA process  

Fig. 3. ML-based systematic strategy for optimizing co-gasification of two plastics using various techniques, including Neural Networks, Support Vector Regression, 
Random Forest, Gradient Boosting Regression, Classification and Regression Tree, and K-Nearest Neighbours. 

Table 5 
Model validation.  

Plastics Literature data (vol %) This study (vol %) Relative errora 

H2 CO H2 CO H2 CO 

1P4S 16 82 17 77 6.25 6.1 
2P3S 19 79 20 73.7 5.26 6.7 
3P2S 19 76 22.8 70.5 20 7.2 
4P1S 20 72 25.4 67.5 27 6.25 
PP 21 66 27.8 64.7 32.4 1.96 
PS 15 82 15.3 82.5 2 0.97  

a RE = Relative error =
|(Simulation value − Experimental value)|

experimental value
.  
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Fig. 4. The impact of gasification temperature on the syngas composition exiting the gasifier.  

Fig. 5. The impact of gasification pressure on the syngas composition exiting the gasifier.  

Fig. 6. The impact of gasifying agent mass flowrate on the syngas mass flowrate exiting the gasifier.  
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(scikit-learn) libraries. These libraries have been leveraged to develop 
and implement ML methodologies. To ensure a rigorous evaluation, the 
dataset, with 9000 datasets, is divided into two distinct training and test 
sets which is a common approach for ML model developments. The 
datasets were created using Aspen Plus, with a specific focus on the 
sensitivity analysis section, emphasizing key parameters. The chosen 
input variables include temperature, pressure, and steam mass flow rate, 
while the output data comprises molar fractions of H2, CH4, CO2, and 
CO. Specifically, 80 % of the dataset has been allocated for training the 
model, while the remaining 20 % of the dataset has been utilized as a test 
to generate syngas yield predictions. To address the issue of overfitting 
arising from a limited dataset, this study employs a 10-fold 
cross-validation technique to determine the most suitable hyper-
parameters for the test model [88,89]. In detail, the training set is par-
titioned into ten distinct folds, with nine of these folds acting as a new 
training set while the remaining fold is dedicated to validating the data. 
Following the completion of 10 training iterations, each fold underwent 
training and subsequently received evaluation using a set of predefined 
evaluation indicators. Subsequently, the hyperparameters are 

determined based on the mean values of the evaluation metrics obtained 
from the ten iterations. The best hyperparameter configuration is uti-
lized on the complete training dataset, and subsequently, the trained 
model is assessed and tested on the dedicated test dataset. Two evalu-
ation indicators, Regression Co-efficient (R2) and 
Normalized-Root-Mean-Square Error (NRMSE) employed in this paper 
as evaluation indicators, with the objective of discerning the model that 
exhibits the greatest degree of accuracy in its predictions [66,90]. 

R2 = 1 −

∑N
i=1

(
yexp

i − ypred
i

)2

∑N
i=1 (y

exp
i − Y)2 (6)  

NRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
yexp

i − ypred
i

)2

N

√ /

Y (7)  

While yexp
i and ypred

i are the actual and predicted values, Y represents the 
mean of the actual values, and N is the number of samples. A higher 
value of R2 indicates a stronger degree of accuracy in the model’s ability 
to predict data points [91]. NRMSE is an additional metric employed in 
combination with R2 to elucidate the average percentage deviation be-
tween observed values and predictions and low values close to zero in-
dicates high degree of precision in model prediction [92]. 

4. Results and discussions 

4.1. Simulation model validation 

The simulated model using Aspen Plus software was validated and 
evaluated by comparing it with experimental results reported by Li et al. 
[18]. They analysed the co-pyrolysis and CO2 assisted co-gasification of 
PP-PS blends at a temperature of 900 ◦C using a fixed-bed reactor, 
well-suited for handling solid feedstocks, and its configurations provide 
a consistent environment for reactions. In order to validate the model, 
the simulation was performed under the same conditions as the exper-
imental data. It is important to note that while steam was just used as a 
gasifying agent in this study, CO2 was employed as supply gas in the 
gasifier reactor to align with the methodology used in the referenced 
article for validation. Four distinct polypropylene-polystyrene blends 
were employed in the study, characterized by varying PP contents of 20 
%, 40 %, 60 %, and 80 %. These blends were denoted as 1P4S, 2P3S, 
3P2S, and 4P1S, respectively. 

Table 5 illustrates the gas composition of the syngas generated 
through the co-gasification of two mixed plastics with varying ratios. It 
is clear that the model results closely align with the experimental find-
ings for PP and PS. The variance between the results obtained from 
Aspen Plus and the values found in the literature was quantified by 
determining the relative error in the composition of H2 mol %, CO mol 
%. After analysing both the experimental data and the simulations, 
while taking into account the discrepancies noted in Tables 5 and it is 
evident that the model created in software is effective at predicting how 
plastics are converted. Specifically, the H2 percentages range from 2 % 
to 32.4 %, and CO percentages is between 0.97 % and 7.2 %. 

4.2. The effect of gasification temperature on the composition of syngas 

Temperature plays a crucial role in gasification processes as it 
strongly influences the reaction rate. Higher temperatures effectively 
decompose plastics components, leading to increased syngas generation. 
Consequently, the production of syngas generally rises with temperature 
elevation. This can be attributed to the reactions mentioned in Table 3, 
which exhibit significant sensitivity to higher temperatures. Fig. 4 il-
lustrates the relationship between the mole fraction of syngas generated 
by steam gasification of the blended plastics and the gasification tem-
perature, ranging from 500 ◦C to 1200 ◦C. This finding is consistent with 
Le Chatelier’s principle, which asserts that elevated temperatures 

Fig. 7. The impact of temperature and pressure on cold gas efficiency.  

Table 6 
ML Models Comparison and Prediction Performance (training data).  

Model R2 NRSME 

RF 0.9996 0.0054 
ANN 0.9917 0.0263 
GBR 0.9963 0.0176 
CART 0.9985 0.0112 
KNN 0.9985 0.0111 
SVR 0.9977 0.0139  
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encourage the reactants, leading to increased conversion and a shift in 
the equilibrium towards the desired products [52,93]. At lower oper-
ating temperatures, the gasifier output contains both carbon, CH4, and 
CO2. As the temperature increases, carbon undergoes the endothermic 
Boudouard reaction (R6), converting it into CO. CH4, on the other hand, 
experiences exothermic reverse methanation (R8), transforming it into 
H2. Additionally, the temperature increase enhances H2 and CO pro-
duction while consuming more CH4 and carbon, owing to the endo-
thermic water-gas reaction (R4) and exothermic hydrogasification 
reaction (R7). It is worth noting that the H2 yield intensifies from 6.87 % 
to 23.6 % when the temperature increases from 500 ◦C to 1200 ◦C. 
Overall, H2 and CO production significantly increase with higher gasifier 

temperatures. Notably, during steam gasification of blended plastics 
(2P3S), the mole fraction of H2 and CO enhances from 0.299 to 0.6144 
and 0.025 to 0.3827, respectively, as the temperature rises from 500 ◦C 
to 900 ◦C. However, beyond this, further temperature increases in the 
range of 900 ◦C–1200 ◦C do not lead to significant enhancement in 
production rates. Consequently, it can be assumed that using higher 
temperatures to generate more syngas above 900 ◦C is not economically 
favourable. 

4.3. The effect of gasification pressure on the composition of syngas 

Gasifier pressure constitutes a significant operational parameter with 

Fig. 8. Training and testing effectiveness of various machine learning algorithms in forecasting the mass flow rates of H2, CH4, CO2, and CO within syngas produced 
through gasification. 
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substantial implications for the performance of the gasification process. 
Increased pressure levels lead to improved process efficiencies, espe-
cially when considering subsequent operations that involve pressurized 
gas streams. According to Le Chatelier’s principle, when pressure rises, 
the equilibrium shifts toward the side of the reaction with fewer gaseous 
moles, whereas a decrease in pressure encourages a shift toward the side 
with a higher number of gaseous moles [81]. 

The impact of gasifier pressure, ranging from 1 to 10 bar, on the mole 
fraction of syngas in the case of blended plastic is graphically depicted in 
Fig. 5. This pressure variation, in accordance with the primary gasifi-
cation reactions (as outlined in Table 3), intensifies CO2 and carbon 
production through the Bouduard (R6) and water-gas (R4) reactions. 

Furthermore, hydrogasification (R7) and methanation (R8) reactions 
contribute to increased CH4 production. It is evident from this illustra-
tion that H2 yield diminishes as gasifier pressure increases, with a 
pressure of 1 bar yielding maximum H2 production for all feed compo-
sitions. The H2 yield experiences a reduction from 22.64 % to 17.4 % as 
pressure rises from 1 to 10 bar. Consequently, H2 and CO gas production 
diminishes with increasing pressure from 1 to 10 bar, resulting in a 
decrease in the mole fraction of H2 (from 0.6 to 0.52) and CO (from 0.38 
to 0.34). Concurrently, larger quantities of CHAR, CH4, and CO2 are 
generated, which are generally not regarded as desirable products 
within the gasification process. 

Fig. 8. (continued). 
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4.4. The effect of gasifying agent flowrate on the composition of syngas 

Steam serves as one of the gasifying agents, significantly increasing 
the H2 content in the syngas composition. Fig. 6 illustrates the influence 
of steam flowrate on the mass flowrate of syngas component and char 
under specific conditions of a temperature of 900 ◦C and steam flowrate 
ranging from 130 to 250 kg/h. Moreover, it demonstrates a clear cor-
relation between H2 production and steam flowrate, with H2 production 
increasing from 22.7 to 27.34 kg/h. The higher flowrate of H2 in the 
syngas product array can be attributed to the promotion of water-gas 
(R4) and water-gas shift (R5) reactions facilitated by the presence of 
steam, which provides the necessary water for the water-gas shift re-
action. Similarly, CO2 exhibits a similar trend due to the water-gas shift 
reaction (R5), rising from 2.51 to 72.26 kg/h. The mass flowrates of CO 
and CH4 also experience an increase with a higher steam rate. However, 
once they reach their maximum at approximately 138 kg/h, they start to 
decline with steam flowrate increase. The synergistic effect of steam as a 
reactant further enhances the water-gas shift reaction, as steam provides 
the essential H2O required for the reaction. This cooperative influence of 
temperature and steam flowrate collectively contributes to the observed 
rise in both H2 and CO2 yields with increasing temperature. 

4.5. The effect of gasification temperature and pressure on cold gas 
efficiency 

CGE is a crucial factor in evaluating system performance. As depicted 
in Fig. 7, CGE exhibits variations with operating parameters. The 
decrease in CO2 and the increase in CO are attributed to the Boudouard 
(R6) reaction, generating high-quality syngas at elevated temperatures. 
Consequently, CGE, directly linked to LHV according to Eq. (5), dem-
onstrates an increase with rising temperatures, as observed in Fig. 7. 

CGE closely aligns with the syngas LHV trend, given a constant feeding 
rate for each temperature. Among the gasification configurations, PP 
attains the maximum CGE (around 37 % at 1200 ◦C), while 2P3S and PS 
exhibit CGEs of approximately 35 % and 31 % at 1200 ◦C, respectively. 
Similarly, the variation in CGE in Fig. 7 is directly correlated with 
changes in LHV. CGE diminishes with increasing pressure, with PP 
achieving the maximum CGE (about 36 % at 2 bars), while PS records 
the minimum CGE (about 30 % at 2 bars). The higher fraction of 
combustible gases in syngas during PP gasification contributes to the 
superior CGE observed in these instances compared to PS. 

4.6. Feature analysis of ML models 

In RF, the R2 trend of the training samples demonstrates a consistent 
pattern, reaching a plateau close to 1. This indicates a strong corre-
spondence between the predicted and observed values, suggesting that 
the model effectively captures the inherent patterns and connections 
within the training data. Conversely, the R2 line for the test samples 
initially improves as the number of data points increases, but the rate of 
improvement gradually slows down, converging towards the R2 value 
observed in the training samples. The training and test samples show a 
decrease in the Normalized Root Mean Square Error as the sample size 
increases. The NRMSE for the training sample consistently decreases, 
eventually reaching below 0.01, indicating a high level of predictive 
accuracy for the training data. The NRMSE for the test sample follows a 
consistent pattern, starting with a maximum value of 0.08 and pro-
gressively decreasing as more samples are included. Around 80 data 
points, the test sample NRMSE reaches 0.01, indicating a close align-
ment with the performance of the training sample. In ANN, the NRMSE 
error consistently decreases to below 0.1 in the training and testing 
datasets. The R2 term shows an increasing trend, peaking at 0.9917 with 
80 samples. However, there is a minor fluctuation in the R2 values, 
which can be attributed to factors such as dataset complexity, noise or 
outliers, or non-linear relationships. Comparison of ML models and their 
predictive performance as presented in Table 6. 

In the Gradient Boosting Regression (GBR) model, the graph of 
NRMSE shows that the training error initially increases and then fluc-
tuates around 0.02. On the other hand, the testing error decreases and 
fluctuates around the same value. In the graph of the R2 values, the 
training R2 values decrease below one, while the testing R2 values in-
crease until they reach the size of the training sample. Afterwards, both 
the training and testing R2 values fluctuate around a similar number, 
with the testing R2 slightly lower than the training R2. These fluctua-
tions, especially in the testing data, indicate instability in the model’s 
performance. As for the performance of the CART model, the NRMSE 
error for the test data decreases to 0.02, indicating good predictive ac-
curacy, albeit with a slight deviation from the actual values. The R2 

value for the test data increases to approximately 1, signifying that the 
model explains a significant portion of the variability in the target 
variable, approaching the level of performance observed in the training 
data. 

When considering the precision of KNN, the NRMSE graph shows a 
decreasing trend for both the training and test samples, reaching values 
below 0.02. However, the NRMSE error for the test sample is slightly 
higher than that of the training sample, indicating a slightly lower 
predictive accuracy for unseen data. In terms of the R2 graph, both the 
training and test samples exhibit an increasing trend, approaching a 
value of 1. However, the R2 value for the training sample is higher than 
that of the test sample, suggesting a stronger ability to explain the 
variability in the target variable for the training data compared to the 
test data. 

Regarding SVR, the NRMSE graph shows a decrease in both the 
training and test curves, reaching approximately 0.2. This reduction in 
error between the predicted and actual values implies a consistent per-
formance of the model across both the training and testing datasets. 

In the R2 graph, the training and test curves demonstrate an upward 

Fig. 9. Box plot performance of machine learning algorithms for predicting 
mass flow rates of H2, CH4, CO2, and CO in gasification-derived syngas. 
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trend, eventually converging to a value close to 1. This convergence 
signifies a robust correlation between the projected and observed values 
in the model. Training and testing performance evaluation of different 
ML algorithms in predicting the mass flow rates of main components 
within gasification-produced syngas, illustrated in Fig. 8. 

For more clarification, a box plot which provides a visual represen-
tation of the relative performance of different ML models, assessed 
through the NRMSE error and R2 values [34]. Fig. 9 illustrates that the 
RF model outperforms both the CART and KNN models in terms of 

performance, as evident from the R2 box plot. Notably, the box sizes are 
consistently compact across all models, indicating a consistent and 
minimized variability in model performance. Examining the NRMSE 
plot, the RF model demonstrates the most favourable performance with 
the lowest error value. On the other hand, the Cart and KNN models 
exhibit slightly higher errors, suggesting a relatively less accurate pre-
diction capability in comparison. 

Based on a careful evaluation of the established assessment criteria 
and the observed dispersion of data, it has been determined that the 

Fig. 10. The ML prediction data and real data.  
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utilization of RF has emerged as a significantly superior approach when 
compared to other models due to the high accuracy and perfectly 
aligned datapoints in regression analysis. This advanced methodology 
not only facilitates the identification and prediction of the highest 
output of H2 gas, but also enables the determination of the optimal input 
conditions for achieving such outcomes. Fig. 10 presents a visual rep-
resentation of the predictive accuracy pertaining to the mass flow rates 
of syngas, as derived from ML algorithm models. In this graphical 
depiction, the data points encompass both the observed actual values 
and the corresponding predicted values, offering a comprehensive view 
of their relationship. The findings indicate that, with respect to the test 
datasets, the RF model tends to exhibit an underestimation trend in 
comparison to the other algorithms. These alternative algorithms 
display a scattered distribution around the line of identity, suggesting 
that their predictions are more diverse and less systematically biased. 

4.7. ML model validation 

The reliability of the ML models employed in this investigation has 
been enhanced through a comprehensive evaluation conducted to assess 
their accuracy. This evaluation aimed to ensure that the ML models were 
robust and dependable in their predictive capabilities. The utilization of 
distinct feedstock in conjunction with varying datasets is shown in 
Table 7, and it is evident that the outcomes of the model exhibit a high 
degree of agreement with those of alternative models. Specifically, when 
considering the ANN algorithm, an R2 value of 0.9917 was attained 
during the testing phase. It is worth noting that the non-linear autore-
gressive with exogenous inputs neural network (NARXNN) is employed 
for validation due to its resemblance to ANN. Moreover, regarding RF 
and GBR, the achieved results closely match the research’s findings. For 
this study, the R2 values for RF and GBR were 0.9996 and 0.9963, 
respectively, highlighting the reliability and consistency of the 
outcomes. 

4.8. Optimization 

The findings of this study are consistent with prior research, which 
has demonstrated a positive correlation between the temperature of the 
gasification reactor and the production of H2 syngas [94,95]. Regarding 

previous studies, the present investigation confirms that increasing the 
temperature of the reactor leads to a corresponding increase in the yield 
of H2 syngas due to the enhancement in the thermochemical conversion 
[9]. Furthermore, it has been observed that the pyrolysis process 
effectively decomposes PP and PS, as the decomposition of these plastics 
ranges from 404 ◦C to 408 ◦C, thereby obviating the requirement for 
high temperatures typically associated with gasification processes [96]. 
This is particularly significant as high temperatures often contribute to 
tar formation, primarily due to the aromatic formation of plastic com-
pounds [85]. The most favourable and optimal result for the mass flow 
rate of H2 within syngas produced through gasification is showcased in 
Table 8. The specific value for the H2 mass flow rate is recorded as 27.81 
kg/h, as highlighted by the parameters detailed in Table 8. After the 
syngas undergoes a sequence of treatments involving WGS and PSA 
units, the ultimate yield for H2 is successfully attained at 37 %, corre-
sponding to a H2 mass flow rate of 36.9 kg/h. 

5. Conclusion 

A steady-state equilibrium model was used to simulate and assess the 
integrated configuration encompassing pyrolysis and steam gasification 
procedures applied to a mixture of two waste plastic types in a 2:3 
proportion (comprising 40 % PP and 60 % PS). This configuration 
involved WGS reactors and a PSA unit and was simulated employing the 
ASPEN Plus software. Employing HTWGS and LTWGS increase the H2 
flow rate by 30 %. The proposed model has been Validated by existing 
literature. The fidelity of the model was established through its 
congruence with documented experimental findings from the literature 
concerning the co-gasification of waste plastics. The congruity between 
the model’s predictions and the empirical data remained robust for the 
gasification output. A sensitivity analysis was conducted to explore the 
influence of gasifier temperature, pressure, and steam flow rate on the 
composition and yield of gas products and CGS. 

Utilizing the Aspen Plus platform, a gasifier model was devised to 
achieve data for using in ML algorithms. The applicability of ML tech-
niques was demonstrated in their potential to optimize gasification and 
pyrolysis processes, and in prognosticating the yields and attributes of 
resultant products from these processes. Within this framework, five ML 
algorithms – KNN, SVR, ANN, CART, RF, and GBR – were implemented. 
Notably, the ML model achieved effective prognostication of the mass 
flow rate of syngas, as indicated by R2 values ranging from 0.55 to 0.99. 
This success was attained after the identification of gasification pa-
rameters as model inputs. Among various models, the R2 values recor-
ded for the test and training datasets exceeded 0.99, corroborating the 
robustness of the RF model in foreseeing syngas composition and mass 
flow rate with a high degree of accuracy. This capability was achieved 
without necessitating intricate calculations or resource-intensive 
experimental inquiries. Following optimization endeavours, the final 
H2 yield culminated at 37 %. 
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Table 7 
ML model validation.  

Feedstock Inputs Outputs Datapoints Highest R2 value of the 
test 

Highest accuracy ML 
models 

Ref 

Mixture of rubber and 
plastics 

Operational conditions H2 in 
syngas 

– 0.99 ANN [53] 

Biomass Biomass compositions and operational conditions of 
gasification 

H2 in 
syngas 

3500 0.99 NARXNN [94] 

Biomass Biomass compositions and operational conditions of 
gasification 

H2 in 
syngas 

342 0.90 
0.96 

RF 
GBR 

[89]  

Table 8 
The optimal outcome for hydrogen mass flow rate within syngas generated from 
gasification.  

H2 Temperature of the 
reactor (C) 

Pressure of the 
reactor (bar) 

Mass flow rate of the 
gasifying agent (kg/hr) 

27.81 789.65 1 250 
27.78 765.52 1 250 
27.77 813.79 1 250 
27.7 741.38 1 250 
27.69 765.52 1 244.83 
27.68 789.65 1 244.83 
27.65 813.79 1 244.83 
27.62 837.93 1 250 
27.57 741.38 1 244.8 
27.53 789.65 1 239.65  
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