
\ 

THE UNIVERSITY OF HULL 
Cartographic Information Systems Research Group 
C.I.S.R.G . 

Hon. Co-ord inator: 

Dr. M. Visvalingam 
Department of Computer Science 
The University 
HULL HU6 7RX 

Tel. (0482) 465295/465951 
Telex 592592 KHMAIL G, 
f.a .o. HULIB375 
Fax (0482) 466666 

Discussion Paper Series Editors Dr M Visval ingam 
Professor M E Turner 

C. Z. S.R.G . DISCUSSION PAPER 11 

Area Topology for Road Extraction 
and Topographic Data Validation 

by 

D A Varley and M Visvalingam 

@Varley and Visvalingam 
University of Hull 

March 1993 



Discussion Papers 

1. Wade, P., Visvalingam, M. and Kirby, G. H. (1986) 
From Une Geometry to Area Topology, 48 pp. 

2. Visvalingam, M. (1987) 
Problems in the Design and Implementation of a GKS-based User Interface for a Graphical 
Information System, 18 pp. 

3. Visvalingam, M. (1988) 
Standardising Basic Spatial Units: Problems and Prospects, 19 pp. 

4. Whyatt, J.D. and Wade, P. R (1988) 
The Douglas-Peucker Algorithm for Line Simplification: an introduction with programs, 
17 pp. 

5. Visvalingam, M. (1988) 
Cartography, Geographical Information Systems and Maps in Perspective, 16 pp. 

6. Visvalingam, M. and Whyatt, J.D. (1989) 
The Douglas-Peucker Algorithm for Line Simplification: re-evaluation through visualisation, 
35 pp. 

7. Visvalingam, M. (1989) 
Trends and Concerns in Digital Cartography, 37 pp. 

8. Visvalingam, M. and Whyatt, J.D. (1990) 
Cartographic Algorithms : problems of implementation and evaluation and the impact of 
digiting enors, 24 pp. 

9. Visvalingam, M. (1991) 
Visualisation, VISC and Scientific Insight, 21 pp. 

10. Visvalingam, M. and Whyatt, J.D. (1992) 
Line Generalisation by Repeated Elimination of the Smallest Area, 16 pp. 

11. Varley, D. A. and Visvalingam, M. (1993) 
Area Topology for Road Extraction and Topographic Data Validation, 34 pp. 

Special Issues 

1. Visvalingam, M. (ed) (1986) 
Research based on Ordnance Survey Small-Scales Digital Data Proceedings of a meeting held as 
part of the 1986 Annual Conference of the Institute of British Geographers (Reading Jan 1986), 
sponsored by the Ordnance Survey, 79 pp. 

2. Visvalingam, M. and Kirby, G. H. (1987) 
Directo~of Research and Development based on Ordnance Survey Small Scales Digital Date, 
sponsored by the Ordnance Survey, 38 pp. 

3. Visvalingam, M. and Sekouris, N. M. (1989) 
Management of Digital Map Data Using a Relational Database Model, sponsored by the 
Ordnance Survey, 50 pp. 



C 0 N T E N T S 

1. INTRODUCTION 1 

2 . BACKGROUND 2 

3. FROM LINE TO AREA TOPOLOGY 5 

3. 1 Input Data 5 

3.2 The Disassociative Area Model 9 

3. 3 Verification of Input Data 14 

4. ROAD EXTRACTION USING POINT- IN-POLYGON TESTS 15 

4.1 Selection of Candidate Regions 17 

4.2 Selection of Seeds 17 

4.3 Labelling the Regions 18 

4.4 Discussion of Results 19 

5. ROAD EXTRACTION USING TOPOLOGICAL CLUES 23 

6. LABEL- BASED VALIDATION 27 

6.1 Correspondence between OSBASE and the Road Centre Line Layers 29 

6.2 Consistency of the OSBASE layer 30 

7. CONCLUSION 31 

ACKNOWLEDGEMENTS 33 

REFERENCES 33 



LIST OF FIGURES 

Figure 1 Some Feature Codes Associated with Road Links 8 

Figure 2 Data Structures used for Road Extraction 10 

Figure 3 Derivation of the Containment Hierarchy of Boundaries 12 

Figure 4 An Example of a Link- and- Node Violation 16 

Figure 5 Point- in- Polygon Approach t o Road Extraction 16 

Figure 6 Some Special Cases not Resolved by the Point- in- Polygon 
Approach 21 

Figure 7 Roads which Include Neighbouring Features 24 

Figure 8 Use of a Hole to Locate the Road 24 

Figure 9 Extraction of Roads at the Map Edge with No Centre Lines 24 

Figure 10 : Segements of Roads Detached by Overhead Features 28 



1. INTRODUCTION 

The Cartographic Information Systems Research Group (CISRG) of the University 

of Hull is researching the automatic recognition of spatial objects based on 

their spatial descriptions alone. The feasibility study, reported in this 

paper, formed a part of an SERC CASE project (January 1990 - January 1993); 

the collaborating body was the Ordnance Survey of Great Britain. The project 

involved the recognition of objects implied in large- scale topographic maps. 

We define object recognition as the process of identification of objects from 

their forms alone; i .e. without recourse to semantic labels. Unlike 

recognition, extraction uses all available information, including semantic 

labels manually associated with line segments. This paper is concerned with 

the problem of road extraction. The principal aim of this feasibility study 

was to assess whether it would be possible to recognise roads given the 

structure and content of an experimental topographic database designed and 

created by the Ordnance Survey. The emphasis in the feasibility study was on 

acquiring a good understanding of large- scale topographic data and of the data 

processing problems. Although some attention was paid to the efficiency of 

processing, this was not the primary concern at this stage . Efficient 

processing of geo-spatial data is a major topic of research which has to take 

into accou~t a wider range of considerations (Frank, 1991) . 

This paper makes a number of contributions. Firstly, it identifies novel 

procedures for road extraction. Roads would normal ly be extracted by finding 

the regions within which road centre lines or road names occur. This research 

describes a more efficient and robust method. Roads can now be extracted by 

using only the topol ogical information, normally held in memory, using 

concepts embodied within the Disassociative Area Model (Kirby et al, 1989) . 

There is no need to access the vertices on disc which define the precise 

boundaries of regions. Secondly, the study also suggests how the extraction 

of roads can be trivialised by minor changes to the data specification . 
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Thirdly, the paper suggests how software for re- casting the data into DAM format 

can be used for detecting violations of the specified data structure . Fourthly, 

it suggests the type of semantic checks which can be carried out to ensure that 

relevant· aspects of the data are consistent and to identify errors. These 

checks indicate that the data specification does not expedite road recognition 

since the boundaries of extracted roads include extraneous features. Thus , road 

recognition cannot rely on simplistic rules about roads but must accommodate the 

presence of anomalies . Fifthly, the study demonstrated how some of these 

anomalies may be automatically detected . Finally, the study has provided a 

catalogue of roads which can be used to derive empirical rules for recognition 

and to assess automatically the success of alternative procedures for 

recognition. 

The paper is organised as follows. In the next section, the paper sketches a 

brief background which indicates the rationale for this work and some 

underpinning concepts. It then briefly describes the input data and its 

recasting into the data structures associated with the Disassociative Area 

Model (Kirby et al , 1989) . The procedures which were adopted for verifying 

that the data conformed to the anticipated structure are then outlined and 

potential consequences of some violations are described . Next , the 

implications of the point- in- polygon approach to road extraction are 

considered . The paper then outlines a much simpler novel process for 

extracting roads . It then describes the procedures which were adopted for 

checking the consistency of semantic labelling and discusses the results. It 

concludes by summarising the main findings. 

2. BACKGROUND 

The late 1980s has witnessed a growth in Geographical Information Systems 

(GIS) . In Britain, the Chorley Report (DoE, 1987) has led to the formation of 

the UK Association for Geographic Informati on (AGI) and GIS Specialist Groups 
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within many learned and professional societies, including the British Computer 

Society. The Chorley Report defines a GIS as "a system for capturing, 

storing, checking, integrating, manipulating, analysing and displaying data 

which are spatially referenced to the earth" (p 132) . It refers to the 

diversity of users and uses of gee-referenced data which give rise to 

different types of GIS (Visvalingam, 1990) . In Britain, Land and Property 

Information Systems (LIS) use large-scale (1 :1250 and 1:2500) topographic data 

as a base reference against which they record, manage and inter-relate their 

own data. The Ordnance Survey of Great Britain (OS) has been responsible for 

creating the topographic base maps used by numerous bodies, such as Her 

Majesty's Land Registry, the utilities and Local Authorities. The OS is 

renowned internationally for its pioneering activities in digital mapping 

since the early 1970s and its Resear ch and Development Division continues to 

experiment with alternative database designs to meet changing m~rket needs. 

Users of topographic data are ultimately concerned with objects of interest to 

them. Different applications may link different data with the same objects. 

Topographic objects are described by spatial and other locational references. 

A road network, for example, will have multiple polygons which describe its 

extent and which exclude regions, such as central reservations and 

roundabouts, which do not form a part of the road. At the application-level 

there is growing interest in object-oriented databases. However, the design 

of the class structure of objects is application dependent. For example, 

vehicle routeing, highway maintenance, cutting of grass verges and other 

activities which relate to roads will tend to develop their own object 

structures. Consequently data vendors, such as the Ordnance Survey, tend to 

supply only partially structured data and it is the users' responsibility to 

extract the necessary object descriptions. The vendor may add value to data 

by making explicit, through a combination of automated and manual processing, 

some objects implied by the basic topographic data. For example, the OS 
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itself defines some objects, such as vegetation, for its own map production. 

However, the automatic recognition and labelling of objects encoded in digital 

topographic maps remains an outstanding problem. 

The OS vector topographic data consist of point, line and text features. A 

semantic label, called a feature code, is associated with each feature . 

Features are partial descriptions of objects . An object may be described by 

one or more features and a feature may form a part of several higher- level 

features and objects. Object recognition seeks to add value to data by 

grouping features so that they form higher- level entities, both features and 

objects, and by either relating currently free- standing, - or else manually 

input, information with these derived entities . 

In the past, data suppliers have supplied feature-coded data in unstructured, 

so- called spaghetti, form. In spaghetti form, lines are broken when the 

feature code changes but may otherwise cross each other and themselves. This 

simple structure is sufficient for semi- automated map production but it does 

not facilitate the chaining of the polygons which define areal objects. For 

this, spaghetti vectors must be structured into a link-and-node form. In this 

structure, lines are not allowed to cross themselves or other features . Where 

such intersections occur, lines are split forming segments, called links 

by the Ordnance Survey . All links begin and end at nodes, which establish the 

connectivity of the links . The process of link- and- node structuring is 

usually automated. The output of this process can contain a few errors such 

as overshoots, which need to be trimmed, and is thus subject to a cleaning 

process . The OSBASE data we received was link- and-node structured and 

cleaned. 

The feasibility study on road extraction had to achieve the following tasks . 

It had to : 
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organise the link-and- node data into a form which explicitly recorded, 

and topologically related, the regions of space implied by them. 

develop efficient and robust procedures for identifying and 

labelling roads. 

validate the data 

3 . FROM LINE TO AREA TOPOLOGY 

3 .1 Input Data 

The OS has derived a number of prototype topographic databases for 

experimental purposes. The feasibility study was based on a variant of the 

OSBASE dataset . Many of the properties of this experimental version, 

described below, had to be uncovered from detailed OS internal reports, 

personal discussions with R & D staff of OS and by exploration of the 

database. OSBASE data for Birmingham, consisting of 12 sheets, were received 

in July 1990 . Topologic processing -revealed errors . Some of these were 

manually fixed by us. We then received a further 16 sheets of OSBASE data for 

Canterbury, which was believed to be correctly edge-matched and of higher 

quality, in February 1992 . One of the objectives of the study was to use 

spatial data models to validate the data . 

OSBASE records point, line and text features on published (i .e . hardcopy) 

1:1250 base maps . To satisfy internal requirements for automating area fill 

in map production, a task which had previously been completed manually, OSBASE 

included expl icit descriptions of some areal objects, such as roofed areas, 

water features, vegetation and slopes . The geometric details of these 

features have been rigorously checked to ensure that the polygons describing 

these objects are properly closed. Area seeds were added to link in relevant 

semantic information as well as the cartographic symbolism for rendering. 
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Other areal objects, including roads and land parcels, are only implied and 

not explicitly defined within OSBASE. 

OSBASE contains two types of information about roads , namely: 

* Some of the links forming the edges of road polygons are feature- coded 

as ROAD METALLING links . Only one feature-code is associated with each 

link. Since a link may form a part of several objects , feature- codes 

are assigned priorities . Feature codes associated with road boundaries 

do not have the highest priority. The following set of features are 

listed in descending order of priority in the data specification. 

* 

Mean High Water 

Building detail {solid or pecked) 

Water detail 

General detail solid 

Road detail (ROAD METALLING) 

Other detail (general detail pecked, including buildings with general 

detail pecked, slopes and cliffs) 

Mean low water 

Vegetation/landform limits 

Thus some of the l inks forming roads may not be tagged as ROAD 

METALLING. Figure 1 shows how a road may be defined by a set of 

dark l inks , building and general detail , both solid and pecked and 

water detail in addition to ROAD METALLING links. 

Road names are included as text features. They are cartographic 

annotations and their digitising specifications are geared towards 

internal map production within OS. Road names are not the best clues 

for extracting roads. They name branches of the network, i.e. sub­

objects , and may be repeated for ease of visual processing. Thus many 
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names may refer to the same road network. Also, truncation by the map 

edge can result in a connected network being represented by two 

independent networks. Thus, there is a many- to-many relationship 

between road names and road networks. Furthermore, road names may be 

placed outside roads if their placement within is likely to detract from 

the legibility or clarity of the map . People easily associate such re­

located names with roads . Also, minor road names maybe omitted in towns 

where they are likely to obscure detail. Although road names are useful 

for segmenting and labelling branches of the road network at a later 

stage, we decided not to use them in the feasibility study. 

There is also a separate layer of information, containing networks of road 

centre lines for the areas covered by the underlying OSBASE maps. This 

information was manually digitised as a free-standing layer which is 

geometrically connected to the underlying OSBASE data only at the map edges 

and at the head of cul- de-sacs which do not terminate in a roundabout. 

The feasibility study did not use all the layers within OSBASE since it was 

quite apparent that roads could be extracted using the links in the OSBASE and 

centre line layers. A decision was made to exclude links relating to 

underground features and administrative boundaries in this feasibility study. 

Overhead features such as electricity lines, recorded in a separate layer 

within OSBASE, were also excluded . Other overhead features, such as overhead 

roads and walkways, which form a part of the topographic base, were retained. 

The impact of these higher level features had to be studied before 

accommodating underground ones . Also, point features, area seeds and text 

features, which were superfluous to this study, were excluded. The input to 

the feasibility study therefore consisted of a subset of the links which make 

up some OSBASE features and the road centre line layer. An example of the 

OSBASE input for one sheet is shown in Figure 7a. 
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Figure 1. Some Feature Codes Associated with Road Links 
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Since the data conforms to the link- and- node model, it can be cast into 

the data structures shown in Figure 2. They are described below. 

3.2 The Disassociati ve Area Model 

Kirby et al (1989) described the advantages of disassociating and 

independently processing the spatial and aspatial descriptions of topographic 

objects. They described the concepts underpinning their Disassociative Area 

Model (DAM) for recording area topology and outlined procedures for deriving 

such topological information from link- and-node structured spatial data. They 

discussed the flexibility that this offers for modelling geographic phenomena 

by linking aspatial with spatial descriptions at a later date. This 

facilitates the cross- checking of the consistency of semantic coding. They 

used the DAM model to locate the few residual errors remaining in the 1:625000 

experimental database of the hierarchy of administrative areas in parts of 

England and Wales. Visvalingam and Sekouris (1989) also demonstrated the 

utility of DAM for locating geometric and semantic errors in an experimental 

1:50000 topographic database. However, the methodology for validating 

topographic data is still underdeveloped. 

The creation of digital topographic maps is an involved process with a 

series of automated and manual stages. Given the size of the databases and 

the cost of rigorous checking, it cannot be assumed that digital maps are 

error- free nor that they meet the users ' needs with respect to their structure 

and content. The feasibility study was therefore undertaken to expose 

the types of data- related problems facing the automatic recognition of 

roads based only on their forms and juxtaposition vis-a-vis other features. 

The first decision which had to be taken was to determine whether the OSBASE 

and centre line links should be treated as separate or an integrated set. In 

theory, if the two sets of links were used to form polygons, then roads could 

easily be identified as consisting of the polygons on either side of centre 
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Boundaries Boundary Links List 

Feature Code List 

Nodes Connected Links List 

Coordinates 

easting I northing I 

a) relating to the Disassociative Area Model (Source Kirby et al, 1987) 

Boundary Classification 

Road Cenrre Line Nodes 

b) for use in the point-in-polygon approach 

Figure 2. Data Structures used for Road Extraction 
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line links. However, OSBASE is only a cartographic description of topographic 

features . Thus road networks are segmented when they are occluded by overhead 

features. For example, where overhead pedestrian crossings occur, only the 

uppermost feature is shown on .the published map since the occluded information 

is not necessary for visual processing. The under-passing road is neither 

digi tised nor recorded in OSBASE. The centre line network, on the other hand, 

is digitised for route planning purposes and is thus continuous. As a result 

the centre line links can segment all sorts of overhead features, for example, 

where complex motorway sections cross another road. Thus , pol ygons which are 

not roads can occur on either side of road centre lines . Moreover, since the 

two layers are only partially connected, users would have to re-structure the 

combined line information, which could introduce a new batch of geometric 

errors the cleaning of which is a tedious and costly process. Road centre 

line links were thus not included with OSBASE data but were used separately. 

Software developed by Wade (Kirby et al , 1989) was used to add further fields 

and structures to the link-and-node structure . The data structures in Figure 

2a articulate the Disassociative Area Model (DAM) for representing area 

topology. They are only indicative of the type of information required since 

such information may be derived and represented in other ways . For example, 

Kirby et al (1987) and Visvalingam and Sekouris (1989) considered how these 

same entities may be represented and managed using a relational database 

model. 

Wade's software chains the OSBASE links into a set of polygonal 

boundaries, which are then structured to form a geometric hierarchy consisting 

of enclosing boundaries alternating with holes. Figure 3 illustrates this 

structure . A brief description of the underpinning concepts and data 

structures are provided here; a fuller description is provided in Kirby et al 

(1989). 
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Figure 3. Derivation of the Containment Hierarchy of Boundaries 
(Source Kirby et al, 1989) 
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In Digital Cartography, link- and-connectivity is encoded using the link, node 

and coordinate records represented in Figure 2a . One link record is used for 

each link . The coordinates of the two end points of the link are stored in 

the node records and any remaining internal points are stored separately as a 

contiguous block in a coordinates file. The link record points to the start 

and end nodes, to the start and end of the block of coordinates and, to a list 

of feature codes . Initially, this list consists of only one feature code. 

There is one node record for each location where one or more links start and 

end. With each node is kept a list of the record numbers of the links which 

meet there . The record number is signed to indicate whether the link starts 

(positive) or ends (negative) at the node . The bearing at which the link 

joins the node is also held and the link list is sorted on this field so that 

links occur in a clockwise order around the node. 

The Disassociative Area Model, first reported in Wade et al (1986), adds a 

boundary record to model the area topology . Each boundary is a closed loop, 

with direction (see Figure 3b) . Boundaries are sub- classified into enclosing 

boundaries and holes . Each enclosing boundary records the outer extent of a 

primitive region; the inner boundari es of the latter are termed holes. Each 

boundary forms an extent of one, and only one, primitive region and each 

primitive region is bounded by one enclosing boundary and zero or more holes . 

There is one exception; the outermost primitive region has no enclosing 

boundary but just one or more holes (in Figure 3b, the outermost primitive 

region is described by holes 1 and 5) . 

The boundary record is used to hold the details of each boundary. The 

containment relationship between a complete set of boundaries may be viewed as 

forming a hierarchy represented by a rooted tree (Figure 3c) . Each boundary 

is enclosed spatially by every boundary which precedes it in the tree but no 

other. The level of each boundary i n the tree corresponds to the number of 
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boundaries which surround it. The outermost enclosing boundary at the root of 

the tree is a nominal reference to the part of the plane surface which 

surrounds all the other boundaries. The derivation of such a tree fully 

resolves the containment rel ationships between the boundaries and thus the 

spatial extent of the primitive regions since the holes within each primitive 

region immediately follow the enclosing boundary of that primitive region in 

the tree . The boundary record notes the level of each boundary and its 

surrounding boundary. The link record keeps a record of the boundaries to the 

left and right of each link . 

Once a primitive region assumes an identity, it becomes the basic building 

block for modelling areal objects and it forms the connection between the 

geometry and the geography. Within GIS, there is often a many-to-many 

relationship between primitive regions and areal objects. However, in this 

feasibility study, the primitive regions need only be labelled initially 

as CANDIDATE ROADS and eventually as ROADS , ROAD NEIGHBOURS or UNCLASSIFIED . 

3 .3 Verificati on of Input Dat a 

To recapitulate, the extraction of the area topology includes the following 

stages: 

* Checking of input data 

* Chaining the links into polygons 

* Forming the geometric hierarchy of polygons as shown in Figure 3. 

The checks which were performed were described in Visvalingam et al (1987) . 

When the OSBASE data was processed by this suite of software, it failed to 

form the hierarchy of polygons for one of the Canterbury sheets because it 

could not find the level 1 hole, i.e. the map edge polygon . The precise 

location of the error proved to be a time- consuming task. The problem is 

characterised in Figure 4. In Figure 4a, links a to d form part of the map 
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edge. Linke is a part of a ROAD METALLING link. Part of e (e') is co­

incident with a part of c, namely c' (see Figure 4b) . The link-and-node 

structure does not allow links to overlap and coincide in this way . If a node 

was inserted at E, this could result in duplicate occurrences of e', which was 

only 30 em on the ground . This is smaller than the survey tolerance . Stage 1 

was thus enhanced to detect such cases by including a check which flag links 

with identical bearings at a node . This revealed a number of instances of 

duplicate links and dangling lines without free nodes which were only about 2 

em on the ground on average . This suggests that these and other errors, some 

with configurations similar to those in Figure 4, are software generated . In 

the event only the situation described in Figure 4 proved to be critical and 

was patched manually. Since cleaning is time consuming, we ignored the other 

errors which could prove to be critical to other tasks. Although OSBASE does 

not guarantee that road polygons are properly formed, there were relatively 

few cases of geometric inconsistencies, some of which are described later . 

4. ROAD EXTRACTION USING POINT-IN-POLYGON TESTS 

Road centre lines are manual abstractions of the connectivity of the road 

network . Since centre lines are always located within road polygons, the 

extraction of road networks may be conceived as essentially one of finding 

those polygons which contain the centre lines. This idea may be articulated 

in different ways. In this section, we consider the implications of using the 

point- in-polygon approach for finding the containing polygon . In the next 

section, this is contrasted with the use of topological clues . 

In the previous section we described how the OSBASE links were re- structured 

to make explicit the primitive regions they describe. Road extraction 

now consists of the following steps illustrated in Figure 5. 

* select only those primitive regions which were likely to be roads 

for further consideration 
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Figure 4. An Example of a Link-and-Node Violation 
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Figure 5. Point-in-Polygon Approach to Road Extraction 
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* select suitable seeds, i.e. points on the road centre line network, 

for point-in-polygon checks 

* label primitive regions which contain these seeds as those 

forming road networks 

4.1 Selection of Candidate Regions 

Road networks are regions which contain centre lines. In order to 

minimise computation, road networks were initially assumed to be those 

regions which contain at least one ROAD METALLING link. Candidates are found 

as follows: 

Select all links whose Feature_Code = "Road Metalling Link" 

Create a unique list of all the boundaries referred to in their 

Left_Boundary and Right_Boundary fields 

Select only those boundaries which are enclosing boundaries 

Of the 44186 boundaries, only 1669 (3.8 percent) were selected as 

candidates. The status of each of these candidate boundaries is noted in 

a separate list as shown in Figure 2b. 

4.2 Selection of Seeds 

In concept, only one point on the centre line network is needed to find 

the enclosing polygon. In practice this is somewhat more involved 

because of the presence of special cases. The strategy adopted may be 

summarised as follows : 

FOR each Centre Line Network 

CASE (Number of Nodes in Centre Line Network) 

2+) Avoid dangling nodes (i.e. nodes with only one link attached to it) 

since these may lie on the boundary of the object leading to 

ambiguity. SELECT AN INTERNAL NODE WITH AT LEAST 2 CONNECTED LINKS 
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2) IF there are internal points present in the coordinates fi l e 

THEN take internal point 

ELSE calculate an intermediate point . 

Else) ERROR 

The status of each seed is noted in a l ist (see Figure 2b) 

4 .3 Labelling the Regions 

This essentially consists of finding the region (i.e. enclosing boundary) 

which contains the seed . However, as described below, it is more efficient 

to search through the seeds for each polygon instead of through the polygons 

for each seed. 

Label all candidate boundaries as UNCLASSIFIED 

FOR each candidate_boundary 

set found to FALSE 

IF (UNCLASSIFIED candidate_boundary) 

THEN { WHILE (UNUSED seeds in list AND NOT found ) 

IF (next UNUSED seed is inside 

THEN set found to TRUE 

l abel candidate_boundary as ROAD 

add label ROAD to all links which form candidate_boundary 

label seed as USED 

FOR each neighbour (i.e. boundary on other side of link) 

IF (there are no other ROAD METALLING links in neighbour) 

label boundary as ROAD NEIGHBOUR 
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Note that in the DAM structure, it is only necessary to label the enclosing 

boundary as ROADs since this implies that any holes at the next level in the 

hierarchy also refer to the same object. In general, if a candidate_boundary 

is a ROAD, then it is possible to make some assumptions about the neighbour. 

The neighbour shares one or more ROAD METALLING links with the identified 

road. If these are discounted, 

* a neighbour which has no other ROAD METALLING link is unlikely to be 

another road. 

* the status of a neighbour with additional ROAD METALLING links 

cannot be determined. 

At the end of this labelling process , candidate_boundaries will be labelled as 

ROAD, ROAD_NEIGHBOUR, or as UNCLASSIFIED. Seeds would be labelled as USED or 

UNUSED . 

4.4 Discussion of Results 

The process of road extraction is essentially one of classification. The 

success of this process may be evaluated by identifying and explaining 

errors of omission and commission. All cases of the following types 

were automatically identified and manually inspected: 

* Road s~eds which remain UNUSED 

There was only one instance of this type. It occurs because its 

enclosing_boundary, which forms a genuine road, does not contain any 

ROAD METALLING links. The probability of this occurring in an extensive 

road network is very small. These errors of omission tend to occur 

where truncation by the map edge leaves a small section of road as shown 

in Figure 6a. As a result of building and water detail having higher 

priority in the feature coding hierarchy than ROAD METALLING, none of 

the links in this road boundary have the ROAD METALLING feature code . 

The polygon was thus not identi f ied as a candidate. 
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There are two possible solutions to this problem. One is to highlight 

these cases for manual checking and labelling. The other is to achieve 

a more complete solution. The latter solution is possible but this 

means that all enclosing_boundaries which touch the map edge, and not 

just those with ROAD_METALLING links, are considered as candidate 

boundaries. This would mean that some 6170, instead of 1669, 

boundaries (i.e. 14.0 percent, instead of 3. 8 percent) would become 

candidates. 

* Candidate boundaries with ROAD METALLING links which remain 

UNCLASSIFIED . These occur in two situations : 

1) when only one side of a road skirts the map edge resulting in 

a missing seed (see Figure 8) . Without a road centre line, 

both the road and the adjoining regions will remain UNCLASSIFIED 

and will have to be manually checked and labelled as either ROAD 

or ROAD NEIGHBOUR . 

2) when a road network is segmented by overhead features (see 

Figure 6b) . Here selection of a single seed is insufficient 

as the overhead feature truncates the road into two polygons, 

only one of which contains the sample seed. An analysis of 

these errors indicate the following: 

the algorithm for road extraction was too simplistic 

the data specification does not expedite road extraction 

The problems related to data are considered first since they guide the 

problem-solving strategy . As pointed out earlier, OSBASE is a 

cartographic model of data; these cases show how only the uppermost 

features are depicted in maps. Road centre lines, on the other hand, 
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River 

a) truncation by map edge 

c) odd centre line outside road 

Road Metalling 

Road Centre Line 

Other Detail Solid 

b) effect of overhead features 

d) centre line crossing regions 
which are not roads 

ltf~):l!Ml Road 

l\lfC$1 Building, Roofed Structure 

Figure 6. Some Special Cases not Resolved by the Point-in-Polygon Approach 
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record connected networks . Thus, where overhead features occur it is 

not possible to use just one seed from the centre line network . 

Again there are two solutions . One is to use automatic validation 

procedures to highlight UNCLASSIFIED enclosing_boundaries for manual 

labelling as before. Another somewhat involved procedure is to consider 

all the points in the road centre line network . It is insufficient to 

consider only the nodes of this network. This is done as follows: 

Label all vertices in the road centre line network as UNUSED . 

WHILE (still UNUSED vertices) 

Select one seed as before 

When this seed is labelled as USED 

Label all points which are either inside the identified road 

or its neighbours as USED 

( This would also eliminate another type of error. There were two 

instances when road centre lines occurred within what appeared to be 

neighbours. In one, the centre line extended into and terminated within 

a roundabout. This is a residual error due to a change in data 

specification . The other case is typified in Figure 6c. Here link A 

crosses a ROAD METALLING peck and extends into an access road. Other 

similar access roads have not been included in the road centre line 

network; this suggests that the digitisation of Link A may be have been 

an error) . 

Unfortunately, the inclusion of all points in the road centre line 

network will lead to errors of commission since points on the road 

centre line can and do fall within other regions which are not roads . 

For example, in Figure 6d, road centre line points can fall in 
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region A and C, which cannot be ruled out as candidates until region 

B is correctly identified as a road . 

In addition to these errors of omission, the data specification introduces 

some anomalies. Road boundaries include features which are not metalled 

roads. Figure 7b illustrates how the road can extend into pavements, 

driveways and other features (see, for example, the cases labelled A - C) . In 

most instances , these extraneous features are separated from the road network 

by ROAD METALLING links . ROAD METALLING links are sometimes omitted, for 

example, where a road ends and a drive to a block of garages begins. Since 

neither roads nor appended features are area- filled in OS maps, OS does not 

need to separate roads from other features . Whilst these link omissions do 

not affect OS map production, the inclusion of extraneous features can impede 

road recognition since they can dis t ort the metrics, such as shape, which have 

been used by others to guide the process of object recognition. Thus, 

procedures need to be developed to detect automatically the presence of 

extraneous features. 

5 . ROAD EXTRACTION USING TOPOLOGICAL CLUES 

The point- in- polygon approach to road extraction is modelled on the direct 

visual perception of roads as regions traversed by the road centre- line 

network . It is inefficient because it involves the retrieval from disc of 

locational information (co- ordinates) . Spatial data models, such as DAM, are 

intellectual constructs devised to provide a framework for reasoning . They 

guide us towards more efficient solutions although, once found, the solutions 

are not dependent upon the re- structuring of the data into DAM form. Also, 

these solutions encourage us to visualise the problem in a different way. 

The problem of road extraction is essentially one of identifying the region 

within which the road centre line lies . Centre lines have to be used because, 

the ROAD METALLING links do not indicate whether they bound regions to the 
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a) all links extracted from OSBASE b) polygons labelled as roads 

Figure 7. Roads which Include Neighbouring Features 

A A 

a) no hole b) with hole 

Figure 8. Use of a Hole to Locate the Road 

Road Metalling 

General Detail 

liil':m:l Road 

a) unambiguous case b) presence of ambiguity 

Figure 9. Extraction of Roads at the Map Edge with No Centre Lines 
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left or the right of them. This impedes extraction when we have sibling 

regions as in Figure Sa. However, since roads form connected networks, ROAD 

METALLING links in holes provide unambiguous clues. For example, in Figure 

8b, region C which is inside a hole cannot form a road since it does not lead 

anywhere. Thus, ROAD METALLING links forming holes normally indicate that the 

region which contains C, namely B in Figure 8b, must be the road. 

Unfortunately, not all roads contain holes. Moreover, not all holes in roads 

contain ROAD METALLING links. 

However, holes at all levels of the geometric hierarchy provide clues for 

identifying roads by elimination of unlikely candidates. The hole at level 1, 

namely the map border, is equally informative. We noted earlier that the road 

centre lines connect to the OSBASE layer at the map edge. Since the region 

outside the map lies to one side of the MAP EDGE links with centre line nodes, 

the level 2 enclosing boundaries on the other side must be roads. We can use 

this knowledge for labelling the candidate boundaries used in the point-in-

polygon test. The process of extraction consists of the following steps. 

1) Label the obvious cases first. 

Use the road centre line nodes at the map edge to locate the MAP 

EDGE links within which they lie. 

Label ~he enclosing boundaries containing these links as ROAD, 

irrespective of whether they contain ROAD METALLING links. 

Label associated entities (neighbours, holes and links) as before. 

Here the point-in-polygon test is replaced by a range check, involving 

only the nodes; thus the vertices in the Coordinates file on disc need 

not be accessed. This step will identify all roads with centre lines 

which intersect the map edge. 

r u~£; ' 
"- -~-- ' --- . '. 
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2) Label the roads skirting the edge which do not have a centre line. 

Select the still UNCLASSIFIED level 2 enclosing boundaries, with 

both MAP EDGE and ROAD METALLING links. 

IF {an enclosi ng_boundary has one and only one MAP EDGE link) 

THEN label it as ROAD and label associated entities . 

In cases , such as that in Figure 9a , this will correctly identify B as 

the road. If A were the road, a road centre line will have been 

included . However, in some cases, as shown in Figure 9b, it is possible 

to pick D first and wrongly identify it as a ROAD. Region C will not be 

labelled as ROAD NEIGHBOUR since it includes ROAD METALLING links other 

than those which form the boundary between C and D. Since two 

neighbouring polygons will now be labelled as ROADs, it is possible 

during the review stage to re- label D as ROAD NEIGHBOUR automatically as 

it does not have any other ROAD METALLING links. Since these roads are 

deduced rather than explicitly recorded in the database, their labelling 

must be manually checked since data conditions can lead to wrong 

conclusions. There were no problems of misidentification in the sheets 

we processed. 

3) Label the roads which do not t e rminate at the map edge. 

By now only those candidate boundaries which are detached from the main 

road network, and others arising out of digitising or link- and- node 

structuring errors, will remain UNCLASSIFIED. {In the given data, these 

form only 2.6 percent of the candidate boundaries . ) Clusters of 

boundaries can become detached because of the presence of overhead 

features {see Figure lOa) . It is possible to resolve these detached 

roads in several ways: 

- manually; this should be a last resort and should really be used 

for checking purposes only 
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point-in-polygon checks as before 

By now, only a small number of candidate boundaries, which consist 

of few vertices remain. Thus, these checks are no longer as onerous. 

topologic reasoning 

If we visualise each cluster of detached enclosing boundaries as 

occurring within a hole (as in Figure lOb), then only the road 

has at least two sibling candidates with which it shares ROAD 

METALLING links . Although this rule resolves all the cases we have 

encountered, it may not be foolproof. 

a change to the data specification 

Currently, the road centre line layer is not topologically 

integrated with OSBASE. For example, there are no nodes where the 

road centre line crosses links recording overhead features. The 

outermost links recording overhead features can be distinguished 

since they are feature coded as either BUILDING PECKED, where a 

building forms the overhead feature, or GENERAL SOLID for other 

features. If these were treated as vertical edges, i.e. like the 

map edge, and if the centre line network was connected to OSBASE 

at these links by nodes, then road extraction would become a 

trivial process. 

At the end of this three step process only the loops of ROAD METALLING 

links and other errors, generated during the link- and- node structuring stage, 

and ambiguous cases as in Figure Gc, will remain UNCLASSIFIED. 

6. LABEL-BASED VALIDATION 

The labels assigned to links and boundaries can be used now to locate 

inconsistencies in the value-added database and assess whether they are 
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a) Examples of detached parts of roads remaining UNCLASSIFIED 

b) sibling candidates visualised as occurring within holes 

Road Metalling 

Road Centre Line 

General Detail Pecked 

Building Detail Pecked 

Other Detail Solid 

Road (still UNCLASSIFlED) 

- Road (already CLASSIFlED) 

- Building, Roofed Structure 

Figure 10. Segments of Roads Detached by Overhead Features 
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critical or insignificant . These inconsistencies must be ascribed to one 

or more of the following reasons: 

a) errors in extraction process; these may be due to incorrect 

interpretations of the data specification or inappropriate logic 

b) anomalies caused by edge effects and overhead features 

c) errors in data arising out of contraventions of the data specification 

d) inconsistencies arising out of ambiguities in the data specification 

e) difficulties arising out of the nature of the data specification 

Two sets of checks were undertaken. The first set checked the correspondence 

between the OSBASE and road centre line layers; the second validated the 

consistency of OSBASE data. 

6.1 Correspondence Between OSBASE and Road Centre Line Layers 

The following checks were made . 

* Manually check if all regions labelled ROADs, which contain at least 

one point on the road centre line , are actually roads 

* 

* 

They appear to be . 

Automatically flag all regions labelled as ROADs if they do not contain 

at least one point in the road centre line network 

This check only identified the cases which could be attributed to 

cause b. Although the centre line does pass through it, the small 

detached section of road located in a hole in an overhead motorway (see 

Figure 10), need not have contained road centre line points. The 

point-in-polygon approach would miss such cases. 

Automatically flag points in t he road centre line network which lie 

within regions which have not been classified as roads 
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This identified some overhead features as expected (cause e; see Figure 

6b) . The case, sketched in Figure 6c, is the only one of its kind in 28 

sheets it is likely that it is due to cause c) . There was one further 

case where the road centre line extended into and terminated in a 

roundabout. This arose from data digitised under a now superceded 

digitisation specification . 

* Automatically flag MAP EDGE links, bounding a region labelled ROAD , 

which do not contain a centre line node 

There were several violations of this rule and they were all the 

result of missing LOGICAL links to close off roads , i.e. cause e. 

For example, the MAP EDGE links of feature C in Figure 7b will be 

flagged. 

These checks indicate that apart from the two cases due to cause c), 

manual input of centre lines is very reliable. 

6. 2 Cons istency of the OSBASE Layer 

* Automatically flag enclosing boundaries with residual ROAD METALLING 

links which remain UNCLASSIFIED. In this check, ROAD METALLING links 

which already form a part of boundaries labelled as ROAD are discounted. 

* 

This found a few (37) cases due to digitising or cleaning errors which 

formed either a loop in the side of a road or left a small section of 

ROAD METALLING link in a neighbouring feature, such as a pavement. 

These should have been removed in the cleaning stage but they do not 

impede road recognition. 

Automatically flag links of ROADs which have the same boundary number in 

both the left/right boundary fields 
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This implies that a ROAD has become a neighbour of itself. There were 

several instances of this . They appear to be due to missing LOGICAL 

links (cause e) . 

* Automatically flag ROADs which are neighbours of other ROADs 

This does occur and can be attributed to missing LOGICAL links (cause e) . 

* Automatically flag boundaries forming roads which include feature codes 

which are of lower priority than ROAD METALLING 

This check identified a number of occurrences of links coded as GENERAL 

PECKED or VEGETATION in road boundaries . They seem to be due to missing 

LOGICAL link~ (cause ~) mo~e ofte~ than to coding errors . But there are 

a few cases where the semantic labelling is incorrect. It would be very 

difficult to locate such residual errors manually without using a 

model-based approach, such as that used in this paper . 

In general, the node- in- edge method for road extraction is more reliable 

than the point- in- polygon approach and, even using our still unoptimised 

implementations , it is about five times faster. 

OSBASE did contain some link- and- node structure violations and a few feature 

coding errors . These are unlikely to impede road recognition in the majority 

of cases . The inclusion of extraneous features within roads is more of a 

problem. However, the study has revealed several ways in which their presence 

could be detected. 

7. CONCLUSION AND FUTURE WORK 

This paper has demonstrated that the point- in- polygon approach to road 

extraction is inefficient and unreliable owing to special cases in topographic 

data. It provides a much simpler and more robust method based on topologic 

reasoning. The Disassociative Area Model (DAM) provided a framework which 
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allowed us to reason about road extraction in different terms. Once found, 

the solutions may be implemented without re- casting link- and- node structured 

topographi c data into the full DAM format . 

The paper has also demonstrated how the process of object extraction can 

assist in the verification of the topology and the validation of the semantic 

content of data . Now that the roads have been extracted, it is possible to 

assess the scope for automatic segmentation and naming of roads . This process 

would not only use the attributes of road centre lines and road text features 

but also the clues deduced by this feasibility study. 

The catalogue of roads versus road neighbours and other objects can be used to 

guide the process of road recognition and evaluate _the success of recognition 

algorithms . The exercise has al so suggested how minor changes in the data 

specification can trivialise road extraction. Roads also provide contextual 

information to guide the recognition of other topographic objects of relevance 

to GIS. 
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