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Abstract

This paper describes how the recurrent connectionist archi-
tecture epiNet, which is capable of dynamically modifying
its topology, is able to provide a form of transparent execu-
tion. EpiNet, which is inspired by eukaryotic gene regulation
in nature, is able to break its own architecture down into sets
of smaller interacting networks. This allows for autonomous
complex task decomposition, and by analysing these smaller
interacting networks, it is possible to provide a real world un-
derstanding of why specific decisions have been made. We
expect this work to be useful in fields where the risk of im-
proper decision making is high, such as medical simulations,
diagnostics and financial modelling. To test this hypothe-
sis we apply epiNet to two data sets within UCI’s machine
learning repository, each of which requires a specific set of
behaviours to solve. We then perform analysis on the over-
all functionality of epiNet in order to deduce the underlying
rules behind its functionality and in turn provide transparecy
of execution.

Introduction
Since their inception, machine learning techniques have
been developed with a key focus on performing a task objec-
tively better than other machine learning counterparts. Fre-
quently machine learning techniques have even been able
to outperform their human counterparts, a trend which will
inevitably continue with the ever increasing computational
resources available (He et al., 2015). Machine learning tech-
niques, especially connectionist architectures such as neural
networks (Lones et al., 2013), frequently function as ‘black
boxes’ where it can be difficult to understand the rationale
for their decision making process, which can be problematic
in fields where the objective performance must be aligned
with the current knowledge of the task. Take for example
the field of medicine using convolutional neural networks
for classification of various radiographic samples. Convo-
lutional neural networks are the state of the art in object
recognition (Szegedy et al., 2015) however they can be eas-
ily fooled and will confidently classify images which are un-
recognisable when compared to the target image (Nguyen
et al., 2015). In the medical field it is highly important to

know why a certain feature is selected to represent a diagno-
sis. Otherwise, it is possible that the classification is being
achieved due to an artefact of the image, such as how well
it is focused, rather than the relevant pictographic criteria
to make a diagnosis (Nguyen et al., 2015). Such issues are
also echoed in the use of artificial intelligence for control
systems, specifically self-driving cars and applications in fi-
nancial decision making.

The process of understanding why machine learning tech-
niques make specific decisions is difficult due to the com-
plexity of their architecture. EpiNet is a machine learning
technique inspired by the functionality of chromatin remod-
elling in nature which allows for the selective expression and
repression of genes according to environmental stimulus. In
nature every gene within an organism has the potential to
be expressed, but only certain genes are expressed at certain
time points. By looking at what genes are being expressed, it
is often possible to understand why an organism is behaving
as it is (Smith et al., 2014; Manshian et al., 2015), without
having to understand the entire functionality of the organ-
ism. EpiNet is similar in this sense, as by analysing only
the expressed genes, and how they interact with a task, it is
possible to deduce rules for that section of expressed genes.
This effectively allows the reconstruction of a whole net-
works’ behaviour via the analysis of the significantly smaller
sub-sections of expressed genes.

This paper builds upon this premise by applying epiNet to
two different tasks, to understand the benefits and difficulties
when trying to provide transparency of execution. That is,
the ability to query its behaviour and have a definitive reason
as to why that behaviour exists via the statistical analysis of
the dynamics of the network.

Gene Regulation and Epigenetic Processes
DNA is ubiquitous in the natural world, and is used by na-
ture to store the particular information about an organism in
which it resides. A gene can be considered a subsection of
DNA which is commonly used to describe the structure of
a protein, which in turn can be considered a small molecu-
lar machine used in many processes, most notably to build
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tissue, break down and metabolise energy sources and in
stimulus response. For a gene to become expressed, cellular
machinery must bind to the DNA strand where that gene is
located, and transcribe that particular section of DNA into a
complimentary RNA strand. This RNA strand, which holds
the information from the gene it was just transcribed from,
is used as a template which forms the primary structure of
an amino acid sequence. This sequence can then fold to be-
come a functional protein. To move from DNA strand to
a protein requires the accurate binding of around 20 inter-
acting proteins, which in turn are products of other genes.
Hence, within human cells which have around 20000 genes,
the regulatory map, depicting the interactions between genes
is complex Clark and Pazdernik (2013). There are two key
properties of gene regulatory networks. The first is that they
are dynamic, where connections between genes may only be
present for a limited time. The second is that apart from a
few exceptions such as red blood cells, all cells contain the
full set of regulatory genes, and can modify which genes are
active out of this set to allow the differentiation into various
cell types. Changes in the subset of active genes can modify
cells’ fate. This is in combination with the other ‘housekeep-
ing’ genes which are pervasive in almost all cell types. Both
long term changes such as cellular differentiation and short
term changes such as a stress response can both be achieved
by selecting, out of all possible genes, which ones are to be
active at any given time.

Epigenetics
Epigenetics can be described as stable modifications of gene
expression without alteration of the genetic code. More col-
loquially epigenetic processes can modify the expression of
genes by interrupting, most commonly, the process of tran-
scription and translation. Two of the most ubiquitous epige-
netic processes are chromatin remodelling and DNA methy-
lation.

Chromatin Remodelling Chromatin is the higher order
folding of nucleosomes, which is the combination of DNA
and histone proteins (Figure 1). Chromatin serves two key
purposes. Firstly it provides the ability for long stands of
DNA to be effectively compressed and be able to fit in the
cells relatively small nucleus. Secondly, by changing the
structure of chromatin over time, it allows the cellular ma-
chinery to access different parts of the genome, and in turn
express different genes. This is one of the principle methods
of gene regulation in eukaryotic cells Gentry and Hennig
(2014).

DNA Methylation DNA methylation is the addition of a
methyl base to DNA which acts as a physical barrier pre-
venting the binding of transcription complexes to the DNA.
Whereas chromatin remodelling can be thought of as facil-
itating more short term changes in gene expression, DNA

methylation can be thought of as long term repression of
gene expression. DNA methylation is pervasive in na-
ture, with species having between 0.0002 and 14% of their
DNA bases methylated Zemach et al. (2010); Capuano et al.
(2014).

EpiNet
EpiNet is the most recent incarnation of an epigenetic net-
work, which differs prom it’s previous counterparts Turner
et al. (2013a,b) because it allows a dynamic selection of
genes to be executed at every time step. EpiNet comprises of
a set of nodes called genes which are abstracted from their
biological counterparts. Each artificial gene exists within
a space called the reference space, where if genes over-
lap within this space they are connected. In terms of each
genes’ regulatory dynamics, they contain a parameterisable
sigmoid function, where the parameters are stored by the
genes themselves, hence each gene can have varying regu-
latory functions. The inputs to the gene are taken from the
expressions and weights of the genes that are connected to
it. The result of this function is then that gene’s expression
for the current time step. This collection of genes is known
as a gene regulatory network (GRN) and is the backbone of
epiNet. The GRN by itself is a valid machine learning tech-
nique capable of solving complex tasks and can be described
as follows :

G is a set of genes {n0 . . . g|G| : gi = 〈ai, Ii,Wi〉} where:

ai : R is the activation level of the node.
Ii ⊆ G is the set of inputs used by the node.
Wi is a set of weights, where 0 ≤ wi ≤ 1, |Wi| = |Ii|.

L is a set of initial activation levels, where |LG| = |G|.
In ⊂ G is the set of nodes used as external inputs.
Out ⊂ G is the set of nodes used as external outputs.

The GRN architecture is similar to an recurrent neural
network, with the exception that the GRN allows the genes
(nodes in the recurrent neural network) to contain a range of
parameterisable regulatory functions. The connections be-
tween the environmental inputs and outputs from the GRN
are static throughout execution.The epigenetic molecules
within epiNet sit ‘on top’ of a GRN, akin to histone proteins
sitting ‘on top’ of DNA in nature. The epigenetic molecules
purpose is to dynamically and autonomously select genes
from the GRN for execution according to environmental in-
puts. Each epigenetic molecule is connected to a subset of
available genes (via its position within the reference space),
and at each time step it takes the expressions from these
genes and processes them within it’s own regulatory func-
tion. This value is then used to move the epigenetic molecule
within the reference space, which updates which genes are
selected for execution in the next time step. Additionally, it
also modifies which genes are connected to the epigenetic
molecule. This process is repeated at each time step. The
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inputs and outputs are then mapped to and from the genes
which have been selected via the epigeentic molecules. An
image showing the execution of the epigenetic network can
be seen in Figure 1. The epigenetic molecules can be for-
mally described as follows :

E is a set of epigenetic molecules
{e0 . . . s|E| : ei = 〈ai, Ii,Wi, Ci〉}:

aei ∈: R is the position of the molecule.
Iei ⊆ N is the set of inputs to the molecule.
W e

i is a set of weights, where 0 ≤ wi ≤ 1, |Wi| = |Ii|.
Ce

i ⊆ N is the set of nodes controlled by the switch.

The algorithm describing the application of epiNet to a
task can be seen in algorithm 1.

Algorithm 1 Evaluating epiNet on a task
1: initialize control task
2: a ← L � initialize epiNet state
3: repeat
4: cout ← state variables from controlled system
5: In ← SCALE(cout) � scale inputs to [0, 1]
6: for i ∈ {0, . . . , |E|} do � update positions of

epigenetic molecules
7: asi ← SIGMOID(Isi ·W s

i ) � modify epigenetic
positions

8: end for
9: for i ∈ {0, . . . , |G|} do � update list of expressed

genes
10: ai ← SIGMOID(Ii ·Wi) � execute expressed

genes
11: end for
12: cin ← SCALE(Out) � scale outputs to range
13: modify controlled system according to cin
14: until control task finished or timed-out
15: fitness ← progress on control task objectives

Task Definitions and Application
The dynamical topological changes during the execution of
epiNet mean that the classical optimisation techniques of ar-
tificial neural networks such as back propagation are not fea-
sible for optimising epiNet. The way epiNet is optimised is
to modify its static structure, that is the genes and epige-
netic molecules and the data held within them, as the dy-
namic functionality of the network is a direct product of its
static topology. Hence, to optimise epiNet, evolutionary al-
gorithms or evolutionary strategies are the most well suited
candidates. Typically this would be done with evolution-
ary algorithms, which are a population based optimisation
technique. However, with the focus of this would being on
understanding the functionality of epiNet to provide trans-
parency, not on objective performance, a 1 + 1 mutation only

Figure 1: An abstraction from epiNet showing its execu-
tion over two consecutive time steps with only one input
and one output being used. In the first time step, it can be
seen that the genes which are not covered by the epigenetic
molecules are selected for execution. The genes are then
moved to a separate network where they self-organise and
connect to each other and the inputs and outputs from the
task. Once executed, the genes then feedback into the epi-
genetic molecules which use this information to update their
position. In the second time step, the epigenetic molecules
have moved and cover a different subsection of genes, al-
lowing a different set of genes to be executed. This process
is repeated until completion or cessation of the task.

evolutionary algorithm will be used as it will be possible to
track the changes to the epiNet as it evolves, which will help
provide insight of its functionality.

To assess epiNet’s ability to provide transparency during
evolution it will be applied to two time series based clas-
sification tasks which are available from the University of
California, Irvines machine learning repository (University
of California, Irvine, School of Information and Computer
Sciences, 2017). Each task will be conducted over 100000
evaluations of epiNet, where each data element of the net-
work will be subjected to mutation at a probability of 5% at
each iteration. An algorithm depicting the optimisation of
epiNet can be seen in Algorithm 2.

Using Electroencephalogram Readings to
Determine Eye State
Electroencephalogram (EEG) is a method of monitoring the
electrical activity of the brain, which is typically achieved
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Algorithm 2 Optimising epiNet
1: bestNetwork ← bestNetwork ∪ {new random

epiNet}
2: for numberofevaluations do
3: CLONE P AS BESTNETWORK
4: MUTATE(P)
5: EVALUATE(P) . see Algorithm 1
6: if P.fitness >= bestNetwork.fitness then
7: bestNetwork = P
8: end if
9: end for

non-invasively by attaching electrodes to the scalp. It is most
commonly used to diagnose epilepsy (Parmeggiani et al.,
2010), but is also finding significant traction us a brain-
computer interface (Chambayil et al., 2010; Wairagkar et al.,
2016).

The data for this task (University of California, Irvine,
School of Information and Computer Sciences, 2017) was
generated using the Emotiv EEG Neuroheadset (Emotive,
2017) to understand if analysis of the EEG signals can pre-
dict if the subject is blinking or not. 14 individual elec-
trodes are connected to the subject and the EEG signals are
recorded for 117.03 seconds at 128hz, resulting in 14980
data points. For this task, epiNet will be randomly initialised
with 25 genes and 2 epigenetic molecules. The network
will produce a single output which will be mapped to 0 if
its value is less than 0.5 and 1 otherwise. For each time
step, epiNet will try and deduce whether or not the subject
is blinking or not. The data will be split into 70% for train-
ing and 30% for testing. The fitness for the network will
be the normalised value of time steps which have been cor-
rectly classified. A total of 50 runs for the experiment will
be conducted.

Ultrasound Data Of a Wall Following Robot
This data set contains the readings from 24 ultrasound sen-
sors connected to a traversing robot. The robot has been pro-
grammed to perform a wall following task. The task took
approximately 10 minutes with a 9hz sampling producing
5456 data points. The data set has 5 possible actions at-
tached to each time step which are turn left, turn sharp left,
turn right, turn sharp right and move forward. In this work,
we have simplified this to 3 possible actions which are turn
left, turn right and move forward, and used the compact data
set attached to this data, which maps the 24 variables onto 4
variables, specifying the distance from the robot to the wall
in each direction. The heuristic for this can be seen in Al-
gorithm 3. When epiNet is applied to this task (Algorithm
1 and 2) it will produce 3 outputs, corresponding to each of
the three possible actions. The output with the highest val-
ues will be taken as the decision at that time step. The data
will be split into 70% for training and 30% for testing. The

Start End Length Topology Inputs Output
1020 1100 70 1,3,4,5,7 1,4 0.3
1101 1102 1 1,3,4,5 1 0.1
1106 1304 198 1,2,3,4,5,7 1,4 0.9
1305 1400 95 1,3,4,5,7 1,4 0.3
1401 1402 1 1,3,4,5 1 0.1
1406 1604 198 1,2,3,4,5,7 1,4 0.9

Table 1: An example of a summary of the information au-
tonomously collected and made available throughout the ex-
ecution of epiNet. This information can be generated and
queried live or post execution. The topologies column list
which genes are expressed at any given time step, the inputs
column shows which inputs from the tasks are currently con-
nected to an expressed gene and the outputs shows the cur-
rent output of the network.

fitness for the network will be the normalised value of time
steps which have been correctly classified. A total of 50 runs
for the experiment will be conducted.

Algorithm 3 Wall following heuristic
1: if Left distance > 0.9 then
2: if Front distance ¡ 0.9 then
3: Turn to the right
4: else
5: Turn to the left
6: end if
7: else
8: if Front distance ¡ 0.9 then
9: Turn right

10: else if Left distance ¡ 0.55 then
11: Turn right
12: else
13: Move forward
14: end if
15: end if

Autonomous Analysis of Network Function
The focus of this work is to provide an efficient way to anal-
yse the dynamics of eipNet to provide a real world under-
standing of why it functions the way it does. To achieve this,
we will be looking at specific data available to epiNet, an
example of which can be seen in Table 1. The most relevant
data in the table is the topological changes over time. With
only a small proportion of genes being selected for execution
at each time step by the epigenetic molecules, it is relatively
simple to understand a specific topology, and also, how dy-
namical patterns of topological changes change according to
the dynamics of the task. Additionally, algorithms specifi-
cally for analysing epiNet have been developed which can
detect repeating patterns of topological change and effec-
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tively condense this information so that it can be easily un-
derstood. In previous work, it has been noted how topologi-
cal changes to the network frequently correlate with changes
in the dynamics of the task. In addition to this, we can also
see which inputs from the task are being used at any given
time. For example, in the wall following task it might be
possible to show that the majority of decision making by
epiNet is based upon the information from only a small sub-
section of possible inputs. This type of information is useful
for two key reasons. Firstly, it can be used to inform fur-
ther scientific query. Secondly, it provides an understanding
of how the network behaves by process of elimination. For
example, when applied to the coupled inverted pendulums it
was found that only two of the ten inputs from the task were
needed to solve it optimally (Turner et al., 2017). This not
only highlighted that only two inputs were generally used
to make decisions within epiNet, but that the remaining 8
inputs served no purpose throughout optimisation. A fur-
ther piece of information which is available through epiNet
is the trace of each epigenetic molecule detailing its position
over time. This serves to highlight the stability of specific
dynamical regimes or topologies, and how likely changes to
the position of the epigenetic molecules translate to changes
in topology and network output.

Within this work, we are able to provide a look up table
which stores all the information regarding epiNets execution
at every time step. This means, that during a period of in-
terest, say a changing of behaviours in the network, all the
information of epiNets execution during that time can be ef-
ficiently extracted. In addition a summary can be provided
of the overall execution of the network, showing the average
size of each topology, how many and what inputs are most
frequently used and which patterns of execution have been
found.

Results
The focus of this work is on providing transparency during
the execution of epiNet, however it is important to ascertain
the computational potential of epiNet, as without this it is of
limited use from a computational perspective. To do this we
have run an identical set of experiments on the GRN which
underpins EpiNet. Because EpiNet is built upon the GRN,
which is a valid computational model in it’s own right, the
difference in performance can be attributed to the addition
of the epigenetic molecules within EpiNet, as the underly-
ing GRN will be identical to the one tested here. Figures
2 and 3 show that epiNet performs significantly better than
the GRN architecture which it was based upon. The differ-
ence between performance was most pronounced in the wall
following robot task, where epiNet was able to score maxi-
mum fitness when applied to the testing data. However, in
this task the spread of results between the 50 runs of epiNet
was much greater than the GRN architecture, which sug-
gests that epiNet may be prone to getting stuck with local

Figure 2: The overall performances of the GRN architecture
and epiNet on the EEG classification task. EpiNet signifi-
cantly outperforms the GRN on both training and test data
with significance values of 1.3123x10-15 and 6.8560x10-5 re-
spectively, using the Wilcoxon rank-sum test.

Figure 3: The overall performances of the GRN architecture
and epiNet on the robot wall following task. EpiNet signif-
icantly outperforms the GRN on both training and test data
with significance values of 7.1311 x 10 -13 and 6.0915 x 10
-12 using the Wilcoxon rank-sum test.

optima. In terms of the EEG classification task, it was sub-
stantially more difficult for the networks to learn, with many
instances of both networks performing worse than random
on the training data. This highlights that a type of cross fold
validation might be beneficial, however, it would have to be
adapted due to how epiNet executes and is optimised.

Deducing Rules From The ‘Using
Electroencephalogram Readings to Determine Eye
State’ Task
To understand the process of providing transparency of exe-
cution and its usefulness, we will focus on a single network,
the optimum performing epiNet according to the test data,
achieving an 82% classification rate. This network in its
original form contains 24 genes and 7 epigenetic molecules,
significantly more than the 2 it contained at the beginning
of the optimisation process. Within the scope of this paper,
it will not be possible to explain every decision the network
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Algorithm 4 Transparency Algorithm
1: Isolate time steps of interest
2: for N �= 1000 do
3: Remove random gene / epi
4: Re-evaluate network
5: if !Full functionality is preserved then
6: Replace gene / epi
7: end if
8: end for
9: Analyse topology changes associated with changes in

decision
10: Correlate which epigenetic molecules are responsible

for the change
11: Calculate which inputs / genes key epigenetic molecules

are connected to

made, hence we will focus on the one outlined in Figure 4 as
the decision of interest. This decision made by epiNet is to
predict that from the data, the subject had their eyes closed,
and opened them at the 1200th time step. This decision is
incorrect, as illustrated by Figure 4, as the subjects eyes re-
main closed until the 1590th time step. We will answer why
this incorrect decision was made.

The network we are focusing on, with 24 genes and 7
epigenetic molecules is far too complex to deduce it func-
tionality in its current state. The network was optimised to
function over thousands of time steps, changing its topology
depending on the network dynamics. However, in this in-
stance, we are looking at a 200 time step subsection of the
task. Hence, we can remove all superfluous network ma-
terial which does not affect the behaviour and the dynam-
ics of the network over these time steps using Algorithm
4. This achieves a significant reduction in network size,
where the reduced network contains 7 genes and 5 epige-
netic molecules. Using the tools developed during this work,
we can query the network dynamics at specific time steps
which can be seen in Table 2. These statistics show a stable
topology leading up the 1200th time step, where the deci-
sion to change the dynamics of the network is encountered.
The network then partitions itself into two intermediary sta-
ble topologies and then onto a continuing stable topology for
138 time steps. We can see from the inputs in Table 2 that
only inputs 1 and 2 are being used during this subsection of
time steps.

The reason for the topological changes, and in turn a
change in the output dynamics is the activation of gene 4,
and both events are exactly correlated. What caused the ac-
tivation of this gene? From analysis of the data of all the
epigenetic molecules movements, 3 of the 5 are static mean-
ing that they express the same genes regardless of internal
or external perturbations. Out of the 2 dynamical epigenetic
molecules, only one is within proximity of gene 4, and there-
fore is responsible for its expression. However, what caused

Figure 4: The decision of the optimum epiNet (0.8231) at
each time step of the test data. Over layed is the optimum
behaviour. The decision highlighted is made by epiNet to
prematurely change its dynamics and incorrectly change its
output from eyes open (1) to eyes closed (0).

Execution summary of epiNet on EEG classification
Start End Length Topology Inputs Output
1024 1199 175 0,1,3,5,6 1,2 1
1200 1219 19 0,1,3,4,5,6 1,2 0
1220 1225 5 0,1,2,3,4,5,6 1,2 0
1226 1364 138 0,1,3,4,5,6 1,2 0

Table 2: The summary of the execution of the decision of
interest highlighted in Figure 5. it can be seen that only
inputs 1 and 2 are being used throughout this period and that
there are 4 topological changes of which one coincides with
a change in output (decision).

the shift in this epigenetic molecule which resulted in the ex-
pression of gene 4? The epigenetic molecule was connected
to, and tracking input 2 from the task. This can be seen in
Figure 5.

We note that it’s gene number 4 which is introduced,
which ultimately causes the topological change. What
caused the introduction of gene 4 is the movements of the
2nd epigenetic molecule which is transforming the input
from input 2, to produce its movement, and introduce gene
4 (see Figure 5). This change which can be seen at time
step 200 is significantly correlated between the epigenetic
molecule and input 2.

Using this deductive reasoning, we can say that due to
the fluctuation of input 2, which is connected to epigenetic
molecules 2, this results in the changes to the network topol-
ogy by expressing gene 4, which changes the dynamics of
the network an ultimately the output of the network from 1
to 0.
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Figure 5: The signal from input 2 over layed with the move-
ments of the epigenetic molecule in which it is connected to.
The topological changes occurs at approximately time step
1200, coinciding with a shift in position of the epigenetic
molecule which the expresses gene 4. The input and epige-
netic movement are highly correlated but not identical, as the
epigenetic molecule is able to process the input according to
its own regulatory function, alongside being connected to
other genes.

Deducing Rules From The ‘Ultrasound Data of a
Wall Following Robot’ Task
The decision that will be analysed for the robotic navigation
task can be seen in Figure 6, where the optimum network
was applied. This network achieved 100% on the test set, so
all decisions it made coincide with the optimum behaviour
highlighted in Algorithm 3. When the optimum epiNet is
applied to steps 1-8 in the transparency algorithm, 14 genes
are removed from the network, but all epigenetic molecules
remain as they are essential to the dynamical behaviour of
the network. The summary for this execution shows that
only 2 inputs from the task are used to solve it optimally
(Table 3), which coincides well with the optimal behaviour
which is highlighted in Algorithm 3, where only the left and
forward ultrasound distances are used.

The topological change that we are focusing on can be
seen in Table 3 where gene 1 is suppressed from execution
at time step 1150. Gene 4 is located within the region of
the 2nd epigenetic molecule in the network’s movements
throughout execution. No other epigenetic molecules inter-
fere with this space, hence we can deduce that the 2nd epi-
genetic molecule is responsible for the suppression of gene
4.

In order to find out why the epigenetic molecule moved
at the point it did, resulting in a decision change, the answer
lies in which inputs from the task the epigenetic molecule
is connected to. In this instance, the epigenetic molecule is
connected to input 1, which is responsible for detecting the
distance between the left hand side of the robot and a wall.

Execution summary of epiNet on robotic task
Start End Length Topology Inputs Output
1150 1210 60 0,1,2,3,4 0,1 0
1211 1250 49 0,2,3,4 0,1 1

Table 3: The data of the topological change responsible for
the variation in dynamics seen in the decision of interest in
Figure 7.

Figure 6: The output of the optimum epiNet applied to
the wall following tasks, which 100% fitness was achieved.
The highlighted region specifies a decision made by epiNet
which will be analysed to discover why it occurred.

This connection is passed through a gene which effectively
inverts the signal. This relationship can be seen in Figure 7,
where only a small change in the input 2 signalling that a
wall is getting closer, slightly adjusts the position of the epi-
genetic molecule which in turn moves it away from gene 4.
This effectively shows that the topological change in the net-
work was due to a change in the input, signalling that there
is a wall on the left hand side. This topological change re-
sulted in a change of dynamics as well as a change in output,
instructing the robot to move to the right.

Although the information analysed in this section is a
small element of the entire decision making process, it is
possible this can be repeated for every decision made by the
network. In this instance, as the network achieved the opti-
mal behaviour, this will re-construct the original algorithm
applied to the robot from Algorithm 3. In this sense epiNet
twinned with thorough analysis is enough to build up a per-
fect picture of why the network behaves as it does over all
time steps.

Conclusions
In this paper we investigate the benefits of epiNet, a machine
learning architecture capable of self-topological modifica-
tion. The topological modification of epiNet allows it to au-
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Figure 7: The correlation between the change in input and
the inverse movement of the epigenetic molecule which is
ultimately responsible for the decision made in figure 6.

tonomously decompose complex tasks, applying relatively
small sections of its architecture to these subsections. This
paper describes methods to exploit this behaviour to provide
transparency of execution, to be able to question behaviours
of the network and find out a logical answer as to why it
behaves like it does. This work built a method to compile
the data from the functionality of epiNet over varying time
scales, by removing superfluous parts of the network which
were not required to maintain functionality, whilst analysing
the parts that are.

The work in this paper serves as a proof of concept of
an architecture which is capable of autonomously revealing
why it is making certain decisions and future work will fol-
low two trends. Firstly how much of a complex problem can
epiNet solve whilst providing transparency of its functional-
ity? Secondly, how can we translate the work done in this
paper to provide an autonomously generated, human read-
able description of network function? The results and anal-
ysis in this paper show that there is potential for answering
both of these questions.
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