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Abstract—Convolutional Neural Networks (CNNs) have been
extensively studied for Hyperspectral Image Classification
(HSIC). However, CNNs are critically attributed to a large
number of labeled training samples, which outlays high costs
in terms of time and resources. Moreover, CNNs are trained on
some samples and have been tested on the entire HSI. Perhaps,
the entire HSI is taken into account at test time to appropriately
generate the ground truth maps. In order to obtain a higher
accuracy while considering the limited availability of training
samples and disjoint validation and test samples, this work
proposes a fast and compact 3D CNN-based Active Learning
(AL) for HSIC that integrates both deep transfer learning and
AL into a unified framework. In the proposed methodology,
a 3D CNN model is trained with very few training samples
(i.e., 5%, only) and in the next phase, the most informative
and heterogeneous samples are queried from the validation set
(candidate set) based on the fuzziness, mutual information and
breaking ties of the trained model. The 3D CNN model is
later fine-tuned (rather retraining from scratch) with the new
training samples (i.e., 200 samples are selected in each iteration)
to reduce the computational cost. The proposed method has been
compared with the state-of-the-art traditional and deep models
proposed for HSIC. Experimental results proved the superiority
of our proposed method on several benchmark HSI datasets with
significantly fewer labeled samples.

Matlab demo can be accessed on GitHub:
github.com/mahmad00
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I. INTRODUCTION

HYPERSPECTRAL IMAGING (HSI) involves extraction
of useful spectral-spatial information from the object of

interest. This is done by acquiring the radiance at short or
long distances without contact using appropriate sensors [1],
[2]. HSI can obtain very rich spectral information captured
from the electromagnetic spectrum covering a wide range
400nm − 2400nm, i.e. 400nm − 700nm (visible region),
700nm−2400nm (short wave infrared). This region is divided
into hundreds of narrow and contiguous spectral bands. HSI
can explore the light emission properties of objects in mid to
long-infrared regions.

HSI Classification (HSIC) process aims to discriminate each
spectral pixel and assign a unique class label according to
the HSI content [3]. HSIC has been extensively studied and
showed promising results for a number of applications, for
instance, land cover classification, land use mapping, forest
inventory, health sciences, unmixing, and urban areas [4]–
[17]. HSIC has been broadly divided into two categories; 1):
Spectral Classification and 2): Spatial-Spectral Classification
[18].

Spectral-based methods only make use of spectral infor-
mation and ignore the spatial correlation while classification,
thus cannot obtain excellent performance. Whereas, Spatial-
Spectral-based methods do consider both information (i.e.,
spectral information along with the spatial correlation) to
overcome the limitations of spectral-based methods [19], [20].
The performance of these methods is much higher as compared
to the former because they use a patch-based process that
extracts the features in a local window.

In recent years, Deep Learning (DL)-based methods have
been proposed for HSIC [21]. DL-based methods outper-
formed in a purely data-driven manner, however, their per-
formance is entirely based on a large number of labeled
training data. Without that, DL-based methods usually un-
derperform in many cases. Here we have presented an ex-
ample in which a 3D Convolutional Neural Network (CNN)
has been trained on 5% disjoint training samples and the
model is validated on 60% disjoint samples and finally
tested on 35% disjoint test samples. We carefully make
sure that (Train ∩ V alidation ∩ Test = ∅) and
(Train ∪ V alidation ∪ Test = HSI). Moreover, the
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same model has been tested on the entire HSI data and the
experimental results are presented in Table I and Figure 1.

The aforementioned experimental results confirm the
claims, i.e., DL does not perform well when there are not
enough training samples available. Moreover, it has been
observed that the performance is significantly reduced when
the model is tested on disjoint test samples as compared to the
entire dataset. Furthermore, the same model has been trained
using 50% of training samples and validated on 25% data,
and tested on remaining 25% data samples. The comparative
accuracies and ground truths are presented in Figure 1 and
Table I. One can conclude from these experimental results that
the model’s performance has been significantly improved with
a higher number of training samples as compared to the less
number of training samples. Thus, the question arises, is there
any way to get a similar kind of generalization performance
and accuracy for the same model with less number of labeled
training samples, and more importantly, will the model work
the same way in disjoint train/validation/test samples case?

As discussed above, it is impractical to assume that each
HSI under process must have enough labeled data to train a
DL model. Another way around, the labeling process always
comes with a cost in terms of time and money, more specif-
ically, requiring experts to hold certain domain knowledge
to annotate HSI in many real-life applications. Thus, this
paper addresses the aforementioned issue by automating the
annotation process with the guarantee of accuracy, specifically
when using DL for HSIC.

To effectively address the aforementioned issues, Active
Learning (AL) can be considered a promising method that
systematically selects the most informative and dissimilar
samples for the user to label and train a classifier. Since there
is a proven fact that all the samples are not equally important
for training, thus only a few samples (e.g., informative, less
redundant, dissimilar, etc.) define the hyperplane (separating
surface) and the rest of the samples can be considered redun-
dant. Therefore, carefully selecting the important samples that
define the hyperplane can significantly reduce the sampling
cost, avoid redundancy, and more importantly, guarantee good
performance. These are a few facts that motivate us to combine
CNN with AL.

Therefore, this article proposed an AL-integrated 3D CNN
method into a unified framework by fully utilizing the benefits
of both domains, such as the labeling efficiency of AL and
the strong discriminative ability of DL. There have been many
works that combine AL with DL for HSIC [22]–[26], however,
the proposed method has its specific characteristics such as:

1) The proposed method adopts 3D CNN architecture and
inexpensive multi-class sample selection criteria to ac-
tively select the most informative and heterogeneous
samples. The higher fuzziness-based misclassified sam-
ples selection concept is used to reduce the labeling
cost. Higher fuzziness-based misclassified samples are
most likely neither adjacent nor from the same class
with the same fuzziness magnitude. Moreover, mutual
information and breaking ties-based sample selection
methods have been compared.

2) Irrespective of the traditional AL integrated DL, this
work makes use of fine-tune concepts in the AL process.
Rather than training the 3D CNN in each iteration which
is quite expensive in terms of computational cost, we
simply fine-tune the model in each iteration, which
significantly reduces the retraining cost.

3) The proposed method considers disjoint training, val-
idation, and test samples to train, validate, and test
the model, different from the previous studies. The
experimental results have been shown in all possible
cases, i.e., disjoint train/validation/test and the same
model has been tested on the entire HSI dataset, re-
spectively. In supervised HISC, traditional experimen-
tal designs are often improperly used in the spatial-
spectral processing context, leading to unfair or biased
performance evaluation. The widely adopted sampling
methods are not always suitable to evaluate spatial-
spectral methods, because it is difficult to determine
whether the improvement of classification accuracy is
caused by incorporating spatial information into the
classifier or by increasing the overlap between training
and testing samples [27]. To handle this problem, we
used a controlled non-overlapping sampling strategy
for spatial-spectral HSIC which eliminate the overlap
between training and test samples and provides a more
objective and accurate evaluation.

The proposed method attempts to further strengthen AL-
based DL with more contextual information to reduce the
labeling cost. The proposed method also helps to reduce the
number of labeled samples required to train a 3D CNN model
and produces higher accuracy.

The rest of the paper is structured as follows. Section II
provides a comprehensive review of state-of-the-art (SOA)
works published in recent years. Section III describes the
problem formulation and proposed methodology. Section IV
presents the experimental settings, datasets, and results with
discussion. Furthermore, the sections IV-C (Experimental Re-
sults), IV-D (Statistical Tests and Computational Time), and
IV-E (Comparison with SOA) provides a detailed discussion
on results with different experimental settings. Finally, section
V concludes the paper with possible future research directions.

II. LITERATURE REVIEW

In recent years, DL methods have been extensively studied
for HSIC, for instance, Stacked Autoencoder (SAE) [28]–
[32], Multi-layer Extreme Learning Machine (ML-ELM) [33],
[34], Deep Boltzmann Machine (DBM) [35], CNN [21], [36]–
[40], Cross-Modality and Coupled CNN’s [41]–[44], and Deep
Belief Network (DBN) [45]–[47].

SAEs are unsupervised feature extraction methods used to
extract both spatial as well as spectral features by stacking a
series of AEs. A modified CNN framework was proposed in
[48] that uses 3-dimensional patches as input to process both
spatial and spectral information at the same time. In contrast to
the work proposed in [48], the work [49] proposed a combined
spatial pyramid pooling strategy that fully considered spatial
information.
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(a) 5% training, 60% Validation, 35% Test Samples, and complete
dataset as test.

(b) 50% training, 25% Validation, 25% Test Samples, and complete
dataset as test.

Fig. 1: Classification accuracy of 3D CNN model trained with 5% and 25% disjoint training samples, 60% and 25% disjoint
Validation samples, 35% and 50% disjoint Test samples, respectively. Moreover, the same model has been tested on the complete
Salinas Dataset (Com Test OA). The number of training, validation, and test samples, class names, and class-wise accuracies
for both percentages of training/validation/test samples are presented in Table I

TABLE I: Per-class classification accuracy of 3D CNN model trained with 5% training samples, 60% Validation samples, 35%
Test Samples. Moreover the same model have been tested on complete Salinas Dataset. The same model with same settings
has been retrained on 50% training samples and validated and tested on 25%, and 25% data samples, respectively. One can
observe from the results that the accuracies have increased but not that significant as the number of training samples increased.
This is the point claimed in this research to obtain significantly higher accuracies with the least computations over the 3D
CNN model.

Class Name Samples (Tr/Val/Te) Disjoint Validation Disjoint Test Complete Test
5% 50% 5% 50% 5% 50% 5% 50%

Brocoli Green Weeds 1 (101,1205,703) (1005,502,502) 1 1 1 0.9940 1 0.9985
Brocoli Green Weeds 2 (186,2236,1304) (1862,932,932) 1 1 1 1 1 1

Fallow (98,1186,692) (988,494,494) 0.9856 1 0.5014 1 0.8168 1
Fallow Rough Plow (70,836,488) (696,349,349) 1 1 0.8442 0.9770 0.9454 0.9942

Fallow Smooth (134,1607,937) (1338,670,670) 0.5849 0.9985 0 0.9940 0.4010 0.9981
Stubble (198,2375,1386) (1979,990,990) 0.9915 1 0.9942 1 0.9929 1
Celery (179,2147,1253) (1789,895,895) 0.9990 1 1 1 0.9994 1

Grapes Untrained (563,6763,3945) (5635,2818,2818) 0.8854 0.6149 0.8724 0.4308 0.8866 0.7614
Soil Vinyard Develop (310,3722,2171) (3101,1551,1551) 0.9970 1 0.9249 0.9974 0.9719 0.9993

Corn Senesced Green Weeds (164,1967,1147) (1638,820,820) 0.4295 1 0.1595 0.6829 0.3636 0.9206
Lettuce Romaine 4wk (53,641,374) (534,267,267) 1 0.9925 1 1 1 0.9981
Lettuce Romaine 5wk (97,1156,674) (963,482,482) 0.1608 1 0.0044 1 0.1484 1
Lettuce Romaine 6wk (45,550,321) (458,229,229) 0.9581 1 0.4267 0.9956 0.7740 0.9989
Lettuce Romaine 7wk (53,642,375) (534,268,268) 0.5716 1 0 0.9664 0.3925 0.9915

Vinyard Untrained (363,4361,2544) (3634,1817,1817) 0.6487 0.8992 0.4127 0.5376 0.5836 0.8592
Vinyard Vertical Trellis (91,1084,632) (903,452,452) 0.8210 1 0.8797 0.9955 0.8505 0.9988

Average — — 0.8146 0.9690 0.6262 0.9107 0.7579 0.9699
Overall — — 0.8273 0.9061 0.6940 0.7979 0.7893 0.9259

kappa (κ) — — 0.8069 0.8960 0.6566 0.7773 0.7641 0.9179
Time Training – 1355 Sec. 7.3409e+03 Sec 10 Sec. 7.5 Sec 6 Sec. 4.9 Sec 17 Sec. 22.7 Sec

Moreover, the works [50] proposed a framework, combin-
ing CNN with hand-crafted features along with Conditional
Random Field (CRF) and Markov Random Field (MRF). A
dual-channel CNN i.e., a combined 1 and 2-dimensional CNN
model has been proposed in [51]. A fast and compact 3-
dimensional CNN model has been proposed in [52] which
significantly reduces the computational cost and improves the
experimental results for several Hyperspectral datasets. In this
hierarchy, the works [37], [38], [53], [54] proposed Hybrid
3-dimensional followed by 2-dimensional CNN layers for a
better spatial-spectral feature hierarchy for end classification.

The proposed Hybrid models significantly improve the beam
search which helps to get better accuracy. Such models provide
statistical significance and better generalization performance
of the CNN model in a reduced time.

In recent years, CNN coupled with Active Learning (AL)
has been studied for HSIC. For instance, the work [55] pro-
posed a semi-supervised multinomial logistic regression model
combined with an entropy-based sample selection strategy for
AL. Later on, the works [56], [57] proposed a Loopy belief
propagation and Bayesian classification approaches combined
with AL. Moreover, the work [58] proposed a model-based



SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, XXXX, 2022 4

AL method where SVM is used for classification, along with
six different sample selection methods.

There are several other AL methods proposed in the liter-
ature for HSIC while considering the limited availability of
training samples and iteratively selecting the most informative
and heterogeneous samples to query for HSIC [2], [34], [59]–
[62]. More recently, the work [63] proposed to combine
multiclass-level uncertainty-based sample selection method
with an SAE-based neural network. Whereas, the work [64]
presented a weighted incremental dictionary learning criterion
with the RBM method. Moreover, the work [65] presented a
method that combined six different sample selection methods
including maximum entropy, random sampling, breaking ties,
modified breaking ties, mutual information, etc., with the
BCNN method.

The aforesaid methods have achieved excellent performance
for HSIC while considering the limited availability of training
samples, however, the proposed method is different than the
ones discussed above. First, the proposed method adopts
a 3-dimensional CNN architecture rather than SAE, RBM
and BCNN, etc. Secondly, the proposed method uses several
integrated multiclass sample selection criteria to select the
most informative and spectral-spatially heterogeneous sam-
ples. Third, the proposed method employs the transfer learning
concept to accelerate the training process of 3D CNN and
reduce the computational cost of retraining a 3D CNN. Finally,
the proposed method integrates contextual information using
prior probabilities. The aforementioned aspects are mainly
considered different from the existing related works proposed
in recent years.

III. PROBLEM FORMULATION

An HSI cube can be expressed as X = {xi, yi} ∈ RL where
each xi = {xi,1, xi,2, xi,3, . . . , xi,L} ∈ RL and yi be the
class label of each xi. Here we first randomly select Xtrain =
0.05% training samples, Xval = 0.60% validation samples
(pool set), and Xtest = 0.35% test samples. We make sure that
|Xtrain| ≪ |Xval|; |Xtrain| ≪ |Xtest| and Xtrain ∩ Xval ∩
Xtest = ∅ for each iteration i.e., training, validation and test
sets must not contain any single samples which is overlapped
with other set. The training, validation, and test sets must need
to be disjointed to avoid biases.

A. Convolutional Neural Network (CNN)

1D and 2D CNN models have been studied for HSIC, how-
ever, these models are unable to cater to both spatial-spectral
information together, thus 3D CNN models are capable to
address aforesaid issues, i.e., 3D CNN can extract the spectral
information correlated with spatial characteristics of HSI at
the same time. In general, the network architecture of 2D and
3D CNN is quite similar except for the convolutional process
followed by an activation function (non-linearity induction
process). The major difference is a convolutional kernel, e.g.,
the 2D CNN model uses a 2D kernel function whereas, the
3D CNN model uses a 3D kernel function. Moreover, 3D
CNN’s performance is much higher than 2D CNN because
it uses a patch of an image to extract both spatial-spectral

local features. 3D CNN performs operations on the spatial-
spectral dimensions at the same time to extract both features
at the same time. Figure 2 shows an example of the 3D CNN
process adopted in this work.

The 3D convolutional process initially computes the sum
of the dot product between the input patches and the 3D
kernel function. This is done by convolving the 3D input
patch with the 3D kernel function and results in a 3D feature
map. The feature map produced is then passed on to an
activation function to induce non-linearity in it. In such kind of
convolutional process, the activation value of spatial location
(x, y, z) at the ith layer and jth feature map can be formulated
as:

vx,yi,j = ReLu(bi,j+

dl−1∑
τ=1

δ∑
σ=−δ

v∑
λ=−v

γ∑
ρ=−γ

wσ,ρ,λ
i,j,τ × vx+σ,y+ρ,z+λ

i−1,τ ) (1)

where dl−1, bi,j , and wi,j represent the number of feature
maps, the bias parameter, and depth of kernel for jth feature
map at (l−1)th layer, respectively. 2v+1 , 2γ+1, and 2σ+1
is the depth, width and height of the kernel. ReLu defines the
activation function.

ReLu can converge faster than other activation functions
such as the Sigmoid and Tanh functions. The form of ReLu
used here is f(x) = max(0, x). Finally, a softmax classifier
is used to classify HSI features. Softmax loss used to train the
model makes use of random admiral descent of backpropaga-
tion to minimize the loss of the network. The details of 3D
convolutional layers are as follows: layer 1 = 60× 3× 3× 7
i.e. K1

1 = 3,K1
2 = 3 and K1

3 = 7. layer 2 = 30× 3× 3× 5
i.e. K2

1 = 3,K2
2 = 3 and K2

3 = 5. layer 3 = 10× 3× 3× 3
i.e. K3

1 = 3,K3
2 = 3 and K3

3 = 3. In total, three convolutional
layers are stacked for low and high-level feature learning i.e.,
to increase the number of spatial-spectral feature maps and to
distinguish the spatial/spectral features while preserving the
spectral information. The convolutional process produces zero
filling thus it does not require the use of batch normalization or
data enhancement. Moreover, the weights are initially random-
ized and later optimized using backpropagation with Adam
optimizer using softmax loss function. The entire network is
trained over 50 epochs using a mini-batch of 256.

B. Active Learning (AL)

Active Learning (AL) has been considered an effective
method to reduce the labeling cost as well as acquire a large
number of labeled training samples [66]. AL is based on three
main aspects; 1): The availability of initial training set Xtrain,
2): The availability of pool set (validation set in this work)
Xval, 3): Query function e.g., informative sample selection or
acquisition function.

Let us consider Xtrain = [X,Y ] = {xi, yi}li=1 as
a training set consisting l samples where xi ∈ Rd =
{xi,1, xi,2, xi,3, . . . , xi,L} and yi = {1, 2, 3, . . . , Y } and
Xval = [X] = {xi}ui=l+1 ∈ Rd be the validation (pool set)
set, i.e., a set of u samples and l ≪ u. AL methods are
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Fig. 2: 3D CNN network structure for HSIC. The input patch is with size 9× 9× d. The first 3D convolutional layer contains
60 filters with 3×3×7, second 3D convolutional layer includes 30 filters with 3×3×5, third 3D convolutional layer includes
10 filters with 3 × 3 × 3. The first fully connected layer contains 512 units with 0.4% dropout, the second fully connected
layer contains 256 units with the same dropout, the third fully connected layer contains 128 units with the same dropout, and
the fourth fully connected layer contains the number of classes existed in HSI.

composed of a learner (3D CNN in this study) which is trained
on a small number of training samples and iteratively selects
new training samples from the validation set. The process
provides maximal information about the dataset and improves
the model’s performance. As a result of the AL process, the
final classification results given by the selected training set
are much higher than the ones obtained by randomly selected
training samples.

The sample selection function (i.e., sample acquisition or
query function), in particular, the user-defined heuristic is a
crucial point for any AL method. Here in this research, we
rely on the posterior probability-based AL method, i.e., fuzzi-
ness computed from the membership function (i.e., posterior
probabilities p(y|x)) produced by the classifier to rank the
candidates in Xval. Moreover, two other query functions i.e.,
Breaking ties and Mutual Information are used for comparison
purposes.

C. Query Function

The query function for any AL method can be represented
as α(x,M) of a model M with Xval data and inputs x ∈
Xval ∈ Rd decides which samples x will be queried by an
external oracle. This process is being led by a human expert
however, in this work, we systematically performed the work
of classifying the unlabeled data to be added to the original
training set. In this research, we performed a comparison of
three different query functions that have been adopted to AL
taking into account different measurements, such as breaking
ties, mutual information, and fuzziness.

1) Breaking Ties (BT) [67] focuses on the boundary region
between two different classes intending to obtain more
diversity in the composition of the training set. The
samples xBT are selected from Xval by;

xBT = argmax
xi∈Xval

{max
y∈Y

p(yi = y|xi, µ)−

max
y∈Y/y+

p(yi = y|xi, µ)} (2)

where y+ = argmax
y∈Y

p(yi = y|xi, µ) are the most

probable label class for sample xi.

2) Mutual Information (MI) [68]: It computes the mutual
dependencies among the samples and only selects the
samples xMI that maximizes the MI between the actual
class labels and obtained results as follows:

xMI = argmax
xi∈Xval

I(µ; yi|xi) (3)

where

I(µ; yi|xi)) =
1

2
log(HMI/H) (4)

The above expression computes the MI between the
class label yi and obtained results, where H represents
the posterior precision matrix and HMI represents the
posterior precision matrix after including the new sam-
ples.

3) Fuzziness [2]: Any trained probabilistic classification
model produces the output matrix (µ = µij) which
is being used to compute the membership matrix with
the following properties

∑C
j=1 µij = 1 and 0 <∑M×N

i=1 µij < 1 where µij = µj(xi) ∈ [0, 1]. µij

represents the membership of xi sample belongs to yj
class [59]. µij is used to compute the fuzziness of
m = (l + 1 → u) samples for Y classes as;

xF =
−1

m× Y

m∑
i=1

Y∑
j=1

[µij log(µij) + (1− µij)log(1− µij)] (5)

Fig. 3: Proposed Active DL Method for HSIC.
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Algorithm 1: A fast and compact 3D CNN based AL
Data: Xtrain, Xval, N , ε

1 Xε
train = {xi, yi}li=1 ∈ Rd, ε = 1 → Initial Disjoint Training
Set;

2 Xε
val = {xi, yi}ui=l+1 ∈ Rd, ε = 1 → Initial Disjoint Validation
Set (Pool Set);

3 N → Number of spectral samples to add in training set at each
iteration until to reach a final batch of selected spectral samples
i.e., XSelected;

4 ε → Iteration number;
5 while |Xtrain| ≤ Threshold do
6 if if ε = 1 then
7 Train the Model with Xε=1

train and evaluate on Xε=1
val

and get µ (membership matrix);
8 else
9 Fine-tune the Model with Xε+1

train and evaluate on
Xε+1

val and get µ (membership matrix);
10 end
11 xBT = argmax

xi∈Xval

{max
y∈Y

p(yi = y|xi, µ)− max
y∈Y/y+

p(yi =

y|xi, µ)} → Compute Breaking Ties;
12 xMI = argmax

xi∈Xval

I(µ; yi|xi) → Compute Mutual Information;

13 xF =
−1

m×Y

∑m
i=1

∑Y
j=1[µij log(µij)+(1−µij)log(1−µij)] →

Compute fuzziness magnitude;
14 Rank the candidates xi in Xε

val according to xF , xMI , xBT ;
15 Xε

Selected = {xk}Nk=1 → select N spectral samples which
were misclassified with higher fuzziness magnitude, same
number of samples are selected from xMI and xBT ,
respectively;

16 Xε
Selected = {xk, yk}Nk=1 → assigned true class labels to the
selected samples;

17 Xε+1
train = Xε

train ∪Xε
Selected → Add new batch of samples

to the training set;
18 Xε+1

val = Xε
validation −Xε

Selected → Remove batch of
samples from the validation set;

19 ε = ε+ 1 → Update iteration index
20 Repeat until |Xtrain| > Threshold or Maximum number of

Iterations meet;
21 end

Figure 3 provides a detailed illustration of the proposed
method and the complete pipeline is presented in the Algo-
rithm. Overall, the proposed method combines 3D CNN with
AL strategy in order to reduce the labeling cost and required
number of labeled training samples. The proposed method
consists of the following steps. 1): construct an initialized
training patch set corresponding to a limited number of
randomly selected labeled samples. 2): 3D CNN is trained
on randomly selected training samples. 3): Actively select the
most informative and heterogeneous samples from the vali-
dation set based on the class probabilities (fuzziness, Mutual
Information, and Breaking ties, respectively) obtained from
trained 3D CNN. Later the patches of the selected samples
are labeled and added to the training set, which is regarded as
a new training set for the next iteration. 4): To overcome the
computational cost of retraining the 3D CNN, we freeze the
convolutional and the first two fully connected layers of the
model. The last fully connected layer along with the output
layer is used to fine-tune the model in each iteration except
the first.

IV. EXPERIMENTAL EVALUATION

This section presents experimental datasets with their
ground truths, class names, and total samples in each class.

Ground truth maps are essential for supervised classification
however, this work considers a scenario in which the ground
labels are limited.

A. Experimental Datasets

Table II presents the details of each dataset used in the
experiments and Table III provides the number of disjoint
training, validation, and test samples selected from each class
to train, validate and test the proposed and comparative meth-
ods. Moreover, the geographical maps for disjoint training,
validation, and tests samples are shown in Figure 4. We stress
the point that the number of training, validation, and test
samples and their geographical locations remain the same for
all methods used for experimental evaluation, So that unbiased
and fair evaluations can be presented.

TABLE II: HSI datasets description used for experimental
evaluation.

Data PU KSC SA
Source ROSIS-03 AVIRIS AVIRIS
Sensor Aerial Aerial Aerial

Resolution 1.3 m 10 nm 3.7 m
Spatial Information 610× 610 512× 614 340× 1905

Spectral Bands 115 176 224
Wavelength 430− 860 400− 2500 0.35− 1.05

Classes 9 13 16
Samples 207400 314368 54129

Kennedy Space Center (KSC) data cube has been ac-
quired by NASA using an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) instrument over Florida, on March 23,
1996. KSC data cube consists of 224 bands of 10 nm width
with center wavelengths from 400-2500 nm with an altitude of
approximately 20 km with a spatial resolution of 18 m. The
low resolution (low SNR) and water absorption bands were
removed prior to the experiments.

Salinas (SA) data cube was collected by Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS) over Salinas
Valley, California. SA cube consists of 224 bands and is
characterized by high spatial resolution i.e., 3.7-meter pixels.
The total spatial lines comprise 512 × 217 samples. 20 most
noisy and water absorption bands i.e., [108-112], [154-167],
224, were removed prior to the experiments. SA cube is
available only as at-sensor radiance data, and it includes bare
soils, vineyard fields, and vegetables. In total, the SA cube
contains samples of 16 different classes, i.e., ground truths
consist of 16 classes.

Pavia University (PU) data cube acquired by Reflective
Optics System Imaging Spectrometer (ROSIS) sensor during
a flight campaign over Pavia Northern Italy with a geometric
resolution of 1.3 meters. PU consists of 103 spectral bands and
610× 610 spatial lines (spatial pixels), however, some of the
samples contain no information and thus have to be discarded
before the experiments. In total, the PU cube contains samples
of 9 different classes, i.e., ground truths consist of 9 classes.

B. Experimental Settings

There are many ways to analyze the performance of any
classification model such as overall (OA), average (AA), and
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TABLE III: Detailed Description of Experimental Datasets along with the class names and number of disjoint samples used
to train/validation/test 3D-CNN model. The percentages are as follows: 5% disjoint training samples, 65% disjoint validation
map, and 35% disjoint Test samples.

Pavia University (PU) Kennedy Space Center (KSC) Salinas (SA)
Class Tr/Val/Te Class Tr/Val/Te Class Tr/Val/Te

Shadows 95/568/284 Swap 5/63/37 Lettuce romaine 6wk 45/550/321
Bitumen 133/798/399 Oak/Broadleaf 8/97/56 Lettuce romaine 4wk 53/641/374

Painted metal sheets 134/807/404 Hardwood 12/137/80 Lettuce romaine 7wk 53/642/375
Gravel 210/1259/630 Willow swamp 12/146/85 Fallow rough plow 70/836/488
Trees 307/1838/919 Slash pine 12/154/90 Vinyard vertical trellis 91/1084/632

Self-Blocking Bricks 368/2209/1105 CP hammock 13/151/88 Lettuce romaine 5wk 97/1156/674
Bare Soil 503/3017/1509 Graminoid marsh 21/259/151 Fallow 98/1186/692
Asphalt 663/3979/1989 Salt marsh 21/251/147 Brocoli green weeds 1 101/1205/703

Meadows 1865/11189/5595 Cattail marsh 21/242/141 Fallow smooth 134/1607/937
Mud flats 25/302/176 Corn senesced green weeds 164/1967/1147

Spartina marsh 26/312/182 Celery 179/2147/1253
Scrub 38/457/266 Brocoli green weeds 2 186/2236/1304
Water 47/556/324 Stubble 198/2375/1386

Soil vinyard develop 310/3722/2171
Vinyard untrained 363/4361/2544
Grapes untrained 563/6763/3945

(a) KSC Ground Truths. (b) Pavia University Ground Truths. (c) Salinas Ground Truths.

Fig. 4: Geographical maps of true ground truths, disjoint training map (5%), disjoint validation map (65%), and 35%
disjoint Test samples respectively. The number of training, validation, and test samples, class names, and percentages of
training/validation/test samples are presented in Table I.

kappa (κ) coefficient along with several other statistical tests.
OA tells us more about which samples are mapped correctly
and is usually computed in percentage. OA is easy to compute
and understand, however only provides the map user and
producer with basic classification information. Whereas, the
Kappa (κ) coefficient is generated from the statistical test
to evaluate the classification accuracy. κ coefficient evaluates
how well the classification model performed as compared
to the random values, for instance, the κ coefficient varies
between -1 to 1 in which -1, 0, and 1 indicate the classification
is significantly worse than random, equal to or better than
random, respectively. The κ coefficient is computed as follows:

κ =
po − pe
1− pe

(6)

where po and pe present the OA accuracy and measures of
the agreement among the actual and predicted class labels as
it happening by chance. Moreover, po − pe accounts for the

difference between the observed OA accuracy of the model as
well as the OA accuracy obtained by chance. 1−pe computes
the maximum value for this difference. For any model to be
considered as good, the maximum and observed difference
must need to be close to each other, thus κ = 1. However,
for a random model, the numerator turns to 0 thus κ = 0
or maybe negative. Therefore, in this case, the OA accuracy
of the model will be even lower than what could have been
obtained by a random guess.

In all the experiments, we started evaluating all the con-
ventional as well as the state-of-the-art models with 5% of
randomly selected samples, and then in each iteration, 200
samples have been selected using Fuzziness, Mutual Informa-
tion, and Breaking Ties based sample selection methods until
2000 samples have been selected. For long, different variants
of CNN have been used and proposed for HSIC, however,
CNN requires a large number of labeled training samples for
learning, whereas the collection of such a huge number of
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labeled training samples is challenging for HSI datasets, due
to overlapping and nested regions, human efforts, and time
in many real problems. Moreover, the limited availability of
training samples deters the classification performance. There-
fore, to get higher accuracy, an appropriate number of training
samples are required and are considered an important factor
for classification performance.

We intentionally did not select 1-4% of training samples
because there are some classes in all the datasets which have
quite a lower number of samples, thus will bring only 1 or 2
samples from such classes. In the meantime some classes have
100’s or 1000’s samples which at the same time have more
information, this can lead to the class imbalance issue, which
is not the problem under investigation in this work. There is
an option to avoid such a problem is to select the number
of training samples rather than selecting the percentage of
randomly selected training samples. Thus, with any of the
above options, one can opt for a re-examination of the work.

For experimental results, a 3D-CNN architecture is adopted.
The details of 3D convolutional layers are as follows:
layer 1 = 60× 3× 3× 7 i.e. K1

1 = 3,K1
2 = 3 and K1

3 = 7.
layer 2 = 30× 3× 3× 5 i.e. K2

1 = 3,K2
2 = 3 and K2

3 = 5.
layer 3 = 10×3×3×3 i.e. K3

1 = 3,K3
2 = 3 and K3

3 = 3. In
total, three convolutional layers are stacked for low and high-
level feature learning i.e., to increase the number of spatial-
spectral feature maps and to distinguish the spatial/spectral
features while preserving the spectral information. The con-
volutional process produces zero filling thus it does not require
the use of batch normalization or data enhancement. Moreover,
the weights are initially randomized and later optimized using
backpropagation with Adam optimizer using softmax loss
function. The entire network is trained over 50 epochs using
a mini-batch of 256. The rest of the competing methods
have been implemented as per the settings mentioned in their
respective works (i.e, MLP [69], MLR [70], RF [71], SVM
[72], 1D CNN [73] and 2D CNN [74]).

C. Experimental Results and Discussion

This section presents the experimental results and a dis-
cussion on the obtained results with possible pros and cones.
The obtained accuracies are from disjoint training, disjoint
validation, disjoint test, and complete (as similar to the tradi-
tional works published in the literature) datasets. The obtained
accuracies for disjoint validation, disjoint test, and complete
dataset as test are shown in Figures 5, 6 7, and 8.

The comparative methods mostly misclassify samples hav-
ing similar spatial structures (i.e., Meadows and Bare Soil
classes for Pavia University dataset) as shown in Figure 7.
Moreover, the overall accuracy for Grapes Untrained is lower
as compared to other classes due to the reasons mentioned
above. In a nutshell, it can be said that higher accuracy can
be achieved using more number of labeled training samples
as shown in Figure 5, Therefore a higher number of labeled
training samples (not as high as claimed in the literature,
i.e., only a few carefully selected new samples can produce
better/higher accuracy as compared to the bulk amount of
randomly selected samples) produces better accuracy for all

competing methods. Generally, we pay much attention to the
accuracy only while considering the limited availability of
training samples, however, the computational time is also quite
important especially when one deals with deep models. Thus,
the higher accuracies of a generalized model trained on a
limited number of training samples in less computational time
could be considered an innovative and important contribution
to the domain.

Figure 5 presents the classification performance in terms of
OA, AA, and κ accuracy with different numbers of training
samples selected using Fuzziness, Breaking Ties, and Mutual
Information based sample selected methods, respectively for
disjoint validation, disjoint test, and complete dataset as a test
set. As earlier explained, initially 5% of randomly selected
training samples are used and in each iteration and 200 sam-
ples are systematically selected using all three sample selection
methods. One can observe from the results as the number
of training samples increases, the classification performance
improves to a certain number, and then got stable. This is
because there is no new information added in the training
samples, thus, only the redundancy is being increased rather
the information, i.e., the new samples added into the training
set are either geographically similar or have similar patterns.

The experimental results in Figures 5, 6 7, and 8 show the
quality of spectral-spatial features learned by 3D CNN and
active learning framework. To observe the number of training
samples required to train a 3D CNN model with or without
active learning, 5 to 7 iterations are enough as shown in Figure
5. All the experimental results explained in this work are
obtained using 9 × 9 × B spatial dimensions, and all other
training parameters remain the same except for a number of
training samples in each iteration which have already been
discussed in detail. Moreover, from a computational time point
of view, a detailed discussion has been done in the former
sections, however, similar to accuracy trends (i.e., gradually
increasing), the computational time is also increasing.

D. Statistical Tests and Computational Time
Overall, Average, Kappa (κ) accuracies may not be the only

good measures especially when the datasets are not balanced
i.e., with different numbers of samples in each class. Let us see
an example to understand it. Let us consider a case where 10
individuals are not healthy (i.e., have some disease, +ve class)
and 90 healthy individuals (−ve class). Moreover, assume that
the machine learning model correctly predicts 90% individuals
as healthy, however, it also predicts the unhealthy people as
healthy. What will be the best accuracy in this case?

Thus, there are 90, 0, 10, and 0 samples are identified as
“True Negative”, “False Positive”, “False Negative”, and “True
Positive”, respectively. Thus, in this case, the accuracy is 90%
i.e., 90+0

100 = 0.9. As identified, the accuracy is 90% however,
the model is highly biased since all 10 individuals who are not
healthy are predicted as healthy, i.e., only accuracy measure
in a such scenario can be misleading or maybe misinterpret
the results. Thus, accuracy is not the only measure or maybe
not the best measure the evaluate a machine learning model.
On top of accuracy, statistical analyses are worth discussing
to validate any machine learning model.
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Fig. 5: Overall, Average and kappa accuracy with different percentages of training samples selected in each iteration from
Kennedy Space Center, Pavia University, and Salinas datasets. It is perceived from the above figure that by including the
samples back to the training set, the classification results are significantly improved. Moreover, it can be seen that Fuzziness-
based samples selection method is more robust than Breaking Ties, and Mutual Information sampling criteria. Furthermore, it
is clear from the results, the disjoint test samples produce lower accuracies than the ones obtained on complete datasets.

Many metrics can be used to validate the results, and from
those, precision (Positive predictive values), recall (sensitivity
or true positive rate), and F1 score (both precision and recall

are considered) are considered in this research. Precision
should be 1.00 for the ideal classification model; happens
only once the denominator and numerator come equal, i.e.,
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(a) Fuzziness

(b) Breaking Ties

(c) Mutual Information

Fig. 6: Geographical maps for KSC dataset for 1st, 9th, and 17th iteration.

(a) Fuzziness

(b) Breaking Ties

(c) Mutual Information

Fig. 7: Geographical maps for Pavia University dataset for 1st, 9th, and 17th iteration.

true positive (TP) = TP + false positive (FP), in such case FP
becomes zero. However, as FP increases, the overall precision
decreases which reflect an inappropriate classification model.
Similar behavior is suggested for Recall where only False
negative (FN) is replaced with FP. Precision and recall are
defined as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

In a nutshell for a good classifier, both recall and precision
need to be high i.e., both FN and FP needs to be quite low
in value. Thus, on top of precision and recall, one needs to
have an F1 score that considered both precision and recall at
the same time and provides more insight into a classifier’s
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(a) Fuzziness

(b) Breaking Ties

(c) Mutual Information

Fig. 8: Geographical maps for Salinas dataset for 1st, 9th, and 17th iteration.

generalization performance and statistical significance. F1
score can be computed as follows:

F1 Score = 2× Precision×Recall

Precision+Recall
(9)

The higher the values of precision, recall, and F1 score the
better the classification model is. Moreover, these measures are
way better than only accuracy to justify the performance of any
proposed method. The statistical performance of our proposed
method is presented in Table IV. The results presented in Table
IV show the statistical significance of our proposed method
and have achieved above 90% in most of the cases. To avoid
paper over-length issues, we only presented the statistical re-
sults of the Fuzziness-based sample selected method, however,
breaking ties, and mutual information-based sample selection
methods do produce the same results.

Figure 9 presents the computational time to process/evaluate
the Hyperspectral datasets used in this study. As shown in the
figure, the training time gradually increases as the number
of training samples increases however the increment in the
training in each iteration is significantly lesser than what is

needed to train a 3D Convolutional Neural Network (CNN).
This is due to the concept of fine-tuning rather than retraining
the model from scratch, this work proposed the idea to fine-
tune i.e., instead of training the entire model, the last layers are
fine-tuned with new parameters along with the weights frozen
in the previous iteration. unlike the training time, validation
and testing times are more stable.

E. Comparison with State-of-the-art

This section presents a detailed discussion of experimental
results obtained as compared to the state-of-the-art works
published in recent years. Most of the research carried out in
recent years presents comprehensive experimental results to
pin the advantages/disadvantages of their works. However, to
some extent, the experimental results presented in the literature
may have adopted different experimental protocols such as
randomly selected training, validation, and test samples may
have the same percentage but may have different geographical
locations of each model as those models have been trained,
validated, and tested in different times (the comparative mod-
els have been executed in multiple times, one after each other,
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TABLE IV: Precision, Recall and F1 Score test for each iteration. The higher the values of precision, recall and F1 scores,
the better the performance, generalization, and statistical significance is.

Iteration # Kennedy Space Center Dataset Pavia University Dataset Salinas Dataset
Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score

1 0.6054±0.06 0.6087±0.05 0.5709±0.05 0.7395±0.04 0.6863±0.05 0.6698±0.03 0.7579±0.03 0.8029±0.02 0.7396±0.02
2 0.7121±0.04 0.7472±0.04 0.6879±0.04 0.8729±0.02 0.8867±0.01 0.8741±0.01 0.8962±0.02 0.9144±0.02 0.8841±0.02
3 0.6933±0.06 0.7102±0.07 0.6623±0.05 0.9176±0.01 0.9172±0.02 0.9168±0.02 0.9489±0.01 0.9615±0.01 0.9533±0.01
4 0.8678±0.03 0.8858 ±0.02 0.8639±0.02 0.9572±0.01 0.9494±0.01 0.9524±0.01 0.9699±0.01 0.9727±0.01 0.9708±0.01
5 0.9316±0.02 0.9304±0.02 0.9222±0.01 0.9626±0.01 0.9373±0.01 0.9489±0.01 0.9569±0.01 0.9409±0.01 0.9459±0.01
6 0.9168±0.02 0.9215±0.02 0.9127±0.01 0.9696±0.01 0.9638±0.01 0.9665±0.01 0.9738±0.01 0.9789±0.01 0.9757±0.01
7 0.9335±0.02 0.9377±0.02 0.9278±0.01 0.9735±0.01 0.9622±0.01 0.9673±0.01 0.9728±0.01 0.9766±0.01 0.9739±0.01
8 0.9356±0.02 0.9422±0.02 0.9278±0.02 0.9867±0.01 0.9737±0.01 0.9798±0.01 0.9717±0.01 0.9772±0.01 0.9737±0.01
9 0.9468±0.02 0.9535±0.01 0.9453±0.01 0.9807±0.01 0.9691±0.01 0.9746±0.01 0.9814±0.01 0.9846±0.01 0.9826±0.01
10 0.9227±0.02 0.9219±0.02 0.9146±0.01 0.9814±0.01 0.9756±0.01 0.9784±0.01 0.9790±0.01 0.9808±0.01 0.9797±0.01
11 0.9393±0.02 0.9434±0.02 0.9334±0.01 0.9864±0.01 0.9766±0.01 0.9812±0.01 0.9836±0.01 0.9776±0.01 0.9803±0.01
12 0.9478±0.01 0.9508±0.02 0.9437±0.01 0.9863±0.0 0.9806±0.01 0.9834±0.01 0.9854±0.01 0.9882±0.01 0.9865±0.01
13 0.9368±0.01 0.9387±0.02 0.9317±0.01 0.9788±0.01 0.9697±0.01 0.9741±0.01 0.9676±0.01 0.9724±0.01 0.9688±0.01
14 0.9407±0.01 0.9408±0.02 0.9339±0.01 0.9829±0.01 0.9530±0.02 0.9654±0.01 0.9773±0.01 0.9726±0.01 0.9746±0.01
15 0.9386±0.02 0.9430±0.02 0.9330±0.01 0.9816±0.01 0.9794±0.01 0.9803±0.01 0.9807±0.01 0.9766±0.01 0.9785±0.01
16 0.9267±0.02 0.9298±0.02 0.9201±0.02 0.9841±0.01 0.9816±0.01 0.9828±0.01 0.9859±0.01 0.9837±0.01 0.9847±0.01
17 0.9355±0.02 0.9409±0.02 0.9301±0.01 0.9877±0.01 0.9749±0.01 0.9810±0.01 0.9849±0.01 0.9878±0.01 0.9862±0.01
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Fig. 9: Training, Disjoint Test, and Complete dataset test time for Kennedy Space Center, Pavia University, and Salinas Time.
The training time is significantly lower than the usual 3D CNN training time because the proposed model adopts the fine-tuning
process rather than retraining the entire network for each iteration i.e., the last few classification layers are retrained rather
than the entire network.

or in parallel which brings a new set of training, validation,
and test samples with the same number or percentage) as
initial samples have been chosen randomly [75]. Therefore,
to make the comparison fair between the works proposed in
the literature and current, one must need to have the same
experimental settings and must need to be executed with the
same set of training, validation, and test samples.

Another issue with most of the literature proposed in
recent years is overlapping training/test samples. As the train-
ing/validation samples are randomly selected (including or
excluding the above point) the data split contains overlapping
samples. This results in a biased model (as overlapping means
the model has already seen the training and validation samples)
and produces higher accuracy. To avoid it from happening, this
study ensures that although the samples are chosen randomly,
the intersection between training, test, and validation samples
remains empty and constant for all competing methods.

The proposed fast and compact 3D CNN with an active
transfer learning method has been compared with several state-

of-the-art methods. The comparative methods includes Multi-
layer Perceptron (MLP) [69], Multinomial Logistic Regres-
sion (MLR) [70], Random Forest (RF) [71], Support Vector
Machine (SVM) [72], 1D CNN [73] and 2D CNN [74]. All
these methods are retrained using a fuzziness-based sample
selection method to make the comparison fair and reliable. The
comparative models have been implemented as per the param-
eters explained in the cited works. The detailed experimental
results are enlisted in Tables V and VI. Focusing on the Salinas
dataset, one can see that the performance of the pixel-wise
classifiers such as RF and MLR provide lower accuracy but
better than SVM. However, the spectral classifier such as 1D
CNN is way better than other spectral classifiers, whereas the
spatial classifier, for instance, 2D CNN produces much better
results than SVM, RF, MLP, MLR, and 1d CNN method, but
underperforms spatial-spectral classifier i.e., 3D CNN. From
these results, one can observe that after adding spectral-spatial
information, the classifier significantly improves the accuracy
as compared to the individual information, i.e., alone spectral
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TABLE V: Salinas Dataset: Average accuracy for 17 iterations and in each iteration 200 samples are selected using the
predefined sample selection method with 5% initially randomly selected training samples. The comparative methods includes
MLP [69], MLR [70], RF [71], SVM [72], 1D CNN [73] and 2D CNN [74]. All these methods are retrained using a fuzziness-
based sample selection method to make the comparison fair and reliable.

Class Tr/Val/Te Samples MLP Fuz MLR Fuz RF Fuz SVM Fuz 1D CNN Fuz 2D CNN Fuz 3D CNN Fuz 3D CNN BT 3D CNN MI
Brocoli green weeds 1 101/1205/703 98.16±1.94 98.26±0.61 97.71±1.94 97.59±1.31 99.00±0.42 99.85±0.15 99.90±0.01 99.95±0.01 99.99±0.01
Brocoli green weeds 2 186/2236/1304 99.48±0.40 99.78±0.07 99.83±0.07 99.35±0.45 99.55±0.00 94.15±1.45 98.85±0.03 99.81±0.01 99.51±0.02

Fallow 98/1186/692 96.89±1.76 94.94±1.82 93.74±3.59 96.88±2.08 97.79±0.56 99.62±0.03 97.82±0.03 97.59±0.01 99.32±0.03
Fallow rough plow 70/836/488 99.44±0.31 99.24±0.38 97.06±3.00 98.98±0.61 98.76±0.96 99.86±0.14 96.55±0.04 98.32±0.01 95.71±0.05

Fallow smooth 134/1607/937 97.50±1.15 97.36±1.21 96.25±0.99 97.87±0.72 96.98±1.18 99.79±0.06 95.71±0.02 94.05±0.08 96.00±0.03
Stubble 198/2375/1386 99.52±0.22 99.57±0.18 98.73±0.99 99.43±0.40 99.80±0.13 99.73±0.21 99.92±0.01 99.90±0.01 99.99±0.01
Celery 179/2147/1253 99.27±0.33 99.66±0.16 99.09±0.41 99.44±0.21 99.68±0.09 99.09±0.15 99.84±0.01 99.91±0.01 99.77±0.01

Grapes untrained 563/6763/3945 81.16±5.33 81.89±3.01 81.85±2.60 97.53±1.78 83.43±3.15 92.31±1.01 91.96±0.12 88.55±0.05 87.18±0.06
Soil vinyard develop 310/3722/2171 99.34±0.43 99.86±0.07 98.90±0.44 99.39±0.52 99.26±0.43 99.84±0.06 98.75±0.02 98.96±0.02 98.98±0.01

Corn senesced green weeds 164/1967/1147 89.33±2.19 88.50±2.12 85.53±1.96 91.13±1.74 93.49±2.15 96.19±2.81 89.84±0.05 91.43±0.05 92.23±0.02
Lettuce romaine 4wk 53/641/374 90.02±3.76 91.95±3.05 88.16±4.53 93.93±1.83 94.48±1.99 96.82±0.84 98.12±0.07 99.82±0.01 99.94±0.01
Lettuce romaine 5wk 97/1156/674 97.21±2.40 99.03±0.73 97.19±1.37 99.14±0.56 99.97±0.05 99.82±0.18 94.70±0.01 94.26±0.02 96.22±0.03
Lettuce romaine 6wk 45/550/321 97.66±1.32 94.39±8.09 97.79±1.37 97.39±2.38 98.25±0.62 98.42±1.15 90.62±0.17 89.20±0.07 83.88±0.10
Lettuce romaine 7wk 53/642/375 91.38±2.33 92.26±1.34 90.88±3.21 91.92±3.07 91.03±1.75 96.82±0.00 94.86±0.03 93.36±0.01 95.94±0.01

Vinyard untrained 363/4361/2544 64.87±8.76 60.89±3.55 59.21±4.36 64.20±2.91 66.41±7.54 84.74±1.35 85.69±0.02 79.83±0.08 81.15±0.03
Vinyard vertical trellis 91/1084/632 96.36±1.20 95.29±2.48 92.92±2.26 96.70±1.84 98.34±0.57 85.78±0.39 98.55±0.01 96.77±0.01 96.93±0.03

OA 89.57±0.41 89.20±0.30 88.22±0.29 91.07±0.37 90.85±0.77 94.95±0.07 98.17±0.06 97.13±0.04 97.24±0.04
AA 93.60±0.56 93.30±0.59 92.18±0.28 94.43±0.38 94.79±0.64 96.43±0.23 98.22±0.04 97.61±0.06 98.00±0.04
κ 88.38±0.47 89.20±0.33 86.86±0.33 90.03±0.41 90.85±0.87 94.95±0.08 97.96±0.05 96.79±0.05 96.92±0.04

TABLE VI: Kennedy Space Center Dataset: Average accuracy for 17 iterations and in each iteration 200 samples are selected
using the predefined sample selection method with 5% initially randomly selected training samples. The comparative methods
includes MLP [69], MLR [70], RF [71], SVM [72], 1D CNN [73] and 2D CNN [74]. All these methods are retrained using
a fuzziness-based sample selection method to make the comparison fair and reliable.

Class Tr/Val/Te Samples MLP Fuz MLR Fuz RF Fuz SVM Fuz 1D CNN Fuz 2D CNN Fuz 3D CNN Fuz 3D CNN BT 3D CNN MI
Scrub 38/457/266 96.35±0.79 95.90±0.87 94.95±1.39 95.32±1.44 97.33±0.16 95.93±0.53 98.66±0.04 97.53±0.08 98.74±0.04

Willow swamp 12/146/85 89.63±4.04 88.81±1.75 87.94±1.68 94.49±3.20 93.42±1.16 87.65±0.82 74.77±0.11 75.11±0.10 76.74±0.11
Slash pine 12/154/90 91.52±2.46 87.97±4.75 89.49±2.29 91.88±1.47 86.85±8.15 86.72±0.00 82.61±0.18 73.69±0.22 75.53±0.24

CP hammock 13/151/88 75.32±6.34 67.70±11.4 75.60±2.71 78.25±4.55 83.86±9.71 89.29±0.40 89.24±0.19 90.78±0.11 84.85±0.18
Oak/Broadleaf 8/97/56 66.58±7.63 62.11±8.24 59.25±6.92 75.03±4.73 70.60±6.92 97.83±2.17 63.17±0.25 53.71±0.31 63.94±0.24

Hardwood 12/137/80 69.74±4.59 71.35±4.48 58.12±6.80 80.39±5.88 83.11±2.09 94.10±3.28 89.42±0.21 89.13±0.11 91.78±0.17
Swap 5/63/37 87.81±5.32 84.19±5.51 85.90±4.74 88.19±4.05 92.38±6.07 78.57±0.48 83.42±0.31 84.54±0.17 77.76±0.36

Graminoid marsh 21/259/151 93.76±1.81 90.35±1.26 87.24±2.12 94.99±3.25 95.13±1.00 89.91±1.04 94.54±0.11 95.62±0.09 95.71±0.08
Spartina marsh 26/312/182 97.58±0.89 96.81±0.63 93.65±3.03 97.58±0.93 98.65±0.16 96.54±0.38 86.72±0.19 95.38±0.06 89.06±0.11
Cattail marsh 21/242/141 97.45±1.72 94.90±2.79 89.60±2.53 98.42±0.72 97.69±1.69 96.91±1.86 98.57±0.06 1.00±0.00 1.00±0.00

Salt marsh 21/251/147 98.07±1.23 96.95±0.71 97.42±0.97 98.00±0.99 98.65±0.92 98.21±0.12 95.28±0.19 91.42±0.21 95.35±0.18
Mud flats 25/302/176 94.63±1.16 92.41±1.19 90.97±1.98 95.84±1.40 96.69±1.53 94.73±3.28 94.35±0.18 94.50±0.11 96.83±0.06

Water 47/556/324 100.00±0.00 100.00±0.00 99.69±0.13 100.00±0.00 99.50±0.64 99.68±0.32 98.68±0.05 1.00±0.00 98.01±0.08
OA 93.14±0.49 91.49±0.43 89.99±0.28 94.40±0.50 94.84±0.21 94.77±0.47 96.27±0.08 95.96±0.07 96.67±0.06
AA 89.11±0.74 86.88±0.60 85.37±0.72 91.41±0.92 91.83±0.29 92.77±0.41 94.58±0.11 93.72±0.10 94.33±0.10
κ 92.35±0.55 91.49±0.47 88.85±0.31 93.76±0.56 94.84±0.24 94.77±0.52 95.84±0.09 95.50±0.081 96.29±0.07

or spatial information. From the results, we can see that the
3D CNN classifier is able to attain good classification results
with fewer training samples than other active transfer learning-
based classifiers. A similar trend can be seen in the Kennedy
Space center dataset.

V. CONCLUSION

Traditionally, Convolutional Neural Network (CNN) is
trained on a large number of labeled training samples and
tested on the entire HSI cube to generate accurate thematic
maps which produce high accuracy. Indeed, this includes
bias, as many of the test samples have already been seen by
the model while training. However, in this work, a disjoint
Train/Validation/Test samples split-based unified 3D CNN and
Active Transfer Learning method is proposed. A 3D CNN
model is initially trained with 5% labeled training samples and
validated on 65% samples. In the next phase, high fuzziness
magnitude, Mutual Information, and Breaking Ties-based 200
misclassified samples have been selected to include in the
original training set to fine-tune the model rather than retrain-
ing from scratch to reduce the computational cost. To prove
the superiority of our proposed method, three different types
of experiments have been conducted as follows: 1): Disjoint

train and validation test only, 2): Disjoint Train/Validation and
Test set are all evaluated together, and finally, 3): Disjoint
Train/Validation/Test and complete HSI cube as Test set to
compare the experimental results of the disjoint test and com-
plete HSI cube as a test set. The proposed model significantly
improves the classification results as compared to the state-of-
the-art models with a significantly fewer number of labeled
training samples.
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