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Abstract—This paper explores the consensus control problem
of nonlinear multi-agent systems (MASs) under complex cyber-
physical threats (CPTs), which encompass sensor/actuator faults,
input/output channel noises, and random cyber-attacks. The
multiple sensor/actuator faults are uniformly modeled as an
exponential type, while random cyber-attacks are characterized
by a Markov chain. To enhance the safety and security of
MASs under CPTs, the distributed normalized observers are first
developed, enabling precise estimations of unknown state and
fault information. Subsequently, the distributed fault-tolerant
consensus control (FTCC) scheme with a positive reconstruction
mechanism is proposed to maintain resilience against attacks,
compensation for faults, and robustness to noises in MASs under
adverse CPTs. The two notable innovations can be outlined as
follows: i) The achievement of FTCC objectives under complex
CPTs, demonstrating strong algorithmic transferability in both
non-attack and random attack scenarios. ii) The adoption of a
double-layer distributed framework in the estimation layer and
control layer, balancing computational complexity and efficiency
improvements compared to a combination of decentralized and
distributed approaches. Simulation results finally confirm the
efficacy and feasibility of the proposed FTCC algorithm.

Index Terms—Multiple faults, fault-tolerant consensus control,
distributed observers, random attacks, multi-agent systems.

I. INTRODUCTION

THe subject of FTCC of MASs has garnered significant
attention due to its potential in maintaining global or

local expected performance in the presence of physical faults
or cyber-attacks. The recent studies on FTCC strategies con-
cerning the cyber-physical security and safety of MASs are
summarized in [1]. Unlike classical FTCC schemes in linear
MASs [2], the nonlinearity [3], [4] renders challenges to the
reliability and robustness of MASs. Apart from unexpected
physical component faults [5], malicious cyber-attacks pose
significant threats to the logical security of communication
links or individual nodes [6]. Hence, in the face of simultane-
ous CPTs, the FTCC of nonlinear MASs is required to sustain
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both operational capability and sustainability, at a standard or
slightly diminished level.

Due to the long-term usage of the devices in diverse
environments, MASs are susceptible to anomalous faults in
the physical layer, such as sensor faults [7], and actuator
faults [8]. Unlike addressing individual physical faults, the
literature on FTCC algorithms for addressing multiple physical
faults is still relatively scarce. Specifically, the fuzzy-logic-
based distributed adaptive control protocol has been proposed
for MASs with sensor and actuator faults [9]. The formation
consensus problem is investigated for discrete-time heteroge-
neous MASs [10] with link failures and actuator/sensor faults,
and an adaptive fault-tolerant control issue of nonlinear MASs
under multiple faults is studied in [11]. To date, most studies
adopt a combination of decentralized observers and distributed
controllers to compensate for physical faults [5], [8]. However,
the literature on the compensation mechanisms constructed
by double-layer distributed architecture-based observers and
controllers [12] is relatively limited. On the other hand, most
studies merely consider abrupt physical faults [10], [13], while
neglecting hidden incipient physical faults. It is worth noting
that they bring rapid performance degradation and coordina-
tion interruption of all of the MASs due to tiny deviations
induced by incipient faults spread to other agents in the
unreliable network. Furthermore, the co-existence of unified
abrupt-incipient physical faults and channel noises [14] makes
it difficult to achieve an accurate consensus performance.
Therefore, it becomes both a meaningful and challenging en-
deavor to devise a double-layer distributed observer-controller
framework capable of effectively handling the concurrent
presence of multiple sensor/actuator faults and channel noises.

Besides bolstering physical safety, mitigating the topology
switching [15] or accounting for interaction interruptions [16]
caused by cyber-attacks represents a viable approach for
securing MASs. The logical security of MASs is commonly
affected by various cyber-attacks, such as denial-of-service
(DoS) attacks [17], false data injection attacks [18], and
sensor and actuator attacks [19], thus the security protection
mechanism of cyber-physical MASs against hostile attacks
is urgent to explore. However, in rare cases, the literature
has studied the integrated security of cyber-physical MASs
under anomalous faults and malicious attacks. To address the
FTCC problem of nonlinear cyber-physical MASs [20], the
adaptive state-feedback schemes and switching mechanisms
are designed to improve compensation for actuator faults and
resilience to DoS attacks, respectively. The distributed anti-
attack FTCC policy is proposed in [21] for MASs subject to
multiple physical failures and malicious connectivity-mixed
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attacks, and the adaptive impulsive FTCC strategy is developed
in [22] for MASs with deception attacks and actuator faults.
Furthermore, it is a more challenging task to address FTCC
problems due to the aperiodicity [23] and unpredictability [24]
of random cyber-attacks. Thus, the crucial issue is how to uti-
lize the double-layer distributed observer-controller framework
to achieve the consensus purpose of nonlinear cyber-physical
MASs amidst random attacks and multiple faults.

The notable contributions are summarized as follows. (i)
In contrast to handling individual physical faults [7], [8] or
addressing specific and determined cyber-attacks [15], [17],
this paper proposes a novel distributed FTCC scheme to
achieve the safe and secure objectives of the nonlinear MASs
under adverse CPTs that encompass multiple faults, channel
noises, and random attacks. The FTCC strategy enables the
parallel migration of algorithms by utilizing the expectation
in random topology switching, applicable in both attack-
free and random attack scenarios. (ii) In comparison to the
decentralized and distributed combination strategy within the
estimation and controller layers [5], [8], this paper employs a
double-layer distributed observer-controller framework, which
effectively balances computational complexity and efficiency
improvements. Significantly, the distributed FTCC structure
exhibits exceptional fault tolerance and attack resilience by
enabling local information interaction, topological redundancy,
and policy diversity, even in cases where certain nodes or links
fail or are interrupted.

The rest of this paper is structured as follows. Section
II presents problem formulation and model description. The
main results including the double-layer distributed observer-
controller framework for fault-tolerant consensus and stability
analysis are provided in Section III. Simulation is illustrated to
verify the feasibility and efficiency of the proposed distributed
FTCC algorithm of MASs in Section IV. Section V illustrates
the conclusion with future concerned investigations.

Notation: || · ||, E and ⊗ represent the Euclidean norm,
mathematical expectation, and Kronecker product of matrices,
respectively. He(X) = X+XT , R is the real-number set, and
1 indicates a column vector where all elements are 1. λmin and
λmax are the minimum and maximum eigenvalues.

II. PROBLEM FORMULATION AND MODEL DESCRIPTION

The dynamics of nonlinear MASs comprising N followers
are expressed as follows:

ẋi(t) = Axi(t) +Bui(t) + Fafai(t) +D1ωi1(t) + ξ(xi(t), t)
yi(t) = Cxi(t) + Fsfsi(t) +D2ωi2(t)

(1)
where xi(t) ∈ Rn, yi(t) ∈ Rp, ui(t) ∈ Rm denote the fol-
lower’s state, output, and input, respectively. fai(t) ∈ Rq1

and fsi(t) ∈ Rq2 represent the actuator fault and sensor fault,
ωi1(t) ∈ Rs1 and ωi2(t) ∈ Rs2 are the input noise and output
noise on the channel, and ξ(xi(t), t) ∈ Rn is the unknown
nonlinearity item. The system-described gain matrices are
represented by A,B,C, the actuator fault gain matrix and
sensor fault gain matrix are denoted by Fa, Fs, and D1, D2

are the noise-described gain matrices. It should be noted that
these gain matrices have known and appropriate dimensions.

The dynamics of the leader (labeled as 0) are expressed as

ẋ0(t) = Ax0(t) +Bu0(t) + ξ(x0(t), t)
y0(t) = Cx0(t)

(2)

where x0(t) ∈ Rn, y0(t) ∈ Rp, and ξ(x0(t), t) ∈ Rn repre-
sent the leader’s state, output, and the unknown nonlinearity,
respectively. Notably, u0(t) = −Kxx0(t) denotes the control
input with the state-estimation gain matrix Kx ∈ Rm×n.

Remark 1: The authentic physical models of the leaders and
followers exhibit congruence. Nevertheless, when confronted
with intricate and dynamic environments, the dynamic model
of the followers incorporates considerations for composite
faults in actuators/sensors and noises within input/output chan-
nels. Within homogeneous MASs [9], [11], agents convention-
ally engage in the communal adoption of control strategies
characterized by similar structures and convergent parameters.
Conversely, within heterogeneous MASs [25], [26], [27], con-
trollers are compelled to delineate precise strategies tailored
to the distinctive types, hierarchical structures, and task levels
inherent to the diverse agents.

A. Multiple Fault Modeling

The abrupt and incipient actuator faults and sensor faults
are modeled in a unified manner, and the distinction between
abrupt and incipient faults is made by the exponential function
with a decay rate. The multiple sensor and actuator faults
within each element fϱai(t) and fϱsi(t) in the physical layer
are modeled as follows:

fϱai(t) = (1− e−εϱa(t−Tϱ
a ))f̄ϱai, t ≥ T ϱ

a , ϱ = 1, · · · , q1
fϱsi(t) = (1− e−εϱs(t−Tϱ

s ))f̄ϱsi, t ≥ T ϱ
s , ϱ = 1, · · · , q2

(3)

where fai(t) = [f1ai(t), f
2
ai(t), · · · , f

q1
ai (t)]

T , fsi(t) =
[f1si(t), f

2
si(t), · · · , f

q2
si (t)]

T . f̄ϱsi, f̄
ϱ
ai denote the unknown fault

bounds in the ϱ th row elements, εϱa, ε
ϱ
s denote the unknown

decay rates, and T ϱ
a , T

ϱ
s denote the time instants when physical

faults occur. Due to the physical faults being modeled as the
unified abrupt-incipient type, then multiple sensor and actuator
faults are satisfied with the quick-changed decay rate (εa(s) ≥
ε̄a(s)) and low-changed decay rate (εa(s) ≤ εϱa(s) < ε̄a(s)).

Assumption 1 [3], [4]: For any i, j = 0, 1, · · · , N , there
exists a positive number ρ′ such that the unknown nonlinearity
meets the Lipschitz condition ∥ ξ(xi(t), t) − ξ(xj(t), t) ∥≤
ρ′ ∥ xi(t)− xj(t) ∥.

Assumption 2 [21]: The multiple sensor and actuator faults
with an abrupt-incipient type exhibit the differentiable property
after the occurrence of faults. Furthermore, εa(s) and ε̄a(s) are
the available positive constants, which denote the lower and
upper boundaries of the decay rates εϱa(s), respectively.

Assumption 3 [14], [21]: The input noise (ωi1) and out-
put noise (ωi2) are restricted to be upper bounded, i.e.,
∥ ωi1(t) ∥≤ ω̄i1 and ∥ ω̇i2(t) ∥≤ ω̄i2, respectively.

B. Random Attack Modeling

This paper establishes a type of non-periodic random cyber-
attacks, which disrupt communication links among agents,
altering the communication topology, and thus impacting the
overall network security of the MASs. Due to the memoryless
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property and the ability to capture transition relationships
among random events, a Markov process denoted by the
transition probability matrix Ppq(t) is employed to represent
the occurrence of random attacks and reflect the impact on
the communication topology. The Markov process is defined
as Ppq(t) = Prob{r(t + h) = q|r(t) = p} when the
topology transitions from state p to q. For p ̸= q, the
transition probability matrix Ppq(t) = γpqh+o(h), conversely
Ppq(t) = 1 + γpqh + o(h), where γpq represents the transfer
rate, and o(h) signifies an infinitesimal of higher order than h
such that limh→0 o(h)/h = 0. S1 = {1, 2, · · · , s} is a finite
state space encompassing all possibly attackable topologies.
The transfer rate matrix is defined as γ = {γpq}p,q∈S1

such
that for p ̸= q, γpq ≥ 0 and γpp = 1−

∑
q ̸=p γpq .

To facilitate the analysis of the impact of random attacks
injected into MASs, the random attacks are defined to be acti-
vated in a time-varying manner within the time interval [t0, t).
If t ∈ [t2k, t2k+1), the cyber-attacks are in the dormancy zone
and the MASs are not attacked. Then, the switching sequence
{t2k}k∈N corresponding with the initial graph G0 is denoted
by the symbol Tm(t2k, t). Otherwise, if t ∈ [t2k+1, t2(k+1)),
the cyber-attacks are in the activation zone and the MASs are
subject to random cyber-attacks. Then, the switching sequence
{t2k+1}k∈N corresponding with the swithcing graph Gr(t) is
denoted by the symbol Tp(t2k+1, t), where r(t) represents
the changing state within a Markov process. Under the in-
fluence of random attacks and self-recovery mechanisms, the
communication links of MASs are disrupted and reorganized,
respectively. Therefore, the switching process from the initial
graph G0 to the reorganized graph Gr(t) is called the switching
topology.

Definition 1: For t2 > t1 ≥ 0, define the number
of random attacks as Na(t1, t2). Thus, denote Fa(t1, t2) =
Na(t1, t2)/(t2 − t1) as the attack frequency over [t1, t2).

Definition 2: For t2 > t1 ≥ 0, define the total time interval
of random attacks as Ta(t1, t2). Thus, denote Ra(t1, t2) =
Ta(t1, t2)/(t2 − t1) as the attack length rate over [t1, t2).

Assumption 4 [14], [17]: Under the scenario of random
attacks, it is assumed that the switching graph Gr(t) is bal-
anced and contains a spanning tree of the union of digraphs.
The switching signal r(t) induced by random cyber-attacks
is postulated to follow an initial time-invariant distribution
π0 = [π1, · · · , πs].

Remark 2: In complex communication environments, the
topological connectivity of MASs is susceptible to intermittent
cyber-attacks, such as link interruption. Hostile aggressors aim
to obstruct coherent signal transmission among agents, dis-
rupting data interactions and ultimately compromising tracking
performance. However, the self-recovery mechanism of MASs
enables the continuous initiation of relink requests during the
dormancy interval of random cyber-attacks, persisting until the
network connection is restored, which ensures communication
connectivity by reconstructing the communication links in a
relatively brief period. In contrast to easily detectable periodic
cyber-attacks [6], [15], the energy-limited attacks executed by
adversaries are non-periodic. It is assumed that the topological
structure is both resilient and recoverable, and a finite number
of switching topologies are completed under the constraints of

attack frequency and attack length rate in Definitions 1 and 2.
Remark 3: The rationality for the mentioned assumptions is

summarized as follows: 1) The Lipschitz condition contributes
to the improvement of controllability and stability by imposing
local constraints on unknown nonlinear terms. It is exemplified
in its ability to facilitate a reasoned response to state-dependent
nonlinearity encountered in the context of robot path plan-
ning and navigation [28] within intricate and unpredictable
environments. 2) The original system can be augmented pro-
vided that the modeled unified abrupt-incipient type fault is
differentiable, which in turn allows the design of unknown
input observers to achieve estimations of unknown states and
multiple faults. The predetermined decay rate boundary values
are set to distinguish between abrupt-type faults and incipient-
type faults, i.e., the abrupt-type faults (εa(s) ≥ ε̄a(s)) and
incipient-type faults (εa(s) ≤ εϱa(s) < ε̄a(s)). 3) Ensuring
robustness against energy-limited external factors and inter-
ference thresholds requires constraining input/output channel
noises, with the precise boundary values not necessarily need-
ing to be entirely ascertainable. 4) The primary focus is on
the connectivity of switching topologies induced by random
cyber-attacks, which is a critical factor in ensuring an FTCC
performance. Even when facing potential link disruptions, self-
recovery mechanisms of MASs are utilized to establish new
communication links. Consequently, under the influence of the
Markov process, the switching topology signal r(t) caused by
random cyber-attacks achieves a specific switching probability
aligned with the initial distribution π0.

III. MAIN RESULTS

A. Double-layer Distributed Observer-controller Framework
for Fault-tolerant Consensus

The double-layer distributed observer-controller framework
is constructed to achieve an asymptotic exponential consensus
for nonlinear MASs subject to multiple sensor/actuator faults,
channel noises, and random attacks in Fig. 1.

The procedure for normalizing the initial MASs can be
outlined as follows

˙̄xi(t) = Āx̄i(t) + B̄ui(t) + M̄d̄i(t) + ξ̄(E0x̄i(t), t)
yi(t) = C̄x̄i(t)

(4)

where d̄i(t) = [ωT
i1(t) ḟTai(t) ḟTsi(t) ω̇T

i2(t)]
T is the

augmented uncertainty, x̄i(t) = [xTi (t) f
T
ai(t) f

T
si(t) ω

T
i2(t)]

T

is the augmented state, and ξ̄(E0x̄i(t), t) =
[ξT (xi(t), t) 01×q1 01×q2 01×s2 ]

T is the augmented
nonlinearity with E0 = [In 0n×q1 0n×q2 0n×s2 ], and the
augmented matrices Ā, B̄, M̄ and C̄ are described as

Ā =


A Fa 0n×q2 0n×s2

0q1× n 0q1×q1 0q1×q2 0q1×s2

0q2× n 0q2×q1 0q2×q2 0q2×s2

0s2× n 0s2×q1 0s2×q2 0s2×s2

,B̄ =


B

0q1×m

0q2×m

0s2×m


M̄ =


D1 0n×q1 0n×q2 0n×s2

0q1×s1 Iq1 0q1×q2 0q1×s2

0q2×s1 0q2×q1 Iq2 0q2×s2

0s2×s1 0s2×q1 0s2×q2 Is2

,C̄ =


CT

0q1×p

FT
s

DT
2


T
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Fig. 1: Double-layer distributed observer-controller framework of nonlinear MASs subject to multiple sensor/actuator faults
and channel noises in the physical layer, and random attacks in the cyber layer

Then, the distributed normalized observers in the double-
layer observer-controller framework are designed as

˙̄̂xi(t) = Āˆ̄xi(t) + B̄ui(t) + R̄ηi + ξ̄(E0(ˆ̄xi(t), t))
ŷi(t) = C̄ ˆ̄xi(t)
δi(t) = ŷi(t)− yi(t)

ηi = ρ
∑N

j=1 aij [δj(t)− δi(t)]

(5)

where ŷi(t) and ˆ̄xi(t) = [x̂Ti (t) f̂
T
ai(t) f̂

T
si(t) ω̂

T
i2(t)]

T repre-
sent the estimations of the output yi(t) and the augmented state
x̄i(t). δi(t) is the output estimation error of the ith agent, R̄ is
the observer gain matrix. aij is the edge coefficients between
the ith and jth followers, ξ̄(E0 ˆ̄xi(t), t) = [ξT (x̂i(t), t) 01×q1

01×q2 01×s2 ]
T , and the coupling strength ρ > 0.

Taking into account the potential occurrence of random
attacks on the MASs, the distributed fault-tolerant consensus
controllers are intricately designed within the double-layer
distributed observer-controller framework:

ui(t) =



α1R1[
∑N

j=1 a
0
ij(yj(t)− yi(t)) + b0i (y0(t)− yi(t))]

+α1R1Fs[
∑N

j=1 a
0
ij(f̂sj(t)− f̂si(t)) + b0i f̂si(t)]

+α1R1D2[
∑N

j=1 a
0
ij(ŵj2(t)− ŵi2(t)) + b0i ŵi2(t)]

−K ˆ̄xi(t), t ∈ Tm(t2k, t)

α2R2[
∑N

j=1 a
r(t)
ij (yj(t)− yi(t)) + b

r(t)
i (y0(t)−

yi(t))] + α2R2Fs[
∑N

j=1 a
r(t)
ij (f̂sj(t)− f̂si(t))+

b
r(t)
i f̂si(t)] + α2R2D2[

∑N
j=1 a

r(t)
ij (ŵj2(t)−

ŵi2(t)) + b
r(t)
i ŵi2(t)]−K ˆ̄xi(t), t ∈ Tp(t2k+1, t)

(6)
where α1 and α2 are positive coupling coefficients, a0ij and
a
r(t)
ij are the edge coefficients between the ith and jth follow-

ers, b0i and br(t)i are the signal interaction between the leader
and ith follower. R1, R2 are the coupling gains, and K =
[Kx Kb 0m×q2 0m×s2 ] is the compensation gain, Kx ∈ Rm×n

is the state-estimation gain and Kb = B†Fa ∈ Rm×q1 is the
fault-estimation gain with the pseudo-inverse operation †.

Define the error of augmented estimation as ei1 = x̄i(t)−
ˆ̄xi(t) = [eTxi(t) e

T
ai(t) e

T
si(t) e

T
ωi(t)]

T , where exi(t) = xi(t)−
x̂i(t), eai(t) = fai(t) − f̂ai(t), esi(t) = fsi(t) − f̂si(t),

eωi(t) = ωi2(t) − ω̂i2(t) denote the estimation errors of the
state, the actuator fault, the sensor fault, and the output channel
noise, respectively.

Let x̄(t) = [x̄T1 (t), · · · , x̄TN (t)]T , ˆ̄x(t) =
[ˆ̄xT1 (t), · · · , ˆ̄xTN (t)]T , u(t) = [uT1 (t), · · · , uTN (t)]T , and
d(t) = [dT1 (t), · · · , dTN (t)]T , it is obtained that

˙̄x(t) = (IN ⊗ Ā)x̄(t) + (IN ⊗ B̄)u(t) + (IN ⊗ M̄)d(t)
+ξ̄(E0(x̄(t), t))

˙̄̂x(t) = (IN ⊗ Ā)ˆ̄x(t) + (IN ⊗ B̄)u(t)
+(IN ⊗ R̄)ρ(L ⊗ C̄)(ˆ̄x(t)− x̂(t)) + ξ̄(E0(ˆ̄x(t), t))

u(t) =



α1(L0 ⊗R1C)(x(t)− x0(t)) + α1(L0 ⊗R1FsEs

+L0 ⊗R1D2Eω)e1(t)− (IN ⊗K)ˆ̄x(t),
t ∈ Tm(t2k, t)

α2(Lr(t) ⊗R2C)(x(t)− x0(t)) + α2(Lr(t) ⊗R2

FsEs + Lr(t) ⊗R2D2Eω)e1(t)− (IN ⊗K)ˆ̄x(t),
t ∈ Tp(t2k+1, t)

(7)
then denote e1(t) = [eT11(t), · · · , eTN1(t)]

T , the consensus
errors dynamics are obtained as:

ė1(t) =


(IN ⊗ Ā− ρL0 ⊗ R̄C̄)e1(t) + (IN ⊗ M̄)d̄(t)

+∆ξ̄(t), t ∈ Tm(t2k, t)
(IN ⊗ Ā− ρLr(t) ⊗ R̄C̄)e1(t) + (IN ⊗ M̄)d̄(t)

+∆ξ̄(t), t ∈ Tp(t2k+1, t)
(8)

where L is the Laplacian matrix, and Lr(t) and L0 are the
Laplacian matrices of the switching graph Gr(t) and initial
graph G0, respectively. ∆ξ̄(t) = [∆ξ̄T1 , · · · ,∆ξ̄TN ]T with
∆ξ̄i = ξ̄(E0x̄i(t), t)− ξ̄(E0 ˆ̄xi(t), t).

Subsequently, denote the consensus error between the leader
and the ith follower as ei2 = xi(t) − x0(t). Let x(t) =
[xT1 (t), · · · , xTN (t)]T , fa(t) = [fTa1(t), · · · , fTaN (t)]T , and
ω1(t) = [ωT

11(t), · · · , ωT
N1(t)]

T , it is obtained that

ẋ(t) = (IN ⊗A)x(t) + (IN ⊗B)u(t) + (IN ⊗ Fa)fa(t)
+(IN ⊗D1)ω1(t) + ξ̄(x(t), t))

ẋ0(t) = (IN ⊗A)x0(t) + (IN ⊗B)u0(t) + ξ̄(x0(t), t))
(9)
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then denote e2(t) = [eT12(t), · · · , eTN2(t)]
T , the dynamics of

consensus errors are obtained as

ė2(t) =



[IN ⊗ (A−BKx)− α1(H0 ⊗BR1C)]e2(t)
−[α1(H0 ⊗BR1FsEs) + α1(H0 ⊗BR1D2Eω)
−IN ⊗BK]e1(t) + eξ(t) + (IN ⊗D1)ω1(t),

t ∈ Tm(t2k, t)
[IN ⊗ (A−BKx)− α2(Hr(t) ⊗BR2C)]e2(t)
−[α2(Hr(t) ⊗BR2FsEs) + α2(Hr(t) ⊗BR2D2

Eω)− IN ⊗BK]e1(t) + eξ(t) + (IN ⊗D1)ω1(t),
t ∈ Tp(t2k+1, t)

(10)
where Hr(t),H0 are the information-exchange matrices of
the switching graph Gr(t) and initial graph G0. Hr(t) =

Lr(t) + Br(t), and Br(t) = diag{br(t)1 , · · · , br(t)N }. Nonlinear
consensus error eξi(t) = ξ(xi(t), t)− ξ(x0(t), t) with eξ(t) =
[eTξ1(t), · · · , e

T
ξN

(t)]T . Es = [0q2×n 0q2×q1 Iq2 0q2×s2 ], Eω =
[0s2×n 0s2×q1 0s2×q2 Is2 ].

B. Stability Analysis

To begin with, several variables characterizing the topol-
ogy switching conditions under random cyber-attacks are
introduced. Denote πmin = minp∈S1

{πp}, S1 = {1, · · · , s}.
Furthermore, Hun and Lun are denoted as the information-
exchange matrix and Laplacian matrix of the union of digraphs
Gun =

⋃
p∈S Gp, where Hun =

∑s
p=1Hp and Lun =∑s

p=1 Lp. Ĥun and L̂un are denoted as the information-
exchange matrix and Laplacian matrix of the correspond-
ing united mirror of switching graph Gr(t) under random
attacks. Then, define H̃ = He(Hun)/λmin(Ĥun), Ĥ =
(HunH

T
un)/λmin(Ĥun), L̃ = He(Lun)/λmin(L̂un), and L̂ =

(LunLT
un)/λmin(L̂un).

Theorem 1: The asymptotic exponential consensus of the
nonlinear cyber-physical MASs (1) and (2) in the coexistence
of multiple abrupt-incipient faults, unknown bounded channel
noises, and random cyber-attacks modeled by a Markov pro-
cess is achieved through the double-layer distributed observer-
controller framework (5) and (6) when the following condi-
tions hold:

(1) Given positive scalars χ1, χ2, χ3, χ4 and identity matrix
I = In+q1+q2+s2 , there exist symmetric matrices P > 0, S >
0 such that

He(PX) + θmax(λ2PD1D
T
1 P + (1 + ρ′2)λ2P

2) < −χ1P
(11)

He(SX) + SD1D
T
1 S + (1 + ρ′2)S2 < χ3S (12)

1
τ1
(He(Ā− ρλ4R̄C̄) + M̄M̄T + ρ′2ET

0 E0) + λ2K
TK

−α1λ3(E
T
s F

T
s R

T
1 R1FsEs + ET

ωD
T
2 R

T
1 R1D2Eω) < −χ2I

(13)
1
τ4
(He(Ā)− R̄C̄ + M̄M̄T + ρ′2ET

0 E0) +KTK

−α2(E
T
s F

T
s R

T
2 R2FsEs + ET

ωD
T
2 R

T
2 R2D2Eω) < χ4I

(14)
where X = A − BKx. The coupling coefficients are sat-
isfied with α1 ≥ λ2L

λ1+λ3
, and α2 ≥ T

πmin(λmin(H̃)+λmin(Ĥ))
,

where L > 0 and T > 0, λ1 = λmin(He(ΘH0)), λ2 =
λmin(Θ

2), λ3 = λmin(ΘH0HT
0 Θ), λ4 = λmin(L0 +

Lr(t)), and ρ ≥ 1

πmin(λmin(L̃)+λmin(L̂))
. Matrix Θ =

diag{θ−1
1 , · · · , θ−1

N } with θ = [θ−1
1 , · · · , θ−1

N ] = (H0)
−11,

θmax = max{θi}, and θmin = min{θi}, i = 1, · · · , N .
Meanwhile, max(

ϵa
χ2

−
√

ϵ2a
χ2
2
− τ2

χ2
,
ϵs
χ2

−
√

ϵ2s
χ2
2
− τ2

χ2
) ≤ τ1 ≤

min(
ϵa
χ2

+
√

ϵ2a
χ2
2
− τ2

χ2
,
ϵs
χ2

+
√

ϵ2s
χ2
2
− τ2

χ2
), 0 < τ2 ≤ ϵ2a

χ2
, 0 <

τ3 ≤ ϵ2s
χ2

, τ4 < min(− ϵ̄a
χ4

−
√

ϵ̄2a
χ2
4
+ τ5

χ4
,− ϵ̄s

χ4
−
√

ϵ̄2s
χ2
4
+ τ5

χ4
) or

τ4 > max(− ϵ̄a
χ4

+
√

ϵ̄2a
χ2
4
+ τ5

χ4
,− ϵ̄s

χ4
+
√

ϵ̄2s
χ2
4
+ τ5

χ4
), τ5 > 0 and

τ6 > 0.
(2) The coupling gains are designed as R1 =

L−1BTP (CTC)−1CT , R2 = T−1BTS(CTC)−1CT , the ob-
server gain is designed as R̄ = C̄T , and the compensation gain
is designed as Kx = (BTB)−1BTP−1. There exist constants
γ ∈ (0, γ∗) and γ∗ ∈ (0, ηm) such that the attack frequency
and attack length rate are constrained within{

Fa(t0, t) ≤ 1
2 ln

−1(Nτ1µ(1 + τ1)ω̄
2
1 + ω̄2

2)(γ
∗ − γ)

RTm
(t0, t) ≥ ηp+γ∗

ηm+ηp
, RTp

(t0, t) ≤ ηm−γ∗

ηm+ηp

(15)

where µ = max{θmaxλmax(P )/λmin(S),−λmax(S)/(θmin

λmin(P ))} ≥ 1. ω̄1 = max(ωi1), ω̄2 = max(ωi2), ηm =
min(χ1, χ2τ1), and ηp = max(χ3, χ4τ4).

Thus, the consensus error with the mathematical expectation
form is achieved as follows

E {||ei2(t)||2} ≤ ξ̄ϕe−γ(t−t0)E {||ei2(t0)||2}, i = 1, · · · , N
(16)

with ϕ = ψ1/ψ2, ψ1 = max{λmax(θ
−1
i P−1), λmax(S

−1)}
and ψ2 = min{λmin(θ

−1
i P−1), λmin(S

−1)}. ξ̄ = min(ξ1, ξ2),
ξ1 = N

τ1
(1 + τ1)ω̄

2
1 + ω̄2

2 , and ξ2 = N
τ4
(1 + τ4)ω̄

2
1 + ω̄2

2 .
Proof: Due to the presence of random cyber-attacks for non-

linear cyber-physical MASs, the stability analysis is divided
into two cases: non-attacks and random attacks.

(i) (Non-attacks): Choose a Lyapunov candidate as

Va(t) = eT2 (t)(Θ⊗ P )e2(t) (17)

where Θ = diag{θ−1
1 , · · · , θ−1

N }, and P is the positive definite
matrix. Based on R1 = L−1BTP (CTC)−1CT , the time
derivative of Va(t) in (17) is derived as

V̇a(t) ≤ eT2 (t)[Θ⊗He(PX) + θmax(λ2PD1D
T
1 P + λ2P

2)
−θmin(α1λ1L

−1 − λ2 + α1λ3L
−1)PBBTP ]e2(t)

+θmaxλ2e
T
ξ (t)eξ(t) + J ≤ eT2 (t)[Θ⊗He(PX)

+θmax(λ2PD1D
T
1 P + (1 + ρ′2)λ2P

2]e2(t) + J
(18)

where J = eT1 (t)[IN⊗(λ2K
TK−α1λ3(E

T
s F

T
s R

T
1 R1FsEs+

ET
ωD

T
2 R

T
1 R1D2Eω))]e1(t) + λ2ω

T
1 (t)ω1(t), X = A−BKx.

θmin = min(θi), i = 1, · · · , N.λ1 = λmin(He(ΘH0)), λ2 =
λmax(Θ

2), λ3 = λmin(ΘH0HT
0 Θ), and the coupling coeffi-

cient is constrained within α1 ≥ λ2L
λ1+λ3

.
With the scalars τ1 > 0, τ2 > 0, τ3 > 0, another Lyapunov

function is designed as

Vb(t) =
1
τ1
eT1 (t)e1(t) +

1
τ2
ḟTa (t)ḟa(t) +

1
τ3
ḟTs (t)ḟs(t)

(19)
The second-order derivatives of the multiple actuator/sensor

faults fϱai(t), f
ϱ
si(t) corresponding with the unified abrupt-

incipient fault type are represented as

f̈ϱai(t) = −(εϱa)
2e−εϱa(t−Tϱ

a )f̄ϱai = −εϱaḟ
ϱ
ai(t), ϱ = 1, · · · , q1

f̈ϱsi(t) = −(εϱs)
2e−εϱs(t−Tϱ

s )f̄ϱsi = −εϱs ḟ
ϱ
si(t), ϱ = 1, · · · , q2

(20)
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Subsequently, the time derivative of Vb(t) is acquired as

V̇b(t) ≤ 1
τ1
eT1 (t)[IN ⊗He(Ā− ρλ4R̄C̄) + M̄M̄T

+ρ′2ET
0 E0]e1(t) +

1+τ1
τ1

ωT
1 (t)ω1(t) +

1
τ1
ω̇T
2 (t)ω̇2(t)

+( 1
τ1

− 2εa
τ2

)ḟTa (t)ḟa(t) + ( 1
τ1

− 2εs
τ3

)ḟTs (t)ḟs(t)
(21)

where λ4 = λmin(L0 + Lr(t)), and define V1(t) = Va(t) +
Vb(t), and according to the inequalities (11) and (13), the time
derivative of V1(t) is derived as

V̇1(t) ≤ −χ1Va(t)− χ2τ1Vb(t) +M+ (χ2τ1−2εa
τ2

+ 1
τ1
)

ḟTa (t)fa(t) + (χ2τ1−2εs
τ3

+ 1
τ1
)ḟTs (t)fs(t)

≤ −min(χ1, χ2τ1)V1(t) +M
(22)

where M = 1+τ1
τ1

ωT
1 (t)ω1(t) +

1
τ1
ω̇T
2 (t)ω̇2(t),

χ2τ1−2εa
τ2

+
1
τ1

≤ 0, χ2τ1−2εs
τ3

+ 1
τ1

≤ 0 based on the constraints of scalars
τ1, τ2 and τ3.

Let ηm = min(χ1, χ2τ1) and ξ1 = N
τ1
(1+ τ1)ω̄

2
1 + ω̄2

2 with
ω̄1 = max(ωi1), and ω̄2 = max(ωi2), it follows that

V1(t) ≤ ξ1e
−ηm(t−t0)V1(t0) +

ξ
ηm

(23)

ii (Random attacks): Select stochastic Lyapunov functions

V p
c (t) = E [eT2 (t)(IN ⊗ S)e2(t)Γp] (24)

V p
d (t) = E [

1

τ4
eT1 (t)e1(t) +

1

τ5
ḟTa (t)ḟa(t) +

1

τ6
ḟTs (t)ḟs(t)Γp]

(25)

where τ4 > 0, τ5 > 0, τ6 > 0. V p
c (t) and V p

d (t) denote the
stochastic types of the Lyapunov functions Vc(t) and Vd(t)
when r(t) = p, p ∈ S1. r(t) represents the topology switching
signal inspired by random cyber-attacks, and when r(t) =
p,Γp = 1, conversely Γp = 0.

Then, the derivative of V p
c (t) is obtained as

E {V̇ p
c (t)} = E {2eT2 (t)(IN ⊗ S)ė2(t) +

s∑
q=1

γpqV
p
c (t)dt

+o(dt)}
(26)

and according to Assumptions 4 and 5, the coupling coef-
ficient is chosen as α2 ≥ T

πmin(λmin(H̃)+λmin(Ĥ))
, πmin =

minp∈S1
{πp}, and the gain matrix is chosen as R2 =

T−1BTS(CTC)−1CT , it follows that

E {V̇c(t)} ≤ E {eT2 (t)[IN ⊗He(SX) + SD1D
T
1 S + S2

−πminα2(T
−1(λmin(H̃) + λmin(Ĥ))− 1)SBBTS]e2(t)

+eTξ (t)eξ(t) + J1}
≤ E {eT2 (t)[IN ⊗He(SX) + SD1D

T
1 S + (1 + ρ′2)S2]e2(t)

+J1}
(27)

with J1 = eT1 (t)[IN ⊗ (KTK − α1(E
T
s F

T
s R

T
2 R2FsEs +

ET
ωD

T
2 R

T
2 R2D2Eω))]e1(t) + ωT

1 (t)ω1(t), H̃ = He(Hun)/
λmin(Ĥun), and Ĥ = (HunH

T
un)/λmin(Ĥun).

Similar to (27), the derivative of Vd(t) is obtained that

E {V̇d(t)} ≤ E { 1
τ4
eT1 (t)[IN ⊗He(Ā)− ρHe(Lp ⊗ R̄C̄)

+M̄M̄T + ρ′2ET
0 E0]e1(t) + ( 1

τ4
− 2εa

τ5
)ḟTa (t)ḟa(t) +

1+τ4
τ4

ωT
1 (t)ω1(t) +

1
τ4
ω̇T
2 (t)ω̇2(t) + ( 1

τ4
− 2εs

τ6
)ḟTs (t)ḟs(t)}

≤ E { 1
τ4
eT1 (t)[IN ⊗He(Ā)− R̄C̄ + M̄M̄T

+ρ′2ET
0 E0]e1(t) +

1+τ4
τ4

ωT
1 (t)ω1(t) +

1
τ4
ω̇T
2 (t)ω̇2(t)}

+( 1
τ4

− 2εa
τ5

)ḟTa (t)ḟa(t) + ( 1
τ4

− 2εs
τ6

)ḟTs (t)ḟs(t)}
(28)

with the coupling strength ρ ≥ 1
πmin(λmin(L̃)+λmin(L̂)

). L̃ =

He(Lun)/λmin(L̂un), L̂ = (LunLT
un)/λmin(L̂un).

Denote V2(t) = Vc(t) + Vd(t), based on (12) and (14), the
derivative of V2(t) is obtained that

E {V̇2(t)} ≤ E {χ3Vc(t) + τ4χ4Vd(t) +M1 + (−χ4τ4+2εa
τ5

+ 1
τ4
)ḟTa (t)ḟa(t) + (−χ4τ4−2εs

τ6
+ 1

τ4
)ḟTs (t)ḟs(t)}

≤ E {max(χ3, χ4τ4)V2(t) +M1}
(29)

where M1 = 1+τ4
τ4

ωT
1 (t)ω1(t) +

1
τ4
ω̇T
2 (t)ω̇2(t),−χ4τ4+2εa

τ5
+

1
τ4

≤ 0,−χ4τ4−2εs
τ6

+ 1
τ4

≤ 0 based on the constrains of scalars
τ4, τ5 and τ6.

Let ηp = max(χ3, χ4τ4), and ξ2 = N
τ4
(1+ τ4)ω̄

2
1 + ω̄

2
2 with

ω̄1 = max(ωi1), and ω̄2 = max(ωi2), it follows that

E {V2(t)} ≤ ξ2e
ηp(t−t0)E {V2(t0)} − ξ

ηp
(30)

To analyze the overall stability of the cyber-physical MASs,
choose a piece-wise Lyapunov function as

V (t) =

{
V1(t), t ∈ Tm(t2k, t)
V2(t), t ∈ Tp(t2k+1, t)

(31)

where V1(t) represents the MASs that remain unaffected
by attacks during the time period Tm(t2k, t), while V2(t)
represents the MASs that experience random cyber-attacks
within the time period Tp(t2k+1, t).

Let ξ̄ = min(ξ1, ξ2), according to (23) and (30), the piece-
wise Lyapunov function (31) with expectation is acquired as

E {V (t)} < ξ̄eηpTp(t2k+1,t)−ηmTm(t2k,t)E {V (t2k)} (32)

It is derived that the number of random attacks Na(t0, t) =
k for t ∈ Tm(t2k, t) and Na(t0, t) = k+1 for t ∈ Tp(t2k+1, t)
from Definition 2. Therefore, for any t ≥ t0, it holds that

E {V (t)} < ξ̄eηpTp(t2k+1,t)−ηmTm(t2k,t)E {V (t2k)}
< ξ̄2µeηpTp(t2k,t)−ηmTm(t2k−1,t)E {V (t2k−1)}
< · · · < ξ̄2k+1µ2keηpTp(t0,t)−ηmTm(t0,t)E {V (t0)}
= ξ̄e2Na(t0,t) ln(ξ̄µ)+ηpTp(t0,t)−ηmTm(t0,t)E {V (t0)}

(33)

According to the inequalities (15), it is derived as
2Na(t0, t) ln(ξ̄µ) ≤ (γ∗ − γ)(t − t0) and ηpTp(t0, t) −
ηmTm(t0, t) ≤ −γ∗(t− t0). Then, it is obtained that

e2Na(t0,t) ln(ξ̄µ)+ηpTp(t0,t)−ηmTm(t0,t) ≤ e−γ(t−t0) (34)

and substituting (34) into (33) yields that

E {V (t)} < ξ̄e−γ(t−t0)E {V (t0)} (35)

Finally, the consensus error expectation is expressed as

E {||ei2(t)||2} ≤ ξ̄ϕe−γ(t−t0)E {||ei2(t0)||2} (36)
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From (36), it can be seen that the exponential convergence
of consensus error is achieved, and also illustrates that xi(t) →
x0(t) as t → +∞. That is the consensus control purpose of
nonlinear MASs under complex CPTs is achieved through the
double-layer distributed observer-controller algorithm.

Remark 4: In addressing the FTCC issue in leader-follower
MASs, it is customary to furnish predetermined anticipated
states for the leader, concurrently accounting for follower
coordination to trace the leader and engage in collabora-
tive endeavors. The existence of a faulty leader not only
impinges upon FTCC among followers but also necessitates
the incorporation of supplementary fault compensation terms
into the leader’s controller. Moreover, the absence of fault-
tolerant mechanisms for the leader engenders task failure
or degradation. In contrast to the introduction of faults, the
methodology of suppressing input/output channel noises in
the leader’s model bears a resemblance to the noise-resistant
strategy applied to the follower’s model. In instances where
both leader and follower channel noise errors persist and are
unknown but bounded, the proposed double-layer distributed
FTCC algorithm can be deployed for resolution. Under these
circumstances, the bounded conditions are stipulated as fol-
lows: for c1, c2 > 0, it is asserted that ||∆ω1

|| ≤ c1 and
||∆ω̇2

|| ≤ c2, where ω01 and ω02 denote the input and output
noise of the leader, and ∆ω1

= ω01 − ωi1, ∆ω̇2
= ω̇02 − ω̇i2.

IV. SIMULATION RESULTS

In this section, the effectiveness and validity of the compara-
tive analysis (decentralized observer and distributed controller
framework [29] and the proposed double-layer distributed
observer-controller framework) is demonstrated through the
presentation of two simulation cases. Case 1 pertains to the
multi- unmanned aerial vehicles (UAVs) systems, while case
2 focuses on the multi-machine power systems.

A. Case 1: multi-UAV systems

A simulation case of UAVs with five followers and a leader
is carried out. The dynamic behavior corresponds to the lateral
dynamics of the UAV as follows [30]:

A =


−0.0277 0 3.29 0.981
−0.0103 −0.8325 0.375 0
0.0365 0 −0.0639 0

0 0.1 0 0

 ,

B =


−0.543 0

0 −2.864
−0.949 0

0 0

 , C =

[
0 0 1 0
0 0 0 1

] (37)

The input channel noise ωi1(t) and output channel
noise ωi2(t) are set as ωi1(t) = 0.9 sin(0.8t), ωi2(t) =
0.5 cos(1.5t), and the noise-described gain matrices are set-
tled as D1 = [0.8, 0.9, 1, 0]T , D2 = [0.85, 0.95]T , respec-
tively. The Lipschitz state-depended nonlinearity is given as
ξ(xi(t), t) =

∑5
j=1 sin(xi1 − xj1). The actuator fault gain

matrix is selected as Fa = [−5.432, 0,−9.49, 0]T , and the
sensor fault gain matrix is selected as Fs = [1.5, 0.8]T .
Define the upper and lower boundaries of the decay rates

Fig. 2: Topology switching signal r(t)

Fig. 3: Estimation of unified abrupt-incipient actuator faults
and sensor faults

as ε̄a(s) = 0.5, εa(s) = 0.05. Then the multiple unified
actuator/sensor faults fai(t), fsi(t) are set as

fai(t) =


0, 0s ≤ t < 10s

2(1− e10−t), 10s ≤ t < 30s

2(1− e−20)− 4(1− e30−t), 30s ≤ t < 50s

fsi(t) =


2(1− e−0.5t), 0s ≤ t < 15s

2, 15s ≤ t < 30s

2− 2(1− e1.5−0.05t), 30s ≤ t < 50s
(38)

The random cyber-attacks are modeled by the Markov pro-
cess, where the initial distribution is π0 = [0.6, 0.15, 0.25], and

the generator matrix is set as Ξ =

 −0.1 0.02 0.08
0.3 −0.5 0.2
0.1 0.1 −0.2

.

The control parameters of Theorem 1 are configured as
α1 = 15, α2 = 10, ρ = −3. Scalar values L = 100, T = 0.05,
Q = 2I , and τ̄ = 0.1 are selected, and control gain matrices
are determined through the application of the Riccati equation
(PA+ATP −PBL−1BTP +Q = 0) and Riccati inequality
(SA+ATS − SBT−1BTS − τ̄S < 0). The fault-estimation
gain is denoted as Kb = [0.7534, 0]T , while the coupling gains
R1, R2, and the state-estimation gain Kx are computed by
implementing the formulas stipulated in Theorem 1:

R1 =

[
0.0946 0.0142 −0.8273 0.2492
−0.0062 −0.0539 0.0464 −0.2063

]
,

R2 =

[
0.0198 0.0360 −1.0318 0.3678
−0.0067 −0.0220 0.1049 −0.2277

]
,

Kx =

[
−0.2490 −0.0022 −0.0410 −0.0012
−0.0079 −0.3051 0.0036 0.0322

]
.

The topology switching signal r(t) depicted in Fig. 2 illus-
trates the stochastic variations in the communication topology
among G1,G2, and G3 under random cyber-attacks for the time
interval t ∈ [0s, 50s]. Fig. 3 demonstrates the precise estima-
tion results of multiple actuator and sensor faults using the
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proposed distributed normalized observer. The plot illustrates
the exact jump times for both actuator faults (occurring at 10s
and 30s) and sensor faults (occurring at 15s and 30s).

In the presence of simultaneous sensor faults, actuator
faults, input channel noise, and output channel noise in the
physical layer, the consensus errors of the five followers
depicted in Fig. 4 - Fig. 7 demonstrate that each state element
of ei2(t) = xi(t) − x0(t) can ultimately reach consensus
and convergence in suitable time. The continuously fluctuating
trend observed in the consensus error state is undeniably influ-
enced by channel noises and their configuration. Additionally,
the variations in the peak values of the state variables can
be attributed to the occurrence of multiple abrupt-incipient
sensor/actuator faults in the following three scenarios: firstly,
only sensor faults exist from 0s to 10s; secondly, sensor faults
coexist with actuator faults from 10s to 50s; and finally, no
faults are present from 50s to 70s.

Taking further into consideration the influence of random
cyber-attacks on the consensus control of nonlinear MASs,
Figs. 8 - 11 illustrate the concurrent impact of multiple CPTs
(sensor/actuator fault, input/output noises, and random cyber-
attacks). As depicted in Fig. 2, alterations in the communica-
tion topology lead to irregular fluctuations in the consensus
errors. Specifically, when the communication topology un-
dergoes continuous changes, these fluctuations become more
pronounced, whereas they remain relatively minor otherwise.
These findings offer further evidence that the security and
safety performance, as well as the consensus control indicators
of the nonlinear MASs, can be effectively maintained even
when faced with the occurrence of aperiodic random attacks,
multiple physical faults, and simultaneous channel noises.

B. Case 2: multi-machine power systems

The state of the i-th machine (i = 1, · · · , 5) within
the dynamic model of the power system is articulated as
xi = [∆σT

i ,∆ω
T
i ,∆P

T
mi,∆X

T
ei]

T , where ∆σi, ∆ωi, ∆Pmi,
and ∆Xei denote the deviation of rotor angular velocity,
relative speed, mechanical power, and steam valve aperture,
respectively. Moreover, the consensus error between the leader
and followers is expressed as ei = [eσi2, e

ω
i2, e

P
i2, e

X
i2]

T . Thus,
the matrix delineating the dynamic behavior of the multi-
machine power systems is as follows [21]:

A =


0 1 0 0
0 −0.2941 30.7999 0
0 0 −2.8571 2.8571
0 0.6366 0 −10

 ,

B =


0
0
0
10

 , C =

[
1 0 0 0
0 1 0 0

] (39)

In both cases 1 and 2, consistent physical models are
maintained, resulting in parallel configurations for input/output
noises and actuator/sensor faults. Case 2 mirrors the choices
made in Case 1, encompassing dynamic models and associated
matrix information. A focused comparative analysis of FTCC
effectiveness against noises and faults in the physical layer is

Fig. 4: First state of the consensus error with non-attacks

Fig. 5: Second state of the consensus error with non-attacks

Fig. 6: Third state of the consensus error with non-attacks

Fig. 7: Fourth state of the consensus error with non-attacks
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Fig. 8: First state of consensus error with random attacks

Fig. 9: Second state of consensus error with random attacks

Fig. 10: Third state of consensus error with random attacks

Fig. 11: Fourth state of consensus error with random attacks

conducted, which is motivated by the alignment between the
employed attack modeling concept and principles discussed in
[29]. In accordance with the stipulated requirements, the pre-
scribed control parameters manifest as α1 = 0.5, ρ = −5, and

R̄ =

[
0.1 0 0.5 0.8 0 1.8 2.1
0 0 0 0 0 0 0

]T
. Thus, the matri-

ces of control gain, state-estimation gain, and fault-estimation
gain are derived as R1 = [0.1414, 0.2651, 1.7536, 0.42198],
Kx = [0.0137, 0.3339,−0.2297, 0.7632], and Kb = [0.15].

With the existence of multiple physical faults and chan-
nel noises in the physical layer, substantial fluctuations in
rotor angular velocity, relative speed, mechanical power, and
steam valve aperture deviation errors manifest during fault
occurrences, as depicted in Figs. 12 - 15. Nevertheless, the
double-layer distributed observer-controller framework adeptly
achieves efficient and expeditious convergence. Noteworthy
are two salient observations: 1) Abrupt faults at 10s and 30s
of actuators/sensors markedly influence the consensus error
signal. Specifically, faults characterized by larger amplitudes
and faster rates tend to manifest spikes at each fault occurrence
moment. Owing to highly robust compensation mechanism of
FTCC law, multiple physical faults at 0s and 15s, concomitant
with channel noises, are effectively attenuated to insignif-
icance. 2) The double-layer distributed observer-controller
framework proposed in this paper demonstrates superior con-
vergence speed, reduced oscillation amplitudes, and height-
ened robustness to sinusoidal noises when compared with the
decentralized observer and distributed controller framework
[29]. Additionally, as time progresses, the convergence trend
of the consensus error demonstrates a more desirable behavior
with fluctuations around a value in proximity to zero.

V. CONCLUSION

A novel double-layer observer-controller framework op-
erating in a distributed strategy for fault-tolerant consensus
is proposed to ensure the safety and security performance
of nonlinear MASs, even in the presence of complex and
adverse CPTs. These CPTs encompass unified abrupt and
incipient sensor/actuator faults, channel noises, and random
cyber-attacks. To achieve consensus, distributed normalized
observers are devised to estimate sensor/actuator faults and
output noise by leveraging local output information. Moreover,
the distributed FTCC law is developed, incorporating both
estimation and reconstruction information, thereby enabling
compensation for physical faults, robustness against channel
noises, and resilience against random cyber-attacks. In future
investigations, particular emphasis is placed on addressing
the challenges faced by the fully distributed FTCC issue
in linear/nonlinear heterogeneous MASs, specifically those
arising from cyber-physical threats, such as composite faults,
data incompleteness due to deception attacks, or information
leakage caused by privacy attacks.
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