of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 529, 479498 (2024)
Advance Access publication 2024 February 15

https://doi.org/10.1093/mnras/stae479

Predicting the ages of galaxies with an artificial neural network

Laura. J. Hunt “,"?* Kevin. A. Pimbblet'? and David. M. Benoit !>

VE.A. Milne Centre, Faculty of Science and Engineering, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, UK
2Centre of Excellence for Data Science, Al, and Modelling (DAIM), University of Hull, Cottingham Road, Kingston-upon-Hull, HU6 7RX, UK

Accepted 2024 February 13. Received 2024 February 12; in original form 2023 June 5

ABSTRACT

We present a new method of predicting the ages of galaxies using a machine learning (ML) algorithm with the goal of providing
an alternative to traditional methods. We aim to match the ability of traditional models to predict the ages of galaxies by training
an artificial neural network (ANN) to recognize the relationships between the equivalent widths of spectral indices and the
mass-weighted ages of galaxies estimated by the MAGPHYS model in data release 3 (DR3) of the Galaxy and Mass Assembly
(GAMA) survey. We discuss the optimization of our hyperparameters extensively and investigate the application of a custom
loss function to reduce the influence of errors in our input data. To quantify the quality of our predictions we calculate the mean
squared error (MSE), mean absolute error (MAE) and R? score for which we find MSE = 0.020, MAE = 0.108 and R> =
0.530. We find our predicted ages have a similar distribution with standard deviation o, = 0.182 compared with the GAMA
true ages o, = 0.207. This is achieved in approximately 23 s to train our ANN on an 11th Gen Intel Core i9-11900H running at
2.50 GHz using 32 GB of RAM. We report our results for when light-weighted ages are used to train the ANN, which improves
the accuracy of the predictions. Finally, we detail an evaluation of our method relating to physical properties and compare with

other ML techniques to encourage future applications of ML techniques in astronomy.
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1 INTRODUCTION

The field of astronomy is inundated with vast amounts of data
that is unable to be processed by humans alone. Automation is
already implemented in many areas of the field; however, larger
jumps in the efficiency of data processing must be made in order
to accommodate the large amounts of observations and data being
produced. One solution is to apply machine learning (ML) techniques
to astrophysical problems. This involves training an ML algorithm
to automatically recognize patterns within data sets in order to make
predictions about unseen data (for a review of ML in astronomy
please see: Baron 2019; Smith & Geach 2023). While this may
act as an alternative method to circumvent the laborious process
of modelling and analysis by providing tools to process data and
analyse the patterns within observations to draw new conclusions, it
is important to note that traditional methods are still a vital part
of the process of analysis. ML algorithms may offer additional
speed for processing but traditional models have a longer history
and therefore the science and systematics behind them are better
understood. However, for the purpose of quickly processing a data
set, ML algorithms should be utilized further such that we are able
to characterize them in a similar manner to traditional models and
understand the science they are built upon.

Artificial neural networks (ANNs) are a ML technique used most
commonly for supervised classification. They were first implemented
in 1992 to study galaxies by Storrie-Lombardi et al. (1992) as a
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method to predict morphological classification based on the physical
properties of galaxies. This process entails visual classification of a
training set of galaxies provided by researchers alongside calculation
of 13 observable parameters such as surface brightness and measures
of asymmetry. The ANN correctly classifies 64 per cent of galaxies,
in comparison ESO AUTO, a non-ANN automated classification
method, only correctly classifies 56 per cent. In subsequent years the
classification of galaxies with ANNs has been improved and reviewed
extensively with comparison to human based visual classification.
Some methods of classification include classifying Hubble types
with an ANN (Adams & Woolley 1994; Naim 1994; Lahav et al.
1995; Lahav 1997; Odewahn 1997; Goderya & Lolling 2002; Ball
et al. 2004) and using Galaxy Zoo data (Banerji et al. 2010). Other
classifications include stellar spectral classification using ANNs
(Gulati et al. 1994), in the UV (Gulati et al. 1996) and for low-
signal-to-noise (Folkes, Lahav & Maddox 1996).

The application of ANNs to astrophysical problems is not limited
to classification as one of the major benefits of ANNs is their
flexibility. In the study of galaxies, ANNs and multilayer perceptrons
(MLPs) are able to predict properties such as star formation rate
(SFR; Ellison et al. 2016) and photometric redshifts based on
spectral energy distributions (SEDs) (Firth, Lahav & Somerville
2003; Vanzella et al. 2004; Brescia et al. 2014; Bilicki et al. 2018).
However, in the field of galactic astronomy there is a noticeable lack
of galaxy age estimations with ANNs.

A galaxy’s integrated light spectra provides insight into its un-
derlying processes and properties. Historically, the study of spectral
evolution stems from the analysis of full integrated light spectra;
however, recent studies of the emission and absorption of various
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spectral lines allow us to infer these properties with less free parame-
ters. Some of these methods involve using models based on the stellar
population synthesis (SPS) technique which is based on the idea that
the stellar components of galaxies evolve on evolutionary tracks
called isochrones that dictate the way in which their spectra evolves
(e.g. Tinsley 1968; Spinrad & Taylor 1971; Faber 1972; Tinsley 1972;
O’Connell 1976; Tinsley & Gunn 1976; Bruzual A. 1983; Pickles
1985; Rose 1985; Bruzual & Charlot 2003). More recent methods
include the flexible stellar population synthesis (FSPS) model that
integrates essential aspects of SPS in a flexible manner so different
sets of isochrones and stellar spectral libraries may be used (Conroy,
Gunn & White 2009; Conroy & Gunn 2010). MILES (Medium
resolution INT Library of Empirical Spectra) models are able to
extend from intermediate ages to much older ages by incorporating
empirical properties and extensive photometric libraries rather than
just stellar spectra (Vazdekis et al. 2010). Extended-MILES (E-
MILES) models (Vazdekis et al. 2016) are UV extended SPS
models that provide better resolution, stellar parameter coverage,
and signal-to-noise ratio (SNR) by using the next-generation spectral
library (Gregg et al. 2006). MaStar (MaNGA stellar library (Yan
et al. 2019) stellar population models (Maraston et al. 2020) are
capable of predicted SEDs for stellar populations of various chemical
compositions and ages. These approaches take the stellar initial
mass function (IMF), SFR and sometimes the chemical enrichment
abundance to determine the integrated spectral evolution of the stellar
population. Important properties of galaxies such as age, metallicity,
and abundance ratios affect the line-strength indices present in their
spectra (Faber 1973; Worthey 1994; Bressan, Chiosi & Tantalo 1996;
Vazdekis et al. 1996; Cardiel et al. 1998). Equivalent widths (EWs)
are commonly used to quantify spectral lines as they measure the
fraction of energy removed from the spectrum by the line rather the
height or position of the line (Spitzer 1978), for which we use the
definition of EWs described by Cardiel et al. (1998)

Wi(A) = - (I =8G)/CQ)da, ey
time

where S()) is the observed spectrum and C(A) is the local
continuum usually found through interpolation of S(}) between
two adjacent spectral regions. Specific EWs are tracers for specific
processes within the stellar population such as starbursts and ongoing
star formation (e.g. Worthey & Ottaviani 1997; Bruzual & Charlot
2003; Sanchez Almeida et al. 2012; Moresco et al. 2018). For this
reason, it is possible to estimate the ages of galaxies based on the
their spectral information. Galactic ages can be defined as the median
mass-weighted age of the stellar population. Mass-weighted age is
defined by Citro et al. (2016) based on the definition of Gallazzi et al.
(2005)

Jo SFR(t —tYM()t' dt’
Jo SFR(t — )Mt dt'

<t >ma,\'s = (2)

where SFR(t — ¢') is the SFR at time (¢ — ) when the star was
formed, M(¢') is the stellar mass given by a single-stellar population
(SSP) of age 7.

A number of EWs are commonly used as tracers for star formation
such as D,4000 (Hamilton 1985), Ha, H 8 (Worthey et al. 1994),
Hy 4 (Worthey & Ottaviani 1997), but other indices are also asso-
ciated with other processes that may indirectly be associated with
stellar age. Line indices can be used as metallicity indicators which
in turn may be related back to age, with the caveat that there are many
factors that relate to both. It has been long since established that there
are particular strong features in the spectra of late-type galaxies
such as CH G band (G) features, the magnesium b triplet (MgG)
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(e.g. Vazdekis et al. 1996; Jgrgensen 1999), the magnesium hydride
trough (MH), the sodium D doublet (NaD) (Faber 1973; Brodie &
Hanes 1986; Brodie & Huchra 1990). Whereas other indices such
as Ha, HB, [O11] and [S11] are associated with the star formation,
the presence of AGN, Seyferts, and LINERs (Baldwin, Phillips &
Terlevich 1981; Kauffmann et al. 2003b; Kewley et al. 2006; Cid
Fernandes et al. 2010).

There are already various models that use integrated light spectra
or SEDs to determine the physical properties of galaxies. Optimiza-
tion of these models to run quickly through large amounts of data is
paramount to the future of galaxy evolution. MOPED is a Multiple
Optimized Parameter Estimation and Data compression algorithm
described by Heavens, Jimenez & Lahav (2000) that is able to
recover physical parameters from galaxy spectra such as emission
and absorption lines for which physical properties such as SFR may
be determined (Reichardt, Jimenez & Heavens 2001). They describe
a method of linear compression for data sets that are dependent on
multiple parameters. This method is aimed at galaxy spectra as they
are based on a few parameters such as age and SFR, etc. MOPED
is able to take an entire spectra and compress it into this handful of
useful parameters. Before MOPED, methods involved the estimation
of single parameters; whereas, MOPED not only enables multiple
parameter estimations but reduces the error of previous compression
systems such Principal Component Analysis (PCA) whilst also being
faster to compute.

STARLIGHT (Cid Fernandes et al. 2005) is a spectral synthesis
model that is able to recover information such as stellar ages and
stellar metallicities from observed galaxy spectra. They achieve this
by fitting spectra with a linear combination of simple theoretical
stellar populations computed with evolutionary synthesis models at
the same spectral resolution as that of the SDSS. This involves a
mix of computational techniques developed for empirical population
synthesis but applied with aspects of evolutionary synthesis models.
They use STARLIGHT to produce a catalogue of properties for 50 000
SDSS DR2 galaxies with an increased computing speed when
compared with MOPED.

Ocvirk et al. (2006) describes a method called STEllar Content
via Maximum A Posteriori (STECMAP) which is based on a
non-parametric inversion for analysis of integrated light spectra
based on the synthetic spectra of SSPs. Their main aim is to
recover star formation history (SFH) and stellar age—metallicity
relationships for galaxies. STECMAP has a non-parametric approach
in order to avoid constraints on the shape of the distribution
for derived properties such as stellar age distribution. With this
method they find that STECMAP is not easily able to recover age
estimations for the optical range of spectra no matter the spectral
resolution.

Tojeiro et al. (2007) describes a direct improvement from MOPED
that involves a method of VErsatile SPectral Analysis (VESPA) that
is able to recover properties such as SFH and metallicity histories
from galactic spectra. VESPA differs from previous models as it can
adapt the number of parameters recovered from a given spectrum
depending on its SNR, wavelength coverage, and presence of a
young stellar population whilst again improving computational time.
Tojeiro et al. (2007) estimates VESPA reduces computational time
from 170 yr for MOPED to process the entire SDSS DRS to just 1 yr
for VESPA.

A brief summary of various more recent, commonly used SED
fitting methods includes the method of Bayesian SED fitting called
P12 developed by Pacifici et al. (2012) that can take into account
the combination of stellar and nebulae emission from galaxies across
a broad range of wavelengths. SpeedyMC (Acquaviva, Gawiser &
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Guaita 2012) is based on the SED fitting software GalMC which
is a Markov Chain Monte Carlo algorithm (Acquaviva et al. 2011).
SpeedyMC uses pre-computed template libraries which makes it
possible to run very quickly, even on a laptop.

BayEsian Analysis of galaxy sEds (or BEAGLE) also uses a
combination of the MULTINEST algorithm and a flexible, fully self-
consistent physical model in the UV to the NIR to model any
combination of photometric and spectroscopic observables including
galaxy age (Chevallard & Charlot 2016). AGNFitter fits SEDs of
AGN between submillimeter and UV using a fully Bayesian Markov
Chain Monte Carlo method (Calistro Rivera et al. 2016).

The Dense Basis method of SED fitting is also based in PYTHON
minimizes bias and reduces scatter caused by SFH parametrization
by using four different functional families to create a basis of SFHs
from their combinations in order to determine an optimal number of
SFH components statistically (Iyer & Gawiser 2017; Iyer et al. 2019).
Another PYTHON based method of SED fitting is Prospector (Leja
etal. 2017; Johnson et al. 2021). They use a flexible method to derive
stellar population parameters from photometry and spectroscopy
across UV to IR.

Bayesian Analysis of Galaxies for Physical Inference and Param-
eter EStimation (BAGPIPES) is a PYTHON tool that can generate
complex model spectra for galaxies using spectroscopic and photo-
metric data (Carnall et al. 2018, 2019a). BAGPIPES uses Bayesian
fitting to model emission from FUV to microwave regimes then
fits these models with the MULTINEST nested sampling algorithm
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz
et al. 2019) to varying spectroscopic and photometric observations.
Code Investigating GALaxy (CIGALE) is another PYTHON code that
uses a Bayesian based method that incorporates FUV to radio to
derive physical properties from SEDs of galaxies (Boquien et al.
2019).

MIRKWOOD uses an ensemble of supervised ML models to
bypass computationally heavy Bayesian-based SED fitting (Gilda,
Lower & Narayanan 2021). It is trained on mock SEDs generated
by galaxy formation simulations in which the physical properties
are known which allows the MIRKWOOQOD algorithms to derive an
accurate relationship between inputted photometry and the phys-
ical properties of galaxies. The PRObabilistic ValueAdded BGS
(PROVABGS) Bayesian SED modelling framework used on the
DESI Bright Galaxy Survey (BGS; (Hahn et al. 2023; Myers
et al. 2023)) photometry and spectroscopy can be used to derive
physical properties such as mass-weighted age. PROVABGS uses
non-parametric SFH and metallicity history prescriptions to model
SEDs with SPS. For a more in-depth review and comparison of recent
SED fitting methods please see Pacifici et al. (2023).

Considering such massive data sets as SDSS, it is imperative that
new, faster methods of analysis are developed for galaxy spectra.
Ucci et al. (2017, 2018) describes a supervised ML algorithm that
calculates physical properties of galaxies based on their emission-
line spectra with a combination of AdaBoost and Decision Trees,
called GAME (GAlaxy Machine learning for Emission lines). They
are able to train the algorithm in approximately 10 min on a set size
of 3 x 10* spectra. Once trained the model is able to predict the
density, metallicity, column density, and ionization parameters of a
single spectra in less than a few seconds, to make predictions for
the entirety of the SDSS DRS it would take approximately 417 h.
Compared with traditional models this is a vast improvement in
processing time.

Liew-Cain et al. (2021) describes a method to recover the age
and metallicities of galaxies from SEDs using a convolutional neural
network (CNN). CNNs use convolutional filters that are able to pass
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over data arrays, reducing their size in a specific way in order to
derive patterns that the network is then able to decide is important or
not important with backpropagation. This process allows the network
to relate patterns in the input data to a given output, in this case age
or metallicity. Once the network is trained it is then able to use these
patterns to predict the outcomes of new input data. This paper is a
successful proof of concept for which CNNs are found to robustly
predict age and metallicity from the SEDs of galaxies.

The process of analysis can be further sped up with the use
of photometric data as this does not require expensive and time-
consuming spectroscopic observations and generally has better SNRs
and less calibration systematic errors. However, this is at the expense
of losing more subtle signals that allow us to break the degeneracy
between metallicity and dust to constrain age. Li et al. (2022) uses
a CNN with the similar goal of estimating physical properties of
galaxies; however, they achieve this with photometric data rather than
SEDs. They train their algorithm, called Painting IntrinsiC Attributes
onto SDSS Objects (PICASSO), with multiband photometric images
to reconstruct 2D maps of stellar mass, metallicity, age and gas mass,
gas metallicity, and SFR.

A simpler ML algorithm such as an ANN could reduce this
overall time to make predictions even further if used to predict
less parameters. For example, as CNNs generally use 2D input data
such as images, spectra or SEDs, the number of input features can
be significantly larger than a simple ANN as even a small 50x50
image would require 2500 input features. Though a slightly longer
training time would not make a significant impact on the overall
computational time, the time it would take to predict outputs for
a large data set of 2D images after training is completed could
significantly increase this time. Though 1D data like galaxy spectra
may be used in CNNss like those described by Lovell et al. (2019) that
predicts star formation histories based on synthetic galaxy spectra
generated by two cosmological hydrodynamic simulations, EAGLE
(Schaye et al. 2015) and Illustris (Genel et al. 2014). Therefore, we
provide the proof of concept of an ANN! that is able to predict
the ages of galaxies based on the EWs of their spectra with the
aim matching the predictive power of more traditional models but
with a shorter computing time. We aim to encourage future studies
that incorporate faster and simpler ML techniques to predict smaller
numbers of properties that would otherwise take many hours worth of
simulations to predict. The use of more simple ML algorithms should
be more widely utilized by the field as a whole as an additional
tool for data processing and analysis rather than only researchers
with specialisms in ML. Therefore, we aim to show that a simple
ANN coded with Tensorflow Keras could be used by any
researchers to predict the ages of galaxies based on their EWs. Our
paper is structured as follows: in Section 2 we describe the data set,
this includes a description of data cleaning, feature selection and
drawbacks of our data set. In Section 3 we describe the framework of
the ANN we employ, this includes hyperparameter tuning. We report
our results in Section 4 in which we describe different techniques
aimed at improving the overall performance of the predictions. We
discuss the results further in Section 5 and provide comparison other
ML methods and the use of light-weighted ages instead of mass-
weighted ages.

We assume Hy = 68 kms~! Mpc™!, @), = 0.31, and Q, = 0.69,
in concordance with ACDM (Planck Collaboration et al. 2020).

'E. A. Milne Centre for Astrophysics GitHub: https:/github.com/Milne-
Centre

MNRAS 529, 479-498 (2024)

202 UdJBIN G0 U0 158NnB Aq 690609.L/6.1/1/62S/3I01HE/SEIUW/WOD dNO"DILSPEDE//:SARY WO} POPEOJUMOC]


https://github.com/Milne-Centre

482 L. J. Hunt K. A. Pimbblet and D. M. Benoit

2 INPUT DATA

Our data is sourced from the GAlaxy and Mass Assembly (GAMA)
survey (Driver et al. 2009; Liske et al. 2015). GAMA is a spec-
troscopic and photometric survey that spans ~300000 galaxies
over ~286 deg® up to r < 19.8 mag. From data release 3 (DR3)
(Baldry et al. 2018), we use median mass-weighted ages generated
by SED fitting programme MAcPHYS V06, which is described in
full by da Cunha, Charlot & Elbaz (2008), as opposed to synthetic
observations or ages derived from other models because MAGPHYS
is a physically motivated model that consistently is able to interpret
galaxy emission across ultraviolet, optical, and infrared wavelengths.
These are median ages as the macpHYs model produces percentile
estimations for mass-weighted ages such that each observation has
16-84th and 2.5-97.5th percentile ranges with a median age with
these ranges. To reiterate, our true ages have an associated error
as they are estimations within a given range. Therefore, the aim
of our ANN is predict these ‘true’ ages as accurately as possible
in an attempt to match the age estimations from GAMA however
there will always be a limit on the ANNs performance as it could
be making more accurate predictions to the real true ages but not
the GAMA true age estimations. It is important to note that MAGPHYS
use exponentially declined SFH models which have known issues
in predicting ages (e.g. Carnall et al. 2019b; Lower et al. 2020)
and as such the bias for the true ages must be estimated to be
approximately >0.2 dex as the distribution of true values is affected
by this. macpaYS follows the methods of Kauffmann et al. (2003a)
to parametrize the star formation histories from a stellar library by
characterizing an underlying continuous model by an age ¢, and a star
formation time-scale parameter y and introduce random bursts on
the continuous model. They use models with exponentially declining
SFRs

¥ (1) ocexp (=y1), 3

where y is the star formation time-scale parameter which corre-
sponds to models with y = 0, 0.07 and 0.25 Gyr™' at ages t = 1.4,
10, and 10 Gyr which represent starburst, normal star-forming, and
quiescent star-forming galaxies. Biases may be introduced by their
attempt to avoid oversampling galaxies with negligible current star
formation and the inclusion of random bursts that occur with equal
probability at any given time until 7,. In addition, they state that the
likelihood of a galaxy having experienced a burst in the last 2 Gyr is
set to 50 per cent.

In addition, we use EW measurements of absorption and emission
lines and from the DirectSummation table in the SpecLineSFR
v05 DMU (Gordon et al. 2017). A number of steps are taken
to build our sample. First, we use galaxies that are observed with
GAMA using survey code 5. We then discard observations that do
not have corresponding SPECIDs in both the mMacpuys vO06 and
SpecLineSFR v05 DMUs. We follow the recommendation of
GAMA to use a number of given parameters in the SpecLineSFR
vO05 to ensure each observation has been reliably detected. These
recommendations include using NQ>4 and SN>3 which yields a
sample of 54 473 galaxies.

We take further steps to clean our data by calculating SNRs for
each observation for each EW. We use the EW errors provided in the
DirectSummation table of SpecLineSFR vO05 to calculate SNRs
for every EW for every galaxy. We then rank each EW based on
how many observations have a good SNR (SNR >3) to provide
a reliable sample. 24 of the original 51 EWs are chosen based
on their SNR, however, we run the network a number of times to
determine the best EWs for training the network. We determine this
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Table 1. To reduce errors when predicting age we use EWs that have a high
proportion of observations with good SNRs. Out of a total 51 EWs provided
by GAMA we choose the top 24. We then narrow this down to 14 that have
the best predictive performance.

EwW Count EW (cont.) Count (cont.)
D,4000 54473 NaD 18831
Ha 37238 [onI] R 15262
MH 30239 FC 14353
[Su]B 29019 [on1] B 12049
[Su] R 25199 CNB 11542

G 22304 Hya 11452
MgG 19043 Hp 7957

by removing each EW in turn and training the network with the
remaining 23. We then confirm the performance of the EWs by
starting with one EW then adding the better performing EWs one
by one, retraining the network each time until the performance starts
to decrease. We take these steps to find the best EWs for our data
set to take into account the different SNRs for each observation
as some EWs that are more associated with age. We find the
best performance with the 14 chosen EWs that are illustrated in
Table 1. For definitions of each EW please refer to (Gordon et al.
2017).

Finally, with this sample we limit the age distribution to maintain
uniformity across our sample. We do this to prevent the ANN from
being trained to predict the most common age. If the distribution of
ages is even across the sample then the ANN will be forced to train on
the patterns across EWs rather than predicting ages based on the most
common and therefore the most probable age. We want the network
to find the most probable age based on the EWs for each galaxy,
not the most statistically probable age based on the distribution of
input ages. This is seen more commonly in classification problems
that have very unbalanced data sets that cause the network to predict
whichever class there happens to be more of without considering
the data itself. If a network is only trained on 10000 galaxies of
similar ages and 100 with much younger/older ages, it will predict
the most probable outcome based on the distribution of ages in the
training data and predict an age similar to those 10000 galaxies
because it is 99 per cent likely to be correct. However, this does not
mean the network has learned the relationship between the EWs of
galaxies and their associated ages. Generally, for regression problems
we see that the network will predict the mean of the training set if
it is not balanced. Balancing the training set also means we can
verify whether the network has correctly found the most probable
age by comparing the means of the unbalanced validation set and its
corresponding predicted ages.

3 ANN

An ANN is a supervised ML algorithm that consists of a fully
connected set of layers including an input layer, hidden layers
and an output layer. A supervised ML algorithm is given a set
of training samples and accompanying labels in order to predict
the relationship between a sample and its given label in order to
make future predictions. ANNs are simple to create and train using
pPYTHON package Tensorflow Keras, for this reason they are
an ideal candidate for smaller studies in which the relationship
between different parameters needs to be explored. Our aim for
this work is to determine whether a ML algorithm is able to find the
relationship between EWs and galaxy ages, therefore a simple ANN
provides proof of concept for further work into this relationship. ANN
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architecture is based on the neurons in human brains (McCulloch &
Pitts 1943; Hopfield & Tank 1986). The network is trained by learning
the patterns between a set of input features (xi, x3,..., X;,) and their
respective output y. It learns this pattern by updating the weights
and biases of the nodes through a process called backpropagation in
which the nodes and weights are tuned to reduce the output error as
much as possible in order to produce the most accurate predictions.
There are a number of factors that go into this process that optimize
the performance of the network such as increasing the number of
hidden layers, changing the number of nodes in each layer and
tuning the hyperparameters. In order to evaluate the performance
of the different ANN architecture and hyperparameters we use a set
of evaluation metrics to quantify the quality of the network. For each
hyperparameter we tune, we run the network 10 times with 40 epochs
during each training phase in order to calculate averages values for
our evaluation metrics.

3.1 Evaluation metrics

The evaluation metrics we use are chosen based on the data we
are working with. As our data is fully numerical and we are using
a regression ANN we choose mean squared error (MSE), mean
absolute error (MAE) and the coefficient of determination score also
known as the R-squared score (R?).

MSE is a metric used to compare actual values against predicted
values by computing the mean of the squares of the errors between
the values (Bickel & Doksum 2015). For our ANN we use the MSE
metric included with the Tensorflow Keras package which
describes MSE as

1 n
MSE = — P — )7, 4
n;(y ) @)

where n is equal to the total number of data points, y; is the actual
value, and y; is the predicted value. The closer to zero the calculated
MSE is, the more accurate the predictions are.

MAE is similar to MSE as it also measures the errors between
actual and predicted values, as shown

1 n
MAE = =S |y — 5il. 5
H;Iy 9l )

where y; is the predicted value, y; is the corresponding true value,
and 7 is the number of data points. Similarly to MSE, the closer to
zero the more accurate the predictions are. We choose to use both
of these metrics as even though they are similar they show slight
nuances about the prediction ability of the ANN. The MAE value is
less sensitive to large errors in prediction whereas MSE is able to
penalize this more.

The R? score, also known as the coefficient of determination,
quantifies the ability of a model to predict the y values of an unseen
data set through the proportion of explained variance

Z;l:l()’i - )A’i)2
E:'l:l(yi - )_7)2 ’

where y; is the true value, J; is the predicted value, and y; is equal
to % >, i An R? score equal to 1 means the model is able to
perfectly predict the true y values. A value of 0 means the model is
completely disregarding the input features to predict random y values
and finally R? value may be arbitrarily worse, which results in R?
values from O to negative infinity depending on how poor the models
performance is.

R=1-— (6)
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Table 2. Metrics calculated for each number of hidden layers to determine
the optimal ANN depth. For each number of hidden layers we train the ANN
10 times to find an average for MSE, MAE and R? score for which we
calculate the standard error. We determine that 4 layers is the optimal number
of hidden layers as this gives closest R” score to 1 and the lowest MSE and
MAE.

Layers MSE MAE R? score

1 0.059 £ 0.004 0.164 £ 0.006 —0.07 £0.07
2 0.045 £ 0.002 0.159 £ 0.004 0.18 = 0.04
3 0.040 £ 0.003 0.150 £ 0.005 0.28 4+ 0.05
4 0.032 £ 0.001 0.138 £ 0.002 0.42 +0.02
5 0.032 £ 0.001 0.140 £ 0.003 0.41 +0.02
6 0.033 £ 0.001 0.140 £ 0.002 0.41 £0.02
7 1.2+04 0.7+£0.2 -21+£7

Table 3. Metrics calculated for the different scales of hidden nodes. We use
MSE, MAE, and R? score to show that scale a = 1 gives the best metrics
using equation (7) for which we calculate the standard error. This gives a total
of 456 nodes in the hidden layers; starting with 256 hidden nodes in the first
hidden layer and halving this for each subsequent hidden layer.

Scale MSE MAE R? score
1 00326 +£0.001  0.137£0.003 041 +0.02
2 0.0404+0.003  0.152£0.006  0.26 £ 0.05
3 0.0504 +0.004  0.162+0.008  0.08 £ 0.08
4 0.09 +0.03 021 +0.04 —0.6 + 0.6
5 0.0516 +0.003  0.164 £0.005  0.06 = 0.06
6 0.14 +0.09 0.24 £ 0.08 —2+2

7 02+02 03+0.1 -3+3

8 04+04 03+02 —-7+7

9 11407 0.6+0.3 -19+13
10 1.8£07 09+03 -31+12

3.2 ANN architecture

The architecture of our ANN consists of an input layer with 14 nodes
for each of the 14 input EWs, four hidden layers with a total of 465
nodes and an output layer with one node. We calculate the evaluation
metrics for 1-7 hidden layers and determine 4 hidden layers perform
the best as shown in Table 2. We choose 4 layers as opposed to 5
or 6 even though they have nearly the same result for all metrics
because we want a network with the smallest size that achieves this
best overall score as this will help to prevent over fitting.

Generally, the number of nodes in the first hidden layer will be
between the input size and the output size to prevent over fitting,
however, after testing various sizes of ANN we determine the best to
be given by the equation

N
Ny= )
a(N; + N,)

where N, is the total number of nodes in the hidden layers, N, is the
number of samples in the data set, N; is the number of input nodes, N,,
is the number of output nodes, and a is a scale factor generally found
to be between 1 and 10 through testing (see supplementary material
of Liu et al. 2020). We find a = 1 to perform the best according
to our MSE, MAE and R? scores shown in Table 3. The final ANN
architecture is shown in Fig. 1, the network has 14 nodes in the input
layer, 4 hidden layers and 1 node in the output layer.
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Figure 1. Our ANN has six layers which include an input layer (i), four hidden layers (hy, hy, h3, hs) and an output layer (o). There are 14 nodes in the input
layer as we have 14 input features in the form of EWs. /; has 248 nodes and every subsequent layer has half the previous layer, such that 4, has 124 nodes, /3
has 62, and A4 has 31 nodes. The output layer has 1 node that gives the predicted age of the galaxy based on its input EWs.

3.3 Hyperparameters

Here, we detail the chosen hyperparameters of our ANN. We offer
descriptions of the processes used to determine which hyperparame-
ters are the most effective for our data and model. For the activation
functions in the hidden layers, the loss function and the optimizer
we compare the performance of our model with various pre-built
functions provided by the pyTHON package Tensorflow Keras.
We compare by training the model 10 times and averaging the metrics
described in subsection 3.1 similarly to how we conduct our tests
for the number of hidden layers and scale of the nodes. For all of
our tests we use a test-train split of 20 percent and 80 per cent,
respectively.

3.3.1 Activation function

An activation function can be used in each layer of an ANN to
control how the network learns the training set in a linear or non-
linear capacity, enabling more complex relationships to develop
(Sibi, Jones & Siddarth 2013). In simple terms, it achieves this by
activating and deactivating the nodes by calculating the weighted
sum and further adding bias through backpropagation. We choose
two activation functions for our hidden layers and output layer to
optimize the performance of our ANN. First, we choose the linear
activation function provided with Tensorflow Keras for our
output layer as our method requires unbounded output values for y.
The linear function is calculated as y = x.

MNRAS 529, 479-498 (2024)

Table 4. The results of our activation function tests. Each activation function
is implemented as part of the pyTHON package Tensorflow Keras and
tested by training the ANN on ten separate occasions for which we average
the metrics MSE, MAE, and R? score and find the standard error. Softsign
performs the best but is not dissimilar to tanh.

Activation MSE MAE R? score
Linear 0.07 £ 0.01 0.22 £ 0.02 —-03+0.2
ReLU 0.10 £+ 0.02 0.23 +0.03 —09+04
Swish 0.037 £+ 0.003 0.148 £ 0.007 0.33 +0.06
Sigmoid 0.051 £ 0.002 0.196 + 0.005 0.07 £ 0.04
Softmax 0.64 £+ 0.02 0.76 £ 0.01 —10.6 £0.3
Softplus 0.035 £ 0.001 0.15+£0.01 0.36 £+ 0.09
Softsign 0.0252 £ 0.0001 0.1253 4 0.0004 0.543 £ 0.002
Tanh 0.0253 £ 0.0002 0.1241 £ 0.0005 0.540 £ 0.003
SeLU 0.0301 £ 0.0009 0.137 £ 0.002 0.45 +0.02
eLU 0.029 £ 0.001 0.134 £ 0.002 0.47 +0.02

The activation function for the hidden layers is chosen by testing

the performance of various activation functions. We train our model
on 10 separate occasions for each activation function in order to find
an average for the metrics described earlier. The result of these tests
show that the softsign activation function performs the best, with the
hyperbolic tangent (tanh) function following in a close second place
as shown in Table 4.

Softsign is an s-shaped function, similar to tanh, that tends to 1 and
—1. However, softsign differs from tanh as it converges polynomially
rather than exponentially which reduces the impact of the vanishing
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Table 5. The results for the MAE, MSE, mean absolute percentage error
(MAPE), mean squared logarithmic error (MSLE), huber, and log cosh loss
functions. Each loss function is implemented as part of the pyTHON package
Tensorflow Keras and tested by training the ANN on ten separate
occasions for which we average the metrics MSE, MAE, and R? score and
find the standard error. The MSE loss function and Huber loss function have
the best MSE metric at 0.025. MAPE has the best MAE at 0.122 and the MSE
loss has the best R metric at 0.539. Therefore, we choose MSE to be the loss
function for our ANN.

Loss

function MSE MAE R? score
MAE 0.0260 =+ 0.0004 0.125 4 0.001 0.519 + 0.008
MSE 0.0250 = 0.0002 0.1260 £ 0.0008  0.539 % 0.004
MAPE 0.0260 =+ 0.0004 0.1220 + 0.0008  0.532 + 0.007
MSLE 0.09 + 0.03 0.203 4 0.008 —0.7£0.6
Huber 0.0250 =+ 0.0003 0.1250 £ 0.0006  0.536 + 0.006
Log cosh 0.0260 = 0.0004 0.126 & 0.001 0.535 4 0.007

gradient problem (Turian, Bergstra & Bengio 2009; Glorot & Bengio
2010; Szandata 2021). This is an issue that relates to the gradient of
the loss function approaching zero when certain activation functions
are used in the hidden layers. It is caused by activation functions
that transform data from a large range to a smaller range such as 0
and 1 in the case of a sigmoid function. The result of the vanishing
gradient problem is that the network is harder to train. However,
even though the softsign function constrains data between —1 and 1,
it converges polynomially which prevents the vanishing gradient
problem from occurring. Softsign is implemented as part of the
activation functions provided by Tensorflow Keras. In which
they calculate softsign as

(®)

3.3.2 Loss function

A loss function acts to evaluate a models performance after each
training epoch. It quantifies the error between the true value and
the predicted value, this then allows the optimizer to update its
weights through backpropagation. The choice of loss function
depends on the output data as a regression problem requires different
evaluation metrics to classification problems. Again, we test each
regression-appropriate loss function available with Tensorflow
Keras and find the MSE function performs the best with our
model, the results of which are shown in Table 5. The MSE loss
function is calculated in the same manner as the MSE evaluation
metric

1< o
MSE = ;w, ). ©)

The MSE function calculates the average of the MSEs between a
sample n predicted ages y; and their corresponding true ages y; in a
sample of size n.

The error in GAMA age estimates can be taken into account such
that the ANN should penalize poor observations more than good
observations. The Tensorflow Keras package offers capabili-
ties to implement custom loss functions which offer a wider range
of options when tuning hyperparameters. We write a simple custom
loss function that builds on the MSE loss function by weighting the
loss depending on the error on the age estimation from GAMA. A
custom loss function can be used to apply weights to the calculated
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Table 6. The results of our optimizer tests. Each optimizer is implemented
as part of the pyTHON package Tensorflow Keras and tested by training
the ANN on 10 separate occasions for which we average the metrics MSE,
MAE, and R? score and find the standard error. Across the board the Adam
optimizer has the best average metrics with an MSE of 0.0252, an MAE of
0.1241 and R? score of 0.5421.

Optimizer MSE MAE R? score
Nadam 0.027 £ 0.001 0.128 £ 0.003 0.52 +£0.02
RMSprop 0.0273 % 0.0006 0.129 £ 0.001 0.50 &+ 0.01
Adam 0.0252 £ 0.0002 0.1241 £ 0.0004 0.542 + 0.002
Adamax 0.0257 4 0.0003 0.1261 £ 0.0006 0.528 & 0.005

loss such that better observations have a higher weight and therefore
the loss will be reduced.

We calculate the weights based on the width of the percentiles for
the mass-weighted age estimates from GAMA. We find the range
between the 2.5th-97.5th percentiles and normalize between 0 and
1 such that a wider range between the percentiles corresponds to a
higher weight being placed on observations with wider errors. To
create the custom loss function we alter the MSE loss function by
dividing the MSE by the weight for each galaxy so the loss during
training will be lower for galaxies with a smaller percentile range as
this indicates a lower error

1 i — fi)z

loss - ; — (10)

where w; is the weight for a galaxy with a true age y; and a predicted
age y; in a sample of size n. To implement this we include the weight
for a given observation in the y input data by adding it as an extra
dimension in the y array before applying the train test split. This is
necessary given Keras custom loss function capabilities which only
accept one input for a given observation. This minimization of loss
for smaller errors acts to help the network by prioritizing the more
accurate true ages and therefore, favour learning the relationships
between EW and age from these observations more than poorer
observations.

3.3.3 Optimizer

An optimizer updates the weights and learning rate of the model
with the goal of reducing the loss as much as possible. We choose the
stochastic gradient descent optimizer function called Adam provided
with Tensorflow Keras (Kingma & Ba2014). Adam stands for
Adaptive Movement Estimation and is a combination of the AdaGrad
optimizer’s ability to deal with sparse gradients (Duchi, Hazan &
Singer 2011) and RMSprop’s ability to deal with non-stationary
objectives (Tieleman, Hinton et al. 2012). Adam works by estimating
first-order and second-order moments. We choose Adam with the
same method as the other hyperparameters and detail our results in
Table 6.

4 RESULTS

In order to fully evaluate the predictive power of the network we
compare our evaluation metrics described in subsection 3.1 which
allows us to directly compare the performance of the ANN with
different data sets. We predict the ages for 500 randomly selected
galaxies that are not included in the training or testing phases, such
that the ANN has never seen the samples before. We choose a
different random set of 500 galaxies 20 times in order to calculate
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Figure 2. Here we show the ability of the ANN to predict galaxy ages in
direct comparison with their true ages with a kernel density estimate (KDE)
plot. There is some scatter in the results but a clear linear relationship. A
perfect set of predictions should follow a one-to-one relationship as shown
with the line of equality. The KDE contour levels represent isoproportions of
density such that the most outer contour excludes 10 per cent of the probability
mass and the most inner contour excludes 90 per cent. Each contour increases
in 10 per cent per cent intervals between 10 and 90 per cent. The contours show
that the distribution of predicted ages is skewed towards a higher true age.
This shows that the ANN is underestimating older ages and overestimating
younger ages.

average results for our metrics. The purpose of this is to ensure the
ANN does not get lucky with a good sample of observations that
causes the ANN to appear more accurate than it really is. We plot the
predicted ages against the true ages from GAMA, as shown in Fig. 2,
with the aim of having a perfect linear correlation in which #, = t,,,
where t, is the true GAMA estimated age and 7, is our ANN predicted
age. We find our evaluation metrics to give an average MSE of 0.020,
MAE of 0.108 and R?* of 0.530.

Fig. 2 shows the ANN is able to predict the ages with appreciable
accuracy. To compare the overall distribution of the predictions in
comparison with the true ages, we calculate the mean and standard
deviation (scatter) of each, respectively — this is with the goal of
matching the distributions and means. The true ages have a mean
and standard deviation of u, = 9.405 and o, = 0.207, whereas the
predicted ages have a mean and standard deviation equal to u, =
9.377 and o, = 0.182 which gives a residual value of o, = 0.025,
this shows that our ANN is matching the general distribution of
ages but overall is underpredicating ages. The standard deviation
of the true ages is larger than that of the predicted ages which
indicates the network is susceptible to the phenomenon of regression
toward the mean. As such, in future work it would be important
to include a larger range of ages which would introduce more
extreme samples to our training set. We confirm the correlation
between the true and predicted ages with the Pearson and Spearman
rank coefficients for which we find p = 0.756 and s = 0.755.
Fig. 3 shows how the true age relates to the prediction ability
of the ANN. We calculate the difference between the predicted
and true ages of the galaxies and plot this against their true ages.
We find that the older the true age of a galaxy is the more the
ANN underestimates the predicted age which can be seen in the
bimodality of Fig. 2. The affects of this underestimation appear

MNRAS 529, 479-498 (2024)
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Figure 3. Here we represent the linked uncertainty in the true ages f
estimated by GAMA with our predicted ages #,. We find the difference
between the true ages and the predicted ages corresponding to Fig. 2 such
that the difference in age ty = t; — t,,. The line of equality in Fig. 2 equates to
a vertical line where the true ages would perfectly match the predicted ages at
x = 0. This shows that the older galaxies are more likely to be underestimated
as opposed to the younger galaxies, whereas younger galaxies are more likely
to be overestimated than older galaxies. We see this in the diagonal shape
apparent within the scatter plot. This appears to have an equal distribution
between young and old galaxies as the histograms show an even spread of
galaxies. As such, the network does not seem to overestimate young ages
anymore than it underestimates older galaxies.

stronger than the overestimation of the young ages. The overall affect
of this is most likely because these galaxies have more extreme
EWs, as shown in Fig. 4 is comparison to the intermediate aged
galaxies.

4.1 Correlation of results with properties

To determine whether the worse predictions are a result of outliers
in our true data set, we plot the results of Fig. 2 coloured by
different features of the data. We compare the properties sSFR,
metallicity, and stellar mass in Fig. 5. High sSFR, metallicity, and
stellar mass all correlate with higher ages however, the galaxies
that have been more mispredicted do not seem to be extreme
cases and therefore do not show any trend correlating to these
properties.

Fig. 6 shows how the results correspond to the true median age
percentile range estimates for each galaxy from GAMA. Similarly
to Fig. 4, there appear to be extreme values of percentile width
however they do not necessarily correspond to the outlying age
predictions. Though the 2.5-97.5th percentile range shows a wider
range for the younger galaxies which suggests the GAMA ages
are less precise when their are younger stellar components. The
galaxies with very narrow percentile widths tend to be close to the
line of equality whereas the wider ranges tend to fall closer to the
outer edges of the mispredictions, though there is a number of wide
ranges towards the middle.
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Figure 4. To compare the different observations of EWs with the predictions versus true ages we colour Fig. 2 based on a normalized SNR for each galaxy. We

normalize the SNRs in order to more closely compare them.
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Figure 5. The results of Fig. 2 are coloured based on their sSFR, metallicity, and stellar mass. A darker blue corresponds to higher value for each respective

property whereas light yellow shows a low value.

We compare the EW values for each galaxy and how they relate
to predicted and true age by colouring Fig. 2 based on normalized
EW values, as shown in Fig. 7. General trends can be seen across
the different EWs, such as high He, [OM]R and [S1]B values
being associated with younger galaxies. The important thing to

note from this figure is that there do not appear to be outlying
EW values associated with the outlying predictions. In addition,
there is only one galaxy that is more than 30 away from the
mean predicted age which is located at approximately (9.64 dex, 9.1
dex).
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9.0 s = 7 As discussed in Section 2, our EW input features from GAMA each
have an associated observation error. As this error could introduce

9.0 9.2 9.4 9.6 9.8 uncertainty into the network predictions, we calculate an aggregated
proxy for uncertainty for our predicted ages by perturbing the input
features within their errors before training the network and predicting
the ages for the same 500 validation galaxies. We perturb the input
data within its errors with a normal distribution. Once the training

True Age, dex(yr)

Figure 6. We colour the points of Fig. 2 based on the percentile range of
the true mass-weighted ages from GAMA. The darker points correspond to

galaxies with a wider percentile range that the true median mass-weighted data is _pert_urbed we train the net_work a.nd predict the ages for
age falls within. This shows that the outliers are not necessarily dependent on 500 validation galaxies. We do this 25 times to find an average
the precision of the true ages. prediction uncertainty for the age for each galaxy in the validation

set. This method differs from the previous method of evaluation
described in Section 4 because we do not use a random 500 galaxies
for every run, we use the same 500 galaxies in order to find the

In order to compare how the different observations of EWs relate range in predictions and therefore find the average uncertainty across
to the results of Fig. 2, we colour each galaxy by a its normalized the 500 galaxies. The results of this are shown in Table 7 for
SNR for each EW used in training, as show in Fig. 4. Most of each test.
the plots show that lower SNRs are associated with the worse The calculated uncertainty is a proxy for prediction error as this is
mispredictions which suggests the network is negatively affected by only taking the error in the input data into account, not the error in the
poor observations of EWSs. The plots for average, [O 1I]R, [O111]B, network predictions themselves. For this reason, we do not show the
[Su]R, [Su]B, D4000n, and Ho SNRs show that the high SNRs mean true age errors as this would be misleading. With this in mind
are associated with the younger galaxies whereas the low SNRs the proxy for uncertainty shows that the network does not appear to
for Hy, G, MgG, NaD, and CNB are correlated with younger be affected by fluctuations in the input data as our average prediction
galaxies. uncertainty and mean predicted age is 9.377 £ 0.004 dex (yr). This
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Table 7. For both the mass- and light-weighted ages we show our prediction
uncertainties. The predicted mass-weighted ages are split into the respective
loss functions and sets to show how the uncertainty is affected by these
different tests. The mean true age and predicted age are measured in dex (yr).

Loss function Set True age Predicted age
Mass-weighted
MSE Mixed 9.405 9.377 £+ 0.004
MSE Set 1 9.457 9.419 £ 0.008
MSE Set 2 9.355 9.323 £ 0.005
Custom Mixed 9.405 9.368 £ 0.005
Custom Set 1 9.457 9.397 £ 0.006
Custom Set 2 9.355 9.316 £ 0.005
Light-weighted
MSE Mixed 9.380 9.348 & 0.004
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Figure 8. We plot the average error of the true galaxies from Fig. 2 to show
how large the GAMA errors are. The mean predicted age is plotted alongside
the upper and lower bounds for the average errors. This shows that though
there appears to be a large amount of scatter in the predictions, they still follow
the line of equality within the error bands. Therefore, the ANN is making
good predictions despite the ground truth not being perfectly accurate.

shows the network is underpredicting the overall distribution of
predicted ages, though the uncertainty is quite small. We discuss
this further in relation to the different evaluation tests in subsection
4.3, subsection 4.5, and subsection 5.1 in order to compare how the
uncertainties are affected by different stellar populations. We also
discuss how the properties of the galaxies and EW SNRs may affect
this uncertainty in subsection 4.6.

4.3 Effect of error on age predictions

As the GAMA ages are only median estimates calculated from a
percentile range there may be a large margin of error for some
observations which means the ANN is being trained on ages that
we do not always have accurate estimates on. To visualize the errors
associated with the GAMA estimations we show the average error
in Fig. 8 by plotting the mean line of best fit with upper and lower

Predicting the ages of galaxies with an ANN 489

bounds to show the average error at any given age for the predicted
ages corresponding to the results shown in Fig. 2. This shows that
though our predictions show a large amount of scatter, they still
follow the line of equality within the error band which means the
ANN is making good predictions despite the error associated with
the true ages.

To demonstrate this further we test the ANN by splitting the data
set to calculate the results into two sets based on the percentile
error of the ages. We continue to use 500 galaxies in each of the sets
similarly to the method described in Section 4. We determine the sets
by finding the mean range between the 2.5th and 97.5th percentiles.
Any galaxies with a range less than the mean are put into Set 1,
whereas galaxies with a greater range are placed in Set 2. Therefore,
galaxies with a more accurate estimated age from GAMA are in Set
1 and galaxies with a greater age error are in Set 2. We ensure that
all galaxies in the sets are not present in the training set.

To calculate our evaluation metrics we use a random set of 500
galaxies that the network has not seen before in order to find
an average for our metrics similarly to our method in Section 4.
However, to plot our figures we choose a set of 500 galaxies that
produce metrics similar to that of the average. We do this to ensure
the figures are comparable as the ANNs performance, in this instance,
is not dependent on the selected 500 galaxies.

Fig. 11 demonstrates the performance of the network predictions
by showing where predicted ages fall with respect to the true age
error bars. This shows that the network is successfully predicting
ages within the error of the true ages for 96.7 per cent of the total
500 galaxies, as shown in Table 11. Set 1 has a larger number
of mispredictions than Set 2. We calculate 5.2 percent of Set 1
predictions fall outside the error bars, whereas Set 2 has 1.4 per cent
of predictions outside the errors. Furthermore, Set 1 has a tighter
distribution within the error bars as 82.4 per cent of the predictions
for Set 1 fall within the 16-84th percentile range as opposed to
78.2 percent of Set 2 predictions, this is apparent with the more
concentrated band of dark purple stars for Set 1 whereas Set 2 appears
more spread out and sparse. It is interesting to note the amount of
predictions outside the 16—84th percentiles but within the 2.5-97.5th
is approximately the same as Set 1 has 16.6 percent in this group
and Set 2 has 16.2 per cent. This means the increased precision in
Set 1 predictions that comes from the 16-84th group is being held
back by the number of predictions outside the error bars and vice
versa for Set 2. However, if we take into account the evaluation
metrics shown in Table 8 we can see that the closer fit of the Set
1 predictions within the 16-84th error bars results in lower MSE
and MAE and higher R? scores with Set 1 producing MSE = 0.018,
MAE = 0.101, and R? = 0.550, whereas Set 2 has MSE = 0.023,
MAE = 0.115, and R? = 0.422. The linear correlation between true
and predicted age can be seen in Figs 9 and 10for Set 1 and Set 2,
respectively. Here it is apparent that there is a stronger correlation
for Set 1 than Set 2 which we quantify as p = 0.786 and s =
0.791 for Set 1 and p = 0.683 and s = 0.690 for Set 2. This shows
that the ANN is able to predict Set 1 ages more precisely but less
reliably than Set 2 as there are more mispredictions for Set 1 than
Set 2 but more accurate predictions within the 16-84th percentile
range.

To compare the distribution in the predicted ages we calculate the
residual scatter o, which we determine to be the difference between
the standard deviations of the true ages o, and the predicted ages
op such that 0, = 0, — o,,. We find that Set 2 has a higher residual
scatter with o, = 0.032 compared with o, = 0.12 for Set 1 which
means the Set 2 predicted ages have a distribution closer to their true
counterparts than Set 1 ages. To further investigate the distributions
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Table 8. The results for the ANN when the 500 test galaxies used to calculate the results are split into sets. Set 1 performs better as expected because
the ages have a smaller error associated with them. For comparison we also include the results for a combined set. We find the mean true and predicted
ages and the residual standard deviation o, in order to compare the different sets as the standard deviation of the true ages varies between samples. We

calculate o, = 0, — 0, where p = predicted, t = true, and r = residual.

Set MSE MAE R2 score I o p op o, p rank s rank Time (s)
Combined 0.020 0.108 0.530 9.405 0.207 9.377 0.182 0.025 0.756 0.755 23.52
Set 1 0.018 0.101 0.550 9.457 0.202 9.419 0.190 0.012 0.786 0.791 25.316
Set 2 0.023 0.115 0.422 9.355 0.198 9.323 0.166 0.032 0.683 0.69 23.624
T 1ine of Edaaly 7> we find that the mean of the predicted ages of both sets is comparable
to the mean of their true ages. Set 1 has a mean true age of 9.457 dex
9.81 5118 (yr) and a mean predicted age of 9.419 % 0.008 dex (yr) whereas Set
2 has a mean true age of 9.355dex (yr) and a mean predicted age
- t4.584 of 9.323 £ 0.005 dex (yr). First, the mean true ages suggest that the
E 0.6 more accurate ages from GAMA are from older galaxies which the
g 4120 network is able to pick up on as the mean predicted ages are similarly
S higher for Set 1 galaxies. The uncertainties are also comparably small
g’ 04 L1636 for the mixed set and both Set 1 and 2, this suggests the network is
o ' not affected by fluctuations of the EWs within their uncertainties.
o (I . One more feature in Fig. 11 to note is that the predictions tend
g to fall on the right side of the true age line for which we quantify
& 929 MSE=00181 | | in Table 12. We find that 60.2 percent of the predictions fall on
MAE = 0.101 2444 . . - . -
R? — 0.550 the right which means the ANN is tending towards predicting ages
g, = 0.012 I too low for their true age. This is most apparent for the predictions
9.01 p rank = 0.786 between the 2.5-16th and 84-97.5th percentiles (light purple stars)
s rank = 0.791 and the predictions outside the the error bars (red crosses). This can
9.0 92 9.4 96 9.8 I be seen in Fig. 3 as the histograms bins closest to the line of equality

True Age, dex(yr)

Figure 9. Results for predicting Set 1 ages show that the ANN is able to make
more precise predictions. This is demonstrated by less scatter and narrower
contours that follow the line of equality closer than those in Fig. 2 or Fig. 10.
We calculate the Pearson and Spearman rank coefficients to be p = 0.786 and
s = 0.791 which show a stronger correlation between the true and predicted
ages for Set 1.
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Figure 10. The results for Set 2 show a higher level of scatter between the
true and predicted ages. This shows that the ANN performs worse when the
true ages estimates have a greater error. There is still some correlation as we
calculate the Pearson and Spearman rank coefficients to be p = 0.683 and s =
0.690. However, the residual scatter is greater than that of Set 1 with a value
of o, = 0.032 for Set 2 and o, = 0.012 for Set 1.
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are fairly even but there is a higher number of points at 0.2 dex and
higher. This combined with our contour plots and numerical results
shows that, though the ANN is predicting more accurately in terms of
numerical results and overall distribution it is struggling with some
Set 1 predictions.

The ANN is therefore better at predicting the ages that have more
precise estimations. To reiterate, the true ages are not necessarily
exactly correct. They are estimated percentiles with a median most
likely age. Thus, the ANN is able to predict the ages of galaxies more
precisely for observations that have more certainty and a smaller
percentile range. This is reflected in the performance of the ANN for
galaxies with ages that are less certain for which the ANN predicts
ages less precisely when compared with the true age estimates. This
shows it is successfully finding the links between various EWs and
true age as the ANN performs better for Set 1 galaxies.

4.4 Uncertain input data

To evaluate the performance of the network on data outside of
the trained range, we test out-of-distribution ages and EWs. First,
we train the network we the MSE loss function and custom loss
function in order to compare the predictions. Then we use validation
galaxies with ages outside the trained range, as shown in Fig. 12.
The predictions for out of range ages using the MSE loss function
notably perform better according to the metrics in comparison to the
predictions of ages within the trained range, as shown in Table 9.
The out of range predictions using the custom loss function are
comparable to those within the trained age range.

Similarly, we evaluate the networks ability to predict ages for
galaxies that have out-of-distribution EWs. To achieve this, we take
varying portions of the validation data set and alter the EWs by
increasing or decreasing the EW value by 2 times the uncertainty.
We show the results of altering the EWs for 25 per cent, 50 per cent,
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Figure 11. We show the predicted ages within the error bars of the true age estimates which we determine as the difference between the median mass-weighted
age (true age) and the 2.5th and 97.5th percentiles as this is the maximum range for a galaxies age estimated by GAMA and as such our predicted ages should fall
within. We represent the error of the true age with green error bars that are centred at 0 as to represent the true age and the x-axis corresponds to the difference
between the true ages and the 2.7th percentile, 97.5th percentile, and predicted ages. The lower and upper limits of the error bars correspond to the difference
between the median age and the 2.5th and 97.5th percentile estimates respectively, such that a galaxy with a median estimated age of 9.5 dex, 2.7th percentile
equal to 9.4 dex and 97.5th percentile equal to 9.7 dex would have an error bar centred at 0, a lower error bar limit at —0.1 and an upper limit of +0.2. Predicted
ages are marked with stars when they fall within the error bars and red crosses when they fall outside the error bars. Purple stars represent Set 1 galaxies as they
have error bars below the average range between the 2.5-97.5th percentile range, whereas Set 2 predicted ages are shown as blue stars. The shade of purple and
blue indicates whether the prediction falls within the 16-84th percentile range or the 2.5-97.5th range within the error bars. Furthermore, we rank the width of
the error bars such that the narrowest range is at 1, the widest range is at 1000 and all of Set 1 is between rank 1-499 and Set 2 is between rank 500-1000. In
addition, we count the number of galaxies that have predicted ages that fall outside the error bars for which Set 1 galaxies have a significant number more than
Set 2. We plot the same 500 galaxies for both the MSE loss function and the custom loss function which do not show a significant difference in performance of
the ANNs predictions.

75 per cent, and 100 per cent of the validation galaxies in Table 10.
The evaluation metrics become considerably worse the more the
validation set is altered which is apparent in the contours of Fig. 13.

4.5 Custom loss function

We calculate our evaluation metrics for a combined set, Set 1 and
Set 2 in the same method used in subsection 4.3. Using this method
we find that the ANN performs better with Set 1 than Set 2 or the
combined set, as shown in Table 13. However, the overall results
show that the ANN with the custom loss function is not matching
the performance we see with the MSE loss function. The only metric
that improves is the average time as the Set 1 average run time is
2 s faster however, both the Set 2 and combined run times are ~2 s
longer. Our evaluation metrics MSE and MAE perform similarly with
and without the custom loss function with but the R? score performs
worse for Set 2 and combined but slightly better for Set 1. We show
the predicted ages of the combined set in Fig. 14, Set 1 in Fig. 15
and Set 2 in Fig. 16 for the same 500 galaxies used in Section 4 and
subsection 4.3. The predictions for all sets appear nearly identical
for the custom loss and MSE loss functions which we quantify with
the Pearson and Spearman rank correlation coefficients, as shown in
Table 13. The uncertainties shown in Table 7 are similarly low when

compared with the uncertainties for the MSE loss function predicted
ages.

The ANN is able to predict Set 1 ages more precisely than
Set 2 which confirms the findings in subsection 4.3. This shows
the network is able to make better predictions for galaxies that
have more precise age estimates from GAMA which means the
network is successfully learning the patterns between the EWs
and the ages. The most likely reason that weighting the poorer
observations with higher losses does not improve the predictions
is that the network was already doing its best to predict patterns
between EWs and ages and being told which true ages are poorer
does not circumvent just how much error is associated with the data as
not only the label data (true ages) has errors but also the input features
(EWs).

We compare the ability of the custom loss function at increasing the
accuracy of predictions within the errors from the true ages with the
MSE loss function in Fig. 11. This confirms there is little difference
in the predictions which indicates our ANN is already working well
without the need for a custom loss function despite the error on the
original data. Fig. 11 confirms that 96.6 per cent of points fall within
the true age error bars which matches the predictions without the
custom loss function which has 96.7 per cent of predictions within
the error bars. We show the percentage distribution for the predictions
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Figure 12. We show the predicted ages versus the corresponding true ages for
galaxies outside of the trained age range. The upper panel of the figure shows
the results when using the MSE loss function whereas the lower panel shows
the results using a custom loss function that takes into account the error on
the true ages by weighting the samples used for training.

Table 9. The results for the predictions on true ages that are out of the
networks trained range in comparison to the results for galaxies within the
trained age range. We also compare the results between the MSE loss function
and our custom loss function.

Range MSE MAE  R%score  prank s rank
MSE - in 0.020 0.108 0.530 0.756 0.755
MSE - out 0.059 0.179 0.715 0.897 0.616
Custom — in 0.021 0.107 0.522 0.752 0.760
Custom — out 0.096 0.18 0.534 0.863 0.61

in comparison to the error bars for their corresponding true age in
Table 11.

The main difference between the MSE and custom loss function
apparent in Fig. 11 is that Set 2 has more predictions below the
median true age (to the left of the 0 line) for the 16-84th percentile

MNRAS 529, 479-498 (2024)

Table 10. We test the training network on a validation set that has a number
of EWs outside their uncertainties. For each proportion of the validation set
we calculate average values for 20 runs each.

Proportion MSE MAE R? score p rank s rank
0 per cent 0.020 0.108 0.530 0.756 0.755
25 per cent 0.025 0.116 0418 0.746 0.746
50 per cent 0.026 0.117 0.391 0.716 0.742
75 per cent 1.026 0.174 —23.061 0.193 0.736
100 per cent  1.054 0.177 —23.727 0.191 0.734
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Figure 13. Here we show the results of altering the EWs to values outside
their error ranges. The upper left and upper right panels show the results when
25 per cent and 50 per cent of the validation EWs are altered, respectively. The
lower left and right panels show the results for 75 per cent and 100 per cent
alteration of the validation EWs.

but similar values for outside and 2.5-97.5th such that the overall
percentage is 53.4 per cent to the left, as shown in Table 12.

To summarize, our network does not seem to perform better with a
custom loss function that weights the more accurate estimated ages.
However, in other contexts, adding weights based on uncertainties
in the data should generally improve the networks ability to learn
as it is able focus on less noisy data much faster. Therefore, it is
important to note that our results do not necessarily reflect those of
any other network or training data. We believe that our network is
already performing as well as it could with the MSE loss function
such that the network is able to recognize the pattern between age and
EW values. However, as the EWSs also have a level of error associated
with them the network could potentially be improved if this is taken
into account as well.This is all to say that a custom loss function that
applies weights according to the quality of the label observations
may work for a different data set but as ours not only has error on
the labels (estimated ages) and error on the input features (EWs)
this may be preventing the custom loss function from significantly
increasing the performance of the ANN.
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Figure 14. When the ANN is trained with the custom loss function there
is less scatter present between the true and predicted ages. There is a strong
correlation between the true ages and the predicted ages.
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Figure 15. The ANN performs well when predicting the ages for galaxies
present in Set 1. There is a strong positive correlation between true and
predicted such that the Pearson and Spearman rank coefficients are calculated
to be p = 0.782 and s = 0.797. The scatter is reduced which can be seen
in the shape of the contours as they are more concentrated over the line of
equality. This can be quantified with the residual scatter which we find to be
o, =0.008.

4.6 Effect of properties and SNRs on age predictions

We relate the network to physical properties of the galaxies in our
data set by comparing the mean ages and uncertainties to different
sets of galaxies. We use the physical properties: specific SFR and
stellar mass from GAMA in the MmagpHYs DMU in combination with
the SNRs of our input EWs. For each test we split our validation
set into high and low sets based on the median value of each
property. This allows us to compare our networks predictions and
whether they follow the trends seen in the true ages for each set
whilst comparing the prediction uncertainties for each property. This
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Figure 16. The predicted ages for Set 2 are less accurate than the Set 1
predictions. There is more scatter present between the true and predicted ages
which can be quantified with the residual scatter o, = 0.036 which is much
higher than that of Set 1 and the combined sets, as shown in Table 13.

Table 11. We calculate the percentage of predictions that fall within the 16—
84th percentile range (In 16-84), outside the 16—84th range but within the
2.5-97.5th range (in 2.5-97.5), the total within the error bars (Total In) and
total outside the error bars (Outside). We calculate this for Set 1, Set 2, and
the combined sets for both the MSE and custom loss functions to compared
the difference between predictions. The results correspond the predictions in
Fig. 11. The percentage of predictions within each band are almost exactly the
same between the MSE and custom loss functions with ~ 96 % of predictions
falling within the error bars and ~ 80 %.

MSE Total in In16-84 In2.5-97.5  Outside
Combined 96.7 per cent  80.3 per cent 16.4 per cent 3.3 per cent
Set 1 94.8 per cent  78.2 per cent 16.6 per cent 5.2 per cent
Set 2 98.6 per cent  82.4 per cent 16.2 per cent 1.4 per cent
Custom Total in In16-84 1In2.5-97.5  Outside
Combined 96.6 per cent  80.4 per cent 16.2 per cent 3.4 per cent
Set 1 94.2 per cent  79.2 per cent 15 per cent 5.8 per cent
Set 2 99 per cent  81.6 per cent 17.4 per cent 1 per cent

gives us insight into whether the physical properties themselves may
affect the network predictions. We find that the network is able to
differentiate between the high and low sets, as shown in Fig. 17.
Though, the distribution of mean ages can be seen to be overall
higher for Set 1 galaxies in comparison to Set 2 galaxies with an
overall difference of ~0.1 dex (yr) The prediction uncertainties are
generally not affected by the difference in properties, as can be seen
with the error bars for the mean predicted ages in Fig. 17.

Higher sSFRs are associated with younger, star-forming galaxies
whereas lower sSFRs are generally associated with older, quiescent
galaxies in which star formation has been quenched. Fig. 17 shows
this relationship clearly as there is a large difference in the mean true
ages when separated by high versus low sSFR. The mean predicted
ages for the high sSFR set also shows good agreement with the mean
true age which suggests the network is predicting the younger ages
more accurately. This is in agreement with previous discussions about
the network underpredicting the older ages as the low sSFR, older
set has a lower mean predicted age with a difference of 0.5 dex (yr).

MNRAS 529, 479-498 (2024)
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Table 12. To demonstrate whether the network is under- or overpredicted
ages we find the percentage of predictions above and below the true age
similarly to the method used for Table 11. For Set 1, Set 2, and the combined
set we find the percentage of predictions that fall within the error bands and
the total that fall above or below their corresponding true age. If a prediction
is lower than the true age it will fall to the right of the Fig. 11 as the difference
will be positive, whereas predictions that are higher than their true age will
fall to the left as the difference will be negative.

MSE Custom
Left Right Left Right
Combined
In 16-84 37.7 per cent 42.7 per cent 34.5 per cent 45.8 per cent
In 2.5-95.7 6.4 percent 9.8 per cent Spercent  11.4 per cent
Total in 44.1 per cent 52.5 per cent 39.5 per cent 57.2 per cent
Outside 0.3 percent 0.8 percent 0.3 per cent 3 per cent
Total 44.4 per cent 55.6 per cent 39.8 per cent 60.2 per cent
Set 1
In 16-84 30.8 per cent 48.4 percent 31.6 per cent 46.6 per cent
In 2.5-95.7 42percent 10.8 percent 4.8 percent 11.8 percent
Total in 35percent 59.2 percent 36.4 percent 58.4 per cent
Outside 0.4 percent 5S4 percent 0.6percent 4.6 percent
Total 35.4 per cent 64.6 per cent 37 per cent 63 per cent
Set 2
In 16-84 44.6 percent 37 percent 37.4 percent 45 per cent
In 2.5-95.7 8.6percent 8.8percent S2percent 11 percent
Total in 53.2 percent 45.8 percent 42.6 percent 56 per cent
Outside 0.2 per cent 0.8 per cent 0 per cent 1.4 per cent
Total 53.4 per cent 46.6 per cent 42.6 per cent 57.4 per cent

The higher a galaxy’s stellar mass, the higher their age is generally.
Similarly to the sets based on high sSFR, Fig. 17 shows the distinction
between high-stellar mass and low-stellar mass clearly. Again, we see
the overall underprediction of all ages with a difference of 0.2 dex
(yr).

Finally, we investigate how the SNR affects the network predic-
tions by comparing the input EW SNRs and the average SNR across
our 14 input features. This is to explore the networks utilization
of the EWs to determine physical relationships e.g. is the network
affected by the SNR for H« as this could affect its ability to predict
younger galaxies ages as H « is associated with recent star formation.
As shown in Fig. 17, higher SNRs for He, [S1]B, [Su]R, and
[OTI]R are significantly associated with the younger galaxies in our
validation set. Less significantly, the higher average SNR, D4000,,
[O1]B, and HB SNRs are also associated with younger galaxies.
Whereas higher SNRs for MgG, G, and NaD are significantly related
to the older galaxies, and less significantly Hy 4, MH, FC, and CNB.

Additionally, the sets associated with lower SNRs match the mean
true and predicted ages more frequently whereas the higher SNRs
more commonly have discrepancy between the true and predicted
mean ages and overall are generally more underpredicted. When
taking into account the sets described in subsection 4.3 we can see
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Figure 17. For each property listed, we split the 500 validation galaxies into
a high and low sets using the median value. The order in The mean true age for
the high sets are shown with pale blue diamonds whereas the mean true age
for the low sets are shown with pale red diamonds. The mean predicted ages
for the high and low sets are shown with blue and red circles. The prediction
uncertainties are also shown with black error bars, however, these are very
small in comparison to the ages. We show the mean true and predicted ages
for the 17 properties for the mixed set, Set 1 and Set 2. EWs with ‘BH’
preceding them refer to Huchra et al. (1996) definitions.

that overall the Set 1 galaxies are generally older than the Set 2
galaxies.

The prediction uncertainties described in subsection 4.2 are not
affected by particular properties or SNRs as they remain unchanged
across the different sets, as shown with the error bars in Fig. 17.
This shows that fluctuating the EW's within their errors does not have
an affect on the predictions when separated by set. In terms of the
difference in between the mean true and predicted ages for each set
we can see that for most of the property sets, the set that is overall
older in age tends to have more accurate predictions as the mean
values show less discrepancy.

Table 13. Results for the ANN predictions when incorporating the custom loss function. Set 1 performs better than Set 2 and the combined sets in all evaluation
metrics; however, the combined set performs the best with very similar results predicted without the custom loss function. We find mean ages and the residual
standard deviation o, in order to compare the different sets as the standard deviation of the true ages varies between samples. We calculate 6, = 0, — 7, where

p = predicted, t = true and r = residual.

Set MSE MAE R2 score i o p op oy p rank s rank Time (s)
Combined 0.021 0.107 0.522 9.405 0.208 9.368 0.185 0.023 0.752 0.760 25.594
Set 1 0.019 0.100 0.534 9.457 0.203 9.397 0.195 0.008 0.782 0.797 22.908
Set 2 0.023 0.116 0.404 9.355 0.196 9.316 0.160 0.036 0.663 0.682 25.005
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Table 14. Comparison between the performance of the ANN when trained on mass-weighted ages versus light-weighted ages. We compare the MSE, MAE,

R? score, the scatter of the predicted in comparison with the true ages, the Pearson rank coefficient p, the Spearman rank coefficient s and the total time taken

by the ANN to train and predict 500 galaxies. In all regards the ANN performs better when trained with light-weighted ages.

Age MSE MAE R2 score e o p op oy p rank s rank Time (s)
Mass weighted 0.020 0.108 0.530 9.405 0.207 9.377 0.182 0.025 0.756 0.755 23.52
Light weighted 0.015 0.094 0.643 9.380 0.204 9.348 0.168 0.036 0.808 0.836 24.25
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Figure 18. The ANN predicts light-weighted ages more accurately than

mass-weighted ages. This can be seen in the overall relationship as the shape
of the contours more closely follows the line of equality as opposed to the
mass-weighted ages. We quantify this with the Pearson and Spearman rank
coefficients which we find to be p = 0.808 and s = 0.836, respectively.
The contours show that the ANN is no longer underestimating old ages and
overestimating young ages like it does when it is trained on mass-weighted
ages.

In conclusion, the network is able to replicate the trends we see in
the properties and SNRs of young and old galaxies (e.g. high sSFR,
He, [SU]B, [SU]R, and [O 1I]R for young galaxies and high-stellar
mass and SNRs of MgG, G, and NaD).

5 DISCUSSION

We have demonstrated that our ANN is successful at predicting the
ages of galaxies based on their EWs despite the true ages having
a significant errors associated with them. To thoroughly evaluate
our predictions we compare with the results of GAMA and other ML
techniques trained on emission lines or used for stellar age prediction.

5.1 Mass- versus light-weighted ages

First, we discuss the affect of using mass- or light-weighted ages
as discussed in Section 4. The ANN is underpredicting the ages of
the older galaxies and overpredicting the younger ones, for which
the results are shown in Fig. 3. This may be due to the difference
in how mass-weighted ages are calculated in comparison to light-
weighted ages. Mass-weighted ages are dependent on the stellar mass
whereas light-weighted ages are dependent on the flux at a given
wavelength. As such, light-weighted ages are biased by younger
populations that dominate the luminosity but contribute very little to
the total mass (Trager et al. 2000; Conroy 2013; Citro et al. 2016).

04  -02 0.0 02 0.4
Difference in Age, dex(yr)

Figure 19. The difference in predicted light-weighted age when compared
with true age shows a more even distribution of predictions. The ANN does
not show a preference for underestimating old ages and overestimating young
ages like it does when it is trained on mass-weighted ages.

For this reason, we investigate whether the network picks up on the
differences between light- and mass-weighted ages. However, due
to light-weighted ages being more sensitive to recent star formation
rather than the full SFH they are easier for the network to train with
but less physically meaningful. To test this we use the restframe i-
band luminosity-weighted mean stellar ages provide by GAMA in the
StellarMasses v19 DMU. The light-weighted ages perform
better in all evaluation metrics, as shown in Table 14. We calculate
our evaluation metrics of the light-weighted age predictions to be
MSE = 0.015, MAE = 0.094, and R? score = 0.643.

To show the performance of the ANN we plot the contour graph
of the true ages against the predicted ages according to the method
described in Section 4. We predict the ages of 500 random galaxies
that the ANN has not been trained or tested on, as shown in Fig. 18.
The light-weighted ages are being predicted with less bias towards
underpredicting than the mass-weighted ages as there is a more
even distribution which is apparent in the shape of the contours. We
demonstrate this further in Fig. 19, in which we plot the difference
between the true and predicted ages against the true ages. When
compared with the mass-weighted ages it can be seen that the ANN
is no longer underpredicting the older galaxies and overpredicting
the younger galaxies when trained on the light-weighted ages.
This supports our theory that this skew is caused by the biases
related to light-weighted ages with recent star formation are skewed
towards younger values. To compare the scatter between the true
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and predicted ages we calculate the mean predicted age and standard
deviation as i, =9.3800, =0.204 and u, =9.348 and o, =0.168.
We find the light-weighted ages have a residual standard deviation
of o, = 0.036 which shows a smaller distribution in the predicted
ages than the predicted mass-weighted ages though the mean of
the light-weighted predicted ages more closely matches that of the
true ages. Therefore, the network is not overall underpredicating the
light-weighted ages as much as the mass-weighted ages however it
is still narrowing the prediction distribution. Finally, we compare the
Pearson and Spearman rank coefficients which we find to be p =
0.808 and s = 0.836, respectively.

5.2 Comparison to other ML algorithms

Here, we compare our ANN to other ML algorithms that have
similar purposes to ours. This is due to a lack of literature describing
ANN:S that specifically predict the ages of galaxies. Therefore, we
compare our ANN with predictions of galaxy ages via other ML
techniques.

The AdaBoost and Decision Tree based ML algorithm described
by Ucci et al. (2017, 2018) successfully predicts the physical proper-
ties of galaxies (density, metallicity, column density, and ionization
parameter) based on their emission lines. They note that GAME still
performs well when 80 per cent of their emission lines are discarded
due to weak observations. This supports our decision to remove 10 of
the 14 good EWs in favour of increased prediction performance and
is in agreement with the increased training performance when sample
weights are placed on the EWs with higher SNRs. They achieve good
training times with their algorithm such that processing the SDSS
DRS5 would take approximately 417 h.

To compare with the CNN described by Li et al. (2022), they find
a scatter of £20 per cent between their true and predicted values.
Specifically, they find stellar age and SFR reconstructed with a
population wide scatter of 20 — 50 per cent. However, their average
stellar masses are predicted to be 0.09 dex more accurate. Again, it is
interesting to note that they find all predicted properties are slightly
underpredicted.

For comparison with the CNN described by (Liew-Cain et al. 2021)
it is important to note that they use two different sets of data for their
training phase, Set A and Set B. Their Set A is intended to mimic a
large, diverse number of galaxies such that all galactic evolutionary
history is covered. Set B is more realistic as it is made from a random
selection of galaxies which acts as a true survey would, as there is
no previous knowledge of the data set. Their results show a standard
deviation between the true and predicted ages and metallicities are
o = 0.03 for Set A which is considerably better than Set B for
which they achieve a standard deviation of o = (.16 for both age and
metallicity. They use the Pearson’s correlation coefficient to evaluate
the age and metallicity residuals for which they find a value of p =
—0.24 for both Set A and Set B. This demonstrates that the model
is able to make predictions that are no more affected by the age—
metallicity degeneracy than the true values found with full spectral
fitting. It is worth noting that their true versus predicted figures also
show significant scatter in the results. It is interesting to note that not
only are their estimates for Set B more spread out and scattered but
they state their CNN is systematically predicting lower ages than the
true spectroscopic ages. They go on to suggest that the reason for
this discrepancy may lie with the fact that there is less diversity in
the SFHs in Set B which means the CNN is unable to derive enough
patterns to be able to predict unseen galaxies of different types. They
suggest this may be resolved in future works with a larger data set or
synthetically increasing the diversity of the training set.

MNRAS 529, 479-498 (2024)

6 CONCLUSIONS

We present a successful proof of concept for an ANN that is able to
predict the ages of galaxies based off their spectral EWs. Our key
findings are detailed below

(1) we calculated a proxy for prediction error by perturbing our
input data which gives an uncertainty of +0.004 dex (yr).

(i1) We confirm a strong positive correlation between the true and
predicted ages by quantifying this relationship with the Pearson rank
coefficient p = 0.756 and the Spearman rank coefficient s = 0.755.
Our ANN achieves these results with a total training and predicting
time of ~23 s for 500 galaxies.

(iii)) We show that the ANN is able to predict the ages of more
accurate estimates better than less certain estimates by splitting our
data into two sets based on the percentile range the GAMA age
estimates have. This means the ANN is able to pick up on patterns
between the EWs in order to predict ages which shows it is predicting
based on quantifiable differences between observations rather than
randomly.

(iv) We determine that weighting the loss for observations based
on how accurate the age percentiles are does not significantly improve
the performance of the ANN. This is not to say that weighted loss
functions do not work for all data, but for our specific data set the
errors on even the most accurate ages are too broad for the weighting
to make a difference to the ANN. To see better results from the
custom loss function we would hope that future work would focus
on the quality of data rather than the amount of it.

(v) Werelate our network to the physical proprieties of the galaxies
and the effects of SNRs.

(vi) When trained with light-weighted ages the ANNs accuracy
improves which we demonstrate by calculating the residual standard
deviation between the true ages and the predicted ages. When trained
with mass-weighted ages the ANN has a residual standard deviation
of o, = 0.025 between the predictions and their true ages however,
when we train with light-weighted ages the residual decreases too, =
0.036. This shows that the ANN is more restricted in its distribution
of light-weighted ages.

(vii) The ANN is able to predict the ages of galaxies much faster
than traditional models whilst retaining comparable accuracy. This
could be invaluable for future studies that only require a handful of
properties such as age but a large sample of objects. A simple neural
network like an ANN could be easily implemented to produce these
kinds of data sets for future studies.

(viii) We compare the predictive performance of our ANN with
other ML algorithms. We consider ANNs to be powerful predictors
as they are fairly simple to code in Python with the ML packages
Tensorflow and Keras which are able to be run on most
computers.

To conclude, our method of predicting ages is a promising tech-
nique for future studies as an alternative to full simulation modelling.
However, now that a proof of concept has been established, it is
important to account for systematic biases of the underlying SED
fitting used to produce the ages and from the network itself to
account for the underprediction of older galaxies and overprediction
of younger galaxies and overall underprediction of all ages. The
studies that would benefit most from ANNs would be smaller studies
that only require one or two properties for large sets of data for
which modelling would take too long. These uses may also include
determining the ages for large data sets such as SDSS in order
to further study of specific age categories. This would aid in the
determination of galactic evolution and formation or other studies
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involving ML algorithms that require an even split of ages for the
prediction of other physical properties of galaxies.

7 DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.
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