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Abstract 
Fault localization is crucial for ensuring stability, particularly in high impedance faults (HIF) characterized by low current levels 
and prolonged transient processes (TP). Existing methods predominantly analyze differences in the fixed-length transient 
waveform, potentially causing delays in triggering or failure in HIF scenarios. To address these challenges, a novel AI application 
paradigm for HIF localization was introduced, incorporating both adaptive TP calibration and multiscale correlation analysis. 
Based on 1D-Unet, the TP of the zero-sequence voltage (ZSV) can be adaptively calibrated to maximize the utilization of transient 
information. Subsequently, the differential zero-sequence voltage (DZSV) and transient zero-sequence current (TZSC) can be 
acquired to facilitate multiscale correlation analysis. Combined with a sliding window strategy, the micro correlation between 
DZSV and TZSC is articulated through the local correlation degree (LCD). The comprehensive correlation degree (CCD) between 
DZSV and TZSC is then formulated to realize fault feeder/ section localization at the macro level. The 1D-Unet model achieved a 
classification accuracy of 99.2% for sample points in test datasets and showed robustness with an accuracy exceeding 93.5% in 
the presence of 20dB noise interference. When integrated with the well-trained 1D-Unet, the proposed approach underwent further 
validation using simulation data and field recordings. These tests confirmed the model's resilience to noise interference up to 20 
dB and its efficacy across networks of diverse topologies, such as the IEEE-13 and 34-node distribution networks. Additionally, 
an industrial prototype applying this framework identified all fault conditions without false positives or omissions, outperforming 
existing methods under various fault scenarios, including those involving high impedance materials and different resistance levels 
across multiple feeders. 
Keywords: Active distribution networks, adaptive transient process calibration, fault localization, high impedance fault, multiscale 
correlation analysis. 

Acronyms 
HIF: High Impedance Fault 
LIF: Low Impedance Fault 
SPGF: Single-phase Ground Fault 
AI: Artificial Intelligence  
TZSV: Transient Zero-sequence Voltage 
DZSV: Differential Zero-sequence Voltage 
TZSC: Transient Zero-sequence Current 
TP: Transient Process 
NTP: Non-transient Process 
LCD: Local Correlation Degree 
CCD: Comprehensive Correlation Degree 

1. Introduction
The localization of high impedance fault (HIF) in active

distribution networks represents a critical and challenging task, 
owing to the subtle nature of such faults. As one kind of single-
phase ground fault (SPGF), HIF typically occurs in overhead 
feeders when a live conductor contacts high-resistive materials, 
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such as a tree branch, grass, gravel, or the ground surface [1]. 
Unlike low impedance faults (LIFs), HIFs generate low-level 
currents that often evade detection by conventional overcurrent 
relays, leading to prolonged fault durations. Although the fault 
current may be less than 10% of the load current and appear 
innocuous, it poses significant risks due to the arc flash 
produced by HIF, which can ignite nearby combustible 
materials, causing fires or personal injury. Thus, prompt and 
efficient HIF localization is essential to mitigate their effects 
and prevent subsequent disasters. 

With the intricate challenges of HIF localization, artificial 
intelligence (AI) advancements offer innovative solutions. The 
impact of AI is notable in various sectors, including industrial 
control [2], [3], network security [4], [5], and energy 
management [6], [7]. Incorporating AI into HIF localization 
enhances performance and adaptability, enabling precise fault 
localization in complex environments.  

Amid rapid AI advancements, significant academic efforts 
focus on developing AI-based methods for addressing HIF 
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issues in active distribution networks. Existing literature 
broadly categorizes these methods into two groups [8]. The first 
involves feature extraction and classification, utilizing 
technologies like wavelet transform [9], S-transform [10], and 
mathematical morphology [11], followed by classifiers such as 
random tree [12], fuzzy logic [13], and support vector machine 
[14] for subsequent classification. The effectiveness of these 
methods heavily relies on the quality of extracted features, 
necessitating domain-specific expertise.  

The second category adopts an end-to-end approach, 
reducing reliance on expert knowledge and often yielding 
superior performance. These methods use original signals or 
convert them into time-frequency matrices as input for deep 
learning models, such as convolutional neural networks [15], 
variational prototyping-encoder [16], and fully convolutional 
network [17], aiming to categorize samples into predefined 
groups for macro classification. However, most AI-based 
methods lack specific designs for the unique requirements of 
HIF localization. 

Inspired by [18], the embedded semantic features in electrical 
signals strongly suggest the potential functionality of waveform 
morphology, especially in the transient stage of HIF, for sample 
point classification tasks. Accordingly, the Unet model, applied 
to HIF diagnosis [19], demonstrates a robust capability to 
extract local and global features. It primarily utilized the first 
detected sample point as the fault moment yet overlooked the 
transient information's utility. Despite its original design for 2D 
image segmentation, where each pixel requires labeling for a 
final result, the Unet structure parallels the image segmentation 
task. Classifying each signal sample point is essential for this 
paper's adaptive TP calibration for HIF localization. Unet's 
adaptation to 1D sequential data, as demonstrated in [19], 
makes it a suitable tool for this task. 

Therefore, this paper introduces a novel HIF localization 
method using adaptive TP calibration and multiscale correlation 
analysis. This method capitalizes on the Unet architecture's 
feature extraction capabilities. Initially, the 1-D Unet model 
captures the complete transient information during HIF. 
Subsequently, a sliding window strategy is applied to the 
differential zero-sequence voltage (DZSV) and transient zero-
sequence current (TZSC). This strategy computes the local 
correlation degree (LCD) on a microscale and establishes a 
comprehensive correlation degree (CCD) on a macroscale for 
fault feeder/section localization. The primary contributions of 
this paper have been articulated to include: 

1. The introduction of an adaptive TP calibration utilizing 
semantic segmentation technology, specifically the 1D-
Unet model, for precise fault feeder/section localization 
has been detailed. This method has been shown to 
significantly reduce the misjudgments of fault moments, 
thereby refining the accuracy of fault-triggering analysis. 

2. The integration of a sliding window strategy with 
multiscale correlation analysis for segmenting TZSC and 
DZSV has been described. This approach has been 
demonstrated to efficiently calculate the LCD on a micro-
scale and establish a practical HIF localization criterion by 

quantifying the CCD between TZSC and DZSV on a 
macro-scale. The approach's effectiveness has been 
validated through extensive simulations under various 
conditions, including noise interference and topology 
variations. 

3. The development of an industrial prototype incorporating 
the proposed approach has been presented. This prototype, 
featuring an innovative hardware structure and software 
framework for real-time multitasking, is effective through 
comparative analysis using a 10kV full-scale test system, 
highlighting its superiority over current typical methods. 

The rest of the paper is organized as follows: Section 2 
reviews recent works on HIF fault localization. Section 3 
presents the transient analysis of HIF. Section 4 details the 
proposed fault localization approach. Simulation verification is 
described in Section 5, adaptability analysis is in Section 6, and 
experimental verification is in Section 7. Finally, Sections 8 and 
9 summarize the main work and discuss its limitations and 
future research directions. 

2. Related work 
The heightened interest in HIF continues to shape research 

directions, with recent studies broadly classifying the methods 
for HIF localization into three categories: original signal-based, 
signal processing-based, and AI-based.  

The original signal-based approach derives spatial and 
temporal distribution rules from theoretical HIF analysis, 
enabling the identification of the fault feeder or sections and the 
precise HIF location. Study [20], for instance, utilizes slope 
relationships to identify faulted feeders, while [21] employs 
cross-correlation coefficients, considering waveform 
disparities and transient zero-sequence energy. Research [22] 
concentrates on transient energy and cosine similarity, and [23] 
applies dynamic voltage-current profiling of zero-sequence 
quantities. Furthermore, [24] uses time-frequency 
characteristics of traveling waves and quadratic B-spline 
wavelet analysis for fault distance estimation. However, based 
on these methods, the theoretical analysis of HIF often assumes 
ideal conditions. In reality, distribution networks are more 
complex, with variable loads, diverse configurations, and 
unpredictable external factors. 

Signal processing-based methods involve a variety of 
advanced technologies for handling electrical signals to 
establish effective fault localization criteria. In [25], the TZSC 
is divided into steady-state and transient components, with the 
fast Fourier transform employed to isolate the transient 
component. Subsequently, steady-based and transient-based 
criteria are formulated to identify the fault feeder. Study [26] 
decomposes TZSC into multiple frequency scale models using 
a variant of empirical mode decomposition, wherein mode 
energy and waveform polarity of TZSC are computed for fault 
feeder detection. Similarly, [27] employs variational mode 
decomposition to isolate intrinsic mode functions (IMFs), 
focusing on those with the highest kurtosis. These IMFs are 
then analyzed using Teager–Kaiser energy operators (TKEOs) 
and segmented into subintervals for calculating time entropy 
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values for HIF localization. In [28], the method includes using 
empirical wavelet transform to break down differential faulty 
energy into time-frequency components, selecting the highest 
permutation entropy component, and then applying a 
permutation variance index for HIF detection. Despite their 
effectiveness, these signal processing methods require precise 
threshold adjustments and extensive trial-and-error for 
hyperparameter selection, like the mother wavelet in wavelet 
transform, limiting their practical adaptability in dynamic 
network environments. 

AI-based methods, particularly deep learning, are 
increasingly recognized for their effectiveness in HIF fault 
localization, offering a notable edge over traditional machine 
learning algorithms. These deep learning models capitalize on 
their capacity to independently learn from extensive data sets 
and apply diverse architectural frameworks. In [29], first-half 
waveforms are inputted into a well-trained convolutional neural 
network, where the accuracy of localization hinges on the 
precise determination of the fault moment. [30] advances a two-
path fully convolutional network by integrating semantic 
segmentation, thereby enhancing the precision of fault 
identification and localization in waveform signals. These deep 
learning-based HIF localization methods predominantly utilize 
direct outputs from deep learning models, producing qualitative 
results. This protection paradigm, lacking in decision-making 
interpretability, fails to gain acceptance and trust among power 

system protection experts, who prioritize clear, explainable 
processes for safety and reliability. 

The primary research objective for fault localization among 
the discussed methods is analyzing the fault's TP. Regarding 
HIF characteristics, the duration of TP varies based on specific 
fault scenarios. However, methods above that rely on fixed-
length measured signals struggle to adapt to this variation, and 
estimation errors in the fault moment can impact the final fault 
localization results. To address these issues, this paper 
introduces a split-and-conquer strategy for a step-by-step 
implementation of HIF localization. Initially, the 1D-Unet 
semantic segmentation model was utilized to adaptively 
calibrate the TP of HIF, treating the unique transient waveform 
as a semantic feature. This approach is complemented by a 
multiscale correlation analysis throughout the transient 
information of HIF, calculating the LCD on a micro-temporal 
scale and establishing a CCD for a macro-temporal scale to 
realize fault feeder/section localization.  

3. Transient analysis of high impedance fault 
As illustrated in Fig. 1, an HIF occurs within an active 

distribution network that includes a neutral point grounded 
through a Peterson coil, characterized by fault resistance R and 
the coil's inductance represented as L. 

 
Fig. 1. HIF occurs in the active distribution network. 
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Fig. 2. Equivalent circuit of HIF.

According to [31], when distribution generation (DG) is 
connected to the active distribution networks, it adopts an Δ/Y 
transformer. Therefore, the zero-sequence equivalent network 
with DG is completely consistent with that without DG, as 
shown in Fig. 2, wherein the equivalent fault resistance Rf and 
inductance Lp are threefold the values of R and L from Fig. 1, 
respectively. Moreover, C0k (where k=1,2,..,n-1) denotes the 
zero-sequence capacitance of sound feeder k, while C0n,u and 
C0n,d represent the upstream and downstream zero-sequence 
capacitances at the fault point.  

According to Fig. 2, the established equation is as follows: 
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Where i0Lp is the ZSC of the Peterson coil, i0k  is the ZSC of 
sound feeder k, i0CΣ is the aggregate zero-sequence capacitance 
current, i0Ck denotes the zero-sequence capacitance of the sound 
feeder k. i0Cn,u and i0Cn,d are the fault point's upstream and 
downstream zero-sequence capacitance. 

Additional equations (2) and (3) elucidate the ZSC 
distribution among the fault feeder and sound feeders: 
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Where C0Σ is the total zero-sequence capacitance of the 
network, and du0/dt is the derivative of the ZSV. 

Analysis of (2) and (3) shows a positive correlation between 
ZSC and DZSV in sound feeders but a partial negative 
correlation in fault feeders, especially during post-fault 
transients. The key difference is in their ZSC composition: fault 
feeders contain fault current and zero-sequence capacitance 
currents, while sound feeders only have the latter. By deploying 
multiple measurement devices along a feeder, differentiation 
between fault feeder characteristics upstream and sound feeder 
attributes downstream of the fault point is achievable. 
Therefore, leveraging the ZSC-DZSV relationship is crucial for 
fault feeder/section localization, which includes detecting fault 

feeders or sections. 
Observations from fault data show that the dynamic changes 

from fault inception to arc generation align with a constant 
coefficient second-order differential equation, which indicates 
the suitability of a linear model for analyzing the transient stage 
of HIF. In this context, Rf can be considered constant, and a 
second-order constant coefficient differential equation, 
depicted in (4), can represent Fig. 2. 
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In this context, the decay coefficient δ of the second-order 
equation can be defined as in (5). 
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The decay coefficient reflects the transient stage's duration, 
which is important for fault detection. While previous research 
acknowledges HIF's extended transient phase, its exact duration 
remains elusive due to randomness. The gradual nature of HIF 
also causes delayed fault detection in practical, threshold-based 
methods. Therefore, the proposed approach introduces adaptive 
TP calibration to effectively utilize the transient phase to 
enhance the fault feeder/section localization performance. 

4. Fault localization approach 
4.1 Adaptive Transient Process Calibration 

Semantic segmentation, vital in computer vision, labels each 
pixel for pixel-level object identification, enhancing 
recognition and localization. Particularly impactful in medical 
fields, including ECG analysis, it segments images into regions 
for detailed analysis [18], [32]. In ECG analysis, classifying 
signal sample points improves HIF diagnosis, a novel AI 
application in power systems. This method, distinct from 
traditional classification and regression, employs the modified 
1D-UNet for HIF triggering, initially focuses on the transient 
stage's start point post-fault [18], but does not fully utilize the 
complete TP. The updated approach uses the 1D-Unet for 
adaptive TP calibration, optimizing AI for fault feeder/section 
localization. 
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The 1D-Unet, illustrated in Fig. 3, adapts the original Unet 
for 1D inputs like time-series data. Its encoder, with three 
layers, downsamples data via convolution and max-pooling, 
later restoring size and merging detail levels. The architecture's 

final layer categorizes points into TP or non-TP (NTP), 
assessed against actual values using the cross-entropy loss 
function. 

 
Fig. 3. Architecture of 1D-Unet. 

 
Fig. 4. Adaptive transient process calibration by trained 1D-Unet. 

Existing literature presents various methods for the TP of 
SPGF using fixed-length data, spanning from half to several 
frequency cycles. However, the duration of TP varies with on-
site conditions. Our study utilizes a 1D-Unet model for adaptive 
TP calibration, enhancing fault feeder/section localization 
(refer to Fig. 4). This trained model processes the ZSV to 
produce TZSV, previously applied in fault triggering [19]. 

Fig. 5 and Fig. 6 depict two SPGF scenarios with different 
fault resistances, contrasting HIF and LIF. In Fig. 5, the TZSV 
duration is much shorter with a low fault resistance (200 Ω) than 
a high one (3000 Ω). Fig. 5(b) and Fig. 6(b) show a reversal in 

TZSC direction between fault and sound feeders, aligning with 
(2) and (3). Integrating these waveforms into combined 
diagrams (Fig. 5(c), 5(d), 6(c), 6(d)) allows a detailed 
examination of the DZSV and TZSC relationship. 

Analysis of DZSV reveals that in sound feeders, TZSC 
polarity matches DZSV, while in fault feeders, there's a slight 
waveform deviation. DZSV and ZSC display minimal changes 
in fault or sound feeders during steady-state. Therefore, richer 
in diagnostic information, the transient information warrants 
greater focus on a macro temporal scale for SPGF diagnosis. 
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Fig. 5. SPGF within low fault resistance. (a) ZSV and its DZSV. (b) ZSCs of fault and sound feeders. (c) DZSV and TZSC of the 

sound feeder. (d) DZSV and TZSC of fault feeder. 
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Fig. 6. SPGF within high fault resistance. (a) ZSV and its DZSV. (b) ZSCs of fault and sound feeders. (c) DZSV and TZSC of 
the sound feeder. (d) DZSV and TZSC of fault feeder.

4.2 Multiscale Correlation Analysis 
After calibrating the TP of DZSV using the 1D-Unet model, 

a sliding window strategy was introduced for analyzing the 
micro-temporal correlation between DZSV and ZSC. This 
strategy involves setting the sliding window's length and stride 
to half a frequency cycle and one sampling interval operating at 
a 5 kHz sampling rate. Subsequently, the Pearson correlation 
coefficient was adopted and shown (6) to quantify the LCD 
difference between DZSV and TZSC.  
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Where xi and yi denote the individual observations of the two 
input variables while x  and y  represent their respective 
mean value. 

After implementing adaptive TP calibration, the LCD curve 
is computed as shown in Fig. 7. In the fault feeder, the initial 
LCD values are below zero, gradually increasing towards 1. In 
contrast, the sound feeder's LCD curve stays positive, initially 
lower due to high-frequency components. Fig. 7(c) and (e) 
reveal extreme minimum points in the LCD curve, coinciding 
with DZSV's extreme points. Incorporating (2) allows for 

constructing the CCD, as outlined in Algorithm 1. This method 
effectively localizes faults, indicating fault feeders/sections 
with negative CCD values and sound feeders/sections with 
positive ones. 
Algorithm 1: Calculate CCD 
Input: DZSV, LCD, stride  
Output: CCD 

1: ExtIdx=[], NegIdx=[], MinLCDIdx=[], CCD=0 
2: for i from 1 to (length(DZSV)-2) do 
3: if DZSV[i] > DZSV[i-1] and DZSV[i] > DZSV[i+1] then  

ExtIdx.append(i) 
4: else if DZSV[i] < DZSV[i-1] and DZSV[i] < DZSV[i+1] then  

ExtIdx.append(i) 
5: end if 
6: end for 
7: for i from 0 to (length(LCD) - 1) do 
8: if LCD[i] < 0 then  

NegIdx.append(i) 
9: end if 

10: end for 
11: for i in ExtIdx do 
12: startIdx=i * stride 
13: endIdx=min((i + 1) * stride, len(LCD)) 
14: minLCDIdx=startIdx + argmin(LCD[startIdx:endIdx]) 
15: MinLCDIdx.append(minLCDIdx) 
16: end for 
17: unionIdx=sorted(set(NegIdx) | set(MinLCDIdx)) 
18: for i from 0 to (len(unionIdx) - 1) do 
19: CCD=CCD + LCD[unionIdx[i]] 
20: end for 
21: return 
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Fig. 7. Calculation of the LCD curve. (a) DZSV and ZSCs of fault and sound feeders. (b) DZSV and TZSC of the sound feeder. 

(c) LCD curve of sound feeder. (d) DZSV and TZSC of fault feeder. (e) LCD curve of fault feeder. 

 
Fig. 8. Flowchart of the proposed approach. 

4.3 Workflow of the proposed approach 
The proposed approach has employed a 1D-Unet model to 

meticulously calibrate the TZSV, capturing the entire transient 
stage following an SPGF event. The derivation of DZSV from 
TZSV and the segmentation of both TZSC and DZSV 
waveforms using a sliding window have established a 
foundation for precise fault analysis. The LCD has been 
computed at a micro time scale. The CCD between TZSC and 
DZSV has been assessed at a macro scale, establishing a 
comprehensive criterion for localizing faults in feeders and 
sections. This structured approach is visually represented in 
Fig. 8. 

The steps in the flowchart include: 
Step 1: Real-time monitoring: The proposed approach 

begins with real-time monitoring to detect SPGFs or HIFs 
promptly, using our team's fault-triggering algorithms [19]. 

Step 2: Adaptive transient process calibration: Upon 
detection of SPGF or HIF, the TP has been calibrated using 
the 1D Unet model, yielding the TZSV and TZSC. 

Step 3: Derivation of DZSV: The DZSV has been derived 
from the TZSV, crucial for subsequent fault characteristic 
analysis. 

Step 4: Data segmentation by sliding window: The TZSC 
and DZSV waveforms have been segmented using a 
sliding window, setting the stage for detailed correlation 
analysis. 

Step 5: LCD calculation: The LCD has been computed at 

the micro time scale, providing a granular view of the 
signal correlations as per (6). 

Step 6: CCD evaluation: At the macro time scale, the CCD 
has been evaluated, offering a comprehensive overview of 
the signal correlations over time, as described in 
Algorithm 1. 

Step 7: Fault Localization Decision: The decision on fault 
localization has been based on the CCD value, where a 
negative value indicates a fault in a feeder or section, and 
a positive value signifies a sound feeder or section. 

5. Simulation Verification 
5.1 Simulation Setup 

In this study, a 1D-Unet model is trained using fault data 
from PSCAD/EMTDC simulations to address the challenge of 
obtaining sufficient practical data. A 10 kV distribution 
network with five feeders is modeled in Fig. 9, with each feeder 
based on real line parameters using a mid-frequency variable 
parameter model in PSCAD/EMTDC. Table 1 details the 
different feeder types and parameters, where R1, L1, and C1 
represent positive-sequence parameters, and R0, L0, and C0 

represent zero-sequence parameters. The SPGF data from 
PSCAD simulations tend to be more idealized than real field 
fault data, mainly due to a slight system imbalance in the normal 
state, where the zero-sequence voltage amplitude is not exactly 
zero before a fault. To better replicate real-world conditions, the 
system imbalance was set to 2% in the simulations [33]. 
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Fig. 9. PSCAD model of the 10 kV active distribution network.

5.2 Dataset Construction 
The proposed 1D-Unet model, a type of semantic 

segmentation, requires detailed data annotation at the sample 
point level. To overcome the absence of existing tools for 
annotating electrical signals, the proprietary software LabelSig, 
accessible on GitHub [34], was utilized for sample-point-level 
annotation, facilitating the construction of the dataset. A Python 
script was developed to initialize the PSCAD model, selecting 
fault points, fault resistances (FRs), and fault initial angles 
(FIAs) as in Table 2 for fault characterization. This setup 
automatically runs the PSCAD model, representing the 

distribution system, and generates simulation data in 
COMTRADE 99 format. Data annotation is conducted with 
LabelSig, which processes COMTRADE files to manually 
annotate the TP fraction in the ZSV waveform. These annotated 
data would be archived with the COMTRADE files, forming 
the dataset's foundation for training and testing the model. 

The assembled dataset comprises 1000 simulation records. 
Each record consists of 18 frequency-cycle waveforms at a 
sampling frequency of 5k Hz, resulting in 1800 sample points 
per record. Following data annotation, each sample point is 
assigned a corresponding label, culminating in 1.8 million pairs 
of sample points and their respective labels. 

 
 
 
Table 1 
Feeder parameters of 10 Kv active distribution network 

Type R (Ω/km) L (mH/km) C (μF/km) 
R1 R0 L1 L0 C1 C0 

Overhead line 0.17 0.23 1.21 5.48 0.0097 0.006 
Cable line 0.098 0.246 0.274 0.955 0.351 0.166 

Table 2 
The configuration of diverse fault conditions  

Fault feeder FIA(˚) FR(Ω) Quantity 
l1,l2,l3,l4,l5 0∼ 90 per 15 200, 300, 500, 1000, 1500, 2000, 3000 1000 

5.3 Model Implementation 
Table 3 shows that all simulation records were divided into 

training and testing subsets at a 70:30 ratio. The number of TP 
sample points for each record varies with the fault's duration, 
resulting in a fluctuating proportion of sample point categories 
in the training and testing datasets. The training and testing 
were performed on a system equipped with a 3.2 GHz Intel® 
Core™ i7-8700 processor, 16GB RAM, and an NVIDIA® 
GeForce RTX-1060 graphics card, using the TensorFlow 

platform. Hyperparameter optimization, essential for achieving 
optimal model performance, was systematically conducted 
through a trial-and-error process, as indicated in Table 4. This 
process determined an initial learning rate of 0.001, a training 
length of 100 epochs, and a batch size 32. The model utilized 
the Adam optimizer and a CrossEntropy loss function for 
parameter updates. Strategies such as dropout, early stopping, 
and learning rate decay were crucial in preventing overfitting 
and ensuring efficient learning.

Table 3 
Distribution of the dataset for training and testing 
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Dataset Simulation records Sample points 
Quantity Category Quantity 

Training 700 TP 189298 
NTP 1070702 

Testing 300 TP 87116 
NTP 452884 

Table 4 
Hyperparameter of the 1D-Unet 

Hyperparameter 1D-Unet 
Learning rate 0.001 

Training epoch 100 
Batch size 32 
Optimizer Adam 

Loss function CrossEntropy 
Training  
Strategy 

Dropout, Early stop, 
Learning rate decay 

The model leveraged the Adam optimizer with a cross-
entropy loss function in parameter optimization. The Adam 
optimizer was selected for its adaptive learning rate mechanism, 
which facilitates efficient parameter updates. The cross-entropy 
loss function, depicted in (7), was the chosen objective 
function. It excels in classification scenarios by measuring the 
disparity between predicted probabilities and actual class 
labels. The primary objective was to minimize this cross-
entropy, thus aligning the predicted probabilities more closely 
with the actual labels. By optimizing this loss function, the 
Adam optimizer's dynamic adjustment of learning rates enabled 
the model to iteratively refine its weights iteratively, enhancing 
the precision of its predictions throughout the training phase. 
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Where ijy denotes the presence or absence of class j in the actual 
labels for sample i, ˆijy is the predicted probability of class j for 
sample i, N is the total number of samples, and C is the number 
of classes. 

Furthermore, techniques like dropout and early stopping 
were employed to combat overfitting. Dropout randomly turns 
off a fraction of neurons during training, enhancing model 
robustness, while early stopping terminates training when no 
significant improvement is observed on a validation dataset. A 
learning rate decay strategy further ensured faster initial 
convergence and subsequent training stability. Additionally, for 
operationalizing the trained 1D-Unet model, a Raspberry Pi 
served as the central module in an industrial prototype. The 

RaspPi offers a cost-effective and practical solution for 
embedded AI computing devices, meeting the computational 
and speed requirements necessary for our approach. Detailed 
information about the industrial prototype is provided in 
Section 6.1. 

5.4 Performance Evaluation 
The efficacy of the 1D-Unet model in adapting TP calibration 

for SPGF has been confirmed through tests cited in reference 
[19]. These tests effectively differentiate sample points 
associated with the TP of a fault. The 1D-Unet model accurately 
discerns SPGF or HIF transient waveforms by clustering 
adjacent samples within the same category. The model's 
performance was assessed based on the accuracy of sample 
point classification, as described by the equation in (8).  

 Number of correctly classified sample pointsAccuracy
Total number of sample points

= (8) 

In Fig. 10, the classification capabilities of the 1D-Unet 
model are illustrated. Fig. 10(a) presents an accuracy curve, 
demonstrating a plateau in testing accuracy and initiating an 
early stop at epoch 71. Fig. 10(b) shows a loss curve that 
indicates a consistent decrease over epochs, signifying learning 
stability. The confusion matrix in Fig. 10(c) reveals high 
classification accuracies of 99.1% for TP sample points and 
99.7% for NTP sample points. These findings collectively 
confirm the model's high precision, with an overall testing 
accuracy of 99.2%, thereby validating its effectiveness in 
differentiating between TP and NTP sample points in detecting 
SPGF, even under HIF conditions. 
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Fig.10. Visualization of the 1D-Unet training process. (a) Training and testing accuracy curves. (b) Training and testing loss 

curves. (c) Confusion matrix for sample point classification. 

 
Fig. 11. Case study (a) HIF of l2 fault under 3000Ω, (b) LIF of l2 fault under 200Ω. 

Upon determining the TP of ZSV, multiscale correlation 
analysis was performed to detect fault feeders or locate fault 
sections based on specific needs like feeder identification or 
section location. To illustrate the proposed method, two 
scenarios were presented in Fig. 11, showcasing HIF and LIF 
occurrences at feeder l2, characterized by fault resistances of 
200 Ω and 3000 Ω, respectively. 

Fig. 11 indicates the diverse transient waveform's length 
between HIF and LIF, with the former being larger than the 

latter. Moreover, the disparity between DZSV and TZSC could 
be harnessed to detect the faulty feeder. The transient 
information under both SPGFs was enclosed in a red dashed 
box, subsequently utilized by the multiscale correlation analysis 
to compute the CCD for each feeder. The associated results are 
presented in Table 5. It can be deduced from the table that 
regardless of the occurrence of HIF or LIF, the CCD of fault 
feeder l2 is negative and opposed to those of other sound feeders. 
 

Table 5 
CCD Under different fault conditions 

Type of SPGF Sound feeder Fault feeder 
HIF 0.686 -0.547 
LIF 0.893 -0.504 
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5.5 Adaptability analysis 
This paper expands upon the previous work published in [19], 

detailing an adaptability analysis of the proposed 1D-Unet 
model. This section focuses primarily on the adaptability 
analysis associated with multiscale correlation within the 
context of the proposed fault feeder/section localization 
approach. 

5.5.1 Noise Interference 
Recognizing the impact of environmental noise on the 

effectiveness of our proposed approach, we deliberately 
introduced noise into the ZSV and ZSC signals. This procedure 
aimed to evaluate the performance of TP calibration and 
multiscale correlation analysis. Notably, environmental noise 
influences the ZSV and ZSC signals in disparate ways, driving 

the signal-to-noise ratio (SNR) variability of these signals. 
Under normal circumstances, the ZSV signal experiences no 
noise interference. We elected an extreme condition, 
characterized by an SNR of 20dB,as shown in Fig.12, to 
appraise the sample point classification performance of our 
proposed 1D-Unet. A series of test results, depicted in Table 6, 
suggest that the accuracy of the 1D-Unet is susceptible to noise 
interference, with escalating noise levels causing a decrement 
in accuracy. Table 6 also shows that the 1D-Unet model can 
achieve an accuracy exceeding 93.5%, even in the presence of 
20dB noise interference. 

Contrarily, to assess the efficacy of multiscale correlation 
analysis, we introduced noise solely into the ZSC signal, 
treating the ZSV signal as the ideal case. This operation aligns 
with most field fault records, suggesting that the ZSC signal 
typically harbors more noise than the ZSV signal.

Table 6 
Performance of 1D-Unet under noise interference 

SNR(dB) 20 25 30 35 
Accuracy(%) 93.5 95.2 96.8 97.2 

 
After implementing the TP calibration using the 1D-Unet 

model, an SPGF was introduced as a test case to inject noise, 
successfully achieving an SNR of 20 dB within the TZSC. In 
this scenario, feeder l2 is subjected to a fault characterized by 
an FIA of 30° and an FR of 3000 Ω, as illustrated in Fig. 12. 
Fig.12 (a) showcases the TZSV and its derivative, DZSV. Fig. 
12(b) through Fig. 12(f) reveal the significant influence of 
intense noise on the TZSC, which obscures the clear 
identification of the fundamental fault characteristics of the 
fault feeder l2 from the sound feeders l1, l3, l4, and l5 within the 
noisy TZSC context. It is particularly noted that during the 
SPGF event, the polarity relationship between the DZSV and 
TZSC of the faulted feeder l2 is inverted, in stark contrast to the 
consistent polarity observed in the DZSV and TZSC of the non-
faulted feeders l1, l3, l4, and l5. This key observation underscores 
that, despite intense noise, the polarity relationship between 
TZSC and DZSV does not change fundamentally, whether in 
the fault feeder or the sound feeders. 

Table 7 provides detailed CCD values for each feeder under 
varying levels of noise interference, starting with an SNR of 20 
dB. At this level, the CCD for the fault feeder l2 is distinctly 
negative (-0.314), sharply differentiating it from the positive 
values observed for the sound feeders l1 (0.148), l3 (0.204), l4 
(0.134), and l5 (0.184). This negative value unequivocally 
identifies feeder l2 as the fault feeder. This pattern persists 
across different SNR levels, with the fault feeder l2 consistently 
exhibiting negative CCD values, even as the SNR is increased 
to 25 dB (-0.339), 30 dB (-0.345), and 35 dB (-0.345).  

Fig. 13, which visualizes the data from Table 7, further 
elucidates this phenomenon by depicting the consistently 
negative CCD values of feeder l2 under four distinct conditions 
of noise interference, thereby affirming its status as the fault 
feeder with remarkable precision. The unwavering detection of 
feeder l2 as the fault feeder, evidenced by negative CCD values 
across all evaluated SNR levels, attests to the fault localization 
strategy's efficacy and superior noise resistance.  
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Fig. 12. Analysis of voltage and current waveforms under noise interference (l2 fault, 3000Ω, SNR=20dB):  

(a) displays the voltage signals measured at the bus, while (b) through (f) depicts the current signals measured from the five 
feeders, corresponding to l1, l2, l3, l4, and l5. 

Table 7 
CCD of diverse feeders under noise interference 

SNR(dB) l1 l2 l3 l4 l5 Fault feeder 
20 0.148 -0.314 0.204 0.134 0.184 l2 
25 0.302 -0.339 0.317 0.293 0.304 l2 
30 0.355 -0.345 0.386 0.342 0.450 l2 
35 0.361 -0.345 0.413 0.415 0.439 l2 
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Fig. 13. CCD for each feeder under varied noise interference conditions 

5.5.2 Topology Variation 
Because the proposed approach enables fault feeder/section 

localization based solely on local ZSV and ZSC signals, it is 
immune to topology variations. Due to space limitations, 
verification results for the modified IEEE 13-node and 34-node 
distribution networks are provided. 

Fig. 14 represents the modified IEEE 13-node distribution 

network, which is characterized by its short, high-load feeder, a 
single voltage regulator, diverse feeder types including both 
overhead and underground lines, shunt capacitors, and an in-
line transformer, as referred to in [21]. The network is 
segmented into five feeders, which are indicated by the node 
combinations 632-646 (l1), 632-634 (l2), 671-611 (l3), 671-675 
(l4), and 632-680 (l5), each denoted with distinct colors for 
clarity. 

 
Fig. 14. IEEE-13 node distribution network. 
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The analysis incorporated a series of fault scenarios, 
exploring four FPs (f1, f2, f3, f4) represented by red lightning bolt 
symbols and two FRs (500 and 1000 Ω). A significant 
observation was noted when a HIF with a resistance of 1000 Ω 
was simulated at FP f3 located at the end of feeder l3. As 
depicted in Fig. 15, this fault resulted in a noticeable polarity 
variation between the DZSV and TZSC for the fault feeder l3, 
contrasted with the operational state of the other feeders (l1, l2, 
l4, and l5). 

The CCD values for each feeder under the described fault 

conditions are listed in Table 8, showcasing the effectiveness of 
the proposed approach in detecting the fault feeder. The 
negative CCD value of feeder l1 (-0.534) under FP f1 with an 
FR of 500 Ω identifies it as the fault feeder, as opposed to the 
positive CCD values recorded for the other feeders. This pattern 
of a pronounced negative CCD value is consistently observed 
in feeder l2 under FP f2, feeder l3 under FP f3 with an FR of 1000 
Ω, and feeder l4 under FP f4, effectively distinguishing each as 
the fault feeder when compared to the positive CCD values of 
the sound feeders. 

 
Fig. 15. DZSV and TZSC waveforms collected from diverse feeders (l3 fault, 1000 Ω). (a) l1 (b) l2 (c) l3 (d) l4 (e) l5. 

Table 8 
CCD of diverse feeders under IEEE-13 node distribution network 

FP FR l 1 l 2 l 3 l 4 l 5 Fault  feeder 
f1 500 -0.534 0.463 0.457 0.453 0.465 l 1 
f2 0.457 -0.446 0.453 0.370 0.463 l 2 
f3 1000 0.527 0.523 -0.516 0.485 0.528 l 3 
f4 0.533 0.528 0.299 -0.499 0.533 l 4 

As shown in Fig. 16, the IEEE 34-node distribution network 
underscores that the fault localization task is specifically 
concentrated on pinpointing fault sections, not merely 
identifying faulted feeders [31], shifting the focus of our 
proposed approach from fault feeder detection to fault section 

location. This approach is directly applicable to locating fault 
sections without modifications. The detection result at each 
node identifies its position as either upstream or downstream of 
the fault point. The fault section can be accurately determined 
by aggregating these results and signal recorder information. 

 
Fig. 16. IEEE-34 node distribution network. 
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Fig. 17. DZSV and TZSC waveforms collected from diverse sections (S1 fault, 1500Ω). (a) M1 (b) M2 (c) M3 (d) M4. 

In Fig. 17, the DZSV and TZSCs waveforms from signal 
recorders M1 to M4 are depicted for a fault scenario involving a 
1500 Ω resistance at f1 in section S1. The waveforms exhibit a 
significant discrepancy in the DZSV and the TZSC at the fault's 
upstream node, captured by recorder M1, where a negative CCD 
of -0.45 is observed. Conversely, at downstream nodes, 
recorded by M2, M3, and M4, consistent polarity and positive 
CCD values of 0.43, 0.35, and 0.35, respectively, are 
maintained. These distinct waveform characteristics and CCD 
values are pivotal for the proposed approach to identify fault 
section S1 accurately. 

Table 9 presents the CCD values of diverse signal recorders 
for different faults in the IEEE 34-node network, allowing for a 

thorough quantitative analysis. The table lists CCD values 
associated with each fault point and signal recorder, which 
collectively provide a decisive identification of the fault 
sections. For example, for a fault at f2, the negative CCDs at M1 
and M2, -0.50 and -0.44, determine these nodes as upstream, 
while the positive CCDs at M3 and M4 identify these as 
downstream, thereby localizing the fault to section S2. This 
pattern of CCD values is consistently replicated for faults at f3 
and f4, with the CCDs effectively delineating the fault sections 
S3 and S4. These quantitative details reinforce the proposed 
approach's validity and exhibit its capability for precise fault 
section localization within the IEEE 34-node distribution 
network.

Table 9 
CCD of diverse signal recorders under IEEE-34 node distribution network 

FP FR M1 M2 M3 M4 Fault section 
f1 1500 -0.45 0.43 0.35 0.35 S1 
f2 -0.50 -0.44 0.37 0.36 S2 
f3 2000 -0.47 -0.42 -0.60 0.19 S3 
f4 -0.47 -0.45 -0.59 -0.49 S4 

6. Experimental verification 
6.1 Engineering Deployment 

A custom-built industrial prototype was created to examine 
the proposed approach for HIF localization in practical 
engineering applications. The prototype, intended for mounting 
on a 10 kV distribution feeder pole, seamlessly integrates with 
the existing primary-secondary fusion switch, as illustrated in 
Fig. 18. The distinctive aspect of this prototype compared to 
commercial counterparts lies in its unique hardware structure 

and software framework, all designed to fulfill real-time fault 
diagnosis requirements. The hardware structure, depicted in Fig. 
18(c), divides the prototype into data acquisition and processing 
modules. The former consists of a microprocessor control unit 
(MCU) and an analog-to-digital converter (ADC) using STM32 
and AD7606 chips, respectively. These components establish a 
serial peripheral interface (SPI) communication channel, with 
the MCU receiving signals from voltage and current 
transformers collected by the ADC. Subsequently, the data is 
transmitted to the data processing module—a RaspPi board 
equipped with the proposed approach. 
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Fig. 18. Engineering deployment of the industrial prototype.  

(a) Application scenarios (b) Device main unit (c) Hardware structure. 

 
Fig. 19. Software framework of the industrial prototype. 

Table 10 
Computation complexity of the proposed approach. 

Computation metric Adaptive TP calibration Multiscale correlation analysis 
Model 1D-Unet 

N/A 

FLOPs 1.35 G 
Model size 18.25 MB 

Trainable parameter size 1.58 M 
Training device NVIDIA® GeForce RTX-1060 GPU 
Training time 16 min 
Edge device Raspberry Pi 4B Raspberry Pi 4B 

Individual inference time 15.78 ms 56.67 ms 
Total inference time 71.45 ms 

Incorporating a multi-process technique, the software 
framework in Fig. 19 enables multitasking parallel processing 
with the potential for further expansion. Tasks like HIF 
detection and fault localization are independently performed 
without interference. Upon receiving data from the data 
acquisition module, the main process in the data processing 
module employs the fault trigger approach from [19] to identify 
potential faults. Multiple subprocesses are then initiated to 
execute diverse tasks simultaneously, such as fault localization 
or HIF detection.  

The computational complexity of the proposed method is 
detailed in Table 10. The adaptive TP calibration utilizes a 1D-
Unet model, requiring 1.35 billion floating point operations per 
second (FLOPs), which highlights the substantial 
computational demands of the model. Despite these demands, 
the 1D-Unet model's size is only 18.25 MB, with 1.58 million 

trainable parameters, ensuring that the model is sufficiently 
compact for training on conventional GPUs. The training was 
conducted effectively on an NVIDIA® GeForce RTX-1060 
GPU and completed within 16 minutes. For deployment in a 
real-world setting, the Raspberry Pi 4B served as the edge 
device in both the calibration and analysis phases, affirming the 
model's suitability for widely-used, low-power computing 
environments. The inference times are notably practical, with 
the adaptive TP calibration and the multiscale correlation 
analysis requiring just 15.78 milliseconds and 56.67 
milliseconds, respectively. Consequently, the total inference 
time for the proposed approach stands at 71.45 milliseconds, 
well within the parameters necessary for real-time task 
execution. 
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6.2 Experimental Test 

Fig. 20 depicts the laboratory testing scenario for our 
industrial prototype, detailing the intricate setup where a 
personal computer controls a relay protection tester via an 
Ethernet cable. This setup reproduces field fault waveforms, 
allowing for a high-fidelity simulation of real-world scenarios. 
The tester interfaces with the prototype for data acquisition, 
while a digital oscilloscope displays the waveforms in real time, 
facilitating immediate visual analysis. Results presentation and 
distributed debugging functions are streamlined through a user-
friendly interface, enhancing the efficiency of the prototype's 
operation. 

As visualized in Fig. 21, the test system comprises a full-
scale 10 kV network with four feeders and a specialized fault 
simulation module. This module adeptly simulates HIFs using 
a rotating mechanical arm that contacts various high-impedance 
materials, demonstrating the system's versatility in replicating 
different fault conditions. 

Fig. 22 presents the waveform recordings from this system 
during HIF incidents involving diverse materials such as 
branches, grass, gravel, and arcs within the cable. The 
waveforms for the DZSC and TZSC display a pronounced 
polarity inversion in the fault feeder compared to the consistent 
polarity in sound feeders for each material tested.  

These waveform characteristics are quantitatively 
corroborated by Table 11, which lists the CCD values for each 
fault scenario. The table identifies feeder l1 as the fault feeder 
with negative CCD values: -0.49 for branches, -0.61 for grass, 
-0.56 for gravel, and -0.56 for an arc, distinctly contrasted with 
the positive CCD values of the sound feeders l2, l3, and l4. These 
quantitative results, consistent with the visual evidence from 
Fig. 22, validate the efficacy of our prototype across diverse 
HIF scenarios, demonstrating its capability to localize fault 
feeder within a complex practical distribution network 
accurately.

 
Fig. 20. Laboratory testing scenario of industrial prototype. 
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Fig. 21. 10kV full-scale test system. (a) System topology. (b) Fault simulation module. 

 
Fig. 22. DZSC and TZSC waveforms of fault records through diverse high-impedance materials.  

(a) Branches. (b) Grass. (c) Gravel. (d) Arc in the cable. 
Table 11 
CCD under 10kV full-scale test system 

Fault scenario l1 l2 l3 l4 Fault feeder 
Branches -0.49 0.43 0.31 0.11 l1 

Grass -0.61 0.90 0.97 0.50 l1 
Gravel -0.56 0.57 0.79 0.27 l1 

Arc in the cable -0.56 0.71 0.74 0.63 l1 
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6.3 Comparative Analysis 
A comparative analysis was executed on a 10kV full-scale 

test system, juxtaposing the proposed approach with the typical 
methods cited in [31], [35], [36]. Method [31] targets the 
extremities of various ZSCs, including their maxima and 

minima, to calculate the comprehensive inner product values 
(CIPV) for fault feeder identification. This technique proves 
efficient when fault and sound feeders' polarity remains 
unchanged post-SPGF. Nonetheless, the Peterson coil's 
influence causes an alignment of polarities once stability is 
achieved, as evidenced in Fig. 22. 

Table 12 
Comparison results with typical methods  
(a) The judgment results of the method in [31] 

Fault feeder Fault conditions No. l1 l2 l3 l4 Result 

l1 Grass 

1 -0.033 -0.018 -0.036 -0.011 

Error 

2 -0.033 0.035 -0.024 0.012 
3 -0.031 0.054 -0.012 0.017 
4 -0.037 0.065 -0.018 0.021 
5 -0.033 0.069 -0.009 0.022 
6 -0.037 0.068 -0.016 0.026 

(b) The judgment results of the method in [35] 

Fault feeder Fault conditions TSk TSset Result TS1 TS2 TS3 TS4 
l1 Grass 12.324 0.476 1.774 0.264 3.213 l1 
l2 200Ω 69.193 76.591 58.003 5.228 58.145 l1, l2 
l3 2000Ω 10.043 2.0031 32.672 1.066 11.950 l 3 
l4 2000Ω 13.973 2.620 11.263 12.187 11.020 l1, l2, l4 

 (c) The judgment results of the method in [36] 

Fault feeder Fault conditions Calculated 
[ρ1, ρ2, ρ3, ρ4] 

Calculated 
[E1, E2, E3, E4] *10-3 Result 

l1 Grass [0.212, 0.725, 0.735, 0.712] [59.96, 0.81, 6.69, 0.26 ] l1 
l2 200Ω [0.714, -0.327, 0.753, 0.650] / l2 
l3 2000Ω [0.683, 0.689, 0.516, 0.775] [7.85, 4.93, 21.24, 0.78] l3 
l4 2000Ω [0.161, 0.137, -0.885, -0.942] [2.43, 1.17, 102.58, 2.83] l3 

(d) The judgment results of the proposed approach 
Fault feeder Fault conditions CCD Result 

l1 Grass [-0.609, 0.901, 0.974, 0.570] l1 
l2 200Ω [0.949, -0.677, 0.977, 0.589] l2 
l3 2000Ω [0.651, 0.671, -0.289, 0.078] l3 
l4 2000Ω [0.776, 0.376, 0.890, -0.578] l4 

As per [31], a negative CIPV suggests a feeder fault, with the 
smallest value indicating the faulted feeder. Yet, Table 12(a) 
highlights the method's shortcomings, particularly when HIF 
occurs in grass. Initially, the CIPVs at the first extreme point 
are all negative values. Among them, the maximum CIPV 
indicates feeder l3 as the fault feeder. However, at the following 
four extreme points, there existed two negative and two positive 
values for each extreme point, whose confusing results present 
a dichotomy that undermines fault feeder detection. 

Method [35] introduces a synthesis of transient and steady-
state factors derived from both the transient stage and the 
steady-state component of the fault's zero-sequence equivalent 
network. Table 12(b) demonstrates the limitations of this 
method during HIF grounded with grass, where TS1 (12.324) 
significantly surpasses TS2 (0.476), TS3 (1.774), TS4 (0.264) and 
TSset (3.213), accurately identifying feeder l1 as the fault feeder. 
However, the method occasionally results in multiple false 
indications. Specifically, for the SPGF through low resistance 

of 200 Ω on feeder l2, the corresponding TS1 (69.193) and TS2 

(76.591) far exceed TS3 (58.003), TS4 (5.228) and TSset (58.145), 
leading to the incorrect identification of feeders l1 and l2 as 
faulted due to their elevated TS values relative to TSset. Likewise, 
for a SPGF through a high resistance of 2000 Ω on feeder l4, 
TS1 (13.973), TS3 (11.263), and TS4 (12.187) substantially 
outstrip TS2 (2.620) and TSset (11.020), erroneously identifying 
feeders l1, l3, and l4 as fault feeder. Such inaccuracies could 
increase maintenance efforts and limit the method's practical 
utility. 

Method [36] combines the correlation between ZSC and ZSV 
with harmonic energy, similar to our approach that leverages 
transient information for detecting the fault feeder. While this 
method generally outperforms others across a range of fault 
conditions, including HIF and SPGF at low resistance levels, it 
could not identify the fault feeder under a 2000 Ω SPGF 
condition on feeder l4, as evidenced in Table 12(c). The analysis, 
using waveform correlation and harmonic energy, revealed 
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through two arrays [0.161, 0.137, -0.885, -0.942] and [2.43, 
1.17, 102.58, 2.83], suggests feeders l3 and l4 as potential fault 
sources. However, the harmonic energy indicator incorrectly 
the sound feeder l3 as the fault. 

Our approach demonstrates exceptional localization 
accuracy and versatility across various fault conditions, 
including HIF and SPGF, at both low and high resistances. As 
shown in Table 12(d), our approach flawlessly identifies the 
correct fault feeder under every tested condition, evidenced by 
distinct negative CCD values for fault conditions, such as -
0.609 for a fault in the grass at feeder l1. Conversely, sound 
feeders exhibit positive CCD values, exemplified by 0.901 for 
feeder l2, 0.974 for l3, and 0.570 for l4, showcasing our 
approach's precise fault localization capabilities in complex 
distribution networks. The detailed results further corroborate 
the accuracy of our approach, with CCD values clearly 
distinguishing the fault feeder in various scenarios: feeder l1 
under HIF grounded with grass, feeder l2 with a 200Ω fault, 
feeder l3 with a 2000Ω fault, and feeder l4 also with a 2000Ω 
fault, demonstrating the approach's robustness and reliability.  

7. Discussion 
The paper adopted a split-and-conquer strategy for HIF 

localization, including adaptive TP calibration and multiscale 
correlation analysis. This innovative approach leverages AI 
techniques and domain knowledge to improve fault localization 
accuracy. The adaptive calibration stage, essential to our 
approach, resembles pixel classification in image semantic 
segmentation, for which the Unet architecture is specifically 
designed. The Unet model's encoder-decoder structure enables 
it to capture local and global features, enhancing classification 
performance even in 1D sequential data analysis, which 
inspired us to use the 1D-UNet model as the core network 
structure, aiding multiscale correlation analysis in fault 
localization tasks by focusing on transient information from 
SPGF or HIF.  

However, the 1D-Unet model's efficiency may be 
compromised by noise in the data, including environmental and 
quantization noise. The latter, resulting from analog-to-digital 
conversion, can obscure the TZSC in digital signals, leading to 
potential misjudgments. It's been found that the model performs 
effectively within an environmental noise threshold of 20 dB, 
but quantization noise remains a challenge, particularly when it 
causes indistinct TZSCs. Addressing these vague signals is 
crucial for improving fault localization methods. 

Furthermore, the effectiveness of the proposed approach is 
contingent upon the fault-triggering technique. While our 
approach generally tolerates minor deviations from these 
methods, it relies on the presence of accurate fault moments. 
The absence of this moment hampers the ability to perform 
adaptive TP calibration and multiscale correlation analysis, 
resulting in the potential failure of the approach under such 
circumstances. 

8. Conclusion 
This paper introduces an advanced HIF localization approach 

through adaptive TP calibration and multiscale correlation 
analysis to enhance HIF localization in active distribution 
networks. This approach incorporates the semantic 
segmentation model, namely 1D-Unet, to facilitate sample 
point classification and distinguish whether the sample points 
are part of the TP associated with SPGF. Given HIF's longer 
transient duration than LIF, the adaptive TP calibration 
effectively extracts comprehensive transient information for 
subsequent multiscale correlation analysis. In conjunction with 
the Pearson correlation coefficient, a sliding window strategy 
calculates the LCD between DZSV and TZSC, enabling micro-
scale correlation of transient information. Consequently, the 
CCD is a macro-scale criterion for localizing the fault feeder or 
section. 

The validation of this approach includes both simulation and 
experimental verification. Initially, the 1D-Unet model is 
trained with simulation data from the PSCAD/EMTDC 
platform, demonstrating high accuracy in sample point 
classification with a success rate of 99.2% in test sets. Further 
analysis of the method's adaptability reveals its robustness 
against noise interference up to 20 dB and its effectiveness in 
networks with varying topologies, such as the IEEE-13 and 34-
node distribution networks, through multiscale correlation 
analysis. 

An industrial prototype was developed to apply this method 
in real-world scenarios, tested within a 10 kV full-scale test 
system. The comparative analysis underscores its superiority 
over the typical methods in localizing HIFs, including faults 
grounded with grass, SPGF with 200 Ω, and 2000 Ω across 
different fault feeders. Unlike the misjudgments commonly 
associated with the typical methods, our approach demonstrates 
effective performance under various fault conditions. 

Nevertheless, this approach is not without its limitations. 
Firstly, quantization noise in data acquisition may obscure 
waveforms and hinder the correlation between DZSV and 
TZSC, potentially leading to incorrect judgments. Secondly, 
while minor discrepancies in fault-triggering methods do not 
affect the performance, an inability to detect the precise 
moment of fault occurrence complicates the TP calibration with 
the 1D-Unet. 

9. Future work 
Future work will focus on enhancing the practicality of the 

proposed approach by integrating it with conventional fault 
localization methods that utilize transient information. 
Furthermore, the impact of quantization noise on the AI model's 
ability to classify faults accurately will be thoroughly 
investigated. This investigation will include developing 
strategies to mitigate the effects of quantization noise or 
adaptively incorporate them into the model's decision-making 
process. Moreover, the research will address the challenges 
associated with the misjudgment of fault-triggering methods for 
HIF to improve the accuracy and reliability of these methods. 
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The future direction seeks to refine the proposed approach for 
fault localization in active distribution networks, ensuring it 
remains effective and reliable across a broad spectrum of fault 
scenarios. 

CRediT authorship contribution statement 
Jian-Hong Gao: Conceptualization, Methodology, Writing- 
Original draft preparation. Mou-Fa Guo: Supervision, 
Validation. Shuyue Lin: Reviewing and Editing. Duan-Yu 
Chen: Software, Data curation 

Declaration of competing interest 
The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

Acknowledgments  
This work was supported in part by the National Natural 

Science Foundation of China through the Project of Research 
of Flexible and Adaptive Arc-Suppression Method for Single-
Phase Grounding Fault in Distribution Networks under Project 
51677030. 

References 

[1] M. Mishra and R. R. Panigrahi, 'Taxonomy of high impedance fault 
detection algorithm', Measurement, vol. 148, p. 106955, Dec. 2019, doi: 
10.1016/j.measurement.2019.106955. 

[2] X. Song, P. Sun, S. Song, and V. Stojanovic, 'Finite-time adaptive 
neural resilient DSC for fractional-order nonlinear large-scale systems 
against sensor-actuator faults', Nonlinear Dyn., vol. 111, no. 13, pp. 
12181–12196, Jul. 2023, doi: 10.1007/s11071-023-08456-0. 

[3] X. Song, N. Wu, S. Song, Y. Zhang, and V. Stojanovic, 'Bipartite 
synchronization for cooperative-competitive neural networks with 
reaction–diffusion terms via dual event-triggered mechanism', 
Neurocomputing, vol. 550, p. 126498, Sep. 2023, doi: 
10.1016/j.neucom.2023.126498. 

[4] X. Song, N. Wu, S. Song, and V. Stojanovic, 'Switching-Like Event-
Triggered State Estimation for Reaction–Diffusion Neural Networks 
Against DoS Attacks', Neural Process. Lett., vol. 55, no. 7, pp. 8997–
9018, Dec. 2023, doi: 10.1007/s11063-023-11189-1. 

[5] Z. Zhang, X. Song, X. Sun, and V. Stojanovic, 'Hybrid‐driven‐based 
fuzzy secure filtering for nonlinear parabolic partial differential 
equation systems with cyber attacks', Int. J. Adapt. Control Signal 
Process., vol. 37, no. 2, pp. 380–398, Feb. 2023, doi: 10.1002/acs.3529. 

[6] M. Zafeiropoulou et al., 'A Flexibility Platform for Managing Outages 
and Ensuring the Power System's Resilience during Extreme Weather 
Conditions', Processes, vol. 11, no. 12, p. 3432, Dec. 2023, doi: 
10.3390/pr11123432. 

[7] G. Fotis, V. Vita, and T. I. Maris, 'Risks in the European Transmission 
System and a Novel Restoration Strategy for a Power System after a 
Major Blackout', Appl. Sci., vol. 13, no. 1, p. 83, Dec. 2022, doi: 
10.3390/app13010083. 

[8] J. Fang, K. Chen, C. Liu, and J. He, 'An Explainable and Robust Method 
for Fault Classification and Location on Transmission Lines', IEEE 
Trans. Ind. Inform., vol. 19, no. 10, pp. 10182–10191, Oct. 2023, doi: 
10.1109/TII.2022.3229497. 

[9] T. Biswal and S. K. Parida, 'A novel high impedance fault detection in 
the micro-grid system by the summation of accumulated difference of 
residual voltage method and fault event classification using discrete 
wavelet transforms and a decision tree approach', Electr. Power Syst. 
Res., vol. 209, p. 108042, Aug. 2022, doi: 10.1016/j.epsr.2022.108042. 

[10] G. N. Lopes, T. S. Menezes, G. G. Santos, L. H. P. C. Trondoli, and J. 
C. M. Vieira, 'High Impedance Fault detection based on harmonic 

energy variation via S-transform', Int. J. Electr. Power Energy Syst., 
vol. 136, p. 107681, Mar. 2022, doi: 10.1016/j.ijepes.2021.107681. 

[11] F. Hojatpanah, F. Badrkhani Ajaei, and H. Tiwari, 'Reliable detection 
of high-impedance faults using mathematical morphology', Electr. 
Power Syst. Res., vol. 216, p. 109078, Mar. 2023, doi: 
10.1016/j.epsr.2022.109078. 

[12] K. S. V. Swarna, A. Vinayagam, M. Belsam Jeba Ananth, P. Venkatesh 
Kumar, V. Veerasamy, and P. Radhakrishnan, 'A KNN based random 
subspace ensemble classifier for detection and discrimination of high 
impedance fault in PV integrated power network', Measurement, vol. 
187, p. 110333, Jan. 2022, doi: 10.1016/j.measurement.2021.110333. 

[13] R. Soni and B. Mehta, 'Diagnosis and prognosis of incipient faults and 
insulation status for asset management of power transformer using 
fuzzy logic controller & fuzzy clustering means', Electr. Power Syst. 
Res., vol. 220, p. 109256, Jul. 2023, doi: 10.1016/j.epsr.2023.109256. 

[14] A. Srivastava and S. K. Parida, 'A Robust Fault Detection and Location 
Prediction Module Using Support Vector Machine and Gaussian 
Process Regression for AC Microgrid', IEEE Trans. Ind. Appl., vol. 58, 
no. 1, pp. 930–939, Jan. 2022, doi: 10.1109/TIA.2021.3129982. 

[15] M.-F. Guo, X.-D. Zeng, D.-Y. Chen, and N.-C. Yang, 'Deep-Learning-
Based Earth Fault Detection Using Continuous Wavelet Transform and 
Convolutional Neural Network in Resonant Grounding Distribution 
Systems', IEEE Sens. J., vol. 18, no. 3, pp. 1291–1300, Feb. 2018, doi: 
10.1109/JSEN.2017.2776238. 

[16] Q.-M. Xiao, M.-F. Guo, and D.-Y. Chen, 'High-Impedance Fault 
Detection Method Based on One-Dimensional Variational Prototyping-
Encoder for Distribution Networks', IEEE Syst. J., vol. 16, no. 1, pp. 
966–976, Mar. 2022, doi: 10.1109/JSYST.2021.3053769. 

[17] C. Hong, H.-Y. Qiu, J.-H. Gao, S. Lin, and M.-F. Guo, 'Semantic 
Segmentation-Based Intelligent Threshold-Free Feeder Detection 
Method for Single-Phase Ground Fault in Distribution Networks', IEEE 
Trans. Instrum. Meas., vol. 73, pp. 1–9, 2024, doi: 
10.1109/TIM.2023.3335520. 

[18] Z. Chen, M. Wang, M. Zhang, W. Huang, H. Gu, and J. Xu, 'Post-
processing refined ECG delineation based on 1D-UNet', Biomed. Signal 
Process. Control, vol. 79, p. 104106, Jan. 2023, doi: 
10.1016/j.bspc.2022.104106. 

[19] J.-H. Gao, M.-F. Guo, S. Lin, and D.-Y. Chen, 'Application of semantic 
segmentation in High-Impedance fault diagnosis combined signal 
envelope and Hilbert marginal spectrum for resonant distribution 
networks', Expert Syst. Appl., vol. 231, p. 120631, Nov. 2023, doi: 
10.1016/j.eswa.2023.120631. 

[20] Y. Wang et al., 'Faulty Feeder Detection of Single Phase-Earth Fault 
Using Grey Relation Degree in Resonant Grounding System', IEEE 
Trans. Power Deliv., vol. 32, no. 1, pp. 55–61, Feb. 2017, doi: 
10.1109/TPWRD.2016.2601075. 

[21] X. Wang, J. Gao, M. Chen, X. Wei, Y. Wei, and Z. Zeng, 'Faulty Line 
Detection Method Based on Optimized Bistable System for 
Distribution Network', IEEE Trans. Ind. Inform., vol. 14, no. 4, pp. 
1370–1381, Apr. 2018, doi: 10.1109/TII.2017.2753227. 

[22] X. Wei, X. Wang, J. Gao, D. Yang, K. Wei, and L. Guo, 'Faulty Feeder 
Detection for Single-Phase-to-Ground Fault in Distribution Networks 
Based on Transient Energy and Cosine Similarity', IEEE Trans. Power 
Deliv., vol. 37, no. 5, pp. 3968–3979, Oct. 2022, doi: 
10.1109/TPWRD.2022.3142186. 

[23] B. Wang and X. Cui, 'Nonlinear Modeling Analysis and Arc High-
Impedance Faults Detection in Active Distribution Networks With 
Neutral Grounding via Petersen Coil', IEEE Trans. Smart Grid, vol. 13, 
no. 3, pp. 1888–1898, May 2022, doi: 10.1109/TSG.2022.3147044. 

[24] Z. Jianwen, H. Hui, G. Yu, H. Yongping, G. Shuping, and L. Jianan, 
'Single-phase ground fault location method for distribution network 
based on traveling wave time-frequency characteristics', Electr. Power 
Syst. Res., vol. 186, p. 106401, Sep. 2020, doi: 
10.1016/j.epsr.2020.106401. 

[25] X. Wang et al., 'Fault feeder detection method utilized steady state and 
transient components based on FFT backstepping in distribution 
networks', Int. J. Electr. Power Energy Syst., vol. 114, p. 105391, Jan. 
2020, doi: 10.1016/j.ijepes.2019.105391. 

[26] T. Jin, F. Zhuo, and M. A. Mohamed, 'A Novel Approach Based on 
CEEMDAN to Select the Faulty Feeder in Neutral Resonant Grounded 
Distribution Systems', IEEE Trans. Instrum. Meas., vol. 69, no. 7, pp. 
4712–4721, Jul. 2020, doi: 10.1109/TIM.2019.2954009. 

[27] X. Wang et al., 'High Impedance Fault Detection Method Based on 
Variational Mode Decomposition and Teager–Kaiser Energy Operators 



 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

for Distribution Network', IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 
6041–6054, Nov. 2019, doi: 10.1109/TSG.2019.2895634. 

[28] J. Gao, X. Wang, X. Wang, A. Yang, H. Yuan, and X. Wei, 'A High-
Impedance Fault Detection Method for Distribution Systems Based on 
Empirical Wavelet Transform and Differential Faulty Energy', IEEE 
Trans. Smart Grid, vol. 13, no. 2, pp. 900–912, Mar. 2022, doi: 
10.1109/TSG.2021.3129315. 

[29] M.-F. Guo, J.-H. Gao, X. Shao, and D.-Y. Chen, 'Location of Single-
Line-to-Ground Fault Using 1-D Convolutional Neural Network and 
Waveform Concatenation in Resonant Grounding Distribution 
Systems', IEEE Trans. Instrum. Meas., vol. 70, pp. 1–9, 2021, doi: 
10.1109/TIM.2020.3014006. 

[30] J. Yuan and Z. Jiao, 'Faulty Feeder Detection for Single Phase-to-
Ground Faults in Distribution Networks Based on Waveform Encoding 
and Waveform Segmentation', IEEE Trans. Smart Grid, pp. 1–1, 2023, 
doi: 10.1109/TSG.2023.3243026. 

[31] X. Wang, J. Gao, X. Wei, L. Guo, G. Song, and P. Wang, 'Faulty Feeder 
Detection Under High Impedance Faults for Resonant Grounding 
Distribution Systems', IEEE Trans. Smart Grid, vol. 14, no. 3, pp. 
1880–1895, May 2023, doi: 10.1109/TSG.2022.3216731. 

[32] A. Peimankar and S. Puthusserypady, 'DENS-ECG: A deep learning 
approach for ECG signal delineation', Expert Syst. Appl., vol. 165, p. 
113911, Mar. 2021, doi: 10.1016/j.eswa.2020.113911. 

[33] 'IEEE Recommended Practice and Requirements for Harmonic Control 
in Electric Power Systems', IEEE Std 519-2014 Revis. IEEE Std 519-
1992, pp. 1–29, Jun. 2014, doi: 10.1109/IEEESTD.2014.6826459. 

[34] J.-H. Gao, 'LabelSIG: Electrical Signal Labeler to Extract Information 
from Common Format for Transient Data Exchange Records'. 
Accessed: Jul. 26, 2023. [Online]. Available: 
https://github.com/Jianhong-Gao/LabelSIG 

[35] T. Tang, X. Zeng, C. Huang, and Z. Li, 'Faulty feeder detection based 
on the composite factors in resonant grounding distribution system', 
Electr. Power Syst. Res., vol. 189, p. 106578, Dec. 2020, doi: 
10.1016/j.epsr.2020.106578. 

[36] J. Yuan, Y. Hu, Y. Liang, and Z. Jiao, 'Faulty Feeder Detection for 
Single Line-to-Ground Fault in Distribution Networks With DGs Based 
on Correlation Analysis and Harmonics Energy', IEEE Trans. Power 
Deliv., vol. 38, no. 2, pp. 1020–1029, Apr. 2023, doi: 
10.1109/TPWRD.2022.3203992. 

 


	2F(1. Introduction
	2. Related work
	3. Transient analysis of high impedance fault
	4. Fault localization approach
	4.1 Adaptive Transient Process Calibration
	4.2 Multiscale Correlation Analysis
	4.3 Workflow of the proposed approach

	5. Simulation Verification
	5.1 Simulation Setup
	5.2 Dataset Construction
	5.3 Model Implementation
	5.4 Performance Evaluation
	5.5 Adaptability analysis
	5.5.1 Noise Interference
	5.5.2 Topology Variation

	6. Experimental verification
	6.1 Engineering Deployment
	6.2 Experimental Test
	6.3 Comparative Analysis

	7. Discussion
	8. Conclusion
	9. Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments

