
Abstract- Unmanned air vehicles operate in highly 
dynamic and unknown environments where they can 
encounter unexpected and unseen failures. In the presence 
of emergencies, autonomous unmanned air vehicles should 
be able to land at a minimum distance or minimum time. 
Impaired unmanned air vehicles define actuator failures 
and this impairment changes their unstable and uncertain 
dynamics; henceforth, path planning algorithms must be 
adaptive and model-free. In addition, path planning 
optimization problems must consider the unavoidable 
actuator saturations, kinematic and dynamic constraints 
for successful real-time applications. Therefore, this paper 
develops 3D path planning algorithms for quadrotors with 
parametric uncertainties and various constraints. In this 
respect, this paper constructs a multi-dimensional particle 
swarm optimization and a multi-dimensional genetic 
algorithm to plan paths for translational, rotational, and 
Euler angles and generates the corresponding control 
signals. The algorithms are assessed and compared both in 
the simulation and experimental environments. Results 
show that the multi-dimensional genetic algorithm 
produces shorter minimum distance and minimum time 
paths under the constraints. The real-time experiments 
prove that the quadrotor exactly follows the produced 
path utilizing the available maximum rotor speeds.        

Index Terms— Actuator failures, impaired quadrotors, 
meta-heuristic algorithms, path planning, unmanned air 
vehicles. 

I. INTRODUCTION

NMANNED AIR VEHICLES (UAVS) have been primarily 
spurred by the military demands, but its application 

rapidly diversified into the areas including environment, trade 
and filming industry. Popularity of the UAVs mainly stems 
from their autonomy, lower costs, longer endurances, and 
networking capabilities. However, they are prone to a number 
of failures mostly occurring in the sensors, actuators, and 
mechanical parts. During failures, they have to land the most 
suitable area at minimum distance or at minimum time. Since 
they operate in unseen and complex environments under a 
variety of unstructured uncertainties, their autonomous and 
safe landing to the ground are crucial. Thus, the developed 
minimum distance and minimum time path planning 
algorithms for the UAVs should cover these properties:  
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• Model free to compensate the varying UAV dynamics,
• Adaptive to consider the instantly changing requirements,
• Constrained to incorporate the actuator, kinematic and

dynamic limitations,
• Multi-dimensional to move in 3D space,
• Robust to alleviate the uncertainties.

 In this paper, constrained multi-dimensional minimum 
distance and minimum time path planning algorithms for the 
impaired quadrotors are developed by considering the internal 
and external uncertainties. Modified meta-heuristic 
optimization algorithms, which are the sub-class of the 
Artificial Intelligence (AI) algorithms, plan the desired paths 
by optimizing the minimum distance and minimum time cost 
functions. Since the considered quadrotors are impaired due to 
partial actuator failures, the path planning solutions utilize the 
whole available rotor speeds.  

 Trajectory generation and path planning methods differ 
from each other where the key dissimilarity is the trajectory 
generation methods necessaire full certain system dynamics 
[1]. The trajectory generation methods are called as the 
mathematical model-based methods that regulate the motions 
by considering the amount of the control actions and the 
system states [2]. The overall mathematical model-based 
methods are Mixed Integer Linear Program (MILP), Mixed 
Integer Quadratic Program (MIQP), and the optimal control. 
In terms of the MILP, Song et al. generated trajectories for a 
group of UAVs by minimizing the total travelled distances [3]. 
This optimization algorithm considers the initial locations of 
the UAVs, the positions of the other UAVs, and their battery 
levels. Recently, Watanabe and Mukai generated trajectories 
with the MILP to guide a recognized wheelchair [4]. This 
research assumes that the position and velocity of the UAV, 
obstacles, and the map of the environment are available in 
advance. With respect to the MIQP, it is the quadratic cost 
function version of the MILP. Letizia et al. generated smooth 
polynomial UAV trajectories that satisfy the dynamic and 
kinematic constraints [5]. In this work, uncertainties and 
perturbations are modelled and added in the trajectory 
optimization problem. With regard to the path planning with 
the optimal control, Adhikari and Ruiter designed an optimal 
control-based trajectory generation and autonomous collision 
avoidance algorithm for the fixed-wing UAVs [6]. The 
optimal controller aims the UAVs to fly low among the 
obstacles and closely follow the desired target to capture 
accurate data. Since the mathematical model-based approaches 
require iterative solutions, they result in high computational 
costs. In addition, their solutions possibly diverge in the 
presence of the unseen and unmodelled uncertainties.  

 Decomposition graph-based methods plan the paths by 
dividing the environment into cells in order to discriminate the 

Minimum Distance and Minimum Time Optimal Path Planning with Bioinspired 
Machine Learning Algorithms for Faulty Unmanned Air Vehicles 

 Onder Tutsoya,*, Davood Asadib, Karim Ahmadic, Seyed Yaser Nabavi-Chashmid, Jamshed Iqbale 

U 

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mailto:otutsoy@atu.edu.tr
mailto:dasadihendoustani@atu.edu.tr
mailto:kadastgerdi@atu.edu.tr
mailto:synabavi@atu.edu.tr
mailto:j.iqbal@hull.ac.uk


First Author et al.: Title 9 

obstacles and free spaces [7]. Ischuk and Lichachev modified 
Dijkstra algorithm to plan an optimal path for the UAVs [8]. 
The algorithm uses infrared navigation data to create cells and 
assign edge weights based on the lengths of the cells.  Mac et 
al. employed Dijkstra algorithm to determine collision-free 
UAV paths from a graph divided by the triangular 
decomposition [9]. The results show that the processing time 
of the algorithm increases significantly if the environment is 
complex. Another decomposition graph-based method is the 
A* algorithm which implements the best-search procedure; 
henceforth, unlike the Dijkstra algorithm it can handle the path 
planning problems in large environments with less 
computational costs. Sun et al. proposed a cooperative path 
planning with A* algorithm [10]. This algorithm initially 
explores the spaces randomly to create a map of the 
corresponding environment. A further decomposition graph-
based method is the D* algorithm that also senses the 
obstacles and updates the weights of the cell edges. Celestine 
et al. implemented interfered fluid dynamical system and 
Bezier curve to plan 3D UAV paths [11]. Because all these 
approaches are search-based and ignore the UAV constraints, 
the real time results do not possibly coincide with the 
simulation results. Moreover, optimality of the solutions 
cannot be discussed due to lack of a corresponding cost 
function.   
    A similar path planning is the sampling-based approach 
which forms a path by randomly mapping the environment. It 
essentially connects the free cells with the nearby cells to 
create a path between the initial and target states [12]. 
Primatesta et al. presented kinodynamic constrained UAV 
motion planning algorithm leveraging the distinctive 
properties of  a Rapidly-exploring Random Tree (RRT) and 
model predictive control [13]. Schmid et al. proposed RRT*-
inspired online informative path planning algorithm which 
eliminates the local minima and the sub-optimal path 
convergence problems [14]. Madridano et al. developed a 3D 
probabilistic roadmap approach that can plan multiple 
trajectories in case of emergencies [15]. Sampling-based 
methods are not quite complete since they can fail to connect 
the initial states to target states because of the insufficient 
search abilities.  
     Bioinspired methods including the Neural Networks (NN) 
and evolutionary algorithms aim to solve complex objective 
problems without modelling the environment like the 
mathematical methods. Duan and Huang trained the NN by 
the imperialist competitive algorithm for global UAV path 
planning [16]. The comparative results with the artificial bee 
colony showed that the NN can reduce the uncertainty and 
also avoid the local minima. Sung et al. constructed a NN 
trained with a set of off-line UAV data which are collected 
from the desired trajectories [17]. Since the NN approaches 
can approximate any unknown functions, they attempted to 
incorporate the environmental uncertainties within the NN. 
Nikkolos et al. applied a similar off-line approach to train a 
differential evolution meta-heuristic algorithm that produces 
2D UAV paths [18]. To collect data, the UAVs are launched 
from a number of locations and their initial states to terminal 

states were recorded. Li et al. implemented a genetic algorithm 
for the UAV global path planning and utilized a local rolling 
optimization approach to update the path continuously [19]. 
They processed the ground images attained from the aerial 
vision systems for the path planning. Even though these 
bioinspired methods are able to solve challenging optimization 
problems, their solutions are not unique and can fail in real-
time applications since the dynamic, kinematic, and actuator 
constraints are not incorporated in the optimization problems.   
     Minimum time optimal path planning algorithms have been 
developed for a wheeled autonomous vehicle [20], for a 
computer numerical control (CNC) machines [21], for an 
industrial robot [22], and for transportation of a quantum 
particle [23]. However, for the best of the authors’ knowledge, 
it is considered for the UAVs only in one research [24] where 
the path planning problem is reduced to the identification of 
the switching points among the candidates rather than 
autonomously planning the desired paths. Even though the 
minimum distance or the shortest path planning algorithms for 
the UAVs are ubiquities in the literature, it has not been 
considered for the impaired drones, for our best knowledge. 
Based on these stated gaps, the key contributions of the paper 
can be expressed as: 

1. Develops minimum distance and minimum time path 
planning algorithms for the impaired uncertain UAVs. 

2. Generates 3D paths with two modified meta-heuristic 
algorithms and compare the results. 

3. Produces translational, rotational, and Euler angles 
paths where the controller can use whichever is desired.  

4. Determines the maximum control signals in terms of 
the available impaired UAV rotor speeds. 

5. Incorporates the actuator, kinematic, and dynamic 
constraints in the optimization problems. 

6. Performs real-time experiments, analyses and compares 
the results extensively.  

     In the rest of the paper, Section II reviews the quadrotor 
model and introduces the cost functions, Section III constructs 
the multi-dimensional meta-heuristic algorithms, Section IV 
analysis the results, and finally Section V summarizes the 
paper and expresses the future works. 

II. QUADROTOR MODEL AND COST FUNCTIONS 
    The proposed trajectory planning algorithms in this paper 
utilize the insights of the quadrotor model and plans the paths 
in simulation environment for the real-time applications. 
Therefore, this section initially reviews the quadrotor model 
and then introduces the constrained minimum distance and 
minimum time cost functions. 

A. Quadrotor Model 
    The quadrotors are constructed with two crossed sticks, four 
mounted propellers and four motors as in Figure 1. 
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Figure 1: Schematic view of the S500 quadrotor. 

In Figure 1, x , y , z  are the translational position states, 

φ ,θ ,ψ  are the Euler angles, iΩ  1,..., 4i =  are the rotational 

velocities, iT  1,..., 4i =  are the produced motor torques. The 
quadrotor model is utilized to ensure that the generated 
trajectories exactly reflect these properties: 

• The dynamics constraints of the quadrotor, 
• The kinematic constraints of the quadrotor, 
• The motor velocity constraints of the quadrotor, 
• The non-linear coupling effects among its sub-models, 
• The parametric and non-parametric uncertainties, 

Using the quadrotor model to generate trajectories in 
simulation environments allows us to train the intrinsically 
model-free algorithms in simulation environments without 
damaging the unstable and uncertain quadrotors. However, in 
real time applications, due to its model free properties, the 
proposed algorithms should be able: 

• Modify the planned paths in simulations, 
• Incorporate the un-modelled dynamics, 
• Consider the unseen uncertainties, 

    The next sub-section reviews the translational model of the 
quadrotor.   

1) The Translational Model 

    The quadcopter translates itself from the initial states with 
the translational model given by 

 ( )sin sin cos sin cos dragz
x

ux f
m

ψ φ ψ θ φ= + +  (1) 

 ( )cos sin sin sin cos dragz
y

uy f
m

ψ φ ψ θ φ= − + +  (2) 

 ( )cos cos dragz
z

uz g f
m

θ φ= − + +  (3) 

where zu  is the control signal, m  is the mass, g is the gravity 
force and the drag forces are expressed as 

 ,    ,    ydrag drag dragx z
x y z

kk kf x f y f z
m m m

= − = − = −    (4) 

where xk , yk , zk  are the translational drag forces. One can 
summarize the properties of the translational model as 

• It is non-linear due to sine and cosine functions, 
• It is coupled since the same Euler angles are shared, 
• It is constrained because the sine, cosine functions and 

certain limits on zu  control signal. 

The next sub-section provides the rotational model of the 
quadrotor.  

2) The Rotational Model    

   The quadrotor must rotate in order to translate. Therefore, 
this paper also generates p , q , r  rotational velocities 
expressed as 
                                  p p pp a qr b uϕ τ= + +  (5) 

 q q qq a pr b uθ τ= + +  (6) 

 r r rr a pq b uψ τ= + +  (7) 

where pa , qa , and ra  are the rotational parameters given by 

 ,      ,        y z x yz x
p q r

x y z

I I I II I
a a a

I I I
− −−

= = =  (8) 

where xI , yI , zI  are the moment of inertias around the x , 
y , z -axes, respectively. The pb , qb , and rb  parameters in 

Equations (5) to (7) are  

 1 1 1,        ,        p q r
x y z

b b b
I I I

= = =  (9) 

The pτ , qτ , and rτ  forces in Equations (5) to (7) are 

 drag gyro wind
p p p pτ τ τ τ= + +  (10) 

 drag gyro wind
q q q qτ τ τ τ= + +  (11) 

 drag wind
r r qτ τ τ= +  (12) 

The parametric drag forces are given by 

 2 2 2,       ,       drag drag drag
p q p

x y z

k kk
p q r

I I I
ϕ ψθτ τ τ= − = − = −  (13) 

where kϕ , kθ , kψ  are the rotational drag constants. The 
gyroscopic forces in Equations (10) to (12) are formulated as 

 ,         gyro gyroT T
p q

x y

J Jq p
I I

τ τ= Ω = − Ω  (14) 

where TJ  is the total rotational moment of inertia and Ω  is 
the total rotational speeds defined as   
 1 2 3 4Ω = Ω −Ω +Ω −Ω  (15) 

The inputs zu , uϕ , uθ , uψ  in Equations (3),(5),(6) and (7) are 

 ( )2 2 2 2
1 2 3 4zu b= Ω +Ω +Ω +Ω  (16) 

 ( )2 2
2 4u blϕ = Ω −Ω  (17) 

 ( )2 2
3 1u blθ = Ω −Ω  (18) 

 ( )2 2 2 2
1 2 3 4u dψ = Ω −Ω +Ω −Ω  (19) 

where b  is the thrust parameter, l  is the moment arm, and d  
is the drag parameter. The Euler angles, presented next,  are 
essential parts of  the translational trajectories in Equations (1) 
to (3) and the rotational trajectories in Equations (5) to (7). 

3) The Euler Angles 

   The Euler angles constructs the desired translational and 
rotational trajectories. The corresponding Euler angles are 
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 sin tan cos tanp q rϕ ϕ θ ϕ θ= + +  (20) 

 cos sinq rθ ϕ ϕ= −  (21) 

 [ ]1 sin cos
cos

q rψ ϕ ϕ
θ

= +  (22) 

Properties of the quadrotor Euler angles can be highlighted as: 
• They are directly coupled with the p , q , r  rotational 

velocities, 
• They are indirectly coupled with the x , y , z  

translational accelerations. 
The next sub-section introduces the cost functions.  

B.  Cost Functions 
    To enhance the autonomy of the UAVs, they should be 
equipped with various self-optimization approaches. This 
section introduces the minimum distance and minimum time 
cost functions that optimize the quadrotor paths. 

1) Minimum Distance Cost Function 

    The quadrotors can require to land off the available ground 
at the minimum distance. The corresponding cost function is 

 

( )

( ) ( ) ( )
( )

1
0

min max min max max

min max min max

            min    

subject to
    ,  ,  0

    ,   

ft

d d t
t

e e e t t t t t

t t t

e t dt

t t t

t

=

= −

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

∫ p p

a a a p p p p p

r r r u u u

 

       (23) 

where de  is minimum distance cost, ft  is finite time, dp  is 

terminal translational position, ( ) ( ) ( ) ( ) T
t t x t y t z t=   p  

is instant translational position in Equations (1) to (3), ( )t tp  

is instant translational velocity, ( ) ( ) ( ) ( ) T
e t t t tϕ θ ψ=   a  

is Euler angles in Equations (20) to (22),  

( ) ( ) ( ) ( ) T
r t p t q t r t=   r  is instant rotational positions, 

T

zu u u uϕ θ ψ =  u  are the input signals in Equations 

(16) to (19), ( )min.  and ( )max.  are the minimum and maximum 
values. It is important to note that even though these 
constrains seem static, in case of an actuator failure, the 
resulting rotational velocities, so that the translational states 
and the control signal constraints vary accordingly. For 
instance, in the presence of the second actuator failure, the 
constraints on the input signals in Equations (16) to (19) are 
re-determined based on its available speed. Therefore, the 
constraints on the rotational speeds in Equations (5) to (7) and 
translational states in Equations (1) to (3) are re-shaped since 
they are direct function of the input signals. One can 
summarize the key properties of the cost function in Equation 
(23) as 

• It has vector 1-norm 
1

. , hence a scalar value 
represents the overall performance of the 3-
dimensional translational trajectory space. 

• Since ft is initially unknown, instant cost value which 
is the minimum of all the available costs, is utilized.  

The next sub-section introduces the minimum time cost 
function.   

2) Minimum Time Cost Function 

    In case of emergencies, the quadrotors are required to land 
off at minimum time. The minimum time cost function is  

 

( ) ( ) ( )
( )

0

min max min max max

min max min max

            min    1

subject to
    ,  ,  0

    ,   

ft

t

e e e t t t t t

t t t

T dt

t t t

t

=

=

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

∫

a a a p p p p p

r r r u u u

 

(24) 

The cost function in Equation (24) is a time optimal problem 
for a third order non-linear system with non-linear constraints. 
Therefore, its direct solution is not straightforward. To ease 
the solution, re-formulate the minimum time cost function as  

• Minimum Time = Minimum Distance/Maximum 
Velocity 

Hence the minimum time problem becomes 

 

( )
( )

( ) ( ) ( )
( )

1
max

0 1

min max min max max

min max min max

             min    

subject to
    ,  ,  0

    ,   

ft
d t

t t

e e e t t t t t

t t t

t
T dt

t

t t t

t

=

−
=

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

∫
p p

p

a a a p p p p p

r r r u u u



 

(25) 

In Equation (25) ( )max
t tp  does not necessarily imply that all 

the motors must rotate at their maximum speeds. To satisfy 
certain translational movements, faulty motors must generate 
the required rotational speeds. The next section introduces the 
multi-dimensional meta-heuristic algorithms which plan the 
minimum distance and minimum time paths.   

III. MULTI-DIMENSIONAL META-HEURISTIC ALGORITHMS 
This section briefly introduces the modified Multi-

dimensional Particle Swarm Optimization (M-PSO) and 
Multi-Dimensional Genetic Algorithm (M-GA) that optimize 
the minimum distance and minimum time path planning cost 
functions.  

A. Quadrotor Path Planning with Constrained M-PSO 
    The PSO algorithm focuses on optimizing a cost function 
by selecting a number of members among a population. In this 
paper, M-PSO iteratively choses the optimum Euler angles 
that reduces the minimum distance cost function in Equation 
(23) and the minimum time cost function in Equation (25). 
The path planning process is feedforward; hence, back 
movement of the quadrotor is hindered. 
    The PSO algorithm updates the Euler angles by a rate 
expressed as 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 2
v p g

e et t t r t a t r t a tη η η+ ∆ = + − + −v v p g (26) 
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where ( )tp  and ( )tg  are the local and global best Euler angle 

solutions among its constrained ones min maxt
e e e< <a a a , 

respectively, vη , pη  and gη  are the corresponding learning 
parameters, 1r  and 2r  are the uniformly distributed random 
exploration noises. The update rule for the Euler angles is 
 ( ) ( ) ( )e et t t t t+ ∆ = + + ∆a a v  (27) 

The best local ( )tp  and global ( )tg  solutions are attained 

depending on the minimum values of the cost functions in 
Equations (23) and (25). At the end of each epoch, the best 
local Euler angle solutions are assigned as the global best 
Euler angles solution. The global best Euler angles solutions 
are used to calculate the translational trajectories in Equations 
(1) to (3) and the rotational trajectories in Equations (20) to 
(22). Algorithm 1 summarizes the path planning with the M-
PSO.  
Algorithm 1: Pseudocode of M-PSO path planning algorithm. 
Input:  

The parameters vη , pη , gη  in Equation (26) and dη  discount, 

The limits ( )max max min0.2 e ev a a= − , min maxv v= − , 

The initial and target translational trajectories ( )1p  and dp , 

The upper and lower limits of the constraints in Equation (24), 
Output:  

Optimized quadrotor states ( )e ta , ( )tp , ( )t tr , 

   for 1t =  to  trajectory length   

       for 1j =  to  repeat length    

         for 2k =  to  search length    

1. Generate a random Euler angle population ( )e ka . 

 ( ) ( )max min, ,3e e ek unifrnd=a a a  (28) 

2. Determine the update rate ( )kv  by Equation (26). 

3. Update the Euler angles ( )e ka by Equation (27). 

4. Determine the control signal ( )zu k in Equation (16). 

 ( ) ( )( )* 1zu k sign k= −K p  (29) 

5. Apply the control signal constraints on ( )zu k  

6. Obtain translational states ( )kp in Equations (1) to (3) 

7. Apply the translational position constraints on ( )kp . 

8. Calculated the costs in Equations (23) or (25). 
9. Update the local best solutions as: 

if current cost ( )e k is less than personal best pe   

      ( )p
e e k=a a , ( )p k=p p , ( )p

z k=u u , ( )pe e k=  

end if  
10. Update the global best solution as: 

if personal best pe  is less than global best ge  

       g p
e e=a a , g p=p p , g p

z zu u= , g pe e=  

end if 
            end for  

11. Update the learning parameter .v v dη η η= in (26). 

12. Initialize optimization with the global best solutions. 
   end for 
13. Save the global best trajectory solutions  

( ) g
e et =a a , ( ) gt =p p , ( ) p

z zu t u=  

14. Obtain the rotational trajectory ( )t tr  by Equations 
(20) to (22). 
end for 

The next sub-section presents the quadrotor path planning 
with the constrained M-GA.  

B. Quadrotor Path Planning with the Constrained M-GA 
    The GA is inspired by the natural selection process of the 
springs among a population. The whole population represents 
the possible candidate solutions for the cost function.   
Algorithm 2: Pseudocode of M-GA path planning algorithm. 

Input:  

The selection sη , crossover cη , mutation mη  parameters, 

The limits ( )max max min0.2 e ev a a= − and min maxv v= − . 

The initial and target translational trajectories ( )1p and dp , 

The upper and lower limits of the constraints in Equation (24), 
Output:  

Optimized quadrotor states ( )e ta , ( )tp , ( )t tr , 

Initialization: 

Initialize the cost e , cumulative sum ( )1 0c = , parent p
ea , 

   for 1t =  to  trajectory length   

         for 2k =  to  search length lk    

1. Generate a random Euler angle population ( )e ka . 

2. Determine the selection probabilities ( )s mep e ηη −
=  

           where the mean cost is ( )
1

1 lk
m

l
i

e e i
k =

= ∑ .  

3. Perform the crossover process with the half population. 

                for 2j =  to / 2lk    

4. Select the parents ,1p
ea  with Roulette Wheel. 
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           ( )
1

*
lk

p

i
r rand iη

=

= ∑ , ( ) ( ) ( )1     pc j c j jη= − +  (30) 

               If ( )r c j≤  then ,1 ,1 1p p
e e= +a a  end                        

5. Repeat Equation (30) for ,2p
ea . 

6. Process crossover with ( ),1 ,c c c lunifrnd kη η η= − + as 

                        ( ),1 ,1 ,2.* 1 .*c c p c p
e e eη η= + −a a a  (31) 

   end for 

7. Perform the mutation with the ,1 ,2;c c c
e e e =  a a a . 

for 2l =  to lk    

8. Process mutation ( ) ( ) ( )* 3m c s
e el f randnη= +a a with 

 ( )3 tf rand η= ≤  (32) 

9. Check for the Euler angle bounds. 

10. Determine the control signal ( )zu l in Equation (16). 

11. Apply the control signal constraints on ( )zu l . 

12. Obtain the translational states ( )lp in Equations (1) 
to (3). 

13. Apply the translational position constraints on ( )lp . 

14. Calculated the costs in Equations (23) or (25). 
15. Update the local best solutions as: 

if current cost ( )e l is less than personal best pe   

      ( )p
e e l=a a , ( )p l=p p , ( )p

zu u l= , ( )pe e l=  

end if  
            end for  

16. Save the personal best pe as global best ge . 
17. Initialize optimization with the global best solutions. 
   end for 
18. Save the global best trajectory solutions  

( ) g
e et =a a , ( ) qt =p p , ( ) p

z zu t u=  

19. Obtain the rotational trajectory ( )t tr  by Equation 
(20) and (22). 

    end for 
The next section provides the results and analyses them 
extensively. 

IV. RESULTS 
This section provides the parameters of the quadrotor, 

meta-heuristic algorithms and then analyses the results. 

A. Parameters of the Quadrotor and the Algorithms 
Table 1: Parameters of the S500 quadrotor UAV. 

Parameter Description Value 

m  Mass 1.7 kg 
b  Thrust parameter 4.1×10-7 N/rpm2 

d  Drag parameter 8×10-9Nm/rpm2 

l  Moment arm  0.243m 

xI  Moment inertia about x -axis 0.0213kg.m2 

yI  Moment inertia about y -axis 0.0221kg.m2 

zI  Moment inertia about z -axis 0.028kg.m2 

xk , yk  Translational drag coefficients 5.5×10-4N/m/s 

zk  Translational drag coefficients 6.3×10-4N/m/s 
kϕ , kθ  Rotational drag coefficients 5.5×10-4N/m/s 

kψ  Rotational drag coefficient 6.3×10-4N/rad/s 

tJ  Total moment inertia 6.8×10-4kg.m2 

pa  Parameter of the p -sub-model -0.2770 

qa  Parameter of the q -sub-model 0.3032 

ra  Parameter of the r -sub-model -0.0286 

The M-PSO algorithm parameters vη , pη , gη  are 1.45, 2.99, 
2.99, respectively. The M-GA algorithm parameters 

sη , cη , mη  are 0.1, 0.02, 0.1, respectively. 

B. Minimum Distance Path Planning 
Figure 2 presents the minimum distance quadrotor 
translational position planning with the M-PSO and M-GA 
meta-heuristic optimization algorithms.  
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Figure 2: Minimum distance translational positions.  

Initial translational positions of the quadrotor are 100, 100, 20 
for the ( )x t , ( )y t  and ( )z t , respectively, and the aim of the 
optimization algorithm is to produce target minimum distance 
trajectories for its landing. As can be seen from Figure 2, the 
M-GA meta-heuristic optimization algorithm manages to 
generate smaller ( )x t  and ( )y t translational positions for the 
quadrotor under the dynamic, kinematic and actuator 
constraints. However, both optimization algorithms plan 
exactly the same ( )z t  translational position that converges 
the target faster than the other translational positions. The 
proposed minimum distance algorithms in this paper are also 
able to produce translational velocities for the quadrotor as in 
Figure 3.      
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Figure 3: Minimum distance translational velocities.      

The M-GA meta-heuristic optimization algorithm produces 
larger translational velocities which yield smaller translational 
positions as illustrated by Figure 2. Even though all the 
generated target trajectories in Figure 3 have similar 
characters, the ( )z t  translational velocity produced by the M-
GA algorithm converges to 50 m/s, the one produced by the 
M-PSO algorithm converges to -50 m/s, which can occur 
because of the reference point changes. This paper also plans 
the minimum time trajectories discussed in next sub-section.  

C. Minimum Time Trajectory Planning 
    Figure 4 illustrates the minimum time quadrotor 
translational positions planned with the M-PSO and M-GA 
meta-heuristic optimization algorithms.  
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    Figure 4: Minimum time translational positions.   

Similar to the minimum distance translational positions and 
velocities provided in Section V, the M-GA meta-heuristic 
optimization algorithm plans the optimum trajectories in a 
smaller time. In addition, the overall characters of the 
trajectories are identical except the time as addressed in 
Section V. It is important to note that the planned paths are 
produced under the constraints introduced in Section II.B and 
relaxing or hardening them yield different paths. The proposed 
algorithms can also consider the obstacle avoidance problems 
by just adding a 3D position constraint in the costs given by 
Equations (23) and (25) if the positions of the obstacles are 
available. Since detecting the positions of the obstacles in real-
time applications require a camera or a sensor, this paper does 
not directly address the obstacle avoidance problem. The 
minimum time trajectory planning algorithm produces the 
corresponding translation velocities given in     Figure 5. 
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    Figure 5: Minimum time translational velocities. 

In contradistinction to minimum distance translation velocities 
in Figure 3, the minimum time translational ( )z t  velocities 
have consistent characters. The proposed trajectory planning 
algorithms in this paper can generate the corresponding Euler 
angles and rotational positions presented in next sub-section.    

D. Euler Angles and Rotational Trajectories 
    Figure 6 shows the minimum time quadrotor Euler angles.    

t

t

t

( )tφ

( )tθ

( )tψ

0 100 200 300 400 500 600 700

0.4

0.6

0 100 200 300 400 500 600 700
-0.7

-0.3

0 100 200 300 400 500 600 700
-4

0
10-4

M-PSO
M-GA

 
    Figure 6: Minimum time Euler angle trajectories.  

The corresponding Euler angles for the given target 
translational positions are selected by the M-PSO and M-GA 
meta-heuristic optimization algorithms. As can be seen from     
Figure 6, the M-PSO algorithm initially have slightly larger 
fluctuations, but later both algorithms produce similar Euler 
angles for the quadrotors. However, the M-GA algorithm 
requires shorter times to plan the target trajectories by 
producing quite larger Euler angles. Similar to the Euler 
angles, the proposed algorithm in this paper requires the 
minimum time to plan the rotational position trajectories as 
presented in     Figure 7. 
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    Figure 7: Minimum time rotational position trajectories. 

Since the quadrotors must rotate to translate, this paper also 
generates the rotational trajectories that satisfy the desired 
translational trajectories. From    Figure 7, similar comments 
such as the M-GA algorithm produces larger rotations to 
generate faster landing can be made. It is also noticeable that 
the large rotations yield larger initial overshoots. This is 
expected since the minimum time trajectory requires 
aggressive rotational actions. Next sub-section compares the 
minimum distance and minimum time trajectory planning 
results with the M-PSO and M-GA meta-heuristic algorithms.    

E. Comparison Results 
Figure 8 compares the optimized minimum distance and 
minimum time trajectory costs with the M-PSO and M-GA 
meta-heuristic algorithms.   
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Figure 8: Optimized costs with the, a) minimum distance, 

b) minimum time algorithms.     
As can be seen from Figure 8, the M-PSO algorithm 
necessaries larger time to learn the optimum trajectories for 
both the minimum distance and minimum time algorithms. 
While the M-GA algorithm requires 4.55 and 4.57 seconds for 
the minimum distance and minimum time paths optimization, 
the M-PSO algorithm spends 5.71 and 5.42 seconds for the 
minimum distance and minimum time path optimization. It is 
clear that the minimum time costs starts reduction quickly 
because it also considers the inverse of the maximum velocity 
as in Equation (25). Together with the optimized costs, 
convergence times can be compared as in Figure 9. 
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Figure 9: Constrained control signals a) minimum distance, 

b) minimum time algorithms. 

It is clear from Figure 9 that both algorithms generate 
maximum control signals to drive the quadrotor as desired. As 
the target trajectories are approached, the control signals 
switch and converge to either negative or positive minimums. 
With this property, both approaches exhibit bang-bang control 
character as expected.  

F. Minimum Time Trajectories for Impaired Quadrotor 
Figure 10 shows the minimum time translational trajectories 
planned with the M-GA algorithm for the impaired quadrotor.   
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Figure 10: Minimum time translational trajectory planning 

for the impaired quadrotor. 

 When the actuator failure occurs, the rotational speeds of the 
actuators decrease. Therefore, the minimum time trajectory 
generation algorithm plans new trajectories which require 
larger times to land on the ground as can be seen from Figure 
10. Together with the trajectories, the minimum time 
trajectory generation algorithm re-constructs the control signal 
as in Figure 11. 
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Figure 11: Minimum time control signals generated by the 

M-GA algorithm for the impaired quadrotor. 
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The maximum values of the control signal zu are 32, 26.2, 
19.2 when the actuators lose 0%, 20%, and 40% of their 
rotational speeds. The control signals have larger durations at 
their maximum values with the increasing actuator failures as 
illustrated in Figure 11. Next sub-section provides the real-
time experimental results.  

G. Real-Time Experimental Results 
   This part of the paper presents the experimental results 
obtained from the real-time testbed. The testbed is designed to 
follow the three-dimensional rotation of the frame. For this 
purpose, as shown in Figure 12, a testbed equipped with 
Pixhawk autopilot and S500 quadrotor frame has been 
developed.  

  
Figure 12: S500 quadrotor and the Pixhawk autopilot. 

Figure 13 shows the real-time rotational states in the presence 
of 15% actuator 1 and actuator 2 failures. As can be seen from 
Figure 13, the testbed can follow the target Euler angle 
trajectories generated by optimizing the minimum time cost 
function in Equation (25). It is important to note that since the 
testbed is fixed, it generates extra state constraints and 
disturbances which cause bounded fluctuations around the 
target trajectories.   
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Figure 13: Real time experimental results with 15% 

actuator 1 and 2 fault, a) ( )tφ , b) ( )tθ , c) ( )tψ . 

A further real-time experiment is performed when the actuator 
1 has 30% fault and the generated Euler trajectories are shown 
in Figure 14. It is clear that the generated target path for ( )tφ  

and ( )tθ  are closely followed, but target path for ( )tψ  has a 
convergence after a long oscillatory transient. This is possibly 
due to the fixed quadrotor frame which is not directly 
considered in the simulation-based training.  
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Figure 14: Real time experimental results with 30% 

actuator 1 fault, a) ( )tφ , b) ( )tθ , c) ( )tψ . 

Next section summarizes the paper and states the future 
research directions.  

V. CONCLUSION AND FUTURE WORKS 
This paper developed multi-dimensional minimum distance 
and minimum time path planning algorithms for the 
quadrotors impaired because of the actuator failures. 
Constrained and multi-dimensional M-PSO and M-GA meta-
heuristic optimization algorithms optimized the cost functions 
by selecting the best quadrotor Euler angles. The specified 
Euler angles were utilized to plan the corresponding 
translational and rotational positions and velocities. The 
results showed that both meta-heuristic algorithms plan the 
required quadrotor paths. However, the M-GA algorithm 
managed to plan the shortest quadrotor distances and times. It 
was also demonstrated that the designed algorithms properly 
handled the quadrotor impairments and modified the planned 
paths based on the amount of the failures. Simulation and real 
time experiments were performed under equal conditions and 
it was showed that the quadrotor followed the simulation paths 
closely as desired. In the future, these algorithms will be 
enhanced to coordinate multiple quadrotors by considering the 
locations of the other UAVs, their battery levels, obstacles and 
the specified UAV missions. 
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