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Abstract A novel concept of vision-based intelligent control of robotic arms is developed
here in this work. This work enables the controlling of robotic arm motion only with vi-
sual input, that is, controlling by showing the videos of correct movements. This work can
broadly be sub-divided into two segments. The first part of this work is to develop an un-
supervised vision-based method to control robotic arms in 2-D plane, and the second one
is with deep CNN in the same task in 3-D plane. The first method is unsupervised, where
our aim is to perform mimicking of human arm motion in real-time by a manipulator. We
developed a network, namely the vision-to-motion optical network (DON). Given the input
of a video stream containing the hand movements of human on the DON, the velocity and
torque information of the hand movements shown in the video would be generated as the
output. The output information of the DON is then fed to the robotic arm by enabling it to
generate motion according to the real hand videos. The method has been tested on both live-
stream video feeds as well as on recorded video obtained from a monocular camera even by
intelligently predicting the trajectory of the human hand hand when it gets occluded. This is
why the mimicry of the arm incorporates some intelligence to it and becomes an intelligent
mimic (i- mimic). Furthermore, to enhance the performance of DON and make it applicable
to mimic multi-joint movements with n-link manipulator, a deep network, namely, convolu-
tional neural network (CNN) has been used along with a refiner network as the predecessor
of DON. Refiner network has been used to overcome the limitations of inadequate labelled
data. Both the proposed methods are validated with off-line as well as with on-line video
datasets in real-time. The entire methodology is validated with real-time 1-link and sim-
ulated n-link manipulators (an arm with n number of different joints) along with suitable
comparisons.
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1 Introduction

Robotic arms are used to perform mechanical tasks in industries over decades. It was mainly
used for performing repetitive tasks in the industries to cut down the labor cost [2,1]. Nor-
mally, robotic arms are quite complex with five or more degree of freedom as it aims to per-
form human tasks. Recently, the application of robotic arms in conducting domestic work
has drawn attention. Controlling of these robotic arms to perform different tasks is still a
major issue to be addressed. Here, in this work we have defined a new concept of control-
ling robotic arms only with visual information, that is, the motion of different parts of the
robotic arms could be controlled by providing according human hand movement videos as
the input to those arms.

The entire method could be subdivided into two parts. In the first part of this work we
aim to determine a simple solution for unsupervised controlling the robotic arm only with
visual information. Here we aim to deal with the issues of i) unavailability of sufficient
training datasets, ii) domain adaptation and iii) economic cost. On the way to search for a
solution of the two initial issues we concluded that the teaching/ training part should be re-
moved. However, how could it be controlled then? ’Mimic’ is the solution that stroked in our
minds. The controlling could only be achieved by showing the arm the desired movement
and making it enabled to follow it. Visual mimic-based controlling of 1-link and n-linked
robotic arms (an arm with n number of different joints) is the primary contribution of this
work. The mechanism of this set-up is quite simple and the 1-link manipulator is developed
only by the authors. Either the recorded or real-time video could be shown to the arm to
achieve the control. It should be noted that the real-time testing of this ’mimic’ with robotic
arm is in a very primary level where the arm is a simple 1-link robotic manipulator with a
degree of freedom of 120 degrees. The rest of the tests are conducted in the form of sim-
ulation, where the simulated arm is able to mimic the motion of a single joint (solder or
elbow) or real hand. Another contribution in this part of the work is the development of the
vision-to-motion optical network (DON) to process the optical flow information of the input
video and to convert it into the physical force to be fed to the robotic arm. The proposed
DON is different from the existing deep networks in the following manners: i) it does not
require any labeled data set or manual intervention, ii) it does neither require background
estimation or a large number of input frames for training, iii) the functioning of the interme-
diate layers are simple which enables computational gain iv) all the intermediate layers are
not active simultaneously; some layer gets activated depending on the values of the outputs
of its previous layer v) the single network can perform both estimation and prediction and
vi) it produces torque and angular velocity as the output. A step-wise illustration of this part
of the work is shown here in Fig. 1 in the form of a block diagram. The detail mechanism of
DON has been explained in Sec. 3.

In the second part of the work, we focus on controlling a more real robot arm, that is,
an arm with multiple joints, or n-link manipulator. To reach a solution of such a problem,
we incorporated deep neural network with CNN and Refiner Networks as the predecessors
to DON. The block step-wise details for the multi-joint i-mimic have been shown in Fig.
2. Addition of these networks to DON enabled proper identification of hand joints in video
frames, which could be further processed by DON for i-mimic with n-link manipulator. The
details and underlying architecture of this method have been described in Sec. 4 To deal
with unavailability of large set of labelled data, we used a CNN network whose outputs
are further fed into the refinement network that smoothens the final output and enables to
interpolate to a larger range. The deep CNN is proven to be less effective with 2-D n-link
manipulators, but, it performs better in 3-D plane with n-link manipulators.
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Fig. 1: Block Diagram Representation of i-mimic With Single Joint Manipulator

Fig. 2: Block Diagram Representation of i-mimic With Multi-joint Manipulator

We can summarize the underlying novelties of the work described here as follows. The
novelties include i) development of a new mechanism, namely i-mimic, to control robot
arm only with hand movement videos as input, ii) formulation of an unsupervised network,
namely, DON, which is enabled to convert input video streams to physical torque and veloc-
ity, iii) successful execution of real-time control of a 1-link manipulator, even with occlu-
sion/ overlapping in the hands, by defining a prediction layer in DON, and iv) enhancement
of the performance of DON to n-link manipulator by adding deep CNN and refinement
networks as its predecessors.

The rest of the article is organised as follows. Sec. 2 presents the background research,
Sec. 3 describes the layer-wise formulation of vision-to-motion optical network (DON). The
architecture of CNN and Refinement Network customized loss function, dataset training are
described in Sec. 4. The experimental set-ups with four different variations in experimental
studies are described in Sec. 5. The real-time experimental results tested under different
scenarios like without occlusion, with low occlusion, with high occlusion, and with multiple
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joints are given in Sec. 6 along with parameter section and comparative study. The overall
conclusion of this work with its future scope are discussed in Sec. 7.

2 Background Research

Vision-based robotics to serve domestic purpose has drawn the attention of researchers in
several areas. Most of the approaches developed so far for this purpose implied training the
system through labeled data, i.e., with supervised or semi-supervised learning. Automated
driving [8], grasping [11] and block stacking [10] are among few the applications where this
kind of learning were used. But gathering adequate amount of labeled data for training is a
challenging issue for this type of approach.

Semi-supervised learning or reinforcement learning has appeared to be the substitute of
supervised learning in recent literature’s where the training is carried out with less amount
of labeled data or weakly labeled data. Rusu et al. [12] used learning with progressive net-
work for Jaco robot gripping to have a faster algorithm with less amount of training data.
KUKA IIWA robot grasping with deep network and domain adaptation was developed by
Bousmalis et al. [3]. A method of training with weakly labeled images with adaptation from
real world to simulation using a PR2 robot was proposed by Tzeng et al. [15]. Zuo et al.
[16] came up with a solution of semi-supervised method of 3D pose estimation where the
training was carried out in a virtual environment. Its real world implementation was done
after domain adaptation. Domain adaptation is another challenge while semisupervised/ re-
inforcement learning is carried out. There are many rich works carried out so far to deal with
this problem. Domain adaptation with back-propagation by inducing an ’inverse-gradient
layer’ to the deep network was formulated by Ganin and Lempitsky [6]. In another work
Ganin et al. [7] came up with a solution of carrying out the training and testing of the net-
work with the features that are non-discriminative and domain invariant for training and test
data. Bousmalis et al. [4] came up with another solution of identifying the unique feature of
each domain to extract out the common features in the domains. They have recently devel-
oped another way of domain adaptation with simultaneous simulation [3]. Sing et al. [13]
demonstrated that passively collected data can be paired with interaction data to learn visual
representations for end-to-end control policies that generalize substantially better to unseen
environments. However, less amount of labeled data or synthetically labeled data are always
required in all of the aforementioned approaches.

Economic cost of a robotic arm controller is another major issue to be dealt with to make
the robotic arms be implementable for domestic purpose. The controlling of the robotic arms
are normally carried out with multiple sensors which make it more costly. The robotic arms
like PR2 [15], Jaco [12] or KUKA IIWA [3] costs around USD 20,000/- to USD 50,000/-.
A pocket friendly robotic arm is developed recently [16] but but it still has the issues of
synthetic labeled data and domain adaptation.

3 DON: Vision-to-Motion Optical Network

Here we developed a network based on the information of optical flow from frame-to- frame
of a the input hand movement video sequence. The major challenges that are to be addressed
in the task of ’i-mimic’ are: unavailability of sufficient number of labelled data, computation
time, and the lag between the input video to robotic-arm gestures. The proposed deep flow
network is able to minimize all these parameters simultaneously. First of all, no labelled
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Fig. 3: Architecture of Vision-to-Motion Optical Network

data is required here and the process is fully automatic. The computation complexity of this
method is quite low and there the lag is as less as around ten frames here.

The vision-to-motion optical network is a layer-wise network with multiple layers be-
tween the input and output layer. Different feature of the optical flow information process
in different layers of this network. The layer-wise architecture is shown in Fig. 3. It can be
noticed from the diagram that the videos are fed in the input layer of the network, whereas
we get velocity and torque values that generate the physical motion at the output layer. That
is why it is named as a ’vision-to-motion optical network network’. The output of the previ-
ous layer is the input to the next layer. All the layers of the network may not be active at a
time. Rather, the activation of some layer of the network is dependent on the outputs of its
previous layer. The layer-wise working principles of this network are described in detail in
the following sections.

3.1 Layer 1: Input Layer

The video sequence is the input that is fed to the network. But it is not the entire sequence
that is given as the input at a time since a on-line processing is going on here with the input
video frames. As we have already stated that the proposed method is unsupervised, therefore
the output is to be produced only by automated processing of input data. Here, the frame
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6 Debarati B. Chakraborty* et al.

that gets generated at the current instant, say, at the instant t is fed to the network along-with
N -number of previous frames that gets generated earlier to the current frame. Let the current
frame be denoted as fthere. The frames generated in the earlier instances can be denoted by
ft−1, ft−2, ..., ft−N . Therefore, the input layer contains the frames: ft, ft−1, ..., ft−N .

3.2 Layer 2: Frame Difference Computation Layer

The network is supposed to deal with the optical flow information. In the case of the video
sequence that we are dealing with is captured by static cameras. Therefore the changed in-
formation from frame to frame reflects the optical flow of the sequence. Here, two types of
differences are computed here in this layer. That is why two different colored nodes (DO1
and DO2) are shown there in Fig. 3. There are total N +N = 2N number of nodes present
there in layer 2. The difference operation carried out in DO1 the difference between con-
secutive frames (δ1) given in Eqn (1). The difference between the current to all its previous
frames (δ2) is carried out in Eqn (2).

δ1p = |ft−p − ft−(p−1)| : p = 0, ..., N − 1 (1)

δ2p = |ft − ft−p| : p = 1, ..., N (2)

Therefore N number of binarized δ1 and δ2 frames, i.e., 2N number of difference
frames in total, are the output of this layer. δ1p are the binarized outputs from the nodes
of type DO1, whereas, δ2p are the output from DO2 type of nodes.

3.3 Layer 3: Object Identification Layer

The third layer of this network is developed to find out the locations and the shape of the
moving hand in all theN -number of previous frames. As it can be observed from Fig. 3 that
this layer containsN number of nodes, labeled asObjectF inderF1, ..., ObjectF inderFN .
The input fed to a certain node ObjectF inderFp are: δ2p : p = 1, ..., N and δ2p. That is,
all the DO2- difference frames and only pth DO1 difference frame are input to the said node
of layer 3. Let the location of the moving object segment in the pth-frame be represented by
lp. The operation that is carried out in each node of the third layer is given by the Eqn. (3).

lp = (∪ N
p=1δ2p) ∩ δ1p (3)

Please note that the union of δ2p∀p = 1, ..., N is taken here to have the entire moving
obeject region as a subset of that union and intersection of it to that of δ1p is carried out to
extract out the obvious moving region in the pth-frame. The pixels those belong to the set
lp are in the region that definitely belong to the moving object in the pth frame. For the sake
of simplicity, here in this work we consider only the skeleton and the locations of the corner
pixels of lp (moving hand) to be the output from each node of this layer as we need to find
out the angular velocity and torque from the hand movement video.
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3.4 Layer 4: Estimation Layer

This layer contains two nodes and the operations and functioning of these two nodes are
different from each other. The location of the object in N -number of frames are input to
this layer. Two types of estimations are performed simultaneously in this layer with the two
nodes. The path estimation node gives the probable trajectory of the moving object as the
output whereas the trust factor estimator node computes the reliability of the estimated path.
The output of the trust factor estimator node determines the activation of the next layer, i.e.,
the prediction layer. The working principles of the two nodes in the forth layer are described
below.

3.4.1 Path Estimator

As discussed before, the prediction of the probable trajectory of the object is carried out
here. This is done by computing the optical velocity and acceleration of the moving object
from frame-to-frame displacement. Let ςp be the location lp (see Eqn. (3)) in the pth-frame.
Then the velocity (vp) and acceleration (ap) of that object are computed according to Eqn.
(4). The velocity and acceleration values for all the N frames are stored in the sets V and A
respectively.

V = {vp : vp = ςp − ςp−1∀p = 1, ..., N} (4)

A = {ap : ap = vp − vp−1∀p = 2, ..., N} (5)

Please note that signed differences between the locations and velocity are taken while
computing vp and ap in Eqn. (4). It is known from Sec. 3.3 that the input ςp could be a scalar
or vector component based on the type of object representation. However, the two compo-
nents vp and ap should always be a vector since these components contain both magnitude
and signs. Consideration of those signs helps in the incorporation of the information of the
direction and the change in the direction of the moving hand.

Here the robotic arm with revolute joint is supposed to mimic the movement of the
arm shown in real time or recorded video. Therefore, the movement of the arm is always
supposed to be circular in nature with respect to any joint (e.g. elbow) with a maximum 180
degree of freedom. This phenomenon is kept in mind and the determination of the radius
w.r.t angular motion is computed by measuring the length of the skeleton of the arm. Let the
skeleton of the moving part of the arm be of length r. The angular velocity (ωp) and torque
(θp) are then computed as:

ωp =
vp
r

and
θp = Iαp

where I is mass moment of inertia of the manipulator arm and αp is the angular acceleration
computed as:

αp =
ap
r

For any given one-link manipulator the algorithm computes αp and having I of the manip-
ulator one can compute the torque required to be applied to at the joint.
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3.4.2 Trust Factor Computation

The working principle of this particular node is different from any other nodes present in
the network. It takes input from the previous layer but does not transmit its output to the
next layer. Instead, the output from this layer determines which layer should be the fifth
layer of this network. That is, which path should be followed by the output information
from the path estimator node is decided with the output of this node. Since only motion of
the moving hand of a static person is considered here, it can be assumed that the size of
the moving object will remain almost the same throughout the sequence. This assumption is
applied during formulation of the trust factor. Let there be Mp be the region of lp (see Eqn.
(3)) in the pth-frame. Let, the set {S} the regions of the object in all the N frames and the
set {Sd} contains the values of change in regions. Those are computed according to Eqn.
(6).

S = {Mp : p = 1, ..., N}
Sd = {cp : cp = |M1 −Mp|∀p = 2, ..., N} (6)

The trust factor (η) is computed as:

η = 1− max(Sd)

max(S)
(7)

In Eqn. (7) max(.) represents the element with maximum magnitude present in a set.
Physically, the effectiveness of measuring the η is in determining the amount of occlusion
took place over the moving object. If large amount of occlusion is present there for some
frames, then the estimation with those frame may lead to a wrong trajectory. Therefore, the
prediction should be carried out from the previous set of information and ignoring the wrong
(occluded) visual information. That is why the activation of the prediction layer is necessary
in this scenario. The path leading to prediction layer gets only activated if the value of η is
low.

3.5 Layer 5: Prediction Layer

There is only one node in this layer. But, the input fed to this layer is not only from the previ-
ous layer, but the output of layer 4 of the previous execution of the network is also input here.
Please note that this layer can not be active in the first execution of the network, but from the
second execution onward it could get activated any time. Here the velocity and acceleration
values of the frames without occlusion, or with minimal occlusion are considered. There
inputs that are provided to this node are: i) the velocity and acceleration information (sets V
and A) from the previous execution, ii) the velocity and acceleration information (V and A
from Eqn. (4)) from the previous layer and iii) Object regions and change in the regions (S
and Sd from Eqn. (6)). Let the velocity and acceleration from the previous be denoted here
as Ṽ and Ã. We only consider the information of the frames for with cp < 0.05Xmax(S)
(Cp is as defined in Eqn. (6)). That is, the frame maximum with 5% change in object size
will be taken into account. Let k number of frames out of the N frames failed to satisfy the
criterion. Then onlyN −k elements from the sets V andA will be taken by merging it with
the sets Ṽ and Ã respectively. Therefore, the new sets will be V k = {Ṽ |V (1 : N − k)}
and Ak = {Ã|A(1 : N − k)} with N +N − k = 2N − k the number of elements in each
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set. Now we need to predict the information from the (N − k+1)th frame onward. As it is
known, the consecutive difference between the elements of V k forms Ak, i.e., Ak could be
said the first order derivative of V k. We can similarly compute the second-order derivative
of V k or the first order derivative of Ak and represent it by Ak′

. Now, the (2N − k + 1)th

element of the sets V k and Ak will be approximated as:

v2N−k+1 = v2N−k + a2N−k−1

a2N−k+1 = a2N−k + a′2N−k−1 (8)

In Eqn. 8 the symbols Vp, ap and a′p represents the pth element of the sets V k, Ak and Ak′

respectively. The element will get inserted to the sets V k and Ak as the (2N − k + 1)th

elements of them. The process will be repeated and the next element will be approximated.
The process will continue until the set is going to have 2N number of elements. Once it is
done, the last N elements of V k and Ak will be stored in the sets V and A respectively and
will be given as the output to the output layer.

The experimentation and those are carried out with this proposed DON are described
in the following section. Please note that one additional layer, namely the object regression
layer to this network is introduced while working with multiple joints. It is shown in Fig.
10.

4 DNN:Deep Neural Network

In our second approach, we designed Convolutional Neural Network(CNN) for which the in-
put corresponds to the image(frames of video stream) and labels correspond to coordinates(x, y)
of joints(shoulder, elbow and wrist joints). We have used two networks for our purpose to
get the joints coordinates from which further joint angles, joint velocities, and and joint
torque can be obtained in terms of pixel coordinates which are mapped to real value using
the mapping function or mapping factor. In [14] after using DNN based regression, a DNN
based refiner network was added, which takes the cropped images around the prediction as
input to improve the prediction, but we used a different approach by mapping a simple neu-
ral network to refine the predictions of the DNN based regression network. Our approach
reduces the training time of the network with similar accuracy for our dataset.

4.1 Convolutional Neural Network(CNN)

The architecture of CNN is shown in Fig. 4. The input to this network is the images(from a
stream of video feed) and labels as the pixel coordinates(x, y) of the shoulder joint, elbow
joint and wrist joint. The network has six hidden layers wherein there are 2 Convolutional
layers followed by max pooling and flatten. Activation functions for all layers other than the
last layer are ReLu activation. Final layer has a Linear Activation function. This network
uses Mean Square Error(MSE) Loss function.

4.2 Refiner Network

The architecture of Refiner Network is shown in Fig. 5. This network is a simple neural
network with input corresponding to the output of CNN Network and labels the pixel co-
ordinates of the shoulder joint, elbow joint and wrist joint, respectively. Activation function
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Fig. 4: CNN Network

Fig. 5: Refiner Network

for the last layer is linear and for rest is ReLu Activation. This network uses a customized
loss function that includes MSE and simple errors in link length.

4.3 Customized Loss Function

For the error in coordinates of the joint, Mean Square Error(MSE) has been used and another
error for link length has also been taken into consideration. Let d denote error in link length
and p denote the MSE in position. For real joint coordinates (xs, ys), (xe, ye), (xw, yw),
and predicted coordinates (xsp, ysp), (xep, yep), (xwp, ywp) where subscripts s, e and p
represents shoulder, elbow and wrist joints respectively and subscript s, e, w followed by p
represents corresponding predicted coordinates respectively. The respective error are com-
puted following the Eqns. (9)-(11).

d = (
√
(xs − xe)2 − (ys − ye)2 −

√
(xsp − xep)2 − (ysp − yep)2)2+

(
√
(xe − xw)2 − (ye − yw)2 −

√
(xep − xwp)2 − (yep − ywp)2)

2 (9)
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p = (xs−xsp)2+(ys−ysp)2+(xe−xep)2+(ye−yep)2+(xw−xwp)
2+(yw−ywp)

2

(10)

loss = d+ p (11)

4.4 Dataset

For the purpose of training the deep CNN, we created our own dataset of 300 images and
manually labelled the pixel coordinates of the joints for each of the images. From the total
dataset, 224 images were used for training and the rest were used for testing.

4.5 Training

Our second approach requires training for which the training and validation dataset has been
used as specified under sub-heading 4.4. For the optimization purpose, Adam optimizer has
been used with a batch size of 14 images. The training has been done on the sample dataset
for the case of one-link and two-link cases( forearm and arm) both on CNN network and
refinement networks and the combined network. CNN network has been trained on 10 epoch
and Combined Network on 100 epoch.

5 Experiment

The proposed method is tested with both real-time and recorded video sequences. But the
processing of both types of the sequences are carried out in real-time since the ’mimic’ of
the robotic arm is a real-time task. The experiments adressing four different challenges viz.,
i)presence of different level of background noise, ii) variation in distance between arm and
camera, iii) variation in speed of hand movement, and iv) different number of links are per-
formed to test the proposed methodology and setups are accordingly made. The experiments
have been performed at frame rate of 30 fps and video resolution of 240x320 pixels.

5.1 Experiment-1

In the first experiment, the recorded video of hand motion is given as input to the network
and the motion of the arm is mimicked by one-link manipulator in virtual environment of
PyBullet. This experiment requires the preparation of a virtual environment and no physical
setup is required. For the recorded video even noisy data was used to test the method. The
recorded data used for testing is of [5] (lossy compressed AVI format, devel-1). Additional
setups were not made for getting the recorded video. Videos used are available here as Exp-1
Video-1 and Exp-1 Video-2)
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5.2 Experiment-2

In the second experiment, the motion of actual one-link manipulator with stationary back-
ground is mimicked in simulation environment. This required preparation of the physical
setup of the manipulator and camera. The experimental setup consists of a camera(Model:
HP HD 4310 H2W19AA) is mounted(fixed) at a height of 32 cm(can be varied) above the
manipulator. The manipulator’s link length is 10.5 cm which is made up of paper to reduce
the weight of the link mounted on the servo motor(specifications: Model: SM-S2309S, Size:
22.9× 12.3× 22.2mm, Weight: 9.9g, Rotation angle≡ 120 , Micro analog servo, 4 plastic
gears + 1 metal gear). An Arduino UNO board has been used as a controller to provide
signal to the servo motor for the motion (Fig. 6(a)). The video of experiment is available as
Exp-2 Video-1, and Exp-2 Video-2.

5.3 Experiment-3

In the third experiment, the proposed method is used to mimic the forearm motion of a stand-
ing person by an actual one-link manipulator. The one-link manipulator used in Experiment-
2 has been used here except the positioning has been changed as shown in Fig. 6(b). Here,
the distance between the forearm and the laptop(HP laptop AU030WM Pavilion) camera is
varied. whereas the camera was mounted at fixed distance from the manipulator in the earlier
setup. Also, the background here is not stationary as noise is introduced while moving the
forearm, other body parts move slightly. Moreover, the i-mimic, or the ability of the robot
arm to mimic in real-time and even in presence of severe occlusion has been experimentally
validated here. validated here. The video of experiment is available as Exp-3 Video-1, and
Exp-3 Video-2.

5.4 Experiment-4

In the fourth experiment, we extend our method to n-link planar manipulator(four-link, one-
link is fixed). Here, in the case of the human arm, we considered the shoulder, elbow, and
wrist having three joints overall. Two additional layers of DON is added for the sake of
experimentation here. It is shown in Figs. 2 and 10. The video of the labelling process with
real-time video streams could be found here as an example. Please note that no physical
setup is prepared for this experiment and the testing is done in simulation. The manipulator
used in Pybullet is shown in Fig.6(c). The video of experiment is available as Exp-4 Video-1,
and Exp-4 Video-2.

5.5 Parameter Tuning

The actuator of our experimental setup enabled us to test the method of position control.
However, velocity control and torque control techniques can also be used with the values
obtained from the algorithm with actuators that enables velocity control and torque control.
For the uniformity, we use position control in the simulator as well as an actual manipulator.

The joint angle computed in the optical flow and the actual joint angle remains the same.
Same is not the case with angular velocity, angular acceleration, torque, and link length. The
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(a) (b)

(c)

Fig. 6: (a) Experimental setup for experiment-2, (b) Experimental setup for experiment-3, (c) Manipulator
for experiment-4

term aspect, the ratio(ratio of value of optical flow and actual value) has been introduced for
mapping the optical flow value to the actual value. These values shall be experimentally
determined and is dependent on the experimental setup.

Since the algorithm is completely unsupervised, the requirement of labelled data and
domain adaptation is not required. The issue of cost is also dealt since the algorithm can
easily run on low computation powered devices such as mobile handset, laptops, computers,
etc. There is only lag time between the input of the image frame of video and the output
signal of the manipulator which is the processing time.

The number of previous frames (N), we need to feed to the input layer of DON is a
vital parameter in this work. Increasing N will result in high computation time (as can be
observed in Fig. 7(a)), as well as a gain in accuracy (Fig. 7(b)). To come up with the opti-
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(a) (b)

Fig. 7: (a) Computation time vs No of frames considered, (b) No. of previous frames considered vs. accuracy

mum number of N, the issues of both computation time and accuracy have to be considered.
The change of computation time and accuracy in tracking the proper object region along
with the increasing number of previous frames is shown in Figs. 7(a) and 7(b) respectively.
Based on our observations from Figs. 7(a) and 7(b), we have found that a balance between
time and accuracy could be obtained by setting the value of N to 10.

Please note, the segmentation/ tracking accuracies, used in this study are computed
based on the number of correctly identified pixels (PTrueDetect) by our algorithm com-
pared to that of the ground truth (PGT ). The accuracy (A) can be computed with the follow-
ing Eqn. (12).

A = (1− |PTrueDetect − PGT |
PGT

) ∗ 100 (12)

Furthermore, performance of Object Identification Layer is also dependent on the inten-
sity of light and background noise(movement of other objects). The algorithm works well
for the intensity of light above 50%(determined using the experimental setup in Fig. 6(a).

6 Results and Discussions

6.1 Results of DON

The Experiment-1 performed on the hand motion data set could hardly track the arm joint
angle due to extremely random and fast hand movement and very large noise due to move-
ment of other body parts. This experiment was performed on both the RGB video and depth
video. The results are available here RGB videos(Video-1 at 10fps, Video-2 at 30fps) and
Depth videos (Video-1 at 10fps, Video-2 at 30fps)

The Experiment-2 performed for mimicking the actual one-link manipulator motion in
the simulation result is shown in Fig. 8(a). In addition we used [9] to generate depth images
from RGB images and tested our algorithm. In both cases, our result obtained is the same.
We have also studied the angular velocity of the human hand and the robot arm and it is
plotted in Fig. 9(a). The red line in this figure shows the variation in angular velocity of the
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robot arm, ehereas the blue line reflects the same for the human hand in the video. The error
or the difference between these two angular velocities has been plotted in Fig. 9(b).

Fig. 8: Visual i-mimic in Real-time: (a) Without occlusion (0.9 < η < 1), (b) Low occlusion to background
and human hand (0.7 < η < 0.5) and (c) High occlusion (0.4 < η < 0.3)

(a) (b)

Fig. 9: Plot of (a)Angular velocity vs Time, (b) Error vs Time

The Experiment-3 is performed with the variation of trust factor (η in Eqn. (7)) that is
with various degrees of occlusion. Example frames with arm-mimic for three different types
of occlusions are shown in Fig.10, where there is no occlusion present there in Fig. 10(a),
low amount of occlusion is present there in Fig. 10(b) and the amount of occlusion is quite
high in Fig. 10(c). It is also observed that the proposed method works well for moving hand.
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The videos corresponding to the experimental results areno occlusion, minor occlusion and
major occlusion.

Fig. 10: Adjusted portion of Architecture of Deep Flow Network

In Experiment-4, since there are three rotating links, three-joints angles are to be esti-
mated. To accommodate multiple links, in the architecture of DON, an additional layer is
added between Object Identification Layer and Estimation Layer to fit straight lines(Object
Regression Layer) on the objects as shown in Fig.6. Rest of the network remains the same.
The joint angle between the forearm and fixed link, thumb and forearm, index finger, and
forearm are estimated accordingly. The result obtained after Object Regression Layer is
shown in Fig. 12. The loss function of training (blue) and testing (red) is shown in the top
right image of Fig. 12, where deep CNN network is only used. The plots of the same func-
tions are shown in the top left image of Fig. 12, where the combination of CNN and refiner
network is used. The scatterd plot in Fig. 12 reflects the true locations of the true hand seg-
ments (red dot), and the locations generated by the synthetic arm (green dots). As it deals
with single link manipulator, only the variations for two joints have been plotted.

The video expressing the obtained result is here.

Fig. 11: Snapshot image after Object Regression Layer
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Fig. 12: Result for single link arm

In addition to this, the algorithm has been tested on videos of different resolutions at 30
fps. The average algorithm run time per loop execution for video input of different resolution
before giving the signal to manipulator for is presented in Table 1. This experiment has been
performed on DELL Laptops with 8 GB RAM and Intel Core i5, the algorithm run time will
vary depending upon the computation power of hardware used for testing.

Table 1: Average loop run time for videos of different resolutions.

Resolution Average loop run time(in milliseconds)
240x320 20
480x640 45
720x960 68

960x1280 124

6.2 Results of DNN with Two Links

Here the CNN network and Refiner network has been tested on two link cases. The loss
occurred during the training are shown in Fig. 13. Likewise, the scattered plots of actual
coordinates and predicted coordinates by combined Networks of one-link shoulder joint and
wrist joint obtained are also shown in Fig. 13.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Debarati B. Chakraborty* et al.

Fig. 13: Results for two link arm

6.3 Discussions

As we stated earlier, four different experiments under different circumstances joints are per-
formed here. In the case of extremely random and very fast hand movement, the method
is found to be ineffective as in Experiment-1, while in Experiment-2 where the background
noise, arm speed are limited, the method performance i.e. mimicking is near to perfect. There
is negligible lag time because the arm control command is given to the simulator which runs
nearly at 240Hz in Pybullet. In Experiment-3, the mimicking is performed with small lag
time. This lag time(as seen in video) has been caused due to the hardware limitation of the
manipulator and setup. This can be reduced with good enough hardware, since the algorithm
has been fine-tuned with optimal parameter values. The algorithm extended to n-link planar
manipulator in Experiment-4 is able to estimate the three-joint angles between lines accu-
rately as depicted in Fig.6. The algorithm can be extended to n-link planar manipulator just
by introducing Object Regression Layer and the outcome would be as desired. Furthermore,
experimenting with videos of different resolution shows the algorithm run time increases
with the increase in video resolution. In addition, our algorithm tracks/detects the objects on
the basis of motion and not probabilistic color distribution or object features. This enables
our algorithm to run on both RGB and depth images independently and give the same result.

In case of our second method, for the one-link(forearm) case, the Predicted Joint posi-
tions improved after adding a second network. The second network has acted as a smooth-
ing/refining network which refines the outcome of the first network. For the two link cases,
the performance of the combined network is better compared to just the use of CNN Net-
work.

6.4 Comparative Study

Please note that first approach’s application that we proposed here is new to literature. There-
fore, no similar method is available to compare with. Therefore, we focus on comparing the
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proposed tracking algorithm. We could not conduct any direct comparative study for our
tracking method too, since no other tracking algorithm, formulated so far gives torque and
velocity as the output. For example, we carried out the same experimentation with two other
robust and popular unsupervised tracking algorithms, namely, MoG2 and CAMSHIFT for
the sake of comparison. In this study, we verified that the proposed algorithm tracks down
the object within about 30 ms, whereas the time consumed by CAMSHIF and MoG2 are
about 149 ms and 100ms respectively on HP laptop AU030WM Pavilion. Besides, these
methods are not robust enough since they loose the object trajectory even to the stationary
background, therefore, its performance gets reduced with the reduction of trust factor. Above
all, none of the algorithms enables us to compute the values of kinematic and dynamic pa-
rameters of motion like our algorithm for mimicking and hence failed to mimic. This is the
main cause why we failed to carry out a suitable comparative study for this application.

For the second approach of deep learning, we compare our results to those of [14] using
Percentage correct parts(PCP) at a link length threshold of 0.5(PCP 0.5), for upper arm and
lower arm. PCP 0.5 was calculated on our model using our dataset on 20 images and on
40 images. The comparison results are shown in Table 2 and 3 respectively. The data taken
from [14] is generalised on the large dataset that has been used, in our case, the method has
not been generalised, and results shown are obtained on our dataset.

Table 2: Comparison PCP(0.5) on 20 images

Model Upper Arm Lower Arm
Deep Pose 1st 0.5 0.27
Deep Pose 2nd 0.56 0.35
Deep Pose 3rd 0.56 0.35
CNN Network 0.40 0.1

CNN + Refinement Network 0.7 0.35

Table 3: Comparison PCP(0.5) on 40 images

Model Upper Arm Lower Arm
Deep Pose 1st 0.5 0.27
Deep Pose 2nd 0.56 0.35
Deep Pose 3rd 0.56 0.35
CNN Network 0.25 0.125

CNN + Refinement Network 0.566 0.275

From the above table, it is clear that our combined network comprising of CNN and
Refiner Network performs better compared to just CNN network and Deep Pose Network
for Upper Arm. However, for lower the results are as good as that of Deep pose for the case
of 20 images. With increasing the number of images to 40, performance decreases but still
is better than that of Deep Pose and CNN Network for Upper Arm. However, for the lower
arm, combined is poor.
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7 Conclusions and Future Work

In the proposed work, we aimed to develop a method with which robotic arms could be
controlled only by showing video sequences in real-time. The proposed method is proven to
be successful with one arm manipulator (Exp. 1), with real-time video streams as input (Exp.
2) even in presence of occlusion (Exp. 3), and with multiple joints (Exp. 4). This approach is
proven to be successful with the adequate amount of demonstrations, the links of some such
videos are provided in this article itself. The unsupervised DON based method is proven to
be effective in achieving control over single-link manipulator in 2-D plane. Control over n-
link manipulator plane has been achieved better with hybridization of CNN and refinement
network along with DON as shown here in the study. The proposed techniques performs well
both with real-arm manipulator and synthetic arms. The mimic-based control therefore could
be implemented to control the robotic arm in different tasks. The approach is in its entry level
as of now and more complex scenarios could be addressed in the future by mimicking the
motion of multiple joints (finger joints) of a manipulator in spatial 3D environment. This
way it could have a vast application in different areas of robotics and artificial intelligence.
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