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Abstract: The study of wave-structure interactions involving nonlinear forces would often make use
of the popular hybrid frequency–time domain method. In the hybrid method, the frequency-domain
analysis could firstly provide the reliable and accurate dynamic parameters and responses; then
these parameters and responses are transformed to the parameters to establishing the basic time-
domain equation. Additionally, with the addition of the required linear and nonlinear forces, the
time-domain analysis can be used to solve for the practical problems. However, the transformation
from the frequency domain to the time domain is not straightforward, and the implementation of the
time-domain equation could become increasingly complicated when different modes of motion are
coupled. This research presents a systematic introduction on how to implement the time-domain
analysis for floating structures, including the parameter transformations from the frequency domain
to the time domain, and the methods for calculating and approximating the impulse functions and
the fluid-memory effects, with special attention being paid to the coupling terms among the different
motion modes, and the correctness of the time-domain-equation implementation. The main purpose
of this article is to provide relevant information for those who wish to build their own time-domain
analyses with the open-source hydrodynamic analysis packages, although commercial packages are
available for time-domain analyses.

Keywords: frequency-domain analysis; time-domain analysis; hybrid frequency–time domain
method; impulse function; memory effect; Prony approximation

1. Introduction

Frequency-domain analysis is a widely used method for wave-structure interactions
and, in the method, the dynamic system is assumed to be fully linear: the governing
equation is the linear Laplace equation (based on the incompressible potential flows); the
body and seabed boundary conditions are linear; and the free-surface condition can be
linearized for practical applications. Although the assumptions are strict, the frequency-
domain analysis could provide reliable and accurate assessments for the hydrodynamic
parameters and responses, such as the added mass, the radiation-damping coefficients, the
wave-excitation forces, and the response amplitude operators (RAOs) [1–5], and, in some
cases, it can be even extended to hydro-elastic analysis [6] and the elastic wave-energy
converters (WECs) [7,8]. For its applications in wave-energy converters, the conventional
frequency-domain analysis may provide an accurate calculation for the resonance fre-
quency/period of the device, which is generally regarded as the most important parameter
for wave-energy converters, since most wave-energy converters would be ideally optimized
to have resonance with the wave for efficient energy extraction from the waves [9,10]. In
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addition, the frequency-domain analysis is also a powerful tool for optimizing WECs and
power take-off (PTO) to maximize wave-energy production [11,12].

The assumption of fully linear dynamic systems in the frequency-domain analysis
could limit its direct applications in WECs since, for some practical WECs, nonlinear PTO
systems may be employed, such as hydraulic PTOs [13–16] or impulse turbines [17–19].
Additionally, when a control is applied to improve wave-energy conversion [20–24], the
corresponding dynamic system in wave-energy conversion would be identically nonlin-
ear, even if the PTO is linear. For a nonlinear dynamic system, the frequency-domain
analysis can not be used directly; instead, the most applied method is the so-called hy-
brid frequency–time domain method [9,25–27]. In the hybrid method, the frequency-
domain analysis is firstly used to obtain the relevant hydrodynamic parameters (that is,
the frequency-dependent parameters), and these parameters and the frequency-domain
equation are then transformed to the corresponding time-domain parameters and the Cum-
mins’ time-domain equation [28]. To realize the transformation, the Ogilvie relation [29]
is used for transforming the relevant frequency-dependent parameters to the parameters
in the time domain, such as the impulse function, the fluid-memory effect, and the added
mass at infinite frequency. For real problems, the transformed Cummins’ time-domain
equation can be modified by adding the required forces (linear and/or nonlinear) for the
actual problems.

However, such a transformation from the frequency domain to the time domain is not
straightforward. It involves the transformation from the frequency-dependent radiation-
damping coefficients to the impulse functions and the subsequent fluid-memory effects to
represent the fluid-damping effects on the floating structures, and the transformation from
the frequency-dependent added mass to the added mass at infinite frequency. Additionally,
to calculate the memory effects more effectively, the impulse functions are frequently
approximated, so are the fluid memory effects [30–32].

The transformations and approximations would become increasingly complicated
when different modes of motion are coupled together [12] (compared to those time-domain
analyses of the single-motion mode, such as on heave [9], or on pitch [26,27]). However,
in reality, the multiple motion modes must be analyzed for some floating structures and
WECs, for instance, the multi-axis WECs [16]. The current research systematically presents
and explains how the correct transformations can be made, how the memory effects are
approximated, and how the multiple coupled motions are solved. Moreover, a validation
method is introduced, which would allow the researchers to check whether the numerical
modeling implementation for the time-domain modeling is correct. When this important
step is completed, the researchers can be more confident to add the required forces to the
dynamic equation for the practical problems.

The rest of the paper is arranged as follows: Section 2 presents a brief introduction
of the multi-axis TALOS WECs; Section 3 introduces the frequency-domain equation and
responses, paying attention to the coupled-motion modes of the TALOS WECs; Section 4
establishes the time-domain analysis, introducing how to transform the frequency-domain
equation into the time-domain equation; Section 5 presents the methods for approximating
the impulse function and the memory effect of the fluid on the structure; Section 6 discusses
the implementation and validation method of the time-domain analysis; and, finally, in
Section 7, the conclusions are presented regarding the implementation of the time-domain
analyses for floating structures.

2. TALOS WEC

TALOS is a point absorber-type WEC, which was proposed and initially developed
at Lancaster University, UK [16]. The general shape for TALOS I is an octagonal-shaped
floating structure (see the panels of the wet surfaces of the TALOS in Figure 1a), and it was
the target floating structure in this research for studying the wave-structure interaction
and the implementation of the time-domain analysis for the multiple-motion modes of a
floating structure.
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Figure 1. TALOS I structure/panel (a); TALOS II and the multi-axis power take-off (PTO) (b); and
TALOS PTO test rig (c).

The TALOS WEC is a wave-energy converter with a multi-axis PTO system, which
consists of a heavy ball enclosed in the wave-energy converter, supported with the springs
and dampers, see the PTO system in TALOS II from the cut-off in Figure 1b, and the multi-
axis PTO test rig (Figure 1c). This multi-axis wave-energy converter converts wave energy
from the multiple-motion modes of the structure in waves for a more efficient wave-energy
extraction. In converting the wave energy, the heavy ball remained relatively stationary
while the structure motions under the wave excitation induced the relative motion between
the structure and the heavy ball to drive the PTOs (including the springs and dampers) to
convert the wave energy into useful mechanical energy. As a result of such an arrangement,
the TALOS WEC had the advantage of being a multi-axis wave-energy converter (the
other advantages of the TALOS WEC include the fully enclosed PTO in the structure, thus
affording a good survivability for the WEC device).

Recently, the TALOS multi-axis wave-energy-converter technology (the project’s short
name: ‘NHP-WEC’) was selected as one of eight projects supported by UK Research and
Innovation (UKRI) [33], which aim to unlock the potentials of marine wave energy. The
main focuses of the NHP-WEC project are to optimize the TALOS WEC and the relevant
PTO system, as well as to advance WEC technology by developing the essential device
control and monitoring systems that are integrated with high-fidelity sea-state forecasting
using the SmartWave toolset [34]. The current work is part of the ongoing research of the
NHP-WEC project, an important step towards the implementation of the numerical model
for the multi-axis TALOS wave-energy technology.

3. Frequency-Domain Governing Equation and Responses
3.1. Frequency-Domain Governing Equation

Frequency-domain analysis is a very popular method for the wave-structure interac-
tions [35–37], in which the governing equation for wave-structure interactions is solved in
the frequency domain, with the relevant hydrodynamic parameters (added mass, radiation-
damping coefficient, and wave excitation) being assessed using the panel method, such as
the open source, HAMS (Hydrodynamic Analysis of Marine Structure [38]), and the com-
mercial package, WAMIT [39]. The panel method for wave-structure interaction is based
on the potential flow theory and solves for the problems of wave-structure interactions
under the assumption of the dynamic system being fully linear. These assumptions seem
very strict, but the panel method is in fact very reliable and accurate for a large range of
practical problems, while, for many other problems of wave-structure interactions, it could
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still provide the required hydrodynamic parameters reliably for further analyses, including
the time-domain analyses as the time-domain implementation in this research.

The main purpose here is to implement time-domain modeling based on the pre-
dictions of the open-source panel method, HAMS. However, for the purpose of basic
validations, the commercial code, WAMIT (widely regarded as an industrial standard
for studying wave-structure interactions), was employed for the purpose of comparisons
(more detailed comparisons between HAMS and WAMIT can be found in [40]). Here, the
comparisons between HAMS and WAMIT were made to simply check the correctness of
the relevant frequency-dependent parameters and of the corresponding impulse functions.

Following WAMIT [39], the frequency-domain governing equation of 6-degrees-of-
freedom (DOFs) motions of a rigid structure is presented in a form of a mass-spring-damper
system, as

6

∑
k=1

{
−ω2

[
Mjk + ME

ij + Ajk(ω)
]
+ iω

[
Bjk(ω) + BE

jk

]
+
(

Cjk + CE
jk

)}
ξk(ω) = Fj (ω) (1)

where
ω is the circular frequency of the wave excitation, and the parameters with the variable

ω represent their frequency dependency.
Mjk, ME

jk, Ajk(ω) (j, k = 1, 2, . . . , 6) are the structure and external and added-mass
matrices, and the former two must be specified for the numerical modeling, while the latter
can be assessed using the panel method. In some wave-energy converters, the external-mass
matrix ME

jk may be from the generic PTO, see Babarit [41].

Bjk(ω), BE
jk (j, k = 1, 2, . . . , 6) are the radiation and external-damping coefficients,

with the former being assessed using the panel method, while the latter must be specified
in the numerical modeling; the external-damping coefficient BE

jk may be from the generic
PTO as above or from other linear dampings.

Cjk, CE
jk (j, k = 1, 2, . . . , 6) are the structure hydrostatic and external restoring coeffi-

cients (both must be specified or calculated). The definition of the hydrostatic restoring
coefficients Cjk can be found in the WAMIT manual [39]; the external restoring coefficient
CE

jk may be from the PTO or from the linearized mooring system.
Fj (ω)(j = 1, 2, . . . , 6) is the frequency-dependent complex amplitude of the wave

excitation, which can be calculated using the panel method.
ξk(ω)(k = 1, 2, . . . , 6) corresponds to the motions of surge, sway, heave, roll, pitch,

and yaw, respectively, as the frequency-dependent complex amplitudes of motions for
the floating structure. Additionally, these are solved from the above governing equation
and, as a convention, the response amplitude operator (RAO) is a more useful expression,
defined as

χk =
ξk
A

(2)

where A is the wave amplitude (here, the wave amplitude A is without a subscript or
superscript). Obviously, in the wave of a unit amplitude, the frequency-dependent ξk itself
is the RAO.

In the conventional plots, the module of the RAO may be seen more often, which is
defined as

|χk| =
|ξk|
A

(3)

From the terms regarding the added mass, the radiation damping and the restoring
coefficients in Equation (1), we can observe that the motions of a free-floating structure
may couple together through the cross-coupling coefficients. The motion couplings can
be either through the wave radiation, that is, through the cross-coupling added-mass and
radiation-damping coefficients, such as A15 (as the surge-pitch coupling), B24 (the sway-roll
coupling), if these coupling coefficients are not zero, nor very small when compared to
other terms, say, A11 and B22; or, through the coupling hydrostatic restoring coefficients, for
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instance, the coupled restoring coefficients between heave and roll (pitch), as C34 or C35. It
should be noted that some of the coupled motions are inherently existing, e.g., surge-pitch
coupling and sway-roll coupling, while some other coupled motions may exist or not, very
much depending on the shape of the floating structure, for instance, a structure with a
symmetry about x axis may lead to the de-coupling of the heave and pitch motions.

In the following subsections, the hydrodynamic parameters and responses are pre-
sented and discussed for the TALOS floating structure, and the comparisons between
HAMS and WAMIT aim to confirm that the open-source panel method, HAMS, is reliable
and accurate.

3.2. Added Mass

The conventional added mass of the TALOS wave-energy converter is presented in
Figure 2, including the added mass for surge (A11), sway (A22), heave (A33), roll (A44),
pitch (A55), and yaw (A66). We can observe from the comparisons between HAMS and
WAMIT that they are almost identical, and some differences (spikes) can be observed in the
so-called irregular frequencies in the short waves, when the wave period, T, is less than 3 s.
The reason for the irregular frequencies may relate to the panel size: as a rule of thumb, the
maximal panel size should be less than 1/8 of the wave length (see [37]).
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However, the spiky responses of the short waves (of high frequencies) would have no
significant influence on the performance of the floating structure (see the smooth-motion
responses, the RAOs in Section 3.5), or in the interest for wave-energy extraction due to the
corresponding low-wave-energy density of short waves.

For the free-floating structure, TALOS, we can observe that there are some strong
couplings between the motions in terms of the added mass, such as the surge pitch (see A15,
Figure 3a) and sway roll (see A24, Figure 3b). It can also be noted that, due to the symmetry
of the couplings, A51 = A15, and A42 = A24, and also the corresponding added mass of
the strong coupling terms, which have a similar order of magnitude as the conventional
added mass (compared to Figure 2a,b). Here, we can observe that A24 is a negative added
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mass, which means that the motion of the roll would produce an added mass on the sway
in an opposite phase. Obviously, in the applications, these strong coupling terms must be
included in both the frequency-domain and time-domain analyses.
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For a comparison, we also present the weak couplings in the heave pitch (see A35,
Figure 3c), and, here, we can observe that they are quite different in relation to the HAMS
and WAMIT predictions, probably due to the slightly different methods employed to
approximate the free-surface Green function. However, the magnitude of the added mass
for the weak couplings would be several orders smaller than the conventional added mass
(~300 vs. 3× 106). Therefore, the weak coupling terms can be fully omitted in the numerical
modeling since these terms would not have any influence on the overall performance of the
structure motions and responses, although such a weak coupling presented between the
heave and pitch of TALOS may be an indication that the heave and pitch could be strongly
coupled if a different structure, for instance, a floating structure with no symmetry for the
y axis was applied (here, TALOS has 2 symmetries for the x and y axes, respectively).

3.3. Radiation-Damping Coefficients

The conventional radiation-damping coefficients of the TALOS wave-energy converter
are presented in Figure 4. These include the radiation-damping coefficients, B11 for surge,
B22 for sway, B33 for heave, B44 for roll, B55 for pitch, and B66 for yaw. Again, we can
observe that the results from HAMS and WAMIT are almost identical, with differences at
the irregular frequencies in the short waves (the wave periods, T, less than 4 s). Again,
these irregular frequencies are due to the limited panel size, similar to the cases in the
added mass.

Similarly, we can observe that there are some strong couplings between the motions,
such as surge pitch (see B15, Figure 5a) and sway roll (see B24, Figure 5b), and these coupling
terms would correspond to those of the strong coupling terms on added mass. These
strongly coupled radiation-damping coefficients would have similar orders of magnitude
as those conventional radiation-damping coefficients (refer to Figure 4a,b). One interesting
factor is that the coupled radiation-damping coefficient can be negative, for instance,
the coupled radiation-damping coefficients for sway and roll, B24 (Figure 5b), which is
very different from the positive conventional radiation-damping coefficient. This can
be understood as follows: in the conventional radiation-damping coefficients, the self-
radiation would simply radiate the wave away due to the structure motion, and dissipate
the energy from the moving structure, hence the radiation-damping coefficient must be
positive; while in the coupled damping coefficients, for instance, B24, which is the damping
coefficient due to the radiated wave from the roll motion (the subscript ‘4’) contributing
to the damping effect on the sway motion (the subscript ‘2’), the coupling effect is in
an opposite phase, hence it is physically negative (for a comparison, B15 is positive, see
Figure 5a).
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yaw, respectively.
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Figure 5. The coupled radiation-damping coefficients for the TALOS structure: (a) for surge-pitch
coupling (B15); (b) sway-roll coupling (B24); (c) heave-pitch coupling (B35).

Similarly, we can observe the weak coupling presented in the heave pitch (see B35,
Figure 5c). Again, the magnitude of the radiation-damping coefficient for the weak
coupling is a few orders smaller than the conventional radiation-damping coefficient
(~200 vs. 2 × 106). Therefore, the weak coupling terms can be omitted from the numerical
modeling. In fact, in the corresponding time-domain analysis, such weak coupling terms
must be dropped; otherwise, it may cause divergence problems in the numerical modeling
due to the possibly corresponding divergent-impulse functions (the details are discussed
later in the research).

3.4. Wave Excitation

Wave-excitation forces are dependent on both the floating structure itself and the
direction of the incoming waves. Here, an angle of 45◦ for the incoming wave was used for
calculating the wave excitations acting on the structure. From Figure 6, we can observe the
wave-excitation responses (under the waves of unit amplitude) for different motion modes
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(surge, Fex1; sway, Fex2; heave, Fex3; roll, Fex4; pitch, Fex5; and yaw, Fex6). Additionally, the
wave excitations for surge and sway are the same (Figure 6a,b) in such a wave condition
(45◦) and due to the symmetry of the TALOS structure. Additionally, for the same reason,
the excitations for roll and pitch are the same (see Figure 6d,e).

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 8 of 24 
 

 

3.4. Wave Excitation 

Wave-excitation forces are dependent on both the floating structure itself and the 

direction of the incoming waves. Here, an angle of 45° for the incoming wave was used 

for calculating the wave excitations acting on the structure. From Figure 6, we can observe 

the wave-excitation responses (under the waves of unit amplitude) for different motion 

modes (surge, 𝐹𝑒𝑥1; sway, 𝐹𝑒𝑥2; heave, 𝐹𝑒𝑥3; roll, 𝐹𝑒𝑥4; pitch, 𝐹𝑒𝑥5; and yaw, 𝐹𝑒𝑥6). Addi-

tionally, the wave excitations for surge and sway are the same (Figure 6a,b) in such a wave 

condition (45°) and due to the symmetry of the TALOS structure. Additionally, for the 

same reason, the excitations for roll and pitch are the same (see Figure 6d,e). 

The excitations for the surge, sway, roll, and pitch all have maximums at certain wave 

periods (see Figure 6a,b,d,e), while the excitation for the heave monotonically increases in 

short waves (Figure 6c), and its increase is in long waves, but in very long waves, the 

increase would be small. The reason for these is because the excitations for the surge, 

sway, roll, and pitch are all dependent on the slope of the wave, while the excitation for 

heave is dependent on the dynamic pressure acting on the bottom of the structure, thus it 

will be greater in longer waves. Therefore, the excitation for heave increases with the 

longer waves. 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 6. The wave-excitation forces on the TALOS structure (incoming wave angle = 45°). (a) 

Surge; (b) sway; (c) heave; (d) roll; (e) pitch; and (f) yaw. 

3.5. Response Amplitude Operators (RAOs) 

For the free-floating marine structures, only three motion modes (out of six DOFs) 

had inherent restoring forces: heave, roll, and pitch, and the latter two motions would also 

be very dependent on the position of the center of gravity of the structure. In the current 

modeling, the center of gravity was set at 𝑧𝑔 = −5.0𝑚 (that is, 5.0 m below the water’s 

surface). 

For the other three motion modes (surge, sway, and yaw), there were no inherent 

restoring forces. Hence, for most floating structures, the required restoring forces/mo-

ments must be provided by the mooring system to the structure or other means. Here, for 

simplifying the analysis, we assumed the linear restoring coefficients for the surge, sway, 

Figure 6. The wave-excitation forces on the TALOS structure (incoming wave angle = 45◦). (a) Surge;
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The excitations for the surge, sway, roll, and pitch all have maximums at certain wave
periods (see Figure 6a,b,d,e), while the excitation for the heave monotonically increases
in short waves (Figure 6c), and its increase is in long waves, but in very long waves, the
increase would be small. The reason for these is because the excitations for the surge,
sway, roll, and pitch are all dependent on the slope of the wave, while the excitation for
heave is dependent on the dynamic pressure acting on the bottom of the structure, thus
it will be greater in longer waves. Therefore, the excitation for heave increases with the
longer waves.

3.5. Response Amplitude Operators (RAOs)

For the free-floating marine structures, only three motion modes (out of six DOFs)
had inherent restoring forces: heave, roll, and pitch, and the latter two motions would
also be very dependent on the position of the center of gravity of the structure. In the
current modeling, the center of gravity was set at zg = −5.0 m (that is, 5.0 m below the
water’s surface).

For the other three motion modes (surge, sway, and yaw), there were no inherent
restoring forces. Hence, for most floating structures, the required restoring forces/moments
must be provided by the mooring system to the structure or other means. Here, for
simplifying the analysis, we assumed the linear restoring coefficients for the surge, sway,
and yaw motions to be: C11 = C22 = 2.5 × 106 N/m and C66 = 5 × 106 Nm (and these
added restoring coefficients mean a relatively stiff mooring system). It should be noted
that these linear restoring coefficients can be obtained by linearizing the mooring forces,
and the linearization of the mooring forces can be valid if the structure motions are small
in magnitude.
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Under the above mooring setting, the surge and sway motion responses are the
same, as can be observed in Figure 7a,b, due to the symmetrical TALOS and the same
added restoring-force coefficients for the surge and sway. The large responses presented
in Figure 7a,b at T = 10.83 s correspond to the resonance period of the surge and sway,
respectively, while the very small responses at T = 9.24 s are due to the respective responses
of the pitch and roll motions.
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From Figure 7c, it can be observed that the heave motion response would only be
dependent on the structure itself, and the resonance period is T = 7.22 s, while for the
roll and pitch (Figure 7d,e), their responses are identical, simply due to the symmetrical
structure of the TALOS and incoming wave (45◦). The roll and pitch have large responses
at the resonance period of T = 10.83 s due to the couplings of the surge and sway, and the
small responses at period T = 9.24 s, which would correspond to the resonances of the roll
and pitch motions.

For the yaw response, due to the symmetries of the TALOS structure (a nearly axi-
symmetrical structure), it is very small, so small as an effective zero (see Figure 7f).

4. Time-Domain Dynamic Equation and Analysis
4.1. Dynamic Equation

The time-domain dynamic equation is in fact the dynamic equation based on Newton’s
second law of motion for multiple motion modes of a rigid body, and, generally, this
dynamic equation is written in the form of mass-spring-damper, with the damping force
and the restoring force acting on the structure being moved to the left-hand side. With the
inclusions of the wave-radiation forces, wave excitation as well as the additional external
forces, the dynamic equation would be presented as:

6
∑

k=1

{[
Mjk + ME

jk + Ajk

] ..
xk(t) +

[
Bjk + BE

jk

] .
xk(t) +

(
Cjk + CE

jk

)
xk(t)

}
= f j (t)

(j = 1, 2, . . . , 6)
(4)
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where
xk(t) (k = 1, 2, . . . , 6) are the 6-DOF motions of the structure in the time domain.
f j(t) (j = 1, 2, . . . , 6) is the time-domain wave-excitation force, which can be calculated

based on the wave-excitation response from the panel method analysis.
For a linear dynamic equation, that means, the mass matrices, the damping-coefficient

matrices and the restoring-coefficient matrices are all independent of the motions. Addi-
tionally, under a sinusoidal excitation, for instance, f j(t) = Fjeiωt (here, Fj is a complex
amplitude of the jth wave excitation), the motion would be sinusoidal too, then we shall
have the following relations:

Motion: xk(t) = ξkeiωt Velocity:
.
xk(t) = iωξkeiωt

Acceleration:
..
xk(t) = −ω2ξkeiωt

where ξk is the complex amplitude of the motion.
Substituting the above relations into Equation (4), and dropping the time factors in

all terms, we can obtain the frequency-domain equation, which would be exactly same
as in Equation (1). However, it should be noted that, when transforming the frequency-
domain Equation (1) back to the time-domain Equation (4), we should be very careful in
determining the frequency-dependent added-mass and radiation-damping coefficients.

The direct transformation from Equation (1) to Equation (4) can only be correct if the
dynamic system is linear and under a sinusoidal excitation, because in such a dynamic
system, the excitation and motions are all sinusoidal (i.e., of single frequency), hence the
frequency-dependent parameters, Ajk, Bjk and Fj, can be determined and all clearly have a
physical significance, as does the time-domain Equation (4).

However, such a fully linear dynamic system is not the purpose of employing the
time-domain approach, and this is especially true for most wave-energy converters. For
instance, to examine the wave-energy converter’s performance in irregular waves, the
excitation and the motions in irregular waves would all have multi-frequencies. As such,
the frequency-dependent terms, Ajk and Bjk, become undecided, although the time-domain
excitation is calculated, see Equation (6) below. A more general case is that the wave-energy
converter may include some nonlinear forces in the dynamic system, such as the force
from the nonlinear PTO or the force from the PTO control for improving wave-energy
extraction, or the nonlinear forces from the mooring system; the motions would surely be
have multiple frequencies, even if the excitation is sinusoidal. As such, Ajk and Bjk become
undetermined too.

The most used time-domain equation for the wave-structure interaction would be the
Cummins’ time-domain equation [28] with the Ogilvie relation [29], namely, the hybrid
frequency–time domain method, according to [25], and the time-domain equation has the
following form:

6
∑

k=1

{[
Mjk + ME

jk + Ajk(∞)
] ..

xk(t) +
∫ t

0 Kjk(t− τ)
.
xk(τ)dτ + BE

jk
.
xk(t) +

(
Cjk + CE

jk

)
xk(t)

}
= f j (t) + f E

j (t)

(j = 1, 2, . . . , 6)
(5)

where
xk(t) (k = 1, 2, . . . , 6) are the structure motions (the motions of 6 DOFs of the structure,

which would be solved in the dynamic equation);
Ajk(∞) (j, k = 1, 2, . . . , 6) is the added-mass matrix at infinite frequency, which can

be assessed using the frequency-domain analysis data (see the next section);
Kjk(t) (j, k = 1, 2, . . . , 6) is the impulse function, which would be calculated based on

the frequency-domain results (see the next section);
The parameters with superscript ‘E’ are the parameters/forces externally added to the

dynamic system, such as f E
j (t) (j = 1, 2, . . . , 6) the external force, for instance, the force

from power take-off (PTO), or the control force, or the force from the mooring system, and
these forces can be both linear and nonlinear.

f j(t) (j = 1, 2, . . . , 6) is the wave-excitation force in an irregular wave of a given
wave spectrum. The corresponding wave-excitation force can be calculated using the
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frequency-dependent wave-excitation responses, Fj. The time-domain wave excitation is
calculated as

f j (t) =
∞

∑
n=1

Fj(ωn)eiωnt Aneiεn =
∞

∑
n=1

Fj(ωn)Anei(ωnt+εn) (6)

where
Fj(ω) is a complex wave-excitation response (assessed using the panel method);
εn is the random phase for the wave components in an irregular wave;
An is the wave amplitude of the wave component corresponding to the frequency ωn

(of a bandwith ∆ωn), calculated as

An =
√

2S(ωn)∆ωn (7)

with S(ω) being the wave spectral density, such as the popular wave spectra, Bretschneider
or JONSWAP spectrum [42].

4.2. Memory Effect and the Impulse Functions

In the transformation from frequency domain to time domain, the relevant frequency-
dependent parameters must be transformed accordingly, including the added mass and
the radiation damping coefficients, while the wave excitation in irregular waves can be
assessed in Equation (6).

From the Cummins’ time-domain equation, the frequency-dependent damping terms
in the frequency-domain equation are all replaced using the corresponding convolution
terms, or, more specifically, the memory effects, due to the relevant fluid motions. The
memory effect is presented in a convolution term as

Ijk(t) =
∫ t

0
Kjk(t− τ)

.
xk(τ)dτ (8)

Accordingly, in the Cummins’ time-domain equation, the added mass at infinite
frequency, Ajk(∞), replaces the frequency-dependent added mass in the frequency-domain
equation, see Equation (5).

4.3. Impulse Function

Based on the Ogilvie relation [29], the impulse function for the wave-structure interac-
tion can be calculated from the frequency-dependent radiation-damping coefficients, Kjk,
given as

Kjk(t) =
2
π

∫ ∞

0
Bjk(ω) cosωt dω (9)

In the numerical modeling, the sampled impulse function can be obtained from the
sampled radiation-damping coefficient (here, the subscripts are dropped for a simplicity of
the expression), calculated as

K(tm) =
2
π

N

∑
n=1

B(ωn) cos(ωntm) ∆ωn (10)

where N is the total number of the frequencies in the frequency-domain analysis, and
m = 1, 2, . . . , M is the number of the sampled impulse function, with a time interval ∆t, and
the time series is presented as tm = (m− 1)∆t. One can observe that the calculation of the
impulse function is from a low frequency to a reasonably high frequency, not necessarily
from zero to infinite frequency (note: the radiation-damping coefficient is asymptotic to
zero on both sides of the wave frequencies). A MATLAB function for calculating the
impulse function can be found in Appendix A.

In the numerical modeling, based on the assessment of the frequency-domain radiation-
damping coefficients, we can use Equation (10) to calculate the impulse function and, for



J. Mar. Sci. Eng. 2022, 10, 662 12 of 24

the purpose of validation, WAMIT F2T utility was used to obtain the impulse function [39].
Figure 8 shows the comparisons of the results calculated from the HAMS radiation-damping
coefficients, as described above, and the results obtained from WAMIT F2T for the conven-
tional impulse functions, K11, K22, K33, K44, K55, K66. It can be observed that they are all
almost identical between the results obtained for HAMS and WAMIT.
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When we examined the dynamically coupling terms between the different motion
modes, we observed the coupling terms between the surge pitch, K15, and sway roll,
K24 (see Figure 9a,b). These were strong coupling terms, since their magnitudes would
be in orders similar to those of the conventional impulse functions. In comparison,
the impulse functions for the strong coupling terms from HAMS and WAMIT were
almost identical.
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Figure 9. The coupled impulse functions. (a) K15; (b) K24; (c) K35.
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Figure 9c shows a weak coupling between the heave and pitch, K35. Here, we can
observe a great difference between HAMS and WAMIT, and also the weak coupling impulse
functions are very different from those of the conventional impulse functions: the weak
coupling impulse function can be divergent.

Having observed the great differences, their magnitudes are essentially much smaller
than the conventional impulse functions (∼ 10 vs. 106). In fact, for a practical purpose,
these weak coupling terms must be dropped in the numerical modeling, otherwise it
may cause a divergence problem in the time-domain calculations due to the divergent
impulse function.

4.4. Added Mass at Infinite Frequency

Once the impulse function has been calculated, the added mass at infinite frequency
can the be assessed as

A(∞) = A(ω) +
1
ω

∫ ∞

0
K(τ) sinωτ dτ (11)

In a discretized form, for a given frequency, ωn, the added mass at infinite frequency
is calculated as

An(∞) = A(ωn) +
1

ωn

M

∑
m=1

K(τm) sin(ωnτm) ∆τ (12)

In principle, the added mass at infinite frequency can be calculated based on a given
frequency, say ωn. However, due to the possible errors in the numerical modeling, such as
irregular frequencies, a more reliable calculation for the added mass at infinite frequency
is to average the added mass at infinite frequency based on the corresponding multiple
frequencies, ω1, ω2, ω3, . . ., ωN , as

A(∞) =
1
N

N

∑
n=1

An(∞) (13)

Using the above method, we can calculate the added mass at infinite frequency based
on the frequency-dependent added mass and the calculated impulse function (see also
Appendix A). Table 1 shows the comparison of the added mass at infinite frequency from
the HAMS calculation and the assessment using WAMIT. Here, we can observe that they
are very close, especially for the conventional added mass at infinite frequency, with an
error less than 0.5%, while a slightly large difference occurs for the coupled added mass
A15, with an error of about 2.5%. Hence, we can conclude that all the errors should be
within the acceptable range in the engineering calculations.

Table 1. A comparison of added mass at infinite frequency.

Added Mass WAMIT Calculation Error (%)

A11 (kg) 2.047 × 106 2.040 × 106 −0.338

A15 (Ns2) 1.582 × 106 1.620 × 106 2.430

A33 (kg) 2.583 × 106 2.580 × 106 −0.116

A55 (Nms2) 1.353 × 108 1.360 × 108 0.517

5. Approximations of Impulse Function and Memory Effect
5.1. Approximation of Impulse Function

Generally, the normal impulse function K(t) would be a decayed function, which
would converge to zero with time. This feature of the impulse function corresponds to the
fluid-memory effect in physics: the events closer to the current time would have a greater
influence on the current motion, and with time lapsing further, the influence becomes less
and less, and eventually fades to zero (that is, K(t) = 0 when t is large).
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There are generally two different ways to approximate such impulse functions, namely,
the Prony approximation method [31,32,43] and the state-space method [30]. Here, the
Prony function approximation was employed, because the Prony function has a more
straightforward physical meaning for approximating the impulse function.

Following Duclos et al. [31], the impulse function can be approximated using the
Prony function in the following form:

K(t) ≈
N0

∑
k=1

αkeβkt (14)

where N0 is the order of the Prony function, and the complex coefficients αk and βk can be
obtained from the Prony method. For a convergent impulse function, the real part of the
parameter, βk, must be negative. If it is not, the corresponding term must be dropped since
it is divergent in nature (a MATLAB function for obtaining αk and βk from the impulse
function, K(t), can be found in Appendix B).

Figure 10 shows the approximations of the impulse functions for the self-radiations;
here, N0 = 10 (that is, the 10th order Prony function was used). It can be observed that all
the impulse functions have been well reproduced. Figure 11 shows the impulse functions
for the strong coupled terms, such as K15 (note: K51 is symmetric to K15) and K24. Again,
these impulse functions have been well reproduced by the Prony approximations.
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For the weak coupling terms, such as K13, K35, and K46 (Figure 12), it seems more
difficult to reproduce the weak impulse functions, though K35 seems good (Figure 12b).
Since these weakly coupled impulse functions are unlike the well-convergent normal
impulse functions, they may not decay with time (Figure 12a,c), or simply diverge with
time (Figure 12b). For such impulse functions, the Prony method would not correctly
reproduce the impulse function due to the omission of the terms when the real part of βk is
positive (see Figure 12b).
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However, if these weak impulse functions are compared to the strong coupled impulse
functions, their magnitudes could be many orders smaller than the strong coupling terms,
for instance, K35 ~10 vs. K15 ~106. Thus, in numerical modeling, these weak coupled
impulse functions must be dropped to ensure the convergent solution in the time-domain
analysis, while these small amplitude impulse functions have no influence on the overall
motions of the structure.

The order of the Prony function, N0, would be an important factor to determine how
accurately the impulse functions can be approximated. Taking K33 as an example, we can
determine the differences using different orders of the Prony function to approximate the
impulse function (Figure 13): N0 = 6 is quite good, while N0 = 5 seems much worse; N0 = 8
could provide a much closer approximation, while for N0 = 10, the approximation would
be almost identical to the original impulse function.
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5.2. Calculation of the Memory Effect

Substituting the Prony approximation, Equation (14), to the formula of the memory
effect, Equation (8), yields

I(t) ≈
∫ t

0

N0

∑
k=1

αkeβk(t−τ) .
x(τ)dτ =

N0

∑
k=1

αkeβkt
∫ t

0
e−βkτ .

x(τ)dτ =
N0

∑
k=1

Ik(t) (15)

in which the order of integral and summation has been swapped, and

Ik(t) = αkeβkt
∫ t

0
e−βkτ .

x(τ)dτ (16)

Up to here, the calculation of the memory effect would be concentrated on how well
and how fast we can calculate or solve for Ik(t) (k = 1, 2, . . . , N0). Subsequently, two
different ways to solve Ik(t) would be introduced.

(1) Method ‘1’: solving additional differential equations [31]

Taking a differentiation of Ik(t) with regard to t, we obtain

.
Ik(t) = βkαkeβkt

∫ t

0
e−βkτ .

x(τ)dτ + αkeβkt
[
e−βkt .

x(t)
]
= βk Ik(t) + αk

.
x(t) (17)

where the expression in the square brackets is a differentiation of the integral in Equation (16)
with regard to time, t.

Obviously, Equation (17) is an actual first-order differential equation for Ik. In the
classical Prony method [31], these first-order differential equations are simply added to the
dynamic equations for solving Ik, when solving for the motions of the structure. Once Ik is
solved, the memory effect can be calculated using Equation (15).

In the numerical modeling using the classical Prony method, if multiple motion modes
are involved, the number of the additional differential equations would be large. For exam-
ple, taking 2 coupled motions (say, surge-pitch coupling), we would have
4 memory-effect terms (K11, K15, K51, and K55). Now, if we use a 10th-order Prony func-
tion, then we would have a total of 40 additional first-order differential equations, added
to 2 s-order dynamic equations for the motions (i.e., surge and pitch). If we write the
second-order differential equation in the form of first-order differential equations, we have
4 first-order differential equations for the motions. Hence, here, for 2 s-order differential
equations (equivalent to 4 first-order differential equations) for motions, we need to add
40 first-order equations to solve the memory effects. Thus, the computation time would be
greatly increased.

(2) Method ‘2’: a recursive method for calculating Ik [32]

Based on Equation (16), we can easily calculate

Ik(t + ∆t) = αkeβk(t+∆t) ∫ t+∆t
0 e−βkτ .

x(τ)dτ

= αkeβk(t+∆t) ∫ t
0 e−βkτ .

x(τ)dτ + αkeβk(t+∆t) ∫ t+∆t
t e−βkτ .

x(τ)dτ

= Ik(t)eβk∆t + αkαkeβk(t+∆t)
[
e−βk(t+

∆t
2 )
∫ t+∆t

t
.
x(τ)dτ

]
= Ik(t)eβk∆t + αke

βk∆t
2 ∆x(t)

(18)

where the first term of the last expression can be easily obtained, and the integral from t to
t + ∆t in the second term is formulated using the mid-point value of the expression e−βkτ ;
that is, at τ = t + ∆t/2 (from the 2nd to 3rd rows in the square brackets).

In a sampled system, similar to the numerical modeling, a sampled form of Ik can be
written in a recursive form as

Ik(n + 1) = Ik(n)eβk∆t + αke
βk∆t

2 ∆x(n) (19)
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It can be observed that Ik(n + 1) is a renewal based on the previous result Ik(n) by
timing a time factor eβk∆t to modify the previous term, and add a modification term due
to the motion increment ∆x(n) (the 2nd term of RHS in Equation (19)). By employing
such a scheme, the memory effect can be calculated in a very straightforward manner to
avoid adding any differential equations to the dynamic system. As shown in [32], using
the recursive method for calculating the memory effect, the computational time would not
increase, even if a higher-order Prony function is used for many coupling terms. In this
research, this approach was applied to calculate the fluid-memory effects.

6. Implementation and Validation of Time-Domain Analysis
6.1. Implementation of Time-Domain Analysis

In solving the dynamic equation numerically, the time-domain equation can be simply
written in a sampled form as

{M}
[ ..
x (t + ∆t)

]
= [F(t)] (20)

where
{M} is the mass matrix, which includes the mass matrix of the structure, the external-

mass and the added-mass matrices at infinite frequency (hereafter, the parameter in the
curly brackets represents a matrix);[ ..

x (t + ∆t)
]

is the acceleration vector at the time step t + ∆t (the parameter in the
square brackets is a vector);

[F(t)] is the total-force vector at the time step t. This force vector includes all the forces,
wave excitation, the damping force (and memory effect), restoring force, and any other
added forces, defined as

[F(t)] =
[

f (t) + f E(t)
]
− [I(t)]−

{
BE
}[ .

x (t)
]
−
{

C + CE
}
[x (t)] (21)

Then, the acceleration vector can be obtained as[ ..
x (t + ∆t)

]
= {M}−1[F(t)] (22)

where {M}−1 is the inverse mass matrix of {M}.
Such a differential equation can be easily solved using a numerical method, for in-

stance, using the popular MATLAB scheme ‘ode45’. For a given irregular wave of significant
wave height Hs = 2.0 m and spectral peak period Tp = 8.0 s (Bretschneider spectrum), the
wave incoming angle is 45◦, and we can solve the motions of the structure for the waves.
Figure 14 shows the time histories of the surge, heave, and pitch motions of the TALOS
structure. Additionally, in the following section, a validation method is presented for
examining whether the time-domain numerical scheme is correctly made or not.

6.2. Validations of Time-Domain Modeling

In building the hybrid frequency–time domain analysis, there are a few transforma-
tions in the process, including:

• The transformation from the radiation-damping coefficients to impulse functions, as
well as how to efficiently approximate the impulse functions;

• The transformation of the frequency-dependent added mass to the added mass at the
infinite frequency;

• The transformation from the radiation-damping effects to the memory effects, together
with the method for how we can reliably and rapidly calculate the memory effect;

• The inclusions of the coupling terms between different motion modes, especially the
calculation of the coupled memory-effect terms;

• The transformation of the excitation responses to the forces in the time domain for a
given wave spectrum.
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In implementing the time-domain numerical scheme, things can go wrong quite
easily, especially with the multiple coupled terms involved in the coupled memory effects.
For instance, if the program can run as we hoped, and generate the corresponding time
histories, as shown in Figure 14, how we can make sure the numerical modeling is correctly
implemented? Or, do we have a validation method for the numerical result?

J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 18 of 24 
 

 

Then, the acceleration vector can be obtained as 

[�̈� (𝑡 + 𝛥𝑡)] = {𝑀}−1[𝐹(𝑡)] (22) 

where {𝑀}−1 is the inverse mass matrix of {𝑀}. 

Such a differential equation can be easily solved using a numerical method, for in-

stance, using the popular MATLAB scheme ‘ode45′. For a given irregular wave of signifi-

cant wave height 𝐻𝑠 = 2.0 m and spectral peak period 𝑇𝑝 = 8.0 s (Bretschneider spectrum), 

the wave incoming angle is 45°, and we can solve the motions of the structure for the 

waves. Figure 14 shows the time histories of the surge, heave, and pitch motions of the 

TALOS structure. Additionally, in the following section, a validation method is presented 

for examining whether the time-domain numerical scheme is correctly made or not. 

(a) 

 

(b) 

 

(c) 

 

Figure 14. Time histories of the structure motions. (a) surge; (b) heave; (c) pitch. 

6.2. Validations of Time-Domain Modeling 

In building the hybrid frequency–time domain analysis, there are a few transfor-

mations in the process, including: 

• The transformation from the radiation-damping coefficients to impulse functions, as 

well as how to efficiently approximate the impulse functions; 

• The transformation of the frequency-dependent added mass to the added mass at the 

infinite frequency; 

• The transformation from the radiation-damping effects to the memory effects, to-

gether with the method for how we can reliably and rapidly calculate the memory 

effect; 

Figure 14. Time histories of the structure motions. (a) surge; (b) heave; (c) pitch.

Generally, in the hybrid frequency–time domain method, the approximations of the
impulse functions and of the memory-effect terms can be complicated in the numerical
implementation, especially for those complicated coupled multiple-motion modes, in which
the matrices and vectors are both involved in the calculation (in comparison, the addition
of the external forces to the dynamic system would be relatively easy, since only vectors are
involved), and mistakes may be easily made. Hence, a validation method is required to
check the correctness of the implementation of the time-domain analysis, and it is possible
to examine the transformation of the equation from the frequency domain to the time
domain, if the dynamic system is linear, similar to the Cummins’ time-domain equation,
since both the frequency-domain and time-domain analyses can be conducted in exactly
the same conditions, so they are comparable:

(1) The time-domain analysis can be obtained by solving Equation (22), in which only the
linear forces are applied. For the purpose of comparison, all these linear forces must
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be presented in the frequency-domain analysis, too, and the corresponding motion
responses in the frequency domain can be obtained under same conditions as those in
the time-domain analyses.

(2) For a comparison, a time history can be generated directly based on the RAOs in the
frequency-domain analysis, in which a transformation is made in a formula as

xFD
j (t) =

∞

∑
n=1

χj(ωn)eiωnt Aneiεn=
∞

∑
n=1

χj(ωn)Anei(ωnt+εn) (23)

where
χj (ω) is the complex RAO of jth motion mode, and for 6-DOF motions, j = 1, 2, . . . , 6.
εn the random phase must be the same as that for generating the wave-excitation force

in Equation (6).
In comparison, Figure 15 shows the time histories of the 6-DOF motions of TALOS in

a wave of Hs = 2.0 s, Tp = 8.0 s, an angle of incoming wave of 45◦, with a linear mooring,
which is the same as in Section 3.5. Here, we can observe that the results of the time-domain
(‘TD’ in the figure, directly solving the time-domain equation, Equation (22)) and the
frequency-domain analyses (‘FD’ in the figure, from Equation (23)) are very close after
about 15 wave cycles, except for the yaw motion. In the first 10–15 wave cycles, the time-
domain solutions may be different from those transformed from the RAOs subject to the
preset initial motions, and, generally, after a few wave cycles, the effects of the preset initial
conditions are finally dissipated; thus, the very close results can be observed for both the
time-domain (solving Equation (22)) and frequency-domain solutions (from Equation (23)).
Such comparisons can confirm that the numerical scheme for the transformation from the
frequency domain to the time domain is correct. This would be a solid first step towards
a more complicated time-domain analysis, for instance, the inclusions of the nonlinear
forces from PTO from the mooring system and other sources. Moreover, the addition of
the external forces would be much easier when compared to the calculation of the memory
effects of all the coupled terms.
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Figure 15. The comparisons of the time histories from the time-domain solution and from the
transformation of frequency-domain responses. (a) surge; (b) sway; (c) heave; (d) roll; (e) pitch;
(f) yaw.

For the yaw motion (x6), the results from the time-domain and frequency-domain
analyses are very different. However, the yaw motions are so small in magnitude (~10−9),
and they can be fully ignored in the analysis.

7. Conclusions

In this research, we presented a hybrid frequency–time domain approach for wave-
structure interactions, in which all the transformations to and implementations in the
time-domain scheme were discussed, concentrating on the multiple coupled-motion modes.
Such transformations from the frequency domain to the time domain, and the motion
coupling would make the implementation of the time-domain scheme much more difficult.
As a result, to ensure the correctness of the time-domain scheme, a validation method was
presented. In this research, the following conclusions can be drawn:

• A discussion of how the transformation from the frequency domain to the time domain
can be made, and a direct transformation is possible, but not very useful due to its
inherent limitations;

• The method for calculating the impulse function and the added mass at infinite
frequency based on the frequency-domain prediction was presented, and a MATLAB
function was presented for reference;
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• The approximation of the impulse function using the Prony approximation method
was introduced, and a comparison with the results from WAMIT F2T were made to
ensure that the calculation method was reliable;

• A simple recursive method for calculating the memory-effect based on the Prony
approximation was introduced and the results were validated for its accuracy;

• A validation method for the time-domain implementation was explained, which can
be used for ensuring the correctness of the time-domain analysis;

Having examined the correctness of the time-domain scheme, as shown in this research,
the future work would implement the PTO systems in the time-domain method for the
TALOS wave-energy converter.
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Appendix A

A function for impulse function and added mass at infinite frequency
function [K,A_inf] = F2T(w, A, B, t)
% inputs:
% A, B: the added-mass and damping coefficients
% w: the frequency in the frequency-domain analysis
% t: the time vector for impulse function
% Outputs:
% K: impulse function
% A_inf: the added mass at infinite frequency
%======================================================
n = length(t); dt = t(2) − t(1);
nw = length(w); dw = w(2) − w(1);
K = zeros(n,1);
for j = 1:n
for k = 1:nw
K(j,1) = K(j,1) + 2.0/pi()*B(k)*cos(w(k)*t(j))*dw;
end;
end;
IT = zeros(nw,1); Ma = 0;
for k = 1:nw
for j = 1:n
IT(k,1) = IT(k,1) + K(j)*sin(w(k)*t(j))*dt;
end;
IT(k,1) = A(k) + IT(k,1)/w(k);
Ma = Ma + IT(k,1);
end;



J. Mar. Sci. Eng. 2022, 10, 662 22 of 24

A_inf = Ma/nw; % averaging the added mass at infinite frequency
End

Appendix B

Prony approximation of the impulse function
function [alpha,beta] = Prony_algo(IRF, dt, N0)
% IRF: impulse function
% dt: time interval for the impulse function
% N0: order of the Prony function
L = length(IRF); max1 = max(IRF);
alpha = zeros(N0,1); beta = alpha;
if(abs(max1) > 1.E-6)
A = [];B = [];
% STEP 1
for ii = 1:L-N0
B(ii) = -IRF(N0 + ii);
for jj = 1:N0
A(ii,jj) = IRF(jj + ii-1);
end
end
X = linsolve(A,B’);
% STEP 2: obtaining BETA
P = [X; 1]; P = P(end:-1:1);
V = roots(P);
beta = (log(V)/dt); % V = exp(beta)*dt
% STEP 3: obtaining ALPHA
A2 = []; B2 = [];
for ii = 1:L
B2(ii) = IRF(ii);
for jj = 1:N0
A2(ii,jj) = V(jj)ˆ(ii-1);
end
end
alpha = (linsolve(A2,B2’));
end
% STEP 4: remove the divergence components
for i = 1:N0
if(real(beta(i) > 0.0))
alpha(i) = 0.0;
end
end
end
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