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Data description

To the reader

Every author hopes to write clearly and accurately. I cer-
tainly do. But what I have specifically aimed for is 2 volume
light enough to be carried around, and cheap enough for every
student to afford.

I am not intending to compete with the many excellent in-
troductory textbooks of statistics that are available. Indeed,
I encourage you to buy one of these. But so many of them are
500, 700, even 1000 pages long. This has real disadvantages.
They are heavy. They are expensive. And they are wordy.

Being concise means I have not given examples of every
possible variation on a problem. This is not a book suitable
for teaching yourself with. My assumption is that you are
attending a course of clearly-presented lectures, and that you
are missing neither any of these nor any of the tutorial classes,
assignments, and statistical computing that reinforce them.
If that is so, I believe you will find this book a very useful
“memory-jogger”.

A typical introductory statistics course gets as far as some
techniques of inference — the testing of hypotheses and the
construction of confidence intervals. That is the subject of
Part III of this book. In preparation for this, the student
needs to know about data description and about probability.
These are covered in Parts I and II.

I apologise for any mistakes or misprints.

T.P.H.

[PART I. DATA DESCRIPTION |

How can we summarise small amounts of data?
Suppose the heights of 10 shortleaf pine trees (in feet) are: 20,
45, 50, 30, 55, 30, 40, 30, 50, 40. How can we summarise these
numbers?

Before answering that, let us think a little about how
the data was collected.

e Usually, the items (trees) in the data are not interesting
in themselves, but because they are representative of a
broader population (forest). So, our data needs to be
a random sample: every tree in the forest had the same
chance of being included in the 10 we measured, and every
possible set of 10 trees had the same chance of constituting
our sample.

o How accurately were the measurements made? In this
case, we can presume the measurements were to the near-
est 5 ft. (With any new data, it is worth asking oneself
whether the measurements were rounded to the nearest
unit being used, or whether there is any reason to think
they may have all been rounded down, or all been rounded
up.)

o Notice particularly that the data is measurements, not
counts. Measurements could be made more accurately
fe g., 36.4 ft.), but counts must always be whole numbers
(e.g., 7 trees in an area, it is not possible to have 7.4 or
6 8 trees).

The most important thing about numbers in a list
like that here 1s how big a typical one is. The second most
important thing is how variable the numbers are.

Measures of location: the mean. (Measures of
“location” refers to where the numbers are located among all
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possible numbers.) We calculate the mean by adding the num-
bers together and dividing by how many numbers there are.
For the 10 pine trees,

I

. 204454 50+30455430440430+50+440
Mean height oL

390
10

= 39 (feet).

If we are referring to our observations as z's, the usual symbol
for the sample mean is Z. The formula for the calculation we
have just done is

Xz
“";._.
We are using z to represent height of tree, and n to be the
number of trees. L is the symbol “sigma”, and means “add
up”. (Here and elsewhere in this book, I will omit the label
on z. I hope readers appreciate that when written out more
E:—‘=1 I )

Add up all the numbers
Number of numbers in the sample’

=

(1)

fully, the formula is £ =

The mean =

Arithmetic mean, and average ave other names for this.
Measures of location: the median. Arrange the
numbers in order of size. The median is then the middle one.

20 30 30 30 40 40 45 50 50 55
(5th) (6th)

Because there is an even number of observations, we take the
average of the two middle ones. (They are both the same in
this case, but they will not always be.)

Median height = 40 (feet).

There are usually as many observations smaller than the me-
dian as there are observations that are bigger.

Why | have to say “usually” is that this rule is broken in
situations like this:
3 3 3 3 4 4 4 4 5

Middle observation = median = 4, but only one (5) is
bigger whereas four (all 3's) are smaller.

By the way, when two or more observations are the same, they
are said to be “tied”.

Measures of location: the mode. The mode
is the observation that occurs most frequently. For the 10
pines, it is 30 ft., which occurred three times. The mode is
not usually very useful for measurement data, because most
measurements occur only once, and getting three 30’s was
only because we measured to the nearest 5 ft. It is more
useful for counted data (e.g., number of persons in a house-
hold), or as the modal group when measurement data has been
grouped into ranges. (The modal group is the group for which

Number of observations in the group
Width of the group

Features of the mean.

is biggest.)

o Easy to calculate.

o Much statistical theory is based upon it (as we shall see
in paragraph 136).

e Accurate, in the sense that the means of different samples
do not vary very much. (See paragraph 131 for more on
this.)
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However, it is sometimes used when simplicity is important
and the sample size is always the same. Industrial quality
control is a traditional area.?

Measures of variation: the IQR and the SIQR.

[.Q.R. — inter-quartile range.
S.1.Q.R. — semi-inter-quartile range = 1 IQR.

As its name suggests, the IQR is a range — i.e., a distance
between. It is the distance between the gquartiles.

The quartiles separate the ordered observations into four
equal groups, like the median separates the ordered ob-
servations into two equal groups: a quarter of vhe obser-
vations are less than the lower, or first, quartile (LQ), and
three-quarters are bigger; three-quarters are less than the
upper, or third, quartile (UQ), and one quarter are big-
ger. The second quartile is the median. (When there are
tied observations, some slight changes are needed to this
wording.)

It is easy to see where the quartiles are when the number of
observations is divisible by 4. But what should we do when
this is not the case? Different books say different things. I
recommend the following procedure.

After ordering the observations, the lower quartile is ob-
servation no. 0.25n+0.5 (where n is the number of obser-
vations in the sample), and the upper quartile is observa-
tion no. 0.75n 4 0.5.

Thus if there were 10 observations, the lower quartile would
be the 3rd and the upper quartile would be the 8th (that is,
the 3rd counting from the top). If there were 11 observations,
the lower quartile would be observation no. 3.25 (that is, go a
quarter of the way from observation no. 3 towards observation
no. 4), and the upper quartile would be observation no. 8.75.

For these 10 observations,

20 30 30 30 40 40 45 50 50 55,

the lower quartile is 30, the upper quartile is 50, so the in-
terquartile range is 50 — 30 = 20.

Measures of variation: the mean absolute de-
viation (MAD). The MAD is the mean of the absolute de-
viations of the observations from the mean.

Observation  Deviation  Absolute deviation
from mean from mean
z r— 1 |z — z|
20 -19 19
45 6 6
50 11 11
30 -9 9
55 16 16
30 -9 9
40 1 1
30 -9 9
50 11 11
40 1 1
0 92

?For example, every hour we randomly select n (typically 5) widgets
coming off the production line, and check that their measurements are
close enough to the specification: firstly, we check their average, and
secondly, we check that the widgets are not too variable by calculating
the range of the n.:asurements.
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For this example, the MAD = %—g = 9.2. (Notice also that
the sum of the deviations from the mean is always zero.) In
symbols,

|z - |

n

M.AD.= (2)
In principle, the MAD is a good measure of variation. But it is
not often used, because it is awkward to compute and because
mathematical theory to go with it has not been developed.

Measures of variation: 'he standard devia-
tion. This is almost (but not quite) the root mean square
of the deviations. Here, the above data is repeated, with a
column of squared deviations also shown.

Observation  Deviation Squared deviation
from mean from mean
z r—z (z—z)?
20 19 361
45 6 36
50 11 121
30 -9 81
55 16 256
30 -9 81
40 1 1
30 -9 81
50 11 121
40 1 1
0 1140

For this example, the s.d. = ‘/1-1-5‘-‘9 = 11.3. In symbols,

_ [E(z—2)?

Notice that we divide the sum of squared deviations by n — 1,
not by n. (Actually, some books do divide by n, and many
calculators have both s,_; and s, buttons; for more on this,
see paragraph 142.)

The s.d. is what is most commonly used as a measure
of variation. The square of the s.d. has a special name — it is
called the variance?

The above formula (3) demonstrates the meaning of
the s.d. — it is based upon the deviations from the mean. But
it is rather inconvenient for actually carrying out the calcula-
tion: it is necessary to go through the data once to calculate
the mean, and then go through it again to calculate the devi-
ations from the mean, and hence the s.d. Furthermore, even if
the original dataset consists of whole numbers, the mean will
not usually be a whole number, so the deviations from it are
not whole numbers, and the process of calculating T (z — z)?
gets messy and error-prone. Instead of the above formula,
therefore, the following one is often used.

Tz?- L(Tz)
BN CEETCR; "

n—1

It gives exactly the same answer, as may be demonstrated with
the above data.

3We have by now met a number of words that have specialist meanings
in statistics — e.g., mean, median, mode, range, standard - =viation,
variance, quartile. It is & worthwhile exercise to look up such words in
an ordinary dictionary, and think how yc 1 could improve the definition
you find there.




e In a common sense kind of way, each observation con-
tributes equally to the calculation.

But is the last point a good feature or a bad feature?

Suppose the data, actually 20 45 50 30 55 30 40 30
50 40, were punched into your calculator wrongly, as
2014505:505:3015?1030140130150140
795
10
= 79.5 (feet).

We can see the mean is sensitive to mistakes.

A further point is that we might sometimes suspect
people will be interested in the sum of some number of z's —
in which case, it will be the mean they will need in order to

~alculate it.

Suppose we have observed the numbers of occupants in
cars on roads leading to the city centre. If we think some-
one is going to want to calculate the number of persons
entering the city centre by car by multiplying the number
of cars by the number of people per car,! then it is the
mean they will need, not the median or the mode.

Features of the median.

e It can be calculated even when the data is merely graded,
not measured.

e Very easy to calculate for small samples.

e But for moderate and large samples, it is tedious to place
all the observations in order of size.

o All the observations have to be known individually before
the median can be computed — i.e., a calculator needs to
store them all. (Notice that in computing the mean, the
calculator only needs to store the running total £z and
n, not all the individual observations.)

e It is not as sensitive as the mean is to mistakes.
20 30 30 30 40 40 50 50 55 450

Median = 40. In this example, the median was not
changed at all by mispunching 45 as 450.

e Similarly, it is less likely to be disturbed by an observation
that is unusually small or large. That is, it accords more
closely with our intuition about a typical value than the
mean does. As an example, residential house prices are
often summarised by the median, since there are a [ew
houses in any city that are 10 times as expensive as most
are.

Part I

Root mean square
= y/mean of the squared observations,

Geometric mean of n positive numbers = nth root
of their product,

Harmonic mean

s 1
= imean of the reciprocals ol the observations®

If our dataset consists of just three numbers, 1 2 4,
Mean = 14244 = 233,
r.ms. = Lﬂéﬂ—s =7 = 2.65,
gm. = (1 x2x4)Y/3 =82 =200,

- 1 NI
h.m. = GFl+DE = 058 = 1.71.

All three of these new “means” obey the equation
T(New mean) = Mean of T(z), where T' is some trans-
formation (square, logarithm, and reciprocal in the three
cases).

o Weighted means. Here, each observation is not counted

equally, but is “weighted” according to what size it is.
Thus we have a weight function w(z), and the weighted
mean is Zw(z).z/Z w(z). The most common example of
this is where the observations are weighted according to
their sizes, z. The size-weighted mean is thus rz?/Lz.
Two examples of this may be given.

— Suppose that a third of classes in a university have 9
students in them, a third have 60 students in them,
and a third have 300 students in them. So far as
a university administrator is concerned, the natural
way of calculating the mean class size is as (9+60+
300)/3 = 123. However, so far as the students are
concerned, 9 of them are experiencing a class size
of 9, 60 are experiencing a class size of 60, and 300
are experiencing a class size of 300, and the natural
way for them to calculate the mean class size is as
(9 x 9 + 60 x 60 + 300 x 300)/(9 + 60 + 300) = 254,
the size-weighted mean.

— If the time gaps between successive buses are the
z's, and people are coming to a bus stop at a rate
of A per unit time, then the Az people arriving dur-
ing a gap of length z experience an average wait of
1z. So the overall average waiting time for a bus is
¥ (Az.1z)/T Az = T z?/Ez. (Paragraph 116 has
more on this:)

Measures of variation: the range. The range of

a set of numbers is the largest value minus the smallest.

The range of the heights of the ten pine trees is 55 — 20 =

Other measures of location. These fall into three

. 35 (feet).
main classes.

e Modifications to the mean to make it less sensitive to It is not used much, for the following reasons.
mistakes. For example, discard the biggest 5 per cent of

_ observations and the smallest 5 per cent, then calculate
the mean of the others.

e Only two observations contribute directly to it.

o It is very sensitive to unusually big or small observations.

e Use the concept of mean on some transformation of the
original numbers. Three examples:

e There is no standardisation by the size of sample. A big-
ger sample is likely to have a bigger range than a smaller
sample (just because there is a greate: chance of including
an exceptionally big or exceptionally small observation in
the bigger sample).

! They might want to use this method because the flow of vehicles along
2 road is easy to measure automatically, but the number of occupants
requires observation by a person.

R A 7 S
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T T
20 400
45 2025
50 2500
30 900
55 3025
30 900
40 1500
30 900
50 2500
40 1600
390 16350
From the above table,
. 16350 — 5(390)?
- V 9
_ 1140
= =

which is 11.3, as before.*

However, it is necessary to be careful when using
this formula. When calculating £z? — 1 (Z z)?, one number
is being subtracted from another. It may happen that the
second is only a little smaller than the first. So both need to
be worked out quite accurately in order that the difference be
sufficiently accurate. Incidentally, £ z? is always greater than
or equal to 2(Z z)2. If in your computations this is not so —
so that in calculating s you are trying to take the square root
of a negative number — you have made a mistake.

Notice roughly what size the s.d. is, compared with
the scatter in the data. Typically,

We find a few observations further than 1 s.d. from the
mean in a small dataset (e.g., 10 observations);

We find a few further than 2 s.d.’s from the mean in a
medium-sized dataset (e.g., 100 observations);

We find a few further than 3 s.d.’s from the mean in a
large dataset (e.g., 1000 observations).

Pictorial presentation: the box-and-whisker
plot. In its simple form, this consists of a scale,
with beside it a box extending from the lower quar-
tile to the upper quartile, with the median shown,
and with whiskers reaching as far as the lowest and

highest values. Some people draw it horizontally:
LQ Median UQ
— L—
r I T T I T 1
10 20 30 40 50 60 70

* An algebraic demonstration of the equivalence of the two methods
runs as follows. When expanded, (z — £)? is r? — 2%z 4 £2. Summing,
we find

T(r-%)? = Ez’-22Lz+ns
T 2
= Ez?—%():r)?+n( :;)
n
= E:z—‘;(ﬂr)z.

as required.

Part I

whilst others prefer vertically:

70 4
60

50

UQ

40 Median

30 H LQ

20 —

10 -

Pictorial presentation: box-and-whisker plots
that show outliers. Consider the following dataset of 10
numbers:

8 24 36 40 43 60 68 79 117 127.

There is a big gap between the 8th and 9th numbers, 79 and
117. Perhaps the two largest values, 117 and 127, should not
be considered typical of the data as a whole, but should be
considered to be outliers?
E A possible definition of an outlier is an observation
that is either

More than 1 IQR above the UQ,

or
More than 1 IQR below the LQ.

For the above data, we find median = 51.5, LQ == 36, and UQ
= 79. Consequently, the IQR is 79 — 36 = 43. Adding this on
to 79, we get 122; subtracting it from 36, we get —T7. There
are no observations below —7, but there is one above 122.
Observations which are outliers are now shown on the box-
and-whisker plot by means of circles, and the whiskers now
extend up as far as the largest observation which is not an
outlier (117 in this example), and down as far as the smallest
observation that is not an outlier (8 in this example).

,__‘

I T I
0 20 40

T T T T 1
60 80 100 120 140

It is notable that here, the division between outliers and the
main body of data did not occur where we thought it would:
127. but not 117, was classed as an outlier.

Discussion of outliers. The above definition of
what constitutes an outlier is somewhat arbitrary.

e Even accepting this type of definition, some books use 1.5
IQR's as the step we must go above the UQ or below the
LQ before we start to think the observations are outliers.

e The definition takes no account of sample size: in a large
sample, one would expect to find some observations more
than 1 IQR above the UQ or below the LQ, even if there
is nothing genuinely unusual about them.
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e Furthermore, this type of definition takes no account of
our assessment of how likely it is that a “rogue” observa-
tion might arise.

The problem of finding an appropriate definition of an outlier,
and of deciding whether a suspect observation is a mistake or
not, is a very difficult one, certainly much more advanced than
this book. Nevertheless, there are a number of common sense
points that are well worth making. When we find an observa-
tion that is substantially different from most of the others,

e We should attempt to trace its progress through the pro-
cedure of recording the information and transmitting it to
us, if it is practicable to do this, as we may find an error
has crept in at some stage;

® We should look at the circumnstances surrounding the ob-
servation, as there may be something of real scientific in-
terest to be discovered;

e We may wish to discard the observation because it is ob-
viously wrong;

¢ We may wish to accept the observation because we can
find nothing amiss with it and it is not too different from
the others;

e We may choose to use statistical procedures that will not
be greatly harmed if some observations are indeed rogue

values — for example, we may prefer the median to the
mean, and the IQR to the s.d.

Transformations. It is usually easiest to under-
stand data oneself, and communicate it to others, if in some
sense it is roughly equally spaced out over its range of varia-
tion, not all bunched up at one end. So if this is not true of
the raw data, we look for some sort of transformation (e.g.,
taking the square root, or taking the logarithm) that achieves
it.®

The following numbers are measures of the size of the
floods of the Ocmulgee River at Hawkinsville, over the years
1930-1939:

50 12 16 20 17 13 61 26 33 38.
In order of size, these are
12 13 16 17 20 26 33 38 50 6l.

So the median is 23, the LQ is 16, and the UQ is 38. The IQR
is therefore 22, and we flag any observations over 60 or below
1 as being possible outliers. The box-and-whisker plot looks
like this:

| T I I T I I 1
0 10 20 30 40 50 60 70

Taking the logarithm of each of the observations, we get

1.081.111.20 1.23 1.30 1.41 1.52 1.58 1.70 1.79.

®An additional reason for carrying out a transformation is the fol-
lowing It sometimes happens that we have several different groups of
observations in our dataset, and these have different standard deviations:
some statistical procedures (beyond the scope of this book) require the
assumption of equal standard deviations. [t is sometimes possible to find
& transformation such that the s.d.'s in the groups are approximately
equal after the transformation has been made.
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The median is 1.355, the LQ is 1.20, and the UQ is 1.58. The
box-and-whisker plot is now a good deal more symmetric, with
no outliers:

10 11 12 13 14 15 16 17 1.8

A disadvantage of presenting the data in transformed form is
that the numbers themselves are now no longer so meaning-
ful. This can be remedied by showing a scale of the original
numbers:

[ T I

T T 1
10 20 30 40 50 60 70

(The numbers 20, 30, 40, etc. are at distances log(20), log(30),
log(40), etc. from the number 10.)

Skewness. The skewness of a set of numbers is
how far from symmetric they are. There are various ways
of defining it more precisely. One that is easy and directly
reflects what is shown in the box-and-whisker plot is the ratio

Upper quartile — Median : . -
Median — Lower quartile- Evidently, this ratio is 1 for sym-
38-23

metric data. For the original data, this is 33={3, which equals

2.14; for the logarithmically-transformed data, it is rather less,
1 58-1.355 =1 45
1.355-1.20 3

Pictorial presentation: the cumulative fre-
quency plot. In a cumulative frequency plot, the vertical
axis represents the number (or proportion, perceniage, etc.) of
observations that are less than or equal to the value z shown
on the horizontal axis. Recall the flood measurements above,
which were 12 13 16 17 20 26 33 38 50 61. When plotted, the
graph looks like this:

1.04
0.9+
0.8
0.7
0.6
0.5
0.4+
0.3
0.2+
0.1+

0.0 I 1 T T I T
0 10 20 30 40 50 60 70

Size of flood, =




(The vertical axis has been marked with the proportion of
floods that are of size less than z, but it could instead be
marked with the percentage, or with the number.)

If we do not want to show it as a series of steps, a
reasonable alternative is to use the midpoints of the verticals as
being the “plotting positions”, and join these up with straight
lines. That is, we are plotting the ith smallest observation, r,
at the point (:r:, '—:Ii) In the following illustration, the steps

have been left on the graph, to illustrate what is being done.

1.0
0.9+
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1+
0.0

Size of flood, z

Notice that when we have done this, the graph no longer rep-
resents exactly what is true of the sample of data we have.
Instead, it is an estimate of what is true of the population
from which the sample was taken. As to how to compare data
plotted like this with a theoretical distribution, such as the
normal, see paragraph 107 below.

With the above choice of plotting positions, the quar-
tiles will be the same as defined above in paragraph 12. For
example, the lower quartile is the value of = for which the cu-

mulative proportion reaches 0.25. So, on setting 0.25 = '—-}i,
we find i = 0.25n + 0.5, as in paragraph 12.°

Why no histograms yet? You may have heard
about histograms, and wondered why we have not drawn any
yet. The reason is that an appreciable number of observations
is needed before a respectable histogram can be drawn. See
paragraph 35 below for histograms.

ﬁ Summarising moderate amounts of data. So
far, we have had so little data that we have been able to con-
sider the observations one by one. Now, what if there are a
few tens or hundreds of observations, how do we summarise
them?

If we have many thousands or millions of observations,
we get a computer to do the classifying and counting and
tabulating for us. Processing data like this is a subject
that is practically important, but is beyond the scope of
this book.

Tallying and tabulating. The size and shape of
humans is important for, among other things, the design of
th: interior of motor vehicles. In an anthropometric survey of
100 male car drivers, the following arm length measurements
(mm.) were found.

$Not every book defines the quartiles in exactly the way given in para-
graph 12, and the plotting positions in exactly the way given here, and in
some books the quartiles obtained from the direct definition work out to
be slightly different from the ones obtained by secing when the cumulative
proportion graph reaches 0.25 and 0.75.

Part I

742 817 846 845 846 833 782 767 786 810
765 694 758 754 754 806 775 798 740 809
759 785 795 830 854 830 789 802 720 816
764 783 747 774 763 781 804 727 809 801
796 791 811 833 757 786 806 796 776 803
801 817 831 811 801 802 834 805 827 817
801 769 706 802 774 767 811 767 830 771
759 751 765 811 727 761 808 777 835 787
788 776 754 812 860 765 763 780 777 737
761 791 757 758 795 708 784 725 800 723

To tabulate this data, we first choose suitable classes, and
then proceed systematically through the numbers, placing a
tally mark in the appropriate class and crossing off the num-
ber when we have done so. (This is because someone always
comes in and interrupts us, and we would otherwise forget
where we had got to!)

up to 699
700-719
720-739
740-759
760-769
770-779
780-789
790-799
800-809
810-829
830-849
850-869

870 & over

/1]

TS

SHEEEE
3~ s

And we count up the tally marks to get the frequencies:

up to 699 1
700-719 2
720-739 6
740-759 13
760-769 12
770-779 8
780-789 11
790-799 7
800-809 16
810-829 11
830-849 11
850-869 2

B70 & over 0

In choosing the classes, we need to bear in mind the
following points:

e Usually, convenient round numbers are used.

e Sometimes, one or more specific classes must be identifi-
able in the tabulation (e.g., information about them may
be required for some definite reason, they may need to
be compatible with other statistical tabulations, or sim-
ply be what is customary). For example, when tabulating
the ages of road casualties, the age at which a motor ve-
hicle can legally be driven and the age at which alcohol
can legally be consumed are both of particular interest.

e There need to be sufficiently many classes that we do
not lose too much information because of crude, wide,
grouping. But there must also be sufficiently few classes
that we are able to comprehend the message of the data.
Between 5 and 15 classes will usually be suitable.
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e Each observation must be able to go into a class. (If the
measurements had been recorded to one decimal place
of accuracy, we would have to use one decimal place of
accuracy in our list of classes — with the above classes,
we would not know where to put observations of 699.7 or
719 4, for instance.)

e Each observation must go into only one class. (If the
classes had been up to 700, 700-720, 720-740, etc., we
would not know where to put observations of 700 or 720.)

e Ideally, we should know exactly what range of exact mea-
surements each class represents. (Thus, do the above
classes correspond to exact arm lengths of up to 700,
700-720, 720-740, etc., the measurements having been
rounded down? Or, do they correspond to exact arm
lengths of up to 699.5, 699.5-719.5, 719.5-739.5, etc., the
measurements having been rounded to the nearest mm.?)

Why I say “ideally” is because all too often, this
information is lost to us. But this does not generally

matter too much, because rounding error is usually

a tiny fraction of all the other errors and variability
that might be present.

Stem-and-leaf plots. The stem-and-leaf plot has
the advantage, as compared with an ordinary tally, of re-
taining information about the final digit. (Hence any over-
representation of the digits 0 and 5 should be noticeable, es-
pecially if a second version of the plot is prepared, with the
final digits sorted into order.) It is easier to show what a
stem-and-leaf plot is than to spend many words describing it:
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Pictorial presentation: histograms. The above
table of frequencies is shown as a histogram below:

167 1
Proportion .14:
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of 10 mm, _02:
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Q013711717 iII_IIIII
700 750 800 850

Arm length (mm.)

Notice the follo ving points about histograms:

(Paragraph 35) : 7

e The r-axis is drawn as a scale, with appropriate values
marked on it.

If the table does not exactly specify what the lowest and
highest groups exactly are, it is necessary to make some
sensible assumption. I have taken “up to 699" to be 680-
699.

The height of each bar is proportional to the frequency
in the class divided by the width of the class. In this ex-
ample, a class width of 10 mm. has been chosen as the
standard; classes like 700-719 and 810-829 are of double
width, so their height is half their frequency, whilst the
height of classes like 760-769 and 800-809 equals their
frequency. If you get this wrong in an examination, the
examiner is likely to conclude you have never been to any
lectures, never attended any tutorial or practical classes,
never opened any textbook, and, in particular, never be-
fore attempted to draw a histogram yourself. After all, to
draw a histogram in the correct fashion is only a matter of
educated common sense. Let us look at the observations
marked on a scale of length:

750 800
Arm length (mm.)

The idea that we are capturing with a histogram is how
dense are the observations in any region along the scale —
that is, how many observations there are per unit along
the scale. So obviously we must standardise on a partic-
ular class width.

Label the y-axis appropriately — to make it clear that it
is a proportion of observations (or percentage, or number)
per unit on the z-azis. (It is common for books to tell you
to include a scale of area on the histogram. But I think
people looking at a graph do not appreciate a scale of area
very well, and I prefer careful labelling of the y-axis.)

There are no gaps between the bars (between 699 and
700, or between 719 and 720, for example).”

e Because the z-axis is marked as a scale, there is no need
to label the bars (as up to 699, 700-719, and so on).

But if the quantity being tabulated is necessarily a whole
number, it is sensible to label the bars, rather than mark-
ing a scale. Suppose that among 708 bus drivers, 224 of
them had 0 accidents in a two-year period, 226 had 1 ac-
cident, 150 had 2 accidents, 68 had 3 accidents, 40 had
4-T accidents, and none had 8 or more accidents. Then I
would draw the histogram like this:

"If you can assume that

up to 699 really means up to 699.5,

700-719 really means 699.5-719.5,
and so on, some instructors will tell you to put the bases of the bars over
the ranges

up to 699.5 instead of up to 700,

699.5-719.5 instead of 700-720,

and so on. But to my mind, the ease of communicating up to 700, 700~
720, etc., to other people outweighs the strict correctness of up to 699.5,
699.5-719.5, etc.
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Pictorial presentation: the cumulative fre-

quency plot (again). The cumulative frequency table for
the arm length data is as follows:

up to 699 1 (.01
up to 719 3 (.03)
up to 739 9 (.09)
up to 759 22 (.22)
up to 769 34  (.34)
up to 779 42 (.42)
up to 789 53  (.53)
up to 799 60  (.60)
up to 809 76  (.76)
up to 829 87  (.87)
up to 849 98  (.98)
up to 869 100 (1.00)

I have also shown the cumulative proportions, in brackets.
When plotted, the graph looks like this:
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(Some people like to join up the points with straight lines.)
W hen drawing a graph like this, it is always necessary to think
about exaccly what the y-axis should be labelled — in partic-
ular, is it the proportion less than z that is being shown, or is
it the proportion less than or equal to z that is being shown?

I have plotted the points at arm lengths of 700, 720, etc.,
because these are round numbers and round numbers aid
in communicating the message of data to other people.

Part I

Some instructors prefer you to plot them at 699.5, 719.5,
etc. The justification is that these are the upper limits of
the actual arm lengths in the various classes, the actual
arm length having been recorded to the nearest mm.

Other instructors prefer you to plot them at 699, 719,
etc., and to label the y-axis with “less than or equal to”,
rather than with “less than”. The justification is that
this most closely represents what is true of the recorded
measurements.

What you must not do, of course, is to plot the points at
the mid-points of the classes (690, 710, etc.) — it is not
true, nor is it anywhere near true, that a proportion .03
of observations are less than 710, .09 less than 730, etc.

As to how to compare data plotted like this with a theoretical
distribution, such as the normal, see paragraph 107 below.

Computing the mean and standard deviation
of grouped data. If we have a table of frequencies like the
arm length data above, how do we calculate the mean and 5.d.?
The basis of the method is to assume that all the observations
in a class were in fact at its mid-point (denoted z below), so
that we had 1 observation of 690, 2 of 710, 6 of 730, etc. We
set out the calculations as below.®

Class z Freq.,f =zf z2f

up to 699 690 1 690 476100
700-719 710 2 1420 1008200
720-739 730 6 4380 3197400
740-759 750 13 9750 7312500
760-769 765 12 9180 7022700
770-779 775 8 6200 4805000
780-789 785 11 8635 6778475
790-799 795 7 5565 4424175
800-809 805 16 12880 10368400
810-829 820 11 9020 7396400
830-849 840 11 9240 7761600
850-869 860 2 1720 1479200
100 78680 62030150

Notice the following three points:

o The quantities in the final column are z2f, not (zf)>2.
That is, they are the quantities in the fourth column mul-
tiplied by the respective quantities in the second column;
they are not the squares of the quantities in the fourth
column.

e The z for the “up to 699” class is something of a guess,
of course. To take it as 695 or 680, instead of 690, would
be reasonable. To take it as 350 (midway between 0 and
700) would be daft.

e Some instructors may want you to take the z’s as 689.5,
709.5, etc., for reasons already discussed. The mean which
they will calculate will be 0.5 less than the mean which
we will get (because they are effectively assuming each
observation is 0.5 less than we are); the standard devi-
ation which they will calculate will be identical to the
standard deviation which we will get (because reducing
each observation by 0.5 makes no change to how variable
the observations are).

8Some calculators permit z and f to both be input, and so a table of
zf and z? f like this becomes unnecessary.



Data description

Naturally, the results of calculations based on grouped data
will not be exactly the same as those on raw data.

The mean is
1
;E .'L‘f, {5)

which in this example is 13578680 = 786.80. The s.d. is 35.49,
which 1s calculated as follows:

E(x—1)f
¥ m—1 (6)

8 =
_ \/z:ﬁf L(pzf)? 1
- n—1 )
B 62030150 — 1(78680)?
- 99
B 124726
- 99
= 35.49 (mm.)

The first formula is the one that best explains what a standard
deviation is, the second formula is the one that is most conve-
nient for actually doing the calculation.® This is just like the
two formulae we had when calculating the s.d. in paragraphs
15 and 17. Indeed, notice that if we know all the observations
exactly, rather than them merely being placed into classes, all
the f's will be 1, and the above formulae will be the same as
the ones we had in paragraphs 15 and 17.

This type of calculation is sometimes made easier by
subtracting some constant number from all of the z’s, and/or
by dividing all the z's by some constant number. Try the
calculation with 700 subtracted from all the z’s. You will get
z = 86.80 (to which 700 needs to be added to get the mean
arm length), and s.d. = 35.49 (which is the s.d. of arm length,
as subtracting the same amount from each observation makes
no difference to how variable they are). Computational tricks
like this used to be very important, but are less so now, with
the ready availability of electronic calculators.

I have given the values of mean and s.d. to more dec-
imal places than can be justified: if we took another sample of
100 male car drivers, their mean arm length could be different
from 786.80 by 5 or 10 mm. This issue of sampling variabil-
ity will be taken up from paragraph 128 onwards. Of course,
the point of giving unjustifiable decimal places is so that the
reader can check the working.

Computing the median and quartiles of
grouped data. If we have joined the points on the cu-
mulative proportion graph with straight lines, we simply see
where a cumulative proportion of .50 is reached (in order to
read off the median), and where cumulative proportions of
25 and .75 are reached (in order to read off the quartiles).
For the above example, we plotted a cumulative proportion
of 42 at z = 780, and a cumulative proportion of .53 at
= 790. A cumulative proportion of .50 is therefore reached
at z = 780 + 92(790 — 780) = 780 + %10 = 787.27. Similarly,
cumulative proportions of .22 and .34 were plotted at = = 760
and r = 770 respectively, so a cumulative proportion of .25 is
reached at z = 760 + %(770 — 760) = 760 + %10 = 762.50.
And 2 cumulative proportion of .75 is reached at z = 809.37.
The inter-quartile range is therefore 809.37 — 762.5 = 4€ 87.

?But remember the point made in paragraph 18. When calculating
LDrdf- :1— (Z :1:[)2 , one number is being subtracted from another. It may
happen that the second is only 1 little smaller than the first. So both
need to be worked out quite accurately in order that the difference be
sufficiently accurate. Remember also that the second is always less than
or equal to the first.

(Paragraph 42) 9

Quintiles, deciles, percentiles. Just like quartiles
divide the ordered observations into four equal groups, quin-
tiles divide the ordered observations into five equal groups,
deciles divide the ordered observations into ten equal groups,
and percentiles divide the ordered observations into one hun-
dred equal groups. A woman of 5th percentile height is one
who is taller than 5 per cent of women (and shorter than 95 per
cent). A man of 95th percentile height is one who 1s taller than
95 per cent of men (and shorter than 5 per cent).!® The 85th
percentile vehicle speed is such that 85 per cent of vehicles are
slower and 15 per cent are faster.!!

Plotting one variable against another: regres-
sion and correlation. Suppose that for each value of z, a
value of y corresponds, and we plot one against the other. The
table below gives two measures of the climate in the Bordeaux
region of France, for the April to December months of the years
1924-1929; z is the sum of the average daily temperatures (in
thousands of degrees), and y is the rainfall (in hundreds of
mm.).

z y
31 36
30 34
32 39
3.1 4.7
32 29
33 2.2

The scatterplot of this data is as below:
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The scatterplot itself is a worthwhile technique of data descrip-
tion. Going a little further, it is of interest to know how to
predict y from z, and to measure how strong the relationship
between the variables is.

o Regression — with this term, emphasis is on the equation
that predicts y from z. We will only be concerned with
using a straight line to predict y from z.

o Correlation — with this term, emphasis is on the strength
of the relationship. That is, how useful is knowing z for
the purpose of predicting y? We will only be concerned
with the strength of the linear relationship.

What is meant by the “best” straight line? We
want to find the best straight line for predicting y. But what
i1s meant by this?

'9The crash testing of vehicles is often carried out using dummies built
to represent the 5th percentile female and the 95th percentile man, as
well as ones built to represent someone of average size.

'11t is an often-used guide to what speed limit to set on a road.



10

Any straight line obeys the equation y = a + bz, for some
choice of the constants a and b. So choosing the best
straight line means choosing a and b.

The criterion that is most used for deciding whether one line is
better than another is the sum of squared errors. I will explain
what this means using a datase. that is so small that it is easy
to do repeated calculations on it.

Let z and y be as below:

B G B = N
DN

We will consider several alternative prediction lines.

o Firstly, the equation § = 3+ z (the hat"is placed on the y
as a notation for a predicted value). The table below gives
a comparison between the predicted § and the observed
y, and includes the errors y — y and the squared errors,

(v—9)*

t y § y-9 (-9’

1 4 4 0 0

2 2 5 -3 9

3 6 6 0

4 8 7 1 1
10

So for this line — that is, for the choiceofa =3and b =1
— the sum of squared errors is 10.

e Secondly, § = 1 + 2z. The predictions and errors are as
shown below:

z y § y-9 (y—9)?

1 4 3 1 1

2 2 5 -3 9

3 8§ 7 =1 1

4 8 9 -1 1
12

So for this line — that is, for the choiceofa = 1and b= 2
— the sum of squared errors is 12, a little worse than for
our first choice of line.

e Thirdly, § = 8 — z. The predictions and errors are as
shown below:

r y § y-y (y-9)

1 4 7 -3 9

2 2 6 -4 16

3 6 5 1 1

4 8 4 4 16
12

So for this line — that is, for the choice of a = 8 and
b= —1 — the sum of squared errors is 42, much worse
than for our previous lines.

The above demonstrates what the sum of squared errors
means.

Formulae for & and a. The values of a and b for
which the sum of squared errors is as small as possible are
obtained as follows.

Part I

Calculate the slope b from

_Lzy- iy z¥y

b= :
Tz?- L(Tz)?

Then, knowing &, calculate the intercept a frum
(9)

(where § and Z are the means of y and r, of course).!?

a=§— bz

For the dataset of four points that we have been discussing,
the calculations are as follows.

r y z* =y
1 4 1 4
2 2 4 4
3 6 9 18
4 8 16 32
10 20 30 58

Firstly, calculate the slope:

58—l| x 10 x 20

30— 1 x10x 10
_ 8

= 1.6.
Secondly, the intercept:
a = 5-16x25
1.

Thus § = 14 1.6z is the least squares line. The sum of squared
errors turns out to be 7.2:

z y § y-9 (v-9)?

1 4 26 14 196

2 2 42 -22 484

3 6 58 02 004

4 8 74 06 036
720

(The above method for finding the slope and the intercept
is one that is sensitive to outliers. There are methods that
are less affected by outliers, but they are not in wide use at

present.)

Convenient computation of b and a. Here, the
data on temperature and rainfall in Bordeaux is repeated; to
make the subsequent calculations easier, 3.0 has been sub-
tracted from each of the z’'s.

}2Equations (8) and (9) can be derived by the method below.

o The predicted value is § = a + bzr. So the sum of squared errors
E(y—§)? is Z(y — a = br)?. We want to find the values of a and
b that minimise this.

s To find a minimum, we differentiate and set the resulting equation
equal to 0. Of course, we differentiate with respect to a and with
respect to b — the z's and y's are known, specific, observations.
Differentiating with respect to a, we find that E (y—a —bz) needs to
equal 0; differentiating with respect to b, we find that £ z(y—a—bz)
needs to equal 0.

e We thus have two equations in two unknowns (a and b). On solving
these equations by standard methods and rearranging, we obtain
the equations for b and a.



Data description

2 2

z y z y Ty
01 36 001 1296 036
00 34 000 11.56 0.00
02 39 004 1521 0.78
0.1 47 001 22.09 047
02 29 004 841 058
03 22 009 484 066
0.9 207 0.19 75.07 285

e Preliminary calculations are as above.

e Calculate S;r, Syy, and Sy, defined as:

See = Tz?-L(Zz)? (10)
Sy = Ey'—-HTy) (11)
S.y = Tzy-Li(Zz)(Ty) (12)
For this data,
Bis = 0.19 — L x 081 = 0.055
Syy = T507—1x42849 = 3.655
Sey = 285—1x09x207 = -0.255.

e Now, b = S;,/S:: = —0.255/0.055 = —4.64, and a =
3.45 — (—4.64)0.15 = 4.15.

o The quantities Scz, Sy,, and Sy are used in various
other calculations associated with regression lines, also;
see paragraphs 51 and 183.

So § = 4.15 — 4.64(z — 3) is the regression line of y on z, when
z is as it was originally. That is, § = 18.07 — 4.64z. (Looking
at the plot of the points in paragraph 43, a negative value of
b is obviously reasonable.)

m Residuals. Having found the best-fitting straight
line, y = a + bz, it is sensible to take a look at the pattern of
“residuals”, y — y. Suppose we plot these against .

e What we are usually hoping to see is no pattern — a
completely random scatter of points. This means that
there is no reason to invent a more complicated model for
predicting y from z than the straight line equation.

o Sometimes we see the points lie on a curved line. This
means that the dependence of y on z is more complicated
than our straight line equation — a quadratic equation
y = a + bz + cz?, or other more complicated equation,
would be better.!?

o Sometimes we see the amount of scatter is greater for some
values of z than for others — for example, that higher
values of z are associated with greater scatter. Clearly,
it is well worth knowing that z 1s a poorer predictor for
some values than for others.

What if we want to predict r from y? If we
want an equation # = ¢ + dy for predicting z from y, we find
c and d as follows:

Ty — %E Xy
Ty’ - 2(Zy)?
£ —dy.

(13)

(14)

Cc b

For the little dataset we have been using, d = 0.4 and ¢ = 0.5.
Hence z = 0.5 + 0.4y is the best straight line for predicting =
from y.

"3 In such a case, the curvature of the points can be seen on the original
graph of y plotted against z, too. But it is typically easier to spot it on
the graph of y — § plotted against z.

(Paragraph 49) 11

If we rearrange this to make y the subject, we find y =
—1.25 4+ 2.5%. This is different to the best equation for
predicting y from z. The two regression lines are different.

The fact that the regression line of z on y is differ-
ent from the regression line of y on z is by no means a mere
academic curiosity. As an instance of its importance, there
was a controversy in the U.K. a few years ago concerning the
saturation level of car ownership — that is, the number of cars
per person when everybody who wants a car does in fact have
one. As I recall it, the controversy was roughly as follows.

o Highways are planned many years in advance of their con-
struction. One of the important factors going into the de-
cision of what length of highways to plan for is the number
of cars that people will own 20 or 30 years in the future.
One method of estimating this is to look at a graph of y
= rate of growth of car ownership, against r = level of
car ownership.

e It was found that areas of the U.K. having high levels
of car ownership (primarily, the more prosperous areas)
mostly had low rates of growth of car ownership; this was
interpreted as meaning that nearly everyone there who
wanted a car had already bought one. But areas having
low levels of car ownership (less prosperous areas) mostly
had high rates of growth of car ownership.

e One could therefore find an equation y = a + bz (with
b being negative) that had significant predictive power.
Official transport planners did this, and used it to deter-
mine what value of z (car ownership) would correspond
to y = 0 (that is, zero growth in car ownership).

o They were then criticised (by people who could be char-
acterised as environmentally conscious, or anti-roads) on
the grounds that if z is being found from a known y, then
the regression line of z on y should be used. When this
was done, the saturation level of car ownership was sub-
stantially smaller than before (In terms of the cost of
construction of the highways 1equired, the difference was
equivalent to thousands of miilions of pounds.)

e The most convincing resolution of the controversy that
I saw was one that emphasised that neither of the re-
gressions is exactly what is required; instead, the best
description of the data should be sought; and this must
take account both of errors in measuring the z's and of
errors in measuring the y’s.

Correlation. The correlation coefficient (more
fully, the product-moment correlation coefficient) measures the
strength of linear association between z and y. The formula
18

Siy
S Bty

For the data on temperature and rainfall in Bordeaux,

r=

(15)

0255
"= /0055 x 3.655'

which is —0.57.

Regarding the interpretation of the correlation coefficient, the
following points are worth making.

s Correlation is always between —1 and 1.
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e A correlation of 1 means all the points lie on a perfect
straight line, and y increases as z increases; a correlation
of —1 means all the points lie on a perfect straight line,
and y decreases as z increases.

e A correlation of 0 means that there is no linear relation-
ship. This may be because there is no relationship at all,
or it may be there is a relationship that is so strongly
curved that there is no linear component to it.

e A positive correlation means that as z increases, so y
tends to increase also. A negative correlation means that
a8 z increases, so y tends to decrease.

e The correlation does not change when a constant number
is added to all the z's, and/or to all the y's; nor does it
change when all the z’s and/or all the y’s are multiplied
by a constant number. But it does change when a non-
linear transformation is applied to the z’s and/or to the
y's.

e The correlation does not measure how much y changes
with a unit change in z. The slope b is what measures
that.

e The finding of a correlation between z and y does not
prove anything about causation. There are many possi-
bilities. It might indeed be that changes in z are causing
changes in y. But it might be that changes in y are caus-
ing changes in z. Or there might be some third factor
that is associated with changes in z and changes in y. A
particularly important example of a “third factor” is time:
if we have z measured for a number of years, and y simi-
larly, then a correlation between z and y could simply be
the result of changes that have been happening over the
years. For example, ownership of televisions has increased
over recent decades, and so has the death rate from lung
cancer among women. But no one supposes that owning
televisions is causing lung cancer.

e As to testing whether an observed correlation is signifi-
cantly different from 0, see paragraphs 186-187 below.

e Correlation is a statistic that is sensitive to outliers. It
is like the mean and the s.d. in this respect. Just as we
may prefer the median and the IQR because they are less
affected by outliers, so we may calculate Spearman’s rank
correlation in preference to the product-moment correla-
tion.

¢ The quantity r? is the proportion of variance explained
by the regression line, in the following sense:'

(-1 2
=1 G

Rank correlation. The procedure for calculating
earman’s rank correlation is as follows.

1

Th

1To obtain this equation. appreciate that

e j-y=at+br—g=g-bit+bdzr—g=0b(r-1),

e S;p =Lz?- %(Er)z = I (z-£)?, asin footnote 4 (and similarly
for Syy).

en we see that

E(!:" g}2 —_ bQE(I_ 5)2 53'!,- S:: Szy e

Ev-02 Ely-9? 5% Sy SesSw

Part I

o Rank the z's from lowest to highest. (Tied observations
receive their average rank.) Rank the y's from lowest to
highest. (Again, if there are tied observations, they re-
ceive their average rank.) Further calculations are based
on these two sets of ranks, not on the original observa-
tions.

For the temperature and rainfall data, the ranks are
as below:

r y Rank(z) Rank(y) d d?

31 36 21 4 -15 225
3.0 34 1 3 -2.0 4.00
32 39 47 5 -05 025
31 4.7 od 6 -3.5 12.25
32 29 4% 2 25 625
3.3 22 6 1 5.0 25.00

50.00

o Calculate the differences d between the z-ranks and the
y-ranks. Square these differences. Add up these squared
differences.

As shown above, here this results in a total of 50.

e Calculate Spearman’s rank correlation, r,, from

6L d?
rl’ = 1 == n3 n (17)
For this data, the result is 1 — % — —5910—0, which

is —0.43.

e When there are tied observations, as there are in this data,
a correction term ought to be added on to T d?. But this
is usually quite small, and for simplicity I have omitted
it.

(Values of the rank correlation are not directly comparable
with values of the product-moment correlation — they are
different things, and should not be compared.) Because it
is determined by the ranks of the observations, r, is fiot so
affected by outliers as r is.

é



Probability

|PART II. PROBABILITY |

What is meant by “probability”? The proba-
bility of an event is the chance that it will occur. There are
three main ways of refining this idea.

e The frequency interpretation. If we repeatedly give the
event the opportunity of occurring, its probability is the
proportion of times it actually does occur. Thus, this
relies upon empirical data.

If we say that the probability of a train from Liv-
erpool to Redfern being on time is 0.78, then we
must have collected data on the timekeeping of such
trains. Perhaps we had records of 50 journeys, found
39 were on time, and calculated % =0.78.

o The a priori approach.!® Sometimes, the experimental
set-up is so clear, we know the probabilities in advance of
collecting any data.

For an unbiased (fair) coin, the probability of it land-
ing head uppermost equals the probability of it land-
ing tail uppermost, Pr{Head} = Pr{Tail} = 0.5.
When rolling an unbiased six-sided dice, Pr{l} =
Pr{2} = Pr{3} = Pr{4} = Pr{5} = Pr{6} = L.
When drawing from a well-shuffled pack of playing
cards, Pr{Ace} = &% = &.

e Subjective assessments. “I think there is a 30 per cent
chance it will rain tomorrow.” “There’s a 50:50 chance
that the Magpies will beat the Roosters.” People use
language like this. But what does it mean? There is no
data, so the frequency interpretation is not relevant. The
situation is complex, and the probability obviously cannot
be written down on a theoretical basis. A partial answer
is that we can imagine collecting data, and being able to
make statements like “Of all days at about this time of
year, with weather like today’s, with weather having been
as it has been over the past month, and other relevant
factors being similar to those now, for 30 per cent it rained
on the following day.”

Fortunately (for it is a very difficult subject), we do not need
to worry too much about the philosophy of probability. Prob-
abilities are much easier to use in practical calculations than
they are to philosophise about.

Rules for doing calculations with probabili-
ties. Remember this: probabilities are always between 0 (for
events that are impossible) and 1 (for events that are certain
to occur). So if you get an answer that is supposed to be
a probability but is negative or is greater than 1, YOU'VE
MADE A MISKATE.!¢ Paragraphs 55-61 will be given over
to explaining four rules that enable us to do calculations with
probabilities.

Addition rule for mutually-exclusive events.
“Mutually-exclusive” means they cannot occur together. Con-
sequently, the probability of one or other of two mutually-
exclusive events occurring is the sum of their individual prob-
abilities.

**The Latin phrase a priori in this context means deriving from self-
evident propositions.

'®1f this happens in an examination, and you are in such a rush that
you do not have Lime to correct it, you should make a note that you lmow
you have made a mistake — otherwise, the examiner will think you are
& complete idiot .
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Suppose Pr{Temperature increases} = 0.62 and
Pr{Temperature is unchanged} = 0.23. Then
Pr{Temperature increases or is unchanged} = 0.62 +
0.23 = 0.85.

The probabilities of all possible exclusive outcomes add up to
1.

Suppose Pr{Temperature increases} = 0.62 and
Pr{Temperature is unchanged} = 0.23. Then the only
other possibility is that the temperature decreases, and
Pr{Temperature decreases} = 1 — 0.62 — 0.23 = 0.15.

Multiplication rule for independent events.
The probability of both happening is the product of their in-
dividual probabilities, if the events are independent.

Suppose I roll a fair dice and draw a card from a well-
shuffled pack. What happens to the dice does not affect
what happens to the cards, and vice versa. The probabil-
ity of getting a 2 with the dice and a King with the cards
is é X ﬁ = 75

Do not confuse “exclusive” with “indepen-
dent”. Their meanings are very different. (See paragraphs
65-67.)

General addition rule. Pr{A or B} = Pr{A} +
Pr{B} — Pr{A and B}. That is, the probability of one or the
other (or possibly both) equals the sum of the individual prob-
abilities, minus the probability of both occurring. It is stan-
dard practice, by the way, for “A or B” to be used to mean
“A or B or possibly both”.

Suppose we are told that Pr{Rain} = 0.27, that
Pr{Wind} = 0.24, and that Pr{Rain and wind} = 0.15.
Then we can work out that Pr{Rain or wind} = 0.27 +
0.24 — 0.15 = 0.36. (And we also know that Pr{Neither
rain nor wind} = 1 — 0.36 = 0.64.)

We can use a Venn diagram to see why the general
addition rule holds:

A B

We must subtract off Pr{A and B} because otherwise we
would be double-counting the events in the overlapping area.
Another way of looking at this is as follows:

The set {A or B} is made up of the three constituents {A
but not B}, {A and B}, and {B but not A};

{A} is made up of {A but not B} plus {A and B};
{B} is made up of {B but not A} plus {A and B};

And therefore {A or B} is {A}, plus {B}, minus {A 1nd
B}.

(If you know it, the use of set-theory notation is preferable to
my notation.)

General multiplication rule. Pr{A and B} =
Pr{A} x Pr{B|A}. (The vertical line | means “given that".)
That is, the probability of both A and B occurring is the prob-
ability that A occurs multiplied by the probability of B occur-
ring conditional upon A occurring.

Pr{B|A} is referred to as a condilional probability.
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(And, clearly, Pr{A and B} also is the probability that B oc-
curs multiplied by the probability of A occurring conditional
upon B occurring.)

Suppose that of a group of 12 people, 9 are native-born
and 3 are foreign-born. If we select two at random, what
is the probability that both are foreign-born? Let A be
“the first is foreign-born”, and B be “the second is foreign-
born”. Pr{A} is & = . Once we know that A has
occurred, we know there are 11 remaining of whom 2 are
foreign-born. So Pr{B|A} is Z. So Pr{A and B} is 1 x
'1'2T = % (If you know about permutations, combinations,
etc., you will recognise that another way to work this out
Number of ways of choosing 2 from3 _ s _

RNumber of ways of choosing 2 from 12 — 6 — 7°)

is as

Diagrams that help with probability calcula-
tions: Venn diagrams. Suppose we are told that of a total

of 200 students, 77 study accounting, 64 study law, and 92
study neither. We can enter this information on a Venn dia-

gram as follows.
A e L

92

These nurnbers were worked out as follows.
e 92: we were told this.

e We thus knew the other three numbers had to total 200 —
92 = i08.

o 44 came from 108 — 64.
o 31 came from 108 — 77.
e 33 came from 77 — 44, or from 64 — 31.

So if we are asked what is the probability that a randomly-
chosen student is studying both accounting and law, we see

the answer is % = 0.165. Or if the question asks what is the
probability that a student who is studying accounting does not

study law, we see the answer is '-}; = ;

We can also use Venn diagrams to represent 3 fea-
tures, using 3 overlapping circles.

I will not give many further examples of Venn diagram prob-
lems because most students get plenty of practice with these
in their mathematics course. To answer them, one usually
searches the question for a region in the diagram for which
the exact number is given, and writes that number on the dia-
gram. Then the numbers for the other regions of the diagram
are successively filled in using other pieces of information in
the question, by appropriate subtractions. When the diagram
is complete, one reads ofl the answer required.

IE. Sometimes, a tricky question is set, in which a vital
piece of information is missing. Instead, one is informed that
two of the features are independent. Suppose we are told that
of a total of 200 students. 80 study biology. 90 study neither

Part II

biology nor geography, and the choice of whether a student
does or does not study biology is independent of their choice of
studying or not studying geography. Then the Venn diagram
is filled in as follows.

e 90 are outside both B and G.

e Since we know 80 are inside B, the total outside B is
200 — 80 = 120.

e The number outside B but inside G must therefore be
120 — 90 = 30.

e Seeing the 120 outside B are split 30:90 according to
whether they are inside G or outside, we use the inde-
pendence property to deduce that the 80 inside B must
be split 20:60 (that is, in the same proportions) as to
whether they are inside G or outside.

B 'G

90

Note on “exclusive” and “independent”. It is
very important that the student understands the distinction
between these two words.

e “Exclusive” events are ones that can never occur together,
i.e., A never occurs when B occurs.

e “Independent” events are ones where the occurrence or
nonoccurrence of one is unconnected with the occurrence
or nonoccurrence of the other, i e., the proportion of times
A occurs is the same whether or not B occurs.

I think some students have difficulty because in the English
language the word “independence” carries with it a connota-
tion of separateness. This can be misleading here: when A and
B are independent, it is their causes that are separate; but all
possible combinations of the various possibilities (A and B, A
but not B, B but not A, neither A nor B) may be observed.

“Exclusive” and “independent” on a Venn di-
agram. If the numbers in the four regions of a Venn diagram
are w, z, y, z, as shown below,

A B

then
e A and B are mutually ex ‘lusive if z = 0;

o A and B are independent if £ = ¢ (rotice that w and
z refer to events that are inside A, and y and z refer to
events that are outside A: Lis 9-“—@]3@-63, and 5 is also

. Inside
outside B}
inside '

To further clarify the distinction between “exclusive”
and “independent”, consider the follow.ng example. A certain
mineral ore contains two radioactive elements. One emits a-
particles, the other emits J-particles. The radioactive decay
of any atom is completely unaffected by that of other atoms.
Suppose we have an instrument that detects all particles emit-
ted o and 8
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e Whether at least one a-particle is detected or not in any
given time period is independent of whether at least one
B-particle is detected or not.

e However, suppose we focus our attention on the particles,
and classify them as either a or 8. Now the two alterna-
tives are mutually exclusive. In effect, what we are doing
by focussing on the particles is restricting ourselves to the
two areas of the Venn diagram, {a but not 8} and {# but
not a}.

Diagrams that help with probability calcula-
tions: complete listing of all possibilities. Suppose we
are asked what is the probability of getting a total of at least
8 and at most 10 when rolling two dice. We write out a table
of all the possible combinations of outcomes, with the totals
shown:

Second dice

1 2 3 4 5 6

1 2 3 4 5 6 7

First 2 3 4 5 6 7 8
3 4 5 6 7 8 9

4 5 6 7 8 g 10

dice 5 6 7 8 g 10 11
6 7 8 9 10 11 12

I have indicated which outcomes satisfy the required condition

(“a total of at least 8 and at most 10”) by printing them in

italics. To find the answer to the question, we simply add up

the probabilities of the outcomes which satisfy the required
1

condition. For this example, each of these probabilities is F X

1 s
# = 3c. There are 12 of them, so the answer is 2=1 A

further example is in paragraph 74.

Diagrams that help with probability calcula-
tions: tree diagrams. Suppose that 25 per cent of cars
have poorly adjusted headlights; and that a quick on-the-road
method of testing is a fallible method — that is, it sometimes
makes mistakes. Specifically, 92 per cent of “guilty” cars fail
the test, but 16 per cent of “innocent” ones also fail. What is
the probability that a car that is found to fail the test truly
has poorly adjusted headlights? To answer this, we present
the information in the form of a tree diagram.

0.25 0.75
Poorly adjusted Satisfactory
0.92 0.08 0.16 0.84
Fail Pass Fail Pass
(0.23) (0.02) (0.12) (0.63)

(Of course, the 0.75 came from 1 — 0.25, the 0.08 came from
1-0.92, and the 0.84 came from 1 — 0.16.) At the bottom of
the tree diagram, the probabilities of the different outcomes
are shown: 0.25 x 0.92 = 0.23, 0.25x 0.08 = 0.02, 0.75% 0.16 =
012, and 0.75 x 0.84 = 0.63. And now we are ready to deter-
mine the ansver. The probability of a randomly-selected car
failing the test is 0.23 +0.12 = 0.35; of this total, a contribu-
tion of 0.23 came from cars that genuinely had poorly adjusted
headlights; the required answer is therefore &2 = 0.66. No-
tice that the method of calculation is essentially the use of
the general multinlication rule: we are calculating Pr{Poorly

sdpustd]Failtes) as P{Pootly adjusted and fil test)
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Students sometimes find this sort of question easier if they
think in terms of the numbers of events we would expect to
observe, instead of the probabilities. For instance, suppose
we started with 1000 cars. Then we would expect to find
that 350 of them fail the test; of these, 230 really should
have failed. So the required answer is 35 = 0.66.

This is a common type of problem — sometimes
phrased in medical language (having or not having a disease,
being diagnosed as having it or not), sometimes phrased in
legal language (truly guilty or innocent, being convicted or
found innocent), sometimes phrased in other language (suit-
able for employment or not, passing a selection test or failing).
In answering it, it is crucial to keep clear the distinction be-
tween what the test is saying and what the state of affairs
truly is. The point about such problems is that in practice
one knows the test result, and wants to deduce what is the
most likely true state of affairs.

Notice that one needs a very accurate test if the condition
to be detected is a rare one. Suppose that a disease has
an incidence of 0.1 per cent; that the probability of get-
ting a positive test result from a diseased person is 0.99;
and that the probability of getting a positive result from a
healthy person is 0.02. Then the probability that a person

who gives a positive test result really does have the dis-
0.001x0.99

€ase IS 1555750 99)1(0 999 5007) which works out to be only

0.047. Hence the need for further tests and investigations
following a first positive test.

Asking sensitive questions in surveys. An in-
teresting class exercise to reinforce your grasp of probability
calculations and to introduce you to a subject of considerable
practical importance is the following. Suppose I went to carry
out a survey to find what proportion of the population drive
faster than the speed limit, fail to pay taxes, go to church
on Sunday, are in favour of stricter gun laws, etc. I am not
the least bit interested in whether you personally drive faster
than the speed limit, but I do want to get an honest overall
estimate for the whole population — and people are often not
honest when answering questions like these. The randomised
response method can be used here. It relies upon the respon-
dent knowing that the interviewer does not know whether the
respondent is answering the sensitive question, or is answering
a perfectly harmless question. An example:

e Spin a coin twice. Show no-one the results.
e If the first spin resulted in a head, answer the question

marked H. If the first spin resulted in a tail, answer the
question marked T.

H: Outside of class, do you study for at least 15 hours
per week?
T: Did the second spin of the coin result in a tail?
e Let p be the proportion of students who study for at least

15 hours per week outside of class. The tree diagram is
as follows:

0.5 0.5

Sensitive Q

Harmless Q

0.5 0.5

Yes No
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o Let the proportion of people who answer “yes” be y. This
is what I can find in my survey. From the above diagram,
I can see that it is also (0.5 x p) + (0.5 x 0.5), which is
0.5p + 0.25. Knowing that y = 0.5p + 0.25, I can find p
from the equation p = 2y — 0.5. For example, in a small
class of 35 students, 12 answered “yes”. I deduce that
p=2x {2 — 0.5, which is 0.19.

!72. | An example of a probability calculation. Sup-
pose that the diagram below represents part of an electric
circuit.

C1
+
A ——&——B
C4
-@ —
cz Q3

Current only flows from A to B if
¢ Component C4 functions, and
e Either

— Component C1 functions, or
- Both C2 and C3 function.

The four components behave independently;!7 the probability
of any one of them functioning is p. Determine the probability
that current flows.

We know
Pr{C1 functions} = p, and

Pr{Both C2 and C3 function} = p® (because we are told
C2 and C3 behave independently).

Consequently,

Pr{Cl functions, or both C2 and C3 function} =-

Pr{Cl functions} + Pr{Both C2 and C3 function} —
Pr{C1 functions and both C2 and C3 function} (this is
using the general addition rule), = p+p? —pxp* (we use
independence again to get the pxp? term), = p(1+p—p?).

Finally,

Pr{C4 functions and the left hand part of the circuit
functions} = p x p(1 + p — p?) (again using the indepen-
dence property), = p*(1 + p—p*),

which is the required answer.

If you get too hopelessly confused with this type of
question, it may be practicable to list all possible combinations
of what can happen (if there are not too many), determine for
each what the outcome is, and add up the probabilities of the
combinations for which the required outcome occurs. In the
table wh'-h follows, 0 is used to indicate the component fails,
and 1 to indicate it functions.

17 A comment about the “independence” assumption is worth making
here. Many systems for which safety is important are designed so that
failure of one component does not lead to system failure — the simulta-
neous failure of several components is required for this to occur. Each
component individually is highly reliable, hence the independent simul-
taneous failure of several of them is almost unheard-of. Yet failure of
chemical manufacturing plants, nuclear power stations, jet aircraft, etc.,
does occasionally occur. Frequently, it is found that this comes about be-
cause the simultaneous failures of the several components occurred non-
independently. Imagining how this could happen and preventing it is an
important part of safety engineering.

Part I1

C4 Current?
No
No
No
No
No
No
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes P

(1-p)p®
(1-p)*p?
(1-p)p°

(1-p)p°

e m e oococcocoooQ
.....-.-»-occ:c--—--—oooog
)—HQQHHOOH'—'OOWHQOQ

F‘OHO!—‘QHO'—‘O)—'OI—‘QHO

4

Adding up the probabilities in the final column, we get
(1= p)?p® +3(1 — p)p® + p* = pP*[(1 - p)? + 3p(1 — p) + P’] =
p*(1 + p— p?), as before.

Probability distributions. A probability distri-
bution describes the probabilities with which all the different
possible outcomes occur.

o It may be something very simple:

o

Number of heads in one spin of a coin: | 1

Probability: |

(X1

1
Z

o It may be something a little more complicated, with some
particular pattern to it:

Number of heads in

four spins of a coin: | 0 1 2 3 4
Probability: ‘ﬁ & & & &

(For how these probabilities were calculated, see para-
graph 84 below.)

o There may be no theoretical pattern to the probabilities:

Number of people
in a car:

1 2 3 4+

Probability: I 043 036 015 0.06

¢ Remember that probubilities are always between 0 and
1, and that they must add up to 1 if we have a list of
mutually exclusive and exhaustive events (as we do in
this context).

In the above examples, the outcomes were discrete,
and they consisted of counis — we could have 0 or 1 or 2
or ... heads, or people in a car, but we could not have 1.5
or 0.73. Contrast this with continuous variables — measure-
ments like 5.328 kilograms, or 26.7 degrees Celsius. These may
be rounded to the nearest kilogram or degree for the purpose
of presenting and communicating the information, but in prin-
ciple there is nothing special about whole numbers here. In
this case, we have a probability density function. For this, see
paragraph 94.

The binomial distribution. This is one of the
most important discrete probability distributions. To intro-
duce it, suppose we have a six-sided dice, with four sides

Lk A

A
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painted blue and two sides painted red. The dice is an unbi-
ased one, so at any roll, there is a one-third chance of getting a
red face uppermost, and a two-thirds chance of getting a blue
face uppermost.

Tree diagram for one roll:

1
3

o

R B
The corresponding probability distribution of the number of
blue faces coming uppermost is:

Number of blues: | 0 1

Probability: i 2
Tree diagram for two rolls:
1 z
3 3
R B

wp
o
e
e

RR RB BR BB

Now, the probability distribution of the number of blue faces
coming uppermost is:

Number of blues: | 0 1 01

Probability:

O
oir
+
Y]

L]

Tree diagram for three rolls:

1]

L
3

RR RB BR BB
}/\%\ 1 2 j/\}\ 1 z
RRR  RRB RBR RBB BRR BRB BBR BBB
11z 121 211
3°3'3 3°3°3 3°3°3
=2 =2 =%
27 - 27 - 27

To illustrate how the probabilities are calculated, the case of
getting one blue face uppermost has been shown. It occurs
in three ways; for each, the probability is -2,2—.‘, The complete
probability distribution of the number of blue faces coming
uppermost is:

No. of biues: | 0 1 2 3
Probability: | L X 4+2 42 4,4 .4 8
7w wtmtyn wtawTnm W

=L — 12

= = g7

Notice these four things:
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e Each of the probability distributions refers to one particu-
lar level of the tree diagram: the first to level 1 (one roll),
the second to level 2 (two rolls), and the third to level 3
(three rolls).

e There are only two alternatives at each branching point,
and they are always the same two.

e The same pair of probabilities for the two alternatives al-
ways occurs, at whatever level we are in the tree diagram.

o The same pair of probabilities for the two alternatives
always occurs, whatever has been the outcome at previous
levels of the tree diagram.

Of course, to get the probability at an end of the tree, we
multiply the probabilities applying to the branches leading to
it
These are, indeed, the crucial features of the condi-
tions for the binomial distribution to occur. Rewording them,

o There is a particular number (n) of trials.

e At each trial, one or other of two possibilities occurs, and
they are always the same two. (The two possibilities are
traditionally referred to as “success” and “failure”.'®)

e The probability of a success stays constant from trial to
trial. The symbol p is used for it, so 1—p is the probability
of a failure.

e The results of the different trials are independent of each
other.

The binomial distribution is concerned with the num-
ber of successes that occur in the n trials. It enables us to cal-
culate the probability of obtaining exactly z successes, when
the probability of success at any one trial is p. The expression

for it is:
Q"1 —p)* " (18)

(provided z is a whole number between 0 and n, inclusive).
The symbol () (“n choose z”) means the number of ways of
choosing z objects from a set of n objects.!® The logic behind
this formula is that the probability that a particular sef of =
trials all result in successes, with the remaining n — z trials
resulting in failures, is p*(1 — p)"~* (because the outcomes of
the trials are independent, and so we can multiply probabil-
ities); and there are () different sets of z trials that can be
found among the total n trials.

As an example, suppose the probability of a rat dying
before the end of the experiment is 0.3, that there are 6 rats

18 Byt these names are arbitrary, and it may be convenient in some par-
ticular application to refer to something bad, e.g., someone being struck
by disease, or a river flooding, as being a “success”.

19 The formula for calculating it .s

(:) = 2n - =)’
where z! is “z factorial”, z! = z(z — 1)(z - 2)... (3)(2)(1). Similarly,
nt=nn-1)(n=-2)... 3)(2)(1)and (n~z)! = (n —z)(n -z - 1)
(n==z—2)... (3)(2)(1). (A special case is that 0! is defined to be 1.)
For example,

(3) _ 87654321
37 3.21.5.4.3.2.1
8.7.6
= — (notice it has been possible
3.2.1
to cancel out a large number of terms)
= 56.
Notice also that (8) = (:) = 1, whatever value n is. And ('1') = (n'—‘l) =

n, whatever value n is.




18

in the experiment, and that we can assume the conditions for
the binomial distribution hold.?° Find the probabilities of 0,
1,2, 3,4, 5, and 6 rats dying.

We need a convenient notation to represent the probabil-
ity of a given number of rats dying. One commonly-used
notation is Pr{X = z}. Be sure to understand the mean-
ing of this — the capital X stands for the name of the
variable we are concerned with (e.g., the number of rats
that die), and little z stands for a particular number (e.g.,
2); it may also be helpful to read the symbol = as “takes
the value”, rather than as “equals”.

Pr{X =0} = (§)0.3%.7°
= 1x1x0.118 (remember
that any number raised
to the power 0 results in 1)
= 0.118
Pr{X=1} = (§o0.3'.7°
= 6x0.3x0.168
= 0.303
Pr{Xx=2} = (30.3%.7
= 15 x 0.09 x 0.240
= 0.324
Pr{X =3} = 0.185
Pr{X =4} = 0.060
Pr{X =5} = 0.010
Pr{X =6} = 0.001

(The easiest probabilities to work out are Pr{X = 0} and
Pr{X = n}. The first of these, the probability of no
successes, is Pr{Failure at trial 1} x Pr{Failure at trial 2} x

. % Pr{Failure at trial n} = (1 — p)". The second of these,
the probability of all successes, is Pr{Success at trial 1} x
Pr{Success at trial 2} x x Pr{Success at trial n} = p".
These results are evident even without knowing the binomial
formula.)

It is now straightforward to answer questions like
“what is the probability that at most 2 rats die?” (The an-
swer is 0.118 + 0.303 + 0.324 = 0.745.) The chief reason for
getting such questions wrong is not paying sufficiently careful
attention to the exact wording — look for whether it refers
to “at least”, “at most”, “more than”, “less than”, “not less
than” , “not more than”, or whatever.

The probabilities can be presented in the form of a
histogram:

35
309 M
.25
.20
1564
.10
.05
.00

—

Probability

| 1 | 1
01 2 3 4 5 6
Number dead

20For example, that whether a rat dies or survives is independent of
whether the other rats die or survive.

Part II

The second example in paragraph 75 is the binomial
distribution with n=4 and p= 1.

Properties of the binomial distribution. The
mean and s.d. of the number of successes are:

mean = np
s.d. v np(l —p).

(The first of these formulae is just a matter of common sense;
regarding the second, see paragraph 124.) Further, the vari-
ance — always the square of the s.d. — is np(1 — p).

The Poisson distribution. Another important
discrete distribution is the Poisson distribution.?! There is
a close relationship with the binomial distribution, as follows.
In the binomial situation, imagine that the number of trials n
gets larger and larger, the probability of success p gets smaller
and smaller, and that this happens in such a way that the
mean number of successes np stays constant. Then the limit-
ing distribution (as n — 0o) is the Poisson distribution.

(19)
(20)

Notice that having infinite n means we have effectively
got a continuum, not a finite number of isolated trials;
and whilst we can count up the number of success events
that occur in any stretch of the continuum, it is mean-
ingless to try to count the failure events — there are an
infinite number of them. With the Poisson distribution,
the usual terminology is to refer to the number of events
that happen, rather than the number of successes. The
following diagram should make the contrast plain.

L Jolele] I Jol 1 1@

Poisson o— ° .

Binomial

®
[ ]

With the binomial distribution, either of two types of
event (i.e., success or failure) are occurring at particular
opportunities (i.e, trials). With the Poisson distribution,
the relevant event is occurring at random points on a con-
tinuum. (In many practical applications, the continuum
is of time, and in many other applications, it is one of
length.)

In the case of the Poisson distribution, the expression
for the probability of exactly = events is

AEe—A
z!

(21)

(provided z is a whole number greater than or equal to 0),
where A is the average number of events (analogous to np in
the binomnial distribution).

In many books, A is split up as A = 41, where v is the
rate of events per unit time and t is the time period being
considered (or, in other contexts, v is the density of events
per unit distance and t is the length being considered).
The symbols A and v are the Greek letters lambda and
gamma.

The mathematical derivation of (21) from (18) is beyond the
scope of this book.

The Poisson distribution, or the Poisson process that
gives rise to it, is often viewed as embodying complete ran-
domness: at each point on the continuum, there is the same

211t is named after the French mathematician Siméon-Denis Poisson
'1781-1840).
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probability of an event occurring there,?? and whether an event
does occur there or not is entirely independent of where events
are occurring elsewhere on the continuum.

For an example, suppose flaws (cracks, chips, specks,
etc.) occur on the surface of glass with a density of 3 per square
metre. What is the probability of there being exactly 4 flaws
on a sheet of glass of area 0.5 square metre? (Notice that the
continuum is not always of time, or length: in this example, it
is of area.) Here, the average number of events over the area
being considered is 1.5. (This will be obvious to many readers.
Others will have to notice that v is 3 per square metre, t is
0.5 square metres, and work it out as A =yt = 3 x 0.5 = 1.5;
naturally, when doing a calculation like this, ¥ and ¢ have to
be in compatible :mitss.) The question asks about z = 4. The

probability is —

, which works out to be 0.047.

If we are asked about the probability of there being 4 or
fewer flaws, we work out the probabilities of 4, 3, 2, 1,
and 0 flaws, and add them together.

If we are asked about the probability of more than 4 flaws,
we work out the probabilities of 4, 3, 2, 1, and 0 flaws,
add them together, and then subtract the total from 1.

Properties of the Poisson distribution. The
mean and standard deviation of the number of events are:

Mean = A

sd. = VA

(and so the variance is A). Notice that for this distribution,
the s.d. is determined by what the mean is: specifically, s.d. =

4/ Imearn.

So if we know the annual number of road deaths in a
country is about 2000, we expect the s.d. to be about
v/2000 = 45, and we are not surprised if the number of
deaths this year is one or two s.d.’s different from the
number last year. See also paragraph 121 below, on the
s.d. of the difference between two random variables. (The
vast majority of road deaths occur one at a time, not
10 or 20 at a time as in a very few bus crashes, and the
Poisson distribution is a natural choice to make here. But,
even in the absence of identifiable causes such as changes
in legislation, the annual number actually varies by more
than the Poisson distribution predicts; the reasons include
the variation in the weather from year to year, and the
variation in the level of law enforcement.)

(22)
(23)

Comparison of the binomial and Poisson dis-
tributions. The following example allows the binomial and
Poisson distributions to be compared, both as to their realism
and as to the numerical results. Traffic on a road is passing a
point at a rate of 300 vehicles per hour. Determine the proba-
bility that exactly 4 vehicles pass in a period of 30 seconds.?®

yoy may have noticed that this is loosely worded: strictly speaking,
events are occurring at points, and there is zero chance of an event oc-
curring eractly at any specified location. So it would be more precise to
say that at each point on the continuum, there is the same probability of
an event occurring within a distance § of the point, and that this is true
no matter how small § is.

“This sort of calculation will be important if, for example, we are
choosing the settings of traffic signals (that is, how long they will stay
green, and how long they will be red), and there is only limited road space
for thelvchjc]:n to wait. We might actually want to know the probability
of getling 5 or more vehicles, but obtaining the probability of eractly
vehucles (for £ = 0,1, ",3,4) is clearly a step to the solution.
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o To use the binomial distributiou, we will say that vehicles
do not travel nose-to-tail, and anyway they have some
physical length. So after a vehicle has passed, there is a
short period of time during which another vehicle cannot
come. Moreover, the road has a finite capacity for traffic
flow; for a single lane, this is typically about 1800 vehicles
per hour. So, imagine that time is made up of 2-second
chunks, in each of which either a vehicle passes (probabil-
ity p) or does not (probability 1 — p). The value of p will
be 0 for an empty road, 1 for a road operating at capacity,
and is ¢ in our particular example. There are 15 of these
c.hunks in the 30-second period. Consequently, we work
out (\H)(3)*(3)M = 15144312 0.000772x 0.135 = 0.142.

o To use the Poisson distribution, we will say that vehicles
even in a single lane of road can and do travel much closer
together than 2 seconds; and, anyway, we might be con-
cerned with a multi-lane road, where vehicles can be as
close together in time as they like. Here, A is 2.5 (300
vehicles per hour is 5 per minute, or 2.5 per 30 seconds).

4,—2.5
Sl 0134,

We work out 2

The two results are close together, but not identical.

Both the binomial and the Poisson distributions use
the ideas of a constant probability of an event occurring, and
of independence between all the opportunities for the event to
occur. They differ in that the binomial distribution refers to a
finite number of distinct trials, whereas the Poisson distribu-
tion refers to occurrences at arbitrary points in a continuum
(see paragraph 86 above).

The Poisson distribution as an approximation
to the binomial. In paragraph 86, the Poisson distribution
was introduced by saying it came from the binomiz' when we
let

Number of trials n — oo,
Probability of success p — 0,
in such a way that
The expected number np stays constant (= A).

So if n is “large” and p is “small”, the binomial and Poisson
distributions will be much the same, and the Poisson may be
regarded as an approximation to the binomial. The motivation
for doing this is that () may be difficult to calculate when n
is large and z is not close to either 0 or n. Books often say
that the approximation is pretty good if n is at least 100, and
np is less than 10.

For example, if n = 300 and p = 0.007, the probability of
exactly 6 successes is (°5°)0.00760.993%%* = 0.0144 using

2.3%-3

6!

the binomial distribution, or is = 0.0146 using

the Poisson approximation.

For the use of the normal distribution to approximate the bi-
nomial, see paragraphs 108-109 below.

Introduction to continuous distributions. We
have already contrasted, in paragraph 76, continuous data
with discrete data. We mentioned there the probability density
function (p.d.f.); its crucial property is that the area beneath it
between any two values (z; and z3, 51y) gives the probability
of getting an observation between those two values.
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Probability :
density ~

T T2

The probability of getting a value in the range
z; to T3 is the area marked with dashes.

Notice that:

o The curve cannot be negative (because probabilities can-
not be negative).

e The total area under the curve must be 1 (this is just say-
ing that the total probability of a set of mutually exclusive
and exhaustive events is 1: some value of z between —oo
and +o0o must be observed).

o There is zero probability that we get any value z eractly;
so when referring to continuous variables, we need not
worry about distinguishing between being “less than” =z
and being “less than or equal to” z.

The p.4f. can be thought of as arising when making his-
tograms of larger and larger sets of data with finer and finer
classes of the z-values.

The integral of the p.d.f. from —oo to z is known as
the cumulative distribution function. It gives the probability
of getting an observation less than or equal to . The shape
of it has these properties:

o It is always increasing (if the slope was ever negative, that
would mean the p.d.f. was negative, which is impossible).

e It is 0 at —oo.
e It is 1 at +oo.

Naturally, we get the probability of obtaining a value
between z, and z; (where z; is greater than ;) from the cu-
mulative distribution at z; minus the cumulative distribution
at z,: that is, by integrating the p.d.f. between z, and 3.
If zp — z; is very small, this integral will be approximately
(z2 — ;) x the p.d.f. at [z1 + 3(z2 — z1)].

The uniform distribution over the range 0 to
1. The “uniform” distribution has this name because the prob-
ability density is constant throughout the range of possible
values of the variable (and is zero elsewhere).

e Illustration of the probability density:

1.00
Probability
.50
density
.00 T
0.0 0.5 1.0
I

o Expression for the probability density:

1 (provided z is between 0 and 1)
0 (for other )

Part IT

e Thus with this distribution, only values of z between (
and 1 are possible.

o Expression for the cumulative probability distribution:

0 (forz<0)
z (provided z is between 0 and 1’
1 (forz>1)

(Another way of writing this is as max(0, min(1, z)), and
perhaps the reader can think of another.)

o So the probability of getting a value between z; and z;
is simply z3 — z; (provided that 0 < z; < z2 < 1).

e Most statistical software packages have the facility to
generate random numbers from this distribution; many
statistics books have tables of random whole numbers in
them, and these tables can be adapted to the same pur-
pose. The third and fourth examples in Table 4 will show
how random numbers from this distribution can be used
as the starting point when requiring random observations
from some other continuous distribution.

The uniform distribution over the range a to
b.

e Illustration of the probability density:

1/(b— a)

Probability

density

T

The height of the p.d.f. has to be 1/(b—a) for the following
reason: the total area under a p.d.f. is always 1; the base
of the rectangle is b — a; knowing that base x height =1,
we find height = 1/(b — a).

o Expression for the probability density:

1/(b—a) (provided z is between a and b)
0 (for other z)

e And the probability of getting a value between z, and z;
is (z3 — 21)/(b — a) (provided that a < z; < x5 < ).

The exponential distribution.
e The expression for the probability density is:

[ 1e~=/* (provided z is positive) }

‘l 0 (for negative r) (24)

e And so the shape looks like this:

1
8

Probability

density \




Probability
e Thus with this distribution, any positive value of z is
possible, but negative values are impossible.

o The expression for the cumulative probability distribution

15
: = e—:/’
0

o The average value of X is 6; this will be demonstrated as
the final example in paragraph 115. It is also snown there
that the s.d. is 6.

(provided z is positive)
(for negative z)

(25)

@ One reason for the importance of this distribution is that
if events are happening in time according to a Poisson
process, the times between successive events have an ex-
ponential distribution. And if the rate of the Poisson
process is v, the @ of the exponential distribution is 1/7.

To show this, appreciate that the probability of 1 or
more events occurring within a time t is 1 — ™",
(Replace A by 7t in expression (21); set z = 0; sub-
tract from 1.) And the probability of 1 or more
events occurring between time 0 and time ¢ is the
probability that the time elapsing from time 0 until
the first event is less than {. Comparing 1 — ¢
with expression (25), we see v = 1/6.

Notice that the Poisson distribution refers to the count of
the number of events in a time period t, whereas the ex-
ponential distribution refers to the length of time between
one event and the next.

o The distribution is important wherever it is thought that
a Poisson process might be occurring. In particular, it is
important in the study of reliability. If failure of a compo-
nent of equipment is completely random (i.e., constitutes
an example of a Poisson process), then the lifetimes of
these components have an exponential distribution.

The normal distribution. Distributions that
have the highest point of the p.d.f. in the middle, with a sym-
metrical decrease either side, are important in many practical
applications. This is roughly the shape of many histograms of
data, after all. A particularly important example is the normal
distribution 24 also known as the Gaussian distribution.?®

o The shape of the p.d.f. is as shown below:
Probability

density , ",

o The symbols u and o (Greek letters mu and sigma) are
used for the mean and s.d. of the normal distribution, as
they are in other contexts when a mean and a standard
deviation are known. The mean determines where along
the line of real numbers the distribution is located; the
standard deviation determines how spread out it is. Some
illustrations are in paragraph 106.

i Following on from footnote 3, here are some more specialist terms we
have recently met.
Probability, exclusive, exhaustive, independent, conditional proba-
biuty, binomial distribution, Poisson distribution, probability den-
sity, normal distribution.
It is worthwhile to look them up in a dictionary, and to try to improve
the definition you fir 4 there.
2Named after the German mathematician and astronomer Carl
Friedrich Gauss (1777-1855).
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Table 1. A (very short) table of the normal distribution.

The column headed ®(z) gives the probability that a random
variable having a standard normal distribution is less than z.

z  ®(2)
0.00 0.5000
0.50 0.6915
1.00 0.8413
1.50 0.9332
2.00 009772
2.50 0.99379
3.00 0.99865
3.50 0.99977

e With this distribution, any value of z is possible. How-
ever, values outside the range p — 30 to p+ 3¢ occur only
about three times in a thousand — see the final example
in paragraph 105 for the calculation of this proportion.

The standard normal distribution. This has
mean pu = 0, and 5.d. & = 1. It is the usual practice to refer
to the horizontal axis as z, rather than z.

e The probability density function is proportional to:

exp (—1z%). (26)
(In case you are not familiar with it, exp(a) is just another
way of writing e°.)

e As to the cumulative distribution function, there is no
elementary formula for this. The symbol ® (Greek capital
letter phi) is used for it, so ®(z) is the probability of
getting a value less than z when the variable has a normal
distribution with mean 0 and s.d. 1.

e The function & is not available on most electronic calcu-
lators at present, so most statistics textbooks include a
table of it. A very short one is printed here as Table 1.

‘ 102.| Use of the table of the normal distribution.
Most tables of the normal distribution are arranged so that one
chooses z and reads off what & is.2® Thus if we are interested
in z = 1.50, we read off that & is 0.9332. Often, however, the
question is slightly different. The reader will find it helpful to
draw a little sketch beside each of the following examples, to
illustrate what the question is and how it is answered.

e What is the probability of get-
ting a value greater than a stated
value? Required here is 1 — ®(z).
For example, the probability of
getting a value greater than 1.50
is 1 — 0.9332, which is 0.0668.

e What is the probability of getting
a value between 0 and the stated
value? Required here is ®(z)—0.5
(z being positive).

Because the standard nor-
mal distribution is symmet-
ric about 0, there is a proba-
bility of 0.5 to the left of 0,

26 With some tables, one chooses z and reads off what & ~0.5 is. If you
are using one like this, read Table 2.
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and a probability of 0.5 to
the right of 0. To get the
probability between 0 and z,
we subtract the probability
of being less than 0 away
from the probability of being
less than z.

For example, the probabiiity of
getting a value between 0 and 1.50
is 0.9332—0.5000, which is 0.4332.

o Most tables of the normal distri-
bution show only positive values
of z. If we want ®(z) where z
is negative, we have to use the
symmetry property in the form
®(—z) = 1 — ®(z). For example,
the probability of getting a value
less than —1.50 is ®(—1.50) = 1-
$(1.50) = 1 — 0.9332 = 0.0668.

o And if we want 1 — $(z) where z
is negative, we use the symmetry
property in the form 1 — &(~z) =
&(z). For example, the probabil-
ity of getting a value greater than
—1.50 is ®(1.50) = 0.9332.

e What is the probability of getting
a value between —z and 27 By
symmetry, this must be twice the
probability of getting a value be-
tween 0 and z; i.e., 2(®(z) — 0.5).
For example, the probability of
getting a value between —1.50 and
1.50 is 2 x (0.9332 — 0.5000) =
0.8664.

o What is the probability of get-
ting a value between z; and z;
(where z; < z2)? This is ®(23) —
®(z,). For example, the proba-
bility of getting a value between
0.50 and 1.50 is ®(1.50)—®(0.50),
which is 0.9332 — 0.6915 = 0.2417.
And the probability of getting a
value between —0.50 and 1.50 is
&(1.50) — ®(—0.50) = &(1.50) -
(1 — ®(0.50)), which is 0.9332 —
1+ 0.6915 = 0.6247.

The student should not attempt to remember the above rules
in the form of formulae. Instead, the two key properties that
the total probability is 1, and that the distribution is symmet-
ric about 0, should be thoroughly understood.

Occasionall;, we want the probability of getting a
value between z; and zz, where z; and z; are very close to-
gether. In this case, we use the method mentioned in the final
sentence of paragraph 96 — we multiply the difference between
z; and z, by the p.d.f. at their average value. The p.d.f. of the
normal distribution is:

7'2—'exp (-%2%). (27)
For example, to calculate the probability of getting a value of 2
between 1.500 and 1.501, we multiply 1.501 —1.500 = 0.001 by
- exp (—51.5005%). And we find 0.001 x 0.129 = 0.000129.

Part I1

Getting a value of z from a given probability.
To do this, we use Table 1 “in reverse”. If we require the
value of z such that the probability of being less than it equals
0.9772, we see that z = 2.00. A more detailed table will enable
us to find that

The value of z such that there is a 0.90 prchability of
being less than it is 1.28,

The value of z such that there is a 0.99 probability of
being less than it is 2.33,

etc. Table 1 enables us to directly answer questions about
z given the probability (&) of being less than it, where this
probability is 0.5 or greater. Variations from this question
require variations in what we do. For example:

e If ® is less than 0.5, we use the
symmetry of the normal distribu-
tion to realise that the z that cor-
responds to & is minus the z that
corresponds to 1 — ®. So if ® is
0.0228, we look for 1 — 0.0228 =
0.9772, we find the corresponding
z is 2.00, so we know the z that
corresponds to 0.0228 is —2.00.

e If we are told the probability of
being greater than z, we first need
to convert this to ¢ before looking
in the Table. So if we want the z
such that there is a 0.0228 chance
of being greater than it, we look
for ® = 0.9772, and find that z is
2.00.

e For what value of z does the prob-
ability of being within z of 0 equal
0.95? By symmetry, the proba-
bility 0.05 of being further away
than z must be equally divided,
0.025 being the the probability
of being less than —z (and 0.025
also being the probability of being
greater than z). Hence what we
want is the value of z such that
® is 0.025 + 0.95 = 0.975. We
find (from a detailed table) that
z = 1.96.

e For the normal distribution, what
is the ratio of the inter-quartile
range to the 5.d.7 The upper
quartile of the normal distribu-
tion is the value of z such that
®(z) = 0.75. From a detailed ta-
ble of the normal distribution, we
find z = 0.67. By symmetry, the
lower quartile is —0.67. The IQR
is therefore 1.34. Since the s.d. is
1, the ratio of the IQR to the s.d.
is 1.34.

e For the normal distribution, what
proportion of observations are
outliers, if we adopt the defini-
tion of “outlier” given in para-
graph 227 The upper quartile plus
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1IQR s 0.67+1.34 = 2.01. From
a detailed table of the normal dis-
tribution, we find that a propor-
tion 0.0444 of observations are ei-
ther bigger than 2.01 or smaller
than —2.01.

The normal distribution with some other
mean and standard deviation. So far, we have been deal-
ing with the standard normal distribution — that is, the one
with mean = 0 and s.d. = 1. Now, what do we 1o in the
practical case where the mean and s.d. are something else?
There is a simple answer: we can transform questions about
a value z from the normal distribution with mean y and s.d.
o into questions about a value z from the standard normal
distribution, by calculating

(28)

The reader will again find it helpful to draw little sketches of
what the question is (with z, u, and o shown), and what the
equivalent question concerning the standard normal distribu-
tion is (with z shown).

o If a random variable has a normal
distribution with mean 10 and s.d.
5, what is the probability it will
take a value less than 12.57

In this question, z is 12.5,
u is 10, and ¢ is 5. To
answer it, we calculate z =
125210 — (0.50. Then we
look in Table 1 and find that
® is 0.6915.

e Suppose that women’s heights are
normally distributed with a mean
of 1624 mm. and a s.d. of 56 mm.
What proportion of women are
shorter than 1500 mm.7

In this question, z is 1500,
4 is 1624, and o 1s 56. To
answer it, we calculate z =
T -2.21.  The
probability of getting a z less
than —2.21 equals the prob-
ability of getting a z greater
than 2.21 (using the symme-
try property), which equals 1
minus the probability of get-
ting a z less than 2.21. From
a deta‘led table of the nor-
mal distribution, we find this
is 0.9864, so 0.0136 is the re-
quired answer.?”

27Some instructors like you to set the calculation out as below.

{ X — 1624 1500 — 1624
Pr <

56 56
are doing the same thing to the right hand

Pr{X < 1500} } (where we

side of the < sign as we are to the left)
= Pr{Z < —'2.21}
= 0.0136.
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o Suppose that women’s heights are normally distributed
with a mean of 1624 mm. and a s.d. of 56 mm. What

height is such that 5 per cent of women are shorter than
"

To answer this sort of question, we realise that we
can
Go from a probability to a value of z using the
table of the normal distribution, and
Go from a value of z to a value of z using the
formula z = =£.
So, from ® = 0.05 we find z = —1.645. Then, know-
ing —1.645 = £=1824 we obtain z = (—1.645 x 56) +
1624 = 1532.

o What proportion of observations are further than 3 stan-
dard deviations away from the mean?

In this question we are asking what proportion of
observations are less than g — 3¢ or are greater than
p + 3¢. Do not worry that we are not given the z's
as numerical values, we will see that the unknown
quantities cancel out. Putting z, = p — 3o, we find
z = 513:—"‘— = —3; putting z; = p + 30, we find
zZy = f-‘-*a—::E = 3. From Table 1, we find the proba-
bility is 0.00135 + 0.00135 = 0.0027.

Expression for the p.d.f. of the normal distri-

bution, and illustrations. The p.d.f. is:

L i(:—p)z
Py e o '

The two distributions shown here differ in g but they have the
same @

(29)

Probability

density

x

These two distributions differ in ¢ but not in u:

-ﬁ'.

Probability

density

These two distributions differ in both y and o:

-r\'u

Probability

density
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28 Ay mentijoned in footnote 10, vehicles are typically designed to be safe
for the 5th percentile female and the 95th percentile man, as well as for
people of average size. If one has measured a large number of people, one
can read off from the cumulative frequency plot what the 5th percentile
is. But if one has only quite a small sample of people, one might prefer
to calculate the mean and s.d., assume the normal distribution is valid
here, and derive the 5th percentile from that, as we are now doing.
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Table 2. Read this if your table of the normal distribution gives ® — 0.5.

Some tables of the normal distribution do not give the probability of getting a value less than z. Instead, they give the
probability of getting a value between 0 and z. That is, when you know z, you read off what & — 0.5 is. A very short example
of such a table is as follows:

z  ®(z)-05
0.00 0.0000
0.50 0.1915
1.00 0.3413
1.50 0.4332
2.00 04772
2.50 0.49379
3.00 0.49865
3.50 0.49977

Some examples of the use of such a table are now given. The reader will find it helpful to draw a little sketch beside each of
the examples, to illustrate what the question is and how it is answered. '

e What is the probability of getting a value between 0 and 1.507 Directly from the table, this is
0.4332.

e What is the probability of getting a value less than 1.507 Here, we need to add on 0.5 to the value
shown in the table, and we get 0.9332. (Because the standard normal distribution is symmetric
about 0, there is a probability of 0.5 to the left of 0, and a probability of 0.5 to the right of 0. To get
the probability between —oo and z, we add the probability of being less than 0 to the probability
of being between 0 and z.)

e What is the probability of getting a value between —1.50 and 1.507 By symmetry, this must be
twice the probability of getting a value between 0 and 1.50; that is, 2 x 0.4332 = 0.8664.

e What is the probability of getting a value greater than 1.507 We subtract the probability of being
between 0 and 1.50 from the probability of being greater than 0 (which we know to be 0.5000); so
the answer is 0.5000 — 0.4332 = 0.0668.

e What is the probability of getting a value less than —1.507 By symmetry, this must be the same
as the probability of getting a value greater than 1.50; that is, 0.0668.

Here are some examples of going from a probability to a value of z:

e Given that the probability of being between 0 and z is 0.4772, what is the value of z? Using the
table “in reverse”, we see this is 2.00.

e If the probability of being less than z is 0.9772, what is the value of z? We first subtract 0.5000
from 0.9772 and get 0.4772, and look for this when using the table in reverse.

e For what value of z does the probability of not being within z of 0 equal 0.057 By symmetry, the
probability 0.05 must be equally divided, 0.025 being the probability of being greater than z (and
0.025 also being the probability of being less than —z). Hence what we want is the value of z such
that ® — 0.5 is 0.475. We find (from a detailed table) that z = 1.96.

Using the cumulative frequency plot to up to 699 .01 —-2.33
graphically judge whether data is normally dis- up to 719 .03 -—1.88
tributed. A cumulative frequency plot (paragraphs 27 and upto 739 09 -—-1.34
36) would be easier to cornprehend if it was (at least approx- up to 769 .22 -0.77
imately ) a straight line. Shown (at right) are the cumulative up to 769 .34 —0.41
propurtions for the arm length data of paragraph 32. (These up to 779 42 —-0.20
have been repeated from paragraph 36.) If these proportions up to 789 .53 0.08
referred to a normal distribution, they would be ®’s, and could up to 799 .60 0.25
be converted into z's by using a detailed table of the normal up to 809 .76 0.71
distribution in reverse, as in paragraph 104. This has been up to 829 .87 1.13
done in the final column. up to 849 .98 2.05

If we plot the 2’s that have been obtained in this way against
the arm lengths a straicht line will indicate that arm length
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is normally distributed.?®

2.5
z corresponding 2.0
1.5
. 1.0
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0.5
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less than —-1.57
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Remarks: aal .

e As in paragraph 36, the points have been plotted at arm
lengths of 700, 720, etc., rather than 699, 719, etc.

e It is clear that a normal distribution is a good overall
description of this data, despite the irregularities that are
evident in the histogram in paragraph 35.

o Special graph paper is available to help with the procedure
des.ribed: instead of converting the cumulative probabil-
ities into z's, the probabilities are plotied directly onto
the vertical scale of the graph paper — which is not a
linear scale like ordinary graph paper is, but is non-linear
in just the way required for this procedure to work.

o If the values of the observations are known exactly, rather
than being grouped into classes, we treat (i—3%)/n as
being the appropriate value of ¢ for the ith smallest ob-
servation, convert these @'s into z’s, and plot against the
corresponding value of the observation, .

Using the normal distribution to approxi-
mate the binomial. Suppose we want to work out the
| robability of not more than 10 successes when n = 150 and
p = 0.05. We require 0.95!%% + 150 x 0.05 x 0.95'% 4+ ... +
Lo0xi9x  xlil 0.05'9 x 0.95'4°, which is quite tedious to
work out. A reasonable approximation can be obtained using

the normal distribution.

e We use the normal distribution that has the same mean
and s.d. as the binomial distribution that we are interested
in. That is, we set g = np and ¢ = y/np(1 — p).

These work out to be 7.5 and 2.67 for this example.

29The reason is as follows. To say that arm length is normally dis-
tributed is to say that

Pr{Arm length < =} = & (I = lM) )
for some mean u and s.d. . Now, we know that if we start with a value
(. convert it to ®((), and take the z corresponding to this &, we get
back to ¢; that is, z(®(¢)) = (; expressed in other words, z is the inverse
transformation of @. So, taking the z corresponding to both sides of the
equation,

= (0(=52))

T—p
] bl

a

z(Pr{Arm length < z})

a relation that is linear in x.
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o Notice that we are using a continuous distribution (the
normal) to approximate a discrete one (the binomial).
The binomial probability of exactly z successes will be
approximated by the normal distribution between z — 3
and z + %.

For example, the binomial probability of exactly 10
successes will be approximated by the normal distri-
bution between 9.5 and 10.5, the binomial probabil-
ity of exactly 9 successes will be approxi jated by
the normal distribution between 8.5 and 9.5, and so
on.3° So we can see that the binomial probability
of 10 or fewer successes will be approximated by the
normal distribution over the range extending up as
far as 10.5.

e Now we know what distribution we need to use (the nor-
mal with mean 7.5 and s.d. 2.67), and what area we want
(to the left of 10.5). We calculate z = 103578 = 1.12.
From a table of the normal distribution, we find the re-

quired probability is 0.8686.

e This method of approximation is not satisfactory if n is
small or p is very different from 0.5. A common recom-
mendation is to only use it if np > 5 and n(1—p) > 5.

The mathematics that connects the binomial probability (18)
to the normal p.d.f. (29) is too advanced for us — but it does
exist!

Questions on approximating the binomial distribu-
tion by the normal are quite popular (with examiners!) because
they enable the testing of several ideas at once — recognising
the general strategy that is required, knowing how to calculate
the mean and s.d. of the binomial distribution, appreciating
that the limit of integration for the normal distribution will
differ by 0.5 from the z for the binomial distribution, the con-
version into z, and the use of the table of the normal distribu-
tion.

A common cause of error is adding 0.5 when subtracting
is required, and vice versa. To avoid this, think carefully
about what range of binomial outcomes is referred to in
the question; if this is between whole nurmbers z; and z;
inclusive (with z; < z3), the normal approximation will
refer to the range =, — 0.5 to z2 + 0.5. (But it is usual to
use —oo if zy is 0, and oo if z3 is n.)

Expectations of discrete random variables.

As before, let the probability that a random variable X takes

the value = be Pr{X = z}. Then the ezpectation of X, written
E(X),is

Tz.Pr{X =z}, (30)

with the summation taking place over all the possible values
of X. That is, the expectation is in effect the mean. Suppose,
for example, X has the following distribution:

z: lo 1 2 3 4

Pr{X=z}:|01 02 04 02 01
Then

E(X)

(0 x 0.1)+ (1 x 0.2) + (2 x 0.4) + (3 x 0.2)
+(4x0.1)
040.2+08+0.6+04,

1l

30The addition or subtraction, as appropriate, of 0.5 is known as the
continuily correction.
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which totals 2.0. (This answer is actually obvious, because of
the symmetry of the distribution.)

Notice that the “expected” value is not necessarily
the most frequent value — nor is it necessarily even a possible
value! For example, if X takes the values —1 and 1 with
probabilities of § each, then E(X) is 0. So, “expected” value
is something of a misnomer.

Expectations of continuous random vari-
ables. In this case, integration replaces summation and E(X)
is

fzf(:)dz. (31)

where f(z) is the p.d.f. Suppose, for example, f(z) is 1 — %z
for z being between 0 and 2, and is 0 for other z. Then

: 1 1.2 3)r=2
E(X):/; :(l—fz)dz-*[iz: ——z] gt

which equals . Integration in (31) (and (33) below) is from
—00 to oo; but the example of f(z) that we are considering is
0 outside the range z =0 to z = 2.

l 113.| WVariances and standard deviations of discrete
random variables. The variance of a random variable,
V(X), is the expectation of [X — E(X))?, that is,

[z — E(X))2. Pr{X = z}. (32)

Thus for the example of paragraph 110,

[(=2)% x 0.1] + [(~1)? x 0.2] + [0? x 0.4]
+ (12 x 0.2] 4+ [22 x 0.1]
04+02+0+02+04,

V(X)

I

which totals 1.2. The standard deviation is the square root of
the variance, so in this example it is 1.10.

Variances and standard deviations of contin-
uous random variables. Again, integration replaces sum-
mation and V(X) is

[tz - ECOPfa) 2 (33)
Thus for the example of paragraph 112,

foz (-390~

-z+:r]

V(X) iz) dzr

=2

. 1.4, 5.3
= [-—8.7'.. +9-T. =0

which equals % (And the standard deviation is \/?; = 0.47.)

A more convenient formula for the vari-
ance. In the context of data analysis (paragraphs 15-17),
—-[£z? — L(£z)?] is a more convenient formula than
5L (z - £)? for computing the variance. Similarly,

E(X?) - [E(X))? (34)

is here the most convenient formula.®! That is, the expectation
of X? minus the square of the expectation of X

3 To show that this is the expectation of [X — E(X)]?, we simply write
E(lX - E(X)") E(X? - 2XE(X) + [E(X)])
= E(X?) -2E(X).E(X)+[E(X))?
(since E(X) is a constant)

= E(X?)-[E(X)*

Part II

e For our discrete example, we have E(X?) = (0 x 0.1)+
(1x0.2)+(4%0.4)+(9%0.2)+(16x0.1) =0+0.2+1.6+
1.8 + 1.6, which totals 5.2. Thus V(X) —52—22 =12,
which is the result we calculated previously.

e Another discrete example is given in Table 3.

e For our continuous
fz 2{l——:l:)d::: [
v(x)=2-(3)"=

exarnple E(X?) =
8:l:"'] o' which is 2. Thus

, as previously.

e Now consider the exponentlal distribution (paragraph 99).
This has p.d.f. f(z) = _‘/' (provided z is positive).
The expectation E(X) = fo z.2e~*/* dz can be found
to be 8 (using the method of integ’rating by parts). The
expectation of the square E(X?) = [° ==/? dr can
be found to be 262 (by the same method) Hence the
variance V(X) = 26% — 6 = 02, and the s.d. is 0.

Waiting time. If X represents the time gap be-
tween successive buses, and people are coming to the bus
stop at a constant rate, then their average waiting time is
lE(X )/E(X) (end of paragraph 10) Now, LE(X?)/E(X)

$H{V(X) + [E(X)*}/E(X) = 3(o® + 4*)/n (where p and
o are the mean and s.d. of the gaps between buses), and this
may be written as %p (1 + ;’7:-), which is the form that this

formula is usually seen in.

If the distribution of gap lengths is exponential with mean

2
16 (1 - %-.e)
much as it would be if the buses came regularly (i.e., with
o =0).

6, the average waiting time is = f, twice as

Effect on the expectation and variance of
adding a constant. If we add a constant, a, on to each
value of a random variable, the effect on the expectation is
that a is added to it. There is no change to the variance or
standard deviation. In symbols,

E(a+X) =
V(a+ X)

a+ E(X)
V(X).

(35)
(36)

Effect on the expectation and variance of
multiplying by a constant. If we multiply each value of
a random variable by a constant, b, the effect on the expec-
tation is that it is multiplied by b. The standard deviation
is multiplied by b, and the variance is multiplied by #%. In
symbols,

E(b.X) b.E(X)
V(b.X) = bLV(X).

(37)
(38)

For example, suppcse the numbers 20, 25, 30 are
temperatures in degrees Celsius. We multiply by £ and add 32
to convert them to degrees Fahrenheit: 68, 77, 86. The same
thing has happened to the mean —- it has been multiplied by §
and then 32 added. The effect on how spread out the numbers
are has been to multiply by £. So the s.d. has been multiplied

by £ (and hence the variance has been multiplied by (%)2).

The expectation when multiplying together
two independent random variables. If X; and X, are
two independent! random variables, the expectation of their

e ek e R LA el P AR TN A BT 5 SRR N
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Table 8. The erpeciation and s.d. of the day of the month on which people are born.

Let us assume that the same number of people are born on each day, regardless of which month or year it is. Because of leap
years, we need to consider a 4-year period. In such a period, there are 28 months with 31 days, 16 months with 30 days, 1
month with 29 days, and 3 months with 28 days. There are 1461 days altogether. Consequently, the proportions of people born

on the respective days of the month will be as below:

Day of the month, z: | 1 2 3 ses 28 29 30 31

Pr{X = z}: TIeT THeT THT o+ Tl T4 T THer
e To compute E(X), we require L2, z. 1431 +29. 1:‘;1 +30.7587 + 311581 1461 The first term 1s Tei 222, . Most students know
from their mathematics course that T, z = 1m(m + 1). Therefore, the first term is {35- x 1 x 28 x 29, which is Le484

= 15.73.

Adding on the other terms gives a total of 2124963:1

e To compute E(X?), we require £2%

1461 1461 °

8 L2
R 1 +29‘2 Tie7 +30%. 134 +312.;33;. The first term is 1451 2:-1 z?. Most students

know from their mathematics course that ED, at= %m(m+ 1)(2m+1). Therefore, the first term is yag7 X & x 28 x 29 x 57,

which is 379272
e Finally, V(X) = E(X?) -

This value of the s.d. will be used in paragraph 133.

Adding on the other terms gives a total o

f 474925 — 324.86.
[E(X))? = 77.44, and the s.d. is \/77.44 = 8.80.

product is the product of the expectations,?

E(X1X32) = E(X1)E(X2). (39)

The expectation and variance of a sum of ran-
dom variables. Suppose we have two random variables, X,
and X,, and we create a new random variable by adding them
together, X; + X,. The expectation of the sum is the sum of
the expectations,

E(X, + X3) = E(X,)) + E(X3). (40)

Furthermore, provided X, and X, are independent, the vari-
ance of the sum is the sum of the variances,3?

V(X1 + X2) = V(X1) + V(X2). (41)

Naturally, we need not stop at two variables, we can add to-
gether as many as we like. And the expectation of a difference
is the difference of the expectations,

E(X, - X3) = E(X,) — E(X2), (42)
and the variance of a difference between independent random
variables is the sum of the variances,

V(X1 = X2) = V(X)) + V(Xa). (43)

32The crucial step in proving this is to recall that the probability of a
particular combination of values is the product of the individual proba-
bilities, provided that independence holds.

33To prove this, write

E((X1 + X2)?)

E(X]+2X1 X2 + X3)
E(X})+2E(X1X2) + E(X3)
=  E(X{)+2E(X1)E(X2) + E(X3])
(because X; and X; are independent).
[E(X1) + E(X2))?

= [E(X)P +2E(X))E(X2) + [E(X2)]%.
Subtracting the two equations, the left hand side is E((X; + X3)?) —
[E(X) r X2)]?, which is V(X3 + X3); the right hand side is E(Xe) -
[E(X1)]? + E(X2) = [E(X2))?, which is V(X,)+ V(X2).

Actually, this shows that equation (41) holds if E(X,X;) =
E(X,)E(X3). If this holds, X, and X; are said to be wncorrelated. X,
and X; are uncorrel ited if they are independent; but they might possibly
be uncorrelated even if they are not independent.

1

(E(X) + X2))?

oAt AT AT R SR LR GRS R0 PO C GO ATDE A e

TR L DTS WK AR

The variance of a difference is the sum of the variances,
not the difference. This i1s common sense — after all, there
are two sources of variation contributing to the variation
in X; — X3, the variation of X, and the variation of Xj;
obviously, the total variation is going to be larger than
either individual source. Furthermore, we are adding X,
and —1 x X5, and we know that the variance of b x X3 is
b2 x the variance of X3; here b is —1 and 2 is 1.

The standard deviation of a sum or difference of independent
random variables should be calculated using equation (41) or
(43), together with the fact that the variance is the square of
the s.d.

As an example, suppose a pen is made up of a barrel
(length B) that fits into a cap (length C); the one fits over the
other by an amount R. The pen has to fit into a wallet (length
W). Knowing the expectations and variances of B, C, R, and
W, determine the expectation and s.d. of the difference in
lengths between the wallet and the pen.

The length of the pen is B+ C — R. The amount by
which the wallet length exceeds the pen length is W —
B — C+ R. Let us suppose the expectations and s.d.’s of
the measurements are as shown below (in cm.).

w B C R
Expectation: 14.0 13.0 50 44
s.d.: 0.1 01 005 02

Then E(W-B-C+R) = E(W)-E(B)-E(C)+E(R) =
14.0-13.0-5.0+4.4, whichis 0.4. And V(W -B-C+
R) = V(W)+V(B)+V(C)+V(R) = 0.124+0.1240.05? +
0.22, which is 0.0625, and so the s.d. is 0.25.

If we could assume a normal distribution for the difference in
lengths between the wallet and the pen, we could go on to
determine the probability of the per being able to fit into the
wallet, that is, the probability of W — B — C + R exceeding 0.

As a further example, suppose that the yield of a
chemical produced in a synthetic reaction has a mean of 15
gm. and a s.d. of 4 gm. If the experiment is repeated 8 times,
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what is the expectation and s.d. of the total yield? Writing Y
for the total yield, we have:

Y = X3 + X2 + + Xs
Expectation: 15 15 . 15
Variance: 42 42 B 4?2

So the expectation of the totalis 8 x 15 = 120, and the variance
is 8 x 16 = 128 (and the s.d. is /128 = 11.31).

The variance of the binomial distribution. In
paragraph 85, the variance of the binomial distribution was
stated to be np(1 — p).

e One way of proving this is directly from E(X2?) =
Lz Pr{X =z} = £ z?(")p*(1 — p)"~*. But to proceed
further requires some facility in manipulating combinato-
rial expressions.

e I think it is easier to work out the variance as follows.

— When n = 1, the outcome 1 is observed with proba-
bility p, and the outcome 0 is observed with proba-
bility 1 — p. So the variance is E(X?) - [E(X))? =
p—p*=p(l -p)

— Now realise that the number of successes in n trials
is like adding up X; + Xz + ... 4+ X,, where X; is
the number of successes (0 or 1) in trial i.

— As the variance of the sum of independent random
variables is the sum of the variances, the variance of
the number of successes in n trials is np(1 — p).

Do not confuse X; + X3 +... + X, with nX,.
Suppose that X;, X5, ... X, are all independent of each other,
and that they have identical distributions. Since the distribu-
tions are identical, the expectations are all identical and the
variances are all identical, and we might as well refer to each
of them as E(X,) and V(X,), respectively. When we add all
the X;'s together, the expectation and variance of the total are
nE(X,) and nV(X,). Be careful not to confuse this situation
with the one in which we have a single random variable X,
and are multiplyingit by n. In this latter case, the expectation
and variance are nE(X;) and n?V(X,) (see paragraph 118).

The sum of normally-distributed random
variables. If random variables X; and X; each have nor-
mal distributions, then their sum X; + X, also has a normal
distribution. (We will not prove this.) So, therefore, does
their difference, and this will be used in paragraphs 170-171
when performing a hypothesis test on the difference between
two means.

Part II1

(PART III. INFERENCE |

Introduction. The aim in this Part is to use the
tools of probability, from Part II, to extend the methods of
data description outlined in Part I. We will try to draw conclu-
sions about the populations from which our random samples
came — that is, to make inferences. Paragraphs 144 onwards
will deal with confidence intervals and hypothesis testing, and
will include discussion of the meaning of what is being done,
as well as instruction in how to do it. As foundation for these
topics, paragraphs 128-143 are given cver to the concept of
standard error, and the Central Limit Theorem.

The mean in different samples. Early in a
statistics course, one learns how to calculate the mean of a
sample. However, if another sample is drawn and its mean
calculated, there will be a slightly different answer. A third
sample will give a different answer again. Now, if we could
describe the sample-to-sample variation, we could draw con-
clusions concerning which possible values for the population
mean were consistent with the data, and which were not.

What you need to get used to now is the idea that the
sample mean is at the same time both

One specific number (for this specific sample), cal-
culated by a particular formula, and

A random variable which will vary from sample to
sample,

Sampling distributions. The mean is an impor-
tant statistic that summarises one aspect of data. The partic-
ular value that is obtained will be different in different sam-
ples. Thus it is said to have a sampling distribution. Similarly,
other statistics (e.g., the median, and the s.d.) will also dif-
fer from sample to sample, and will have their own sampling
distributions.

| 130.| The standard error of the mean. The amount
of variability in a quantity can be measured by its standard
deviation. So the amount of variability in the mean is mea-
sured by the standard deviation of the mean — the standard
deviation, that is, calculated over repeated taking of samples.

Sample A consists of n observations from a very large pop-
ulation. These observations are a;, a3, ... a,. They have
mean . Now we take another sample of n observations,
B, the observations in which are b, by, ... b,. These have
mean b. Sample C has another n observations, the mean
of which is &. Sample D has another n observations, the
mean of which is d. And so on. The standard deviation
of the mean is the standard deviation of the numbers a,
b,e d, ...

To try to avoid confusion with the standard deviation that
applies to individual observations, the standard deviation of
the mean is given a special name — the standard error of the
mean.

Formula for the standard error of the mean.
We usually do not have several samples from the same popula-
tion. So we cannot find the standard error of the mean in the
way described above. Instead, we want an equation connect-
ing the variability in the mean to the variability that applies
to an individual observation. That equation is:

(44)

a
O = —=,
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where o¢ is the standard error of the mean, and ¢ is the s.d.
that applies to individual observations.*

Interpretation of the standard error of the
mean. It measures the extent of random variation in sample
means.

e If os is small, the chances are good that the mean of a
sample, Z, will be close to the true mean of the population,
H.

e If oz is large, we are more likely to get a sample mean that
differs considerably from the mean of the population.

Two factors determine o;:
e How variable the observations are, o.
e How big a sample we take.

In order to have an accurate estimate of y, we require that o
be small, and/or that n be large.

e The variability of the observations, o, may be largely due
to the variability in the items being observed; or there
may be appreciable measurement error, also. There is
usually nothing that can be done about the inherent vari-
ability in the items, but it may be possible to use a more
accurate method of measurement (perhaps a more expen-
sive one).

e The other strategy for making o small is to take a large
sample; the disadvantage of this is the extra expense. No-
tice that the square root of n is what is in the equation
— this means that in order to halve ¢z, for example, we
need to quadruple n.

The following exercise demonstrates what the stan-
dard error of the mean really signifies, and that it is smaller for
larger samples. To make the description clear, I will assume
the class has 117 students in it, but the exercise works just as
well with any other reasonably large number.

1. For each student, let their value of X be the day of the
month on which they were born. (Thus we know each
value of X is between 1 and 31, inclusive.) The task is to
estimate px, the average day of the month on which stu-
dents were born. (It is obvious that this is approximately
16; in Table 3, we found that it is 15.73.)

2. Let the class be divided into 3 groups of 25 students each,
4 groups of 9 students each, and 6 groups of 1 student
each.

3. Each student tells the others in their group their birthday.

4. Each group works out its average birthday. A spokesper-
son announces this to the whole class. (In the calculation
below, I will assume these averages have turned out to be
15, 19, 16, 17, 19, 10, 15, 9, 2, 21, 30, 17, 14.)

34 This formula may be derived from what we know about the variance
of a sum of independent random variables,

e If X;, X2,... Xn are n independent observations from a population
that has a mean u and s.d. o, then the variance of the total T =
(X1 4+ X2+ ... + Xn)is no? (see paragraphs 121 and 125).

¢ The variance of 1T must be :15- x the variance of T (see paragraph
2 _ 1.2

118). So the variance of %T is :H-n:r :c;
¢ And the s.d. of %‘T is o /\/n.

¢ Of course, :‘—T is the sample mean Z.

.

5. The results can be summarised in a table as below.

How many? Its mean
25 15
25 19
25 16
17
19
10
15
9
2
21
30
17
14

Group no.

et et et e s (D D O O

6. We can now work out the standard deviation of the means
based upon samples of size 25. And that for means based
upon samples of size 9. And that for means based upon
samples of size 1. For the above data, the results are as
follows:

Sample size s.d.

25 2.1
9 3.9
1 9.7

7. Now the s.d.’s can be plotted against n, and it can be
seen that the larger n is, the smaller the s.d. is. (Taking
into account the differing lengths of months and assuming
equal numbers of people are born on each day, we found
in Table 3 that ¢ is 8.80; so the stheoretical values for the

8.80 8.80

above numbers are . 1.8, = 2.9, and %%9 =8.8)

Standard errors of the median and s.d. How
accurately a median or a standard deviation has been es-
timated is not usually studied in an introductory statistics
course, but students are often interested to know approxi-
mately the size of errors in these quantities.

e When the distribution of the observations is normal with
s.d. o, the standard error of the sample median is approx-
imately 1.25¢/+/n. (That this is 25 per cent larger than
the standard error of the sample mean is one reason for
preferring the latter over the sample median.)

e When the distribution of the observations is normal with
s.d. o, the standard error of the sample standard deviation

(s) is o/V/2n.

The fact that these standard errors®® depend upon the shape
of the distribution is one of the reasons why their study is
omitted at this stage.

The Central Limit Theorem. With mathemat-

ical niceties omitted, this states:

The distribution of the sum of n independent random
variables tends to the normal distribution as n tends to
00.

35Notice, by the way, that we are applying the phrase “standard er-
ror" to any method of estimating anything — not just to the use of the
sample mean to estimate the true mean. The precise way that “standard
deviation" and “standard error" are used is often not clear to students.
Roughly, “standard deviation” is used when we are thinking of a distri-
bution, and “standard error” when we are thinking of a property of a
method of estimation.
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Naturally, the expectation of this distribution is the sum of
the expectations, and the variance is the sum of the variances.

Thus, if we take random samples of size n from a
population whose mean is 4 and whose s.d. is o, then provided
that n is reasonably large, the sampling distribution of # has
the following properties:

1. The expectation is u.
2. The standard deviation is o/\/n.
3. The shape is normal.

Notice that the theorem said nothing about the distribution of
the individual observations — this can be quite a weird, non-
normal, shape, and still the distribution of the sample mean
will be normal, provided that n is large enough. (Actually,
there are some mathematical conditions that the distribution
must obey, but they need not concern us.) This theorem is
the chief reason for the great importance of the normal distri-
bution in statistics.

We know (from paragraph 126) that if we add
together two normally-distributed independent random vari-
ables, the result is normally distributed. We know from the
Central Limit Theorem that if we add together many inde-
pendent random variables, the result is normally distributed.
Hence it is reasonable to conclude that if we add together a
few independent random variables whose distributions are not
far from normal in shape, then the result will be very close to
having a normal distribution.

138.| Demonstration of the use of a table of ran-
dom numbers, and of the Central Limit Theorem. I
will demonstrate the Central Limit Theorem using a distribu-
tion in which there. are only two possible observations, 0 and
1; specifically, 40 per cent are 1's and 60 per cent are 0's. |
will take 30 samples of size n = 20 observations each from this
distribution, and construct a histogram of the distribution of
the sample means.

A typical table of random numbers consists of inte-
gers between 0 and 9, each of which occurs with equal proba-
bility, as below:

CL D 3= WD e = T O® NP -~ 30 Wwa 00N
A NGO O W— RO AW TN RR TN WAEROR = O Q]
SR NI WY NN YO0 0RO LNON 0O W R N
AR RNABNNDE =~ ANOBSNNOWO =~ AN =@ s O b
MW RN OOV NE= NN A =0 EAINNWR N =S ONQ
NNO Q= OO0 dDddBOoOUOVLNWOOENddNO OOV W
NP d NN WO NOORWNRNOO N NWA =
SN2 ONON= RN ONONAE DD N AR RA = O
D= OO0 EPREOO0ORENIYWEADENDAR = B0 ENBOWN
NERNATWDONOD ™ d = WWNWDY~NWENDO® =0
NN OO UAEWDNDADONO L. NOVWO~TONANNDAN OO
WY WWOoOOoONTIWNBADAVNRONODIRRWNNY O = =~
NOONONW O OOENORNAANOON~NONOANAND R
ORN N AWUNDIRONRINNDINBEN DDA LORO0SWNW
WOoWOoOOSENWE WO WHEONWMO SO ~OmOnoo ~
NNONAENOENOODNO DI ANWWANIITNNOBENOD®
= O® B ON AR DOWO B OWR~NDNO O
TR NNWOHOADEE~ DDA VO WA NAD®
COdWrMNMWNABNDNNE - OWOR~TO®MmAWENO W=
NN N 000N W N WO W NS W R

Part III

(Just as each digit 0, 1, ... 9 occurs with equal probability, so
each pair of digits 00, 01, ... 99 occurs with equal probability,
each triplet of digits 000, 001, ... 999 occurs with equal prob-
ability, etc.) Our first task is to change the random number
table so that it has the properties we want. T2 this case, a
convenient way is to change all occurrences of 0, 1, 2, and 3
into 1’s, and all occurrences of other numbers into 0’s.3¢ This
results in the observations of 0’s and 1’s shown below:37
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At the end of each row is shown the mean of the observations
in that row. The frequency distribution of these means is:

0.20 0.30 0.40 0.50 0.60
0.25 0.35 045 0.55 0.65

3 9 10 5 3

And a rough histogram of these frequencies looks like this:

XX
IX XX
XX XX
XX XX
XX XX
XX XX Ix
XX X X
Ix XX XX IX XX
X XX XX IX XX
XX Xx XX IX XX
0.20 0.30 0.40 0.50 o0.60
0.26 0.35 0.46 0.55 0.65

Despite the fact that our starting distribution of 0’s and 1’s
was very far from normal, and despite there being only 20 ob-
servations contributing to each mean, the shape of the normal
distribution is already starting to emerge.

The Central Limit Theorem can be used to answer
questions like the following. What is the probability than the

36 For other examples of the use of a table of random numbers, see Table
4.
370f course, the 0's and 1's are outcomes of binomial trials for which
p = 0.40: and the number of 1's in each row (6 9 12 R =t ) are chear
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Table {. Four further ezamples of the use of a table of random numbers.

Two examples of obtaining random observations from discrete distributions will be given, and then two examples of obtaining
random observations from continuous distributions.

e To simulate the outcomes when rolling a dice, the convenient thing to doisto let 1,2, 3, 4, 5, 6 represent these respactive
outcomes, and throw away the other numbers.

So the first row of the random nuinbers in paragraph 139 would become 52 4 3 1 5 6 2 6, with 11 numbers having
been discarded.

e Suppose we wish to simulate the following distribution:

z: |0 1 2 3 4 5 6 7

Pr{X==z}:|015 005 013 024 021 013 005 0.04

The thing to do here is to take the numbers from the table of random numbers in pairs, and to convert them to values of
z using the following table:

' Random numbers:
z:

00-14 15-19 20-32 33-56 57-77 78-90 91-95 96-99
0 1 2 3 4 5 6 7

Notice how 15 possible pairs of digits have been mapped to z = 0, 5 have been mapped to z = 1, and so on.

So the first row of the random numbers in paragraph 139 would be read as 57 24 93 10 58 07 62 78 68 77, and then
these would become 4 26040454 4.

e Suppose we wish to simulate observations from an exponential distribution with mean = 1. Let the cumulative probability
distribution of this be F. From paragraph 99, we know that F = 1 — e~*. The technique here is to take observations that
are uniformly distributed over the range 0 to 1, interpret them as F, and find z from z = — In(1 — F)) (where In means the
natural logarithm, i.e., the logarithm to base ). To obtain observations that are uniformly distributed over the range 0 to

1 from a table of random integers such as that in paragraph 139, read them in groups of 4, put a decimal point in front of
them, and add on .00005.

So the first row of the random numbers in paragraph 139 would be read as .57245 .93105 .58075 .62785 .68775.
Transforming these using z = — In(1 — F), they become 0.8497 2.6744 0.8693 0.9885 1.1640.

s Suppose we wish to simulate observations from a normal distribution with mean = 50 and s.d. = 7. We begin as we did for
the exponential distribution, reading the table of random integers in such a way that we get observations that are uniformly
distributed over the range 0 to 1. Then we convert to observations from a standard normal distribution by interpreting
these uniformly-distributed numbers as values of ®, and reading off from a table of the normal distribution what values of

' z correspond. Finally, we convert to values of z using z = 50 + 7z.

Using the first row of the random numbers in paragraph 139, the three stages of our calculations are shown below.

$: 57245 .93105 .58075 .62785 .687T75
z: 0.1826 1.4837 0.2038 0.3262 0.4895
z: 51.28 6039 5143 52.28 53.43

(Most tables of the normal distribution will not give z to four decimal places; computer calculation was used to get
these values.)

(Strictly speaking, the numbers obtained in the first stage of the last two examples do not have the continuous uniform
distribution — it can easi]y be seen that numbers like .00005 and .00015, etc., can be observed, but not .00002 or .00019, for
example. The error arising from this is nearly always trivial, however.)

error will be less than 1.5, when the mean of a sample of size that 36 is a large enough sample for the Central
n = 36 is used to estimate the mean of a population whose Limit Theorem to work its magic).

tand 1ati ] K -—
St devimtionsis 187 The question is asking about the probability of the sample

The samp.2 mean: mean falling between u—1.5 and u+1.5. Converting these
‘ two values to z values, we find —0.5 and 0.5. Using Table
Has an expectation of yu; 1, the required answer is 2 x 0.1915 = 0.3830.

Has a standard error of 18/v/36 = 3. Continuing this example, how large a sample will

Has a normal distribution (provided we can assume  we need to take if we require that an error of 1.5 or more has
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a probability of only 10 per cent?

Remember from an example in paragraph 105 that we
first go from the probability to a z value. Using a detailed
table of the normal distribution, we find that the z that
corresponds to ® = 0.95 is 1.64. This must equal Tslﬁ}i'
Hence n = 387.

What is a good method of estimation? Vari-
ous methods might be available for estimating a statistic. For
example, when estimating the mean p of a normal distribu-
tion, we might think of using the sample mean, the sample
median, the average of the smallest and largest observations,
and various other methods. How can we choose between them?

e Their standard error is one important guide: other things
being equal, we will prefer a method that has a small
standard error.

As mentioned in paragraph 134, when sampling
from a normal distribution and estimating its u, the
smaller standard error of the sample mean than of
the sample median is a reason for preferring the for-
mer.

o Equally important, or more so, is that the method should
be unbiased. This means that its expectation is the true
value.

— We can easily demonstrate that the sample mean
is an unbiased method of estimating the popula-
tion mean p: E(£) = E(LZz) = LE(Zz) =
L(ZE@) =3 (Ep=nu=p

— In paragraph 15 and subsequently, we divided by
n — 1 when calculating the sample standard devia-
tion, rather than by n. The reason for this is that
—L.¥(z - £)? is an unbiased estimator of the pop-
ulation variance o2, whereas 1 (z — ) is a biased
estimator.38

e A method that is much used for devising formulae for es-
timating parameters®® is the mazimum likelihood method.
This refers to finding the value of the parameter such that

38\We can prove this from what we know about the variance of . First,
we write
L[X - E(X))?
= E[X-z+£- EQO?
= E(X-z)+2L(X-z)z-EX)+E[z- E(X))?
= D(X-2?+Z[z-EX))
{because £ (X — £) =0)
= E(X -1)? +n[z - E(X))
Taking expectations,
E(Z[X - E(X)I") E(E(X - £)*) + nE([2 - E(X)]")

E(E(X -2)?)+ n-@

Il

nV(X)

E(E (X - 2)?) (n = 1)V(X),

and therefore

E (ﬁﬂ(x = f)’) = V(X).

Notice, however, that this has referred to variances, not to standard
deviations. Neither the square root of ﬁﬁ (z — £)? nor the square root
of :‘—E (z — £)? is an unbiased estimator of the standard deviation. (To
try to find one is very difficult.)

39 uparameter” is simply a term for some quantity that we are trying
to estimate — e.g., the mean p, the s.d. g, or the probability of success

p.

Part III

the likelihood of getting the data that in fact was observed
is greater than for any other value of the parameter.4°

Standard error of a proportion. Suppose we use

p= Number or!; SUCCESSES 55 pur estimate of p, the probability
of success in a binomial distribution. (As before, we use a hat
" to indicate an estimated quantity.) Then the standard error
of pis

p(l1-p)

i 4
=y (45)
which is usually estimated by substituting p in place of p.
(Some books recommend changing n into n — 1 when using p

in place of p; Table 5 will explain this further.)

o For example, a market research company separately asks
400 consumers, who do not know each other, whether they
prefer brand A or brand B of bread. When 180 prefer A,

the proportion is calculated as 180 _ ( 45 (or 45 per cent),
400

with standard error |/ 245X0.58 = 0.025 (or 2.5 per cent).

e If 250 students are asked whether they prefer Professor
Whitehair or Dr. Greybeard as a lecturer, and 150 vote
for W and 100 vote for G, we estimate the proportion pre-
ferring W to be 0.6; and we might estimate the standard

0‘62’5‘3'4, which is 0.031. However, in order

for the calculation of the standard error to be valid, the
different observations (that is, the different expressions of
preference) need to be independent. My recollection of
my student days is pretty hazy, but I do remember dis-
cussing with my friends the merits and demerits of our
lecturers — our opinions certainly were not independent
of each other. The standard error in such a situation is
likely to be greater than that calculated by the formula
— effectively, the sample size is smaller than n.

error to be

Introduction to confidence intervals and test-
ing hypotheses. By now, we know how much a sample mean
or a sample proportion is likely to vary from sample to sample.
We are ready to:

40 A convenient example is provided by the estimation of a proportion.
Suppose we have an observation from a binomial distribution: perhaps
we have seen 10 successes in 100 trials. How are we to estimate p, the

probability of success? Intuitively, % = 0.10 is the way to do it. Let us

now demonstrate the maximum likelihood property of this method.
e For any p, the likelilhood of getting exactly 10 successes is
(1;1:)P10(1 — p)so‘
If this is calculated assuming p = 0.10, the answer 0.132 is
found.
If p = 0.09 is assumed instead, the answer is 0.124.
If p=0.11 is assumed, the answer is 0.125.

e So it does rather look as if the likelihood of the data is highest
for p = 0.10. We can prove this algebraically: we differentiate the
likelihood with respect to p, set it equal to 0, and solve for p.

o It is actually more convenient to differentiate the logarithm of the
likelihood. Call this L.
L = (") +inp' +1In(1 ~ p)*® (wheren
means the natural logarithm, i.e., the
logarithm to base )
= a constant + 10lnp + 90In(1 — p)

dL 10 90
dp p l-p
= 0 at the maximum of L.
10 _ 80 -
From 5 = T—p e find p = 0.10.
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Inference

e Calculate limits within which we are confident a mean, or
a proportion, lies;

¢ Test whether a mean, or a proportion, could be some
particular hypothesised value.

Some people hold strong opinions as to whether confidence
intervals or hypothesis tests are the most helpful approach to
statistical inference. Myself, I think they are conveying the
same message in slightly different languages. Most statistics
courses place siightly greater emphasis on hypothesis testing
than on confidence intervals, and I will, too. The ordering of
the material will as follows:*!

q 145 Confidence intervals: the basic idea
147 One mean, large sample or known s.d.
Confidence interval
149 Interpretation of a confidence interval
150 Calculation of sample size
151 Hypothesis testing: the basic idea
152 One mean, large sample or known s.d.
Hypothesis test
1563  Choice of significance level
154 The crucial calculation
155 Two-sided and one-sided alternative hypotheses
159 Typel and Type II errors
161 Concepts recently met
162 One mean, small sample and estimated s.d.
Confidence interval
Hypothesis test
167 The paired t-test
169 Difference between two means, large samples
172 Difference between two means
(Mann-Whitney U-test)
176  One proportion: Confidence interval
178 Being pessimistic when planning
179 One proportion: Hypothesis test
181 Hypothesis test for whether there is
a difference between two proportions
182 Comment on the decision from hypothesis tests
183 Standard errors in the linear regression context
184 Hypothesis testing of slope and intercept
186 Testing whether correlation is zero

(The titles of the paragraphs are not always exactly the same
as the short descriptions above.)

Confidence intervals: the basic idea. Up to
now, our estimates have been single numbers; the jargon for
this is “point estimates”. In contrast, we might wish to give
a band (or range, or interval) of values within which we are
pretty confident the true value lies. This is termed “interval
estimation”. A confidence interval is of the form

Standard error
of best estimate.

Some

Best
* number

estimate

(46)

1 The order in which this material is taught varies quite a lot between
nstructors.

s Some introduce hypothesis tests before confidence intervals, rather
than take C.1.'s first, as | have done.

o Some ex; 'ain all the examples that use the normal distribution be-
fore those that use the t-distribution. I have chosen instead to deal
with the methods for measurement data before those for counted
data, and have introduced the t-distribution quite early.

¢ Some would prefer the "how to do it" paragraphs to be clearly
separated from those offering comments on interpretation. But I
think it is easier to appreciate the comments if they come in small
doses.

More advanced are hypothesis tests about b, a, and r in the linear regres-
sion context, and these come at the end.

(Paragraph 145) ; 33

(We multiply the standard error by the “some number” before
adding this term to, or subtracting it from, the best estimate.)
That is, it is a band, or range, of values that extends from

Best .. Some Standard error
estimate number ” of best estimate
up to
Best ;,, Some Standard error
estimate P'** number * of best estimate.

The “some number” depends on how confident we want to be.
It will need to be a big number if we insist upon being highly
confident, and this will lead to a wide confidence interval. It
will be a smaller number if we are content with being not so
confident, and this will lead to a narrower confidence interval.

For our first example of confidenc- intervals, and for
many others, the “some number” will be taken from the table
of the normal distribution. When making an observation of a
normally-distributed random variable,

In 90 per cent of cases, we will be within a distance of
1.64 standard deviations from the mean,

In 95 per cent of cases, we will be within a distance of
1.96 standard deviations from the mean,

In 99 per cent of cases, we will be within a distance of
2.58 standard deviations from the mean,

and so on. (We find these figures from a table of the normal
distribution.)

Constructing a confidence interval for one
mean (large sample or known s.d.). Here, the “best es-
timate” is the sample mean, and the standard error is the
known s.d. divided by /n. So, if we have to calculate the 95
per cent C.I. for the mean of a population whose 5.d. is known
to be 2.5, and the sample mean is 69.2 for a sample of 11, the
required C.I. is -

V11’

which is 69.24+1.5. That is, it extends from 67.7 to 70.7. (Your
instructor may want you to write this in a particular way, e.g.,
as 69.2+ 1.5, as 67.7-70.7, or as {67.7, 70.7}.) Further,

69.2 +1.96 x

e The 99 per cent C.1. is 69.2 & 2.58 x 5%, which is from
67.3 to T1.1.

o The 90 per cent C.I. is 69.2 & 1.64 x 5;"5—1, which is from
68.0 to 70.4.

The s.d. may be known because there is past expe-
rience with this variable, and it is known how much variation
there typically is; or, the s.d. may have been estimated from
the sample, but the sample size is so large that the s.d. can
effectively be assumed to be known — any errors from its per-
haps being too big are cancelled out by those from its perhaps
being too small. (A sample size of 30 is large enough for many
purposes, and 100 for practically all.)

Interpretation of a confidence interval. Ran-
domness means we can never be completely sure of anything.
A confidence interval enables us to make a quantitative state-
ment of our uncertainty. If we were to take another random
sample of observations, and re-calculate the C.I., we would get
a slightly different sample mean, and hence a slightly different
C.I. For any C.I. that we have obtained — the first one, the
second one, or any other — we do not know whether the true
mean is within the C.I. or not. What we can say is that if we
were to repeatedly go through the whole process of taking a
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random sample, calculating the best estimate, and construct-
ing the C.I., then in 95 per cent of cases (or 99 per cent, or
whatever), we would have successfully captured the true mean
within the C.1.42

Calculation of the sample size required in or-
der to meet a given specification. Suppose we will be
required to construct a 95 per cent C.I. for the mean that
extends only +0.5 unit from the sample mean, when the s.d.
of the population is known to be 2.5; what sample size is re-
quired?

The specification that we have to meet is that the C.I. be
sample mean + 0.5;
we recall that the formula for a 95 per cent C.I. is

sample mean + 1.96 x standard error.

Therefore,
1.96 x standard error = 0.5
2.5
vn = 98
n = 96.

:151.| Hypothesis testing: the basic idea. The idea
behind a hypothesis test is as follows:

e State a particular hypothesis (e.g., about what a mean is,
or what a proportion is);

* On the assumption that the hypothesis is true, determine
the probability of getting a result at least as far away from
the hypothesised value as the observed value is;

e If this probability is very low, reject the hypothesis.

Hypothesis test for one mean (large sample
or known s.d.). Suppose that 6 randomly-chosen science
students take an intelligence test, and it is found that the
average of their 1.Q.’s is 130. If it is known that the variability
between students in their 1.Q.'s is represented by a s.d. of 12,

test the hypothesis that the average 1.Q. of science students is
120.

1. Ho: p =120
Hya: p# 120

(the null hypothesis)
(the alternative hypothesis)

2. If Hp is true, the sample mean  will have a normal dis-
tribution with mean 120 and standard deviation (that is,
the standard error of the mean) 12/v6. As earlier in
paragraph 102, it helps to draw a little sketch: in the
present context, of the distribution that arises when the
null hypothesis is true.

3. Consequently,
z—120

12/V6

‘?Does this mean that “the probability that the true value is within
the C.I. is 95 per cent"? To attempt a full answer to this would involve
deep questions in the philosophy of probability. But I think that most
statistics instructors will answer “no", and will mark your answer wrong
if you say this. Stick to the explanation in paragraph 149 is my advice.

Does it mean that "we are 95 per cent confident that the true value is
within the C.I."? Saying “95 per cent confident” is a very woolly, pretty
meaningless, statement that will neither gain you credit nor lose it with
most instructors.

Part []1

will have a standard normal distribution — i.e., it can be
interpreted as a z statistic. In this example, £ is 130, g
the result is '—i’%‘vlég, which is 2.04. (This is known as 4
lest statislic, meaning a quantity whose value determines
whether we reject or do not reject the null hypothesis.)

4a. From a table of the normal distribution, w find the prob-
ability of being at least as far away from the mean as 2,04
is (that is, the probability of being greater than 2.04 or
less than —2.04), is .0414.

5a. Because .0414 is such a low, probability, most people will
reject the original hypothesis Hg, and will prefer the alter-
native hypothesis, H,. That is, the data is not consistent
with the idea that x4 = 120. The difference from what was
hypothesised is said to be “statistically significant”.

Actually, it is usual to modify steps 4a and 5a as follows. We
choose a “significance level” (a is the usual symbol). We decide
that if the probability is less than this, we will reject Ho. Now,
instead of working out the probability (.0414) corresponding to
the observed z, we work out what value of z would correspond
to the chosen value of a. Steps 4a and 5a are therefore replaced
by the following:

4b. We choose a significance level of 0.05 (that is, 5 per cent).
Corresponding to a total probability of 0.05 being in the
tails of the distribution (that is, in the extreme ends) is a
z of 1.96.

5b. Because the observed :z lies outside the range —1.96 to
1.96, we reject the original hypothesis Hy, and prefer the
alternative hypothesis, H4. That is, the data is not con-
sistent with the idea that u = 120.

This is easier because there are only a few values of the signif-
icance level a that are commonly used, and one soon gets to
remember the corresponding values of z. (They are known as
critical values.) If the observed z had turned out to be 1.92,
for example, we would not have rejected Hy. (Some instruc-
tors, by the way, object to the wording “accept” Hy in such a
situation.)

Choice of significance level. The choice of a is,
it has to be admitted, somewhat arbitrary. The most common
choice is & = 0.05, though a = 0.01, @ = 0.10, and others, are
sometimes used. But it is no more arbitrary than the choice
of degree of confidence when constructing a C.1.

o If we choose a very small a (say, 0.001), it is quite likely
we will fail to reject Hy even if p is appreciably different
from the hypothesised value. If we choose a large a (say,
0.20), a rejection of Hy could well occur when y does equal
the hypothesised value, or at any rate is so close to it that
the difference is of no practical importance.

e Notice, by the way, the distinction between statistical and
practical significance. A statistically-significant difference
may be of no practical significance, especially if the differ-
ence is small in magnitude, and the statistical significance
arose because of a large sample size; a difference that fails
to be of statistical significance may in fact -eflect a true
difference that is sufficiently large to be important, espe-
cially if the sample size was small and the standard error
used in the hypothesis test therefore quite large.

The crucial calculation. A similar formula to
that above will appear in many more hypothesis tests. The
crucial calculation is that of the difference between observed
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and hypothesised values, expressed in units of the standard
error; that is,

Observed — Hypothesised
Standard error

(47)

Two-sided and one-sided alternative hy-
potheses. In the above example, we would have rejected the
null hypothesis Hy had the observed result been sufficiently far
from the hypothesised result in either direction. We expressed
this as the alternative hypothesis Hy: u # 120. Sometimes, we
may wish to make it easier to reject the null hypothesis when
the data deviates from the null hypothesis in the expected di-
rection — at the expense of making it impossible to reject the
null hypothesis if the data deviates from the null hypothesis
in the opposite direction to that expected. For example, we
may be sure that only one direction of deviation from the null
hypothesis is possible.

Suppose the 6 science students in the previous ex-
ample had been given some treatment that we knew could only
increase their 1.Q. scores, if it had any effect at all. Perhaps
they were given special training in how to perform at their
best. Then the hypothesis test would proceed as follows.

1. Ho: p =120
Ha: p> 120

(the null hypothesis)*?
(the alternative hypothesis)

2. If Hy is true, the sample mean # will have a normal dis-
tribution with mean 120 and standard deviation (that is,
the standard error of the mean) 12//6.

3. Consequently,
£ —120

12/v6

will have a standard normal distribution — i.e., it can be

interpreted as a z statistic. In this example, Z is 130, so

the result is l%—gﬁ%‘—), which is 2.04.

4. We choose a significance level of 0.05 (that is, 5 per cent).
Corresponding to a probability of 0.05 being in the right-
hand tail of the distribution, the critical value of z is 1.64.

. Because the observed z is greater than 1.64, we reject the
original hypothesis Hg, and prefer the alternative hypoth-
esis, H4. That is, the data is not consistent with the idea
that u = 120.

I find it helpful to illustrate the regions within which
one rejects or does not reject the null hypothesis as follows.

Reject Hy -1.96 1.96 Reject Hg
s s S T
1.64 Reject Ho

T T T T T T
-100 =10 -1 0 1 10

T

100

In the upper part of the picture is shown the region where one

rejects Hy when the alternative hypothesis is two-sided, H,:

i # 120, Below it is shown the region where one rejects Hg

when the alternative is the one-sided hypothesis Ho: ¢ > 120.
Some further notes about one-sided alternatives:

©3In the present context of a one-sided alternative hypothesis, some
instructors will want this written as Hy: u < 120.
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e The decision on a particular alternative hypothesis raust
be made before knowing what the data is. To do otherwise
is plain cheating.

Suppose the mean I.Q. had worked out to be 129, in-
stead of 130, and therefore the observed z was 1.84.
This is not statistically significant at the 0.05 level of
significance, when performing a two-sided test. But
it is when performing a one-sided test. Very tempt-
ing if one wants to find a diference!

o There is a serious line of argument that says one should
virtually never use a one-sided H4. Proponents of this
line will say that it is virtually never that one direction
of deviation from the null hypothesis is impossible. And
they will add that the following seems ridiculous:

Suppose the one-sided Hy: u > 120 is specified.

But further suppose the very surprising result £ =

. — 106-120 _ .
105 (which leads to z = _ﬁ'/—\;'fs'q = —3.06) is ob-
served.

Despite the very surprising result, one must not re-
ject Hy — the data is even more inconsistent with
H, than it is with Hp.

e In an examination, whether a two-sided or a one-sided
test is required should always be clear from the word-
ing of a question. If in doubt, at least remember to be
consistent between the H4 chosen, the o chosen, and the
critical value of the test statistic that is derived from these
choices.

e One-sided confidence intervals can be constructed, anal-
ogously to performing one-sided hypothesis tests. But I
will not spend space writing out the details.

Type I and Type II errors. In reality, tne null
hypothesis Hg is either true or false. Qur conclusion at the
end of a hypothesis test is to reject or not to reject the null
hypothesis. There are thus two types of error, and two types
of correct decision, that can be made in hypothesis tests.

QOur decision

Do not reject Hy Reject Hp
The true state
of nature:
Hy is correct Correct Type I error
Hp is false Type II error Correct

o If the conclusion of our hypothesis test is that we reject
Hg when in fact it is correct, we have made what is called
a Type I error. (The probability of doing this, given that
Ho is indeed correct, is the significance level, a.)

e If the conclusion of our hypothesis test is that we do not
reject Hyo when in fact it is false, we have made a Type
IT error. (The probability of doing this, given that Hy is
indeed false, is usually given the symbol A. Naturally, it
depends upon how far away from the true state of affairs
is Hp.)

The penalty we pay for choosing a very low a, and thus having
a very low probability of a Type I error, is that we have a high
probability of a Type II error (unless we increase the sample
size, n).

How to construct a statistical test that has as low a §
as possible, for a given value of «, is an important sub-
Ject studied within mathematical statistics, but is too ad-
vanced for us now.
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An important criticism of the hypothesis testing tra-
dition in statistics is that it fails to properly integrate

The evidence from the observations (and perhaps from
previous experiments)

with
The costs and benefits of the two types of error and the
two types of correct decision,

in order ‘to
Arrive at the best decision on future action.

Controversies over the introduction of new drugs, when the
evidence is incomplete as regards both their effectiveness and
their safety, exemplify this point. A technique of increasing
importance is “meta-analysis”. By this is meant the quantita-
tive combination of evidence from many quite separate experi-
ments, in order to arrive at a conclusion that is, in effect, based
on a larger sample size than any of the individual experiments.

For example, if the median survival time of cancer pa-
tients was found to be greater for those given drug D
than for those not given the drug, in each of six indepen-
dent studies, one would be inclined to believe the drug
was beneficial, even if the effect was not statistically sig-
nificant in any of the individual studies. (The probability
of the difference being in the same direction in all six
studies is 2. (%)6 = 35, under the null hypothesis of no
difference.)

There are both practical problems (relating to, e.g., whether
the different experiments are truly comparable, what is the
quality of each, and whether experiments giving a positive
result are more likely to be published than those giving a neg-
ative result), and technical statistical problems here.

Concepts recently met. Here is a list of specialist
statistical jargon that we have recently met:

Confidence interval

Null hypothesis

Alternative hypothesis (two-sided; one-sided)
Test statistic

Significance level

Critical value

Type I error

Type II error.

The student should be sufficiently familiar with these as to be
able to explain them clearly to an intelligent person who has
not had training in statistics.

Constructing a confidence interval for one
mean (small sample and estimated s.d.). In paragraph
147, we were able to use the normal distribution to give us the
“some number”. When we estimate the s.d. from our sample,
we cannot do this.* We take the “some number” from the t-
distribution, instead.*® See Table 5. Actually, there are lots of

44 The basic reason is that if we have a normally-distributed quan-
tity (th. “best estimate"), and we add on to it a constant (the “some
number" times a known standard error), the result will still be normally-
distributed. But if the s.d. is not known, being merely estimated from
our sample, the s.d. constitutes an additional source of variability: we are
computing (Best estimate) £ (Some number) x (A random variable). To
achieve the required level of significance, we have to change the "some
number” that we are multiplying by.

451t is sometimes referred to as Student's t-distribution. The story
behind this is that the person who derived it, W.S. Gosset (1876-1937),
was employed by a commercial firm (the Guinness brewery), who insisted
that he use a pen-name when publishing his work; and he chose the pen-
name “Student”. (He did not actually use the symbol t, that convention
came later.)

v

Part III

Table 5. A (very short) table of the t-distribution.

In this column is the
value of t such that the
probability of exceeding

it is 0.005;
that is, the probability
of being less than —¢
or greater than ¢ is 0.01

v In this column is the
value of ¢ such that the
probability of exceeding

it is 0.025;
that is, the probability
of being less than —t
or greater than ¢ is 0.05

1 12.71 63.66
2 4.30 9.92
3 3.18 5.84
4 2.78 4.60
5 2.57 4.03
6 2.45 3.711
7 2.36 3.50
8 231 3.36
9 2.26 3.25
10 2.23 3.17
15 2.13 2.95
30 2.04 2.75
0o 1.96 2.58

(The final row — infinite degrees of freedom — refers to the
normal distribution.)

different t-distributions; the one you choose is the one appro-
priate to your sample size. The distributions appropriate to
large sample sizes are very similar to the normal distribution;
those for smaller and smaller sample sizes get further and fur-
ther away from the shape of the normal distribution. Tables
of the t-distribution are labelled by the number of degrees of
freedom. This is usually given the symbol v (the Greek letter
nu). In the present context, the number of degrees of freedom
is one less than the number in the sample; that is, v = n — 1.
So, if we have to calculate the 95 per cent C.I. for the mean,
when the sample mean and s.d. are respectively 69.2 and 2.5
for a sample of 11, the C.1. is

2.5
6924298 % =2
V11

which is 69.2 & 1.7. That is, it extends from 67.5 to 70.9.

In summary: when the s.d. has been estimated from
the sample, rather than being known in advance, we need

8§
{.—
=,

instead of

c
+z —.

7n

In paragraph 1, we had a dataset of 10 heights of
pine trees. We found (paragraph 4) that the mean was 39.0,

and (paragraph 15) that the s.d. was 11.3. We can therefore
find that the 95 per cent confidence inverval for the mean is

39.0 + 2.26 x 114

V10’

i.e., it extends from 30.9 to 47.1. Let us now show this on the
box-and-whisker plot of the data (from paragraph 20).
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30.9 39.0 47.1
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As the box accounts for the middle 50 per cent of observations,
we can see that the C.I. contains less than half of the obser-
vations within its span. There is nothing surprising about
this — the C.I. refers to the range that we are confident the
population mean lies within, not any individual observation.

The C.I. reflects the total information in the whole sam-
ple. For a large sample size, the average and the s.d. will
be about the same as in a small sample; but the standard
error of the mean and the C.I. for the mean will be smaller
than in a small sample, reflecting the increased amount
of information in the larger sample.

Hypothesis test for one mean (small sample
and estimated s.d.). When constructing a confidence inter-
val, we changed from

Taking the “some number” from the normal distribution,
when the s.d. was known,

to

Taking it from the t-distribution, when the s.d. was esti-
mated.

Similarly, when performing a hypothesis test in a situation
where the s.d. is merely estimated, we take the critical value
from the t-distribution, instead of from the normal distribu-
tion.

Suppose that 6 randomly-chosen science students
take an intelligence test, and it is found that the average
of their 1.Q.’s is 130, z.nd the s.d. is 12; test the hypothesis
that the average 1.Q. of science students is 120. (This is only
slightly different from the problem in paragraph 152, and what
we do is only slightly different.)

1. Hy: p =120
Ha: p #120
2. If Hp is true, the sample mean Z will have a normal dis-

tribution with mean 120 and standard deviation (that is,
the standard error of the mean) estimated to be 12//6.

(the null hypothesis)
(the alternative hypothesis)

3. However,

I—pu
48
NG )
will not have a normal distribution — the denominator

1s a random variable, not a constant. Instead, it must be
interpreted as a t statistic. (As in the analogous confi-
dence interval setting, the number of degrees of freedom
is n — 1.) In this example, the result is 122=120 which is

204, R

4 We choose a significance level of 0.05 (that is, 5 per cent).
Corresponding to a total probability of 0.05 being in the
tails of the distribution is 2 critical value of t (with 5
degrees of freedom) of 2 57.

(Paragraph 166) ) 37

5. Because the observed t lies within the range —2.57 to 2.57,
we do not reject the original hypothesis Ho. That is, the
data is consistent with the idea that u = 120.

Comparing this result with that of paragraph 152, we see
that the additional uncertainty (in the standard deviation)
has changed our “reject Ho" decision into “do not reject Ho".

Hypothesis test about a difference between
paired observations (the paired t-test). This is a varia-
tion on the previous test. It is for a situation which is appar-
ently quite different — we have a number of pairs of observa-
tions, and we want to test a hypothesis about the difference
between them (often, the hypothesis is that the difference is
0). But there is a simple trick to bring it into the format of the
previous test. Simply calculate the differences that the pairs
exhibit, and proceed as previously.

The velocities of 7 rounds fired from a 155 mm.
gun were recorded by a standard instrument S and by a test
instrument T. The data was as below (in metres per second,
with 790 having been subtracted from all observations).

Round S T

1 38 3.2
2 31 33
3 24 26
4 40 38
5 14 16
6 24 16
7 1.7 16

To test whether the average difference between the two instru-
ments is 0, we proceed as follows.

1. Hp: u=0 (where p is the mean difference)
Ha: p#0

2. Calculate the differences for the above pairs.

0.6
-0.2
-0.2

0.2
-0.2

0.8

0.1

These have mean 0.157 and s.d. 0.408.

3. If Hp is true, the sample mean difference will have a
normal distribution with mean 0 and standard deviation
(that is, the standard error of the mean) estimated to be

0.408//7.

) t
4. Calculate 0.157—0

0.408/v7'
which is 1.02. Interpret this as a ¢ statistic with 6 degrees
of freedom.

5. We choose a significance level of 0.05 (that is, 5 per cent).
Corresponding to a total probability of 0.05 being in the
tails of the distribution is a critical value of ¢ (with 6
degrees of freedom) of 2.45.

6. Because the observed t lies within the range —2.45 to 2.45,
we do not reject the original hypothesis Hg. That is, the
data is consistent with the idea that the mean difference
1s 0.
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Remarks:

o I imagine that the hypothesis of no average difference
would not be the only hypothesis of interest. One would
also wish to know whether the test instrument gave a
reading as close to the true value as the standard instru-
ment. In the absence of the “true value”, one might use
the average of several instruments.

o The construction of a C.I. is similar to that in paragraph
162, once the differences have been obtained.

Hypothesis test about a difference between
the means of two samples (large samples). Now, we turn
to the comparison of the means of two groups of observations,
instead of the comparison of the mean of one group with a
specified value. We will test whether the difference could be
a specified value; this is often 0 — i.e., it is hypothesised that
there is no difference between the means of the two groups.
We will again calculate

Observed — Hypothesised
Standard error

but now it will be

Observed difference — Hypothesised difference
Standard error of the difference ’

We will be concerned, for the present, only with the case where
the sample sizes of the two groups are large enough for us to
use the normal distribution, rather than the {-distribution.

If the standard deviations in the two groups are o,
and o3, and the sample sizes are n; and nz, the standard errors
of the means will be ¢,/,/ny and o2/\/m2. Consequently, the
standard error of the difference will be

2

2
i

a5
G (49)
(because the variance of a difference is the sum of the vari-
ances, provided the random variables are independent — see
paragraph 121). If n; and n; are large, we will be able to sub-
stitute the estimated s.d.'s s, and s for the population val-
ues o, and o3, with negligible loss of accuracy. Furthermore,
the means will approximately have normal distributions, and
hence so will their difference (paragraph 126).

Suppose 60 observations of the lateness of commuter
trains were made, with the finding that £, = 4.5 and 5, = 3.8
(minutes). Then a new timetable was brought into operation.
A few weeks after its introduction, 90 further observations
of train lateness were made, with the finding that z; = 3.6
and s; = 3.0. Is the apparent reduction in average lateness a
statistically-significant one?

(t'ha't isl H1 = FZ)
(that is, p1 # p2)

1. Ho: pp —p2 =10
Ha: p1— 12 #0

2 If Hp is true, the difference between the sample means
will have a normal distribution (since the sample sizes
are large) whose mean is 0 and whose standard deviation
(that is, the standard error of the difference) is estimated

3 812 3.0
to be 60 + 90 *

3. So,

R el B edes ¢ s BRI R
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can be taken to have a standard normeal distribution when
the null hypothesis is true. In this example, the ob-
serve;l value of the difference is 4.5 — 3.6, so the result

- — . 09 . .

is ——= = i which is 1.54.
3.82 , 3.07

g0 T 9%

4. We choose a significance level of 0.05 (that is, 5 per cent).
Corresponding to a total probability of 0.05 being in the
tails of the distribution is a critical value of z of 1.96.

5. Because the observed z lies within the range —1.96 to
1.96, we do not reject the original hypothesis Ho. That
is, the data is consistent with the idea that there has been
no change in the mean lateness.

Remarks:

o There is nothing special about an expected difference of
0. Perhaps it had been predicted, from a knowledge of the
timetable and the changes made to it, that the reduction
in lateness should be 2.0 minutes. Then the value of the

test statistic would be 22220, which is —1.88. This also

lies within the range —1.96 to 1.96, so we would not reject

Ho. That is, the data is consistent with the idea that the

reduction in the mean lateness is 2 minutes.

e For the calculation of the standard error of the means to
be valid, and hence for the test to be valid, the 150 obser-
vations of train lateness need to be independent of each
other. The reader should try to imagine some details of
how the surveys of train lateness might have been car-
ried out, and whether the observations would have been
independent of each other.

e The construction of a C.I. for the difference between the
means would be based on the same principles as the above
test, but I will not spell out the details.

Hypothesis test about a difference between
the means of two samples (small samples): the Mann-
Whitney [/-test. There does exist a t-test for comparing
the means of two groups. However, it is quite complicated
to carry out. The Mann-Whitney U-test*® is much simpler.
Furthermore, it serves as an introduction to statistical meth-
ods that rely upon the ranks of the observations; these throw
away information about the exact values of the observations,
but what they gain by this is greater robustness to the pres-
ence of outliers. (In paragraph 52, we met Spearman’s rank
correlation coefficient, which has this advantage as compared
with the product-moment correlation coefficient.)

The test proceeds by ranking the observations, in
both groups together, from smallest to highest. Let the num-
bers in the two groups be n; and ny, and n = n; + n,. The
average rank is (n + 1)/2, so we would expect the sum of the
ranks of observations in the first group to be about n;(n+1)/2.
The formula for the standard deviation of the sum of ranks has
been derived, and is \/nina(n + 1)/12. So the test statistic is

Observed sum of ranks in group 1 — nj(n +1)/2
nyng(n+ 1)/12

; (51)

and is interpreted as having a standard noimal distribution
when the null hypothesis of no diffetence in the means is true.

Suppose observations in groups 1 and 2 were as fol-
lows:

46 This is also known as Wilcoxon's sum of ranks test. But I will avoid
this name because the name of Wilcoxon is associated with other tests,
also.
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Gp.1: 3.2,45,1.7,58,3.1,44,4.0,1.2
Gp.2: 48,23,56,6.2,5.7,4.3,6.3,55,4.9,5.2, 3.3.

(Here, n; = 8 and ny = 11.) When the observations are
replaced by their ranks, the result is:

Gp. I
Gp. 2

5,10,2,17,4,9,7,1
11, 3, 15, 18, 16, 8, 19, 14, 12, 13, 6.

The sum of ranks in group 1 is 55, and its expectation under
the null hypothesis of equal means is 8 x 20/2 = 80, with stan-
dard deviation \/8 x 11 x 20/12 = 12.11. The value of the
test statistic is 5522 = —2.06, which is statistically signifi-
cant, when performing a two-sided hypothesis test at the 0.05
level of significance. That is, we reject the hypothesis of no
difference between the means, and conclude there genuinely is
a difference.

Remarks:

o If two or more observations are exactly the same, give
them all their average rank.

o To treat the test statistic as being normally distributed
is only reasonably accurate when n; and n; are both suf-
ficiently large (say, both are 8 or bigger). If this is not
so, then special tables of the critical values have to be
consulted.

The confidence interval for a proportion.
Here, the “best estimate” is the sample proportion p, and the

standard error is \/M
n

If 850 cars entering a city centre are observed, and 360 are
found to have two or more occupants, the proportion is es-

timated to be 322 = 0.424, with standard error estimated

to be % = 0.017, and the 98 per cent confidence

interval extends from 0.424 — (0.017 x 2.33) = 0.384 up to
0.4244-(0.017 x 2.33) = 0.464. (There is no special reason
for choosing the 98 per cent confidence level here.)

In the context of proportions, one always uses the
normal distribution, not the t-distribution. The easiest thing
todo is just to accept this — proportions refer to counted data,
and means refer to measured data, and these are very different
things. But some of my students suggest using a t-distribution
here, since what we have got is an estimated standard error.
See Table 6 concerning this.

Being pessimistic when planning. Suppose we
are planning a survey, the outcome of which is to be knowledge
concerning a proportion. If the specification for the outcome
1s that the 95 per cent C.I. must be only 0.04 wide (that is,
+0.02), what sample size is required? Using the method of
paragraph 150,

0.02 1.96 x standard error

1.96+/p(1 — p)/n.

Itwe know p, we can solve this equation to get n. The trouble
15, we do not know p, that is what we are trying to find out!

1l

© One thing we can do is to use our knowledge of the situ-
ation to make a guess at p.

¢ Alternatively, if we really have no idea what p might be,
we should realise that the sample size required will be
larger if p = 1 thanif p is anything else.

(Paragraph 178) ‘ 39

Rearranging the above equation, we find n =
98%p(1 — p). Plotting n as a function of p, we ob-
tain the graph below.

2500 /\
:", N
n _' 5
0 T l
0 0.5 1.0
So, we take a pessimistic attitude, assume p = 1,

and work out n. Then, whatever p turns out to be,

1.961/p(1 — p)/n will be as small as we specified, or
smaller.

In our example, we would find

1.96y/1 1

e = 0.02
= 49

n = 2401.

Hypothesis test about a proportion. We will

again calculate

Observed — Hypothesised
Standard error

but now it will be

Observed proportion — Hypothesised proportion
Standard error of the proportion ’

If 170 businesses in a certain sector of industry are surveyed,
and 95 express the opinion that trading conditions will worsen
in the next year, test the hypothesis that the proportion of
businesses with this opinion is 0.40.

1. Hyp: p=10.40
Hy: p#0.40

2. If Hp is true, the observed proportion will have a nor-
mal distribution (provided the sample size is large) whose

. .. fo0.40x0.60
mean is 0.40 and whose standard error is ey (amnt

3. Calculate

S —0.40

0.40%0.60 '
=170

which is 4.23. Interpret this as having a standard normal
distribution when the null hypothesis is true.

4. The observed value exceeds the critical value of z corre-
sponding to any of the usual significance levels (e.g., 2.58
for the 0.01 level of significance).

5. And so we reject the original hypothesis Hy. That is, the
data is not consistent with the idea that the proportion
is 0.40.

As always, the observations (i.e., the opinions about whether
trading conditions will worsen in the next year) need to be
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Table 6. The connezion belween the standard errors of means and of proportions.

Let us say that a car with two or more occupants is a “measurement” of 1, and a car with one occupant is a “measurement”

of 0.

e Then the average Z of these “measured” observations is exactly p: %j%g“ = 388 = 0.424.
; L(gz) . e
e Using s = —nﬂl— the estimate of the standard deviation is
360 — 5i5(360)2 360 (1 - :gg 360 490
849 849 ~ 850
360 ,, 490
e And the standard error of the mean is 7‘- times this, i.e., -419—83(;‘—5", which is exactly the estimated standard error of

the proportion, apart from 352 having replaced 3§3.

G

360 ,, 490

850 850

849
. I P(1-p)
the standard error of an estimated proportion, instead of -

e Then we would construct the C.I. using this standard error and ¢ with 849 degrees of freedom. Because 849 is so close
to 850, and t with 849 d.f. is so close to the normal distribution, our answer would be very close to that already given in

|

fl—8

; because of this, some textbooks use oy as the formula for

This may alternatively be written as

¢

paragraph 176.

independent for the test to be valid. Do you think this is

likely to be true?
Suppose we had performed the above test in terms

of numbers, rather than proportions. We would have calculated
i‘r’_“x , giving 4.23, precisely the same answer. But we

know (from paragraph 108) that we should really make a conti-

nuity correction in this situation, and calculate —= 9:"’ 431

giving 4.15. This is the better answer; to get 1t when work—
ing in terms of proportions, one would calculate —n

p(1—p)/n
However, it is usual not to bother with a continuity correction
when doing a hypothesis test for a proportion, because one
usually has such a large sample size that it makes negligible
difference.

Hypothesis test for whether there is a differ-
ence between two proportions. The only null hypothesis
that we will consider in the context of comparing two propor-
tions is that the two proportions are equal — that is, their
difference is 0. Suppose that patients with a broken lower leg
are treated by one of two methods, A and B; method B has
been developed in order to reduce the frequency of occurrence
of a particular type of complication, and there are strong rea-
sons for thinking that at least it will not make things worse in
this respect. Patients were randomly assigned to treatment A
or treatment B; 23 out of 145 treated by method A developed
the ~omplication, whereas 9 out of 130 treated by method B
did so. Is the observed reduction in the proportion likely to
be a genuine one? (Use a = 0.01.)

1 Hu.‘ PA—PB=0
Hi: pa—pp >0

2. If Hp is true, the observed difference in proportions will
have a normal distribution (provided the sample size is
large) whose mean is 0, and whose standard error is

p(1-p)  p(1=p)
Ny ng
patients developing the complication, whether treated by
method A or B. (Remember that the two proportions are
equal if Hy is true.)

, where p is the true proportion of

3. Our best estimate of p is not simply the aver-
age, (pa + pm)/2, but should take into account
the two sample sizes.  Qur best estimate of p is
total number of “successes” in the samples

total number in the samples !

nAPA + NBPB

—— _——  Inth t

—ryo n the present case, .
which is 0.116.

which can

also be written as

2349
it is 553730

4. Now we are ready to calculate

Observed difference — Hypothesised difference
Standard error of the difference

]

and interpret it as having a standard normal distribution
when the null hypothesis is true. It works out to be

23 _ 9\ _
(f% —15) -0
0.116x0.884 0.116%0.884
=148 T T 180

which is 30331 = 2.31.
5. Performing a one-sided test at the 0.01 level of signifi-

cance, the critical value is 2.33.

6. And so we do not reject the original hypothesis Hy. That
is, the data is consistent with the idea that the difference
in proportions is 0.

Comment on the decision from hypothesis
tests. Of course, the failure to reject the null hypothesis in
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this last example has come about because of the significance
level chosen (0.01). Had o = 0.05 been used instead, the criti-
cal value (one-sided) would have been 1.64, and we would have
rejected Hy comfortably.

e Some statisticians say that the only thing to come out of
a hypothesis test is the decision as to whether to reject
Hq or not, at a previously-chosen significance level. Con-
sequently, they will not care that we have come so close
to rejecting Ho here. Reject it we have not, and that is
the end of the story.

e | think a majority of statisticians, however, will take a
more relaxed view. They will be conscious that a hypoth-
esis test on one dataset is only a part of the total picture:
no doubt there are other datasets that bear upon the same
scientific question, there may be prior beliefs about the
likelihood of the truth of the null hypothesis, and in any
case the costs and benefits of the different wrong and right
decisions should be borne in mind. Consequently, they
will view the level of significance attained as being just a
rough indication of the strength of evidence against Hg,
and will say the « attained here is between 0.05 and 0.01.

o Nevertheless, there are some environments in which one is
forced, by regulations or administrative practice, to take
one course of action if Hy is rejected, and a different course
if it is not rejected.

Standard errors in the linear regression con-
text. In paragraphs 4647, 51, it was shown how to find the
oest fitting straight line for predicting y from z, and how to
calculate the correlation coefficient. The estimates b and a
of the slope and intercept of the regression line were justified
there by the least squares principle. If we spell out the model
for the observations in more detail, we will be able to go on and
perform hypothesis tests concerning the slope and intercept.
The model is:47

y=A+4+ Br+e, (52)

where ¢ is a random variable whose mean is 0, whose standard
deviation is ¢,, and which has a normal distribution. (Notice
this is what is called a homoscedastic model, meaning that o,
ts the same for all values of £.) The estimates of B and A are

b and a, given by the equations used previously. We estimate
o, by

E(y- §)?

se = — (53)
(the principle)
- Sw g bSry
= Y i
(a more convenient computing formula).
The standard error of b is estimated as
S¢
’ 55
= (55)
and the standar | error of a is estimated as
1 2
S¢. ; + 5. (56)

‘"A lot of books use the symbols a and 3 for the true values of the
intercept and slope, instead of A and B. But | have recently been using o
tnd 3 for the probabilities of the two types of error in hypothesis testing,
o | will avoid using them here.

(Paragraph 183) : 41

The intercept a is what y is expected to be at z = 0. Some-
times, z = 0 has a real physical meaning. Other times, it is
of no particular interest; in such a case, one might be more
concerned with y at values of z close to the average value of
z. At z = 7, the prediction ¥ is §, and the standard error is

8¢

= (57)

Hypothesis testing of slope and intercept.
Hypothesis tests use the same idea we have met many times

before: calculate

Observed — Hypothesised
Standard error ’

This is interpreted as a t statistic with n—2 degrees of freedom.
Perhaps the most common hypothesis test is of Hy: B = 0.
(If the slope could be 0, then we cannot say there is a linear
relationship between r and y. Furthermore, unless we can see
some particular non-linear relationship when inspecting the
scatterplot, we are likely to conclude there is no relationship
at all.)

‘ 185.| Continuing the computations on temperature and
rainfall in Bordeaux that were begun in paragraph 47,

3.655 — (—4.64) x (—0.255)
1

5, =

= 0.786.
And so the standard error of the slope is estimated to be

0.786
+/0.055'

which is 3.35. The test statistic for testing whether the slope
could be 0 is ‘—43'%15_—0 = —1.38. A t statistic with 4 de-
grees of freedom needs to reach 2.78 in magnitude before it
is statistically-significant (when performing a two-sided test
at the 0.05 level of significance). Consequently, we do not re-
ject the null hypothesis that the slope could be 0: the data is
consistent with the idea that the slope is 0.

Testing whether correlation is zero. To test
whether a correlation coefficient could be 0, we refer to a ta-
ble of the critical values (which, naturally, depend upon the
sample size n). Such a table is printed in many textbooks of
statistics. Or we can calculate

r

e § (58)

1-r
and interpret this as a t statistic with n — 2 degrees of freedom.

For temperature and rainfall in Bordeaux, r was
—0.57

found to be —0.57. Hence we calculate m.ﬂ, and

find it is —1.39, exactly the same (apart from error due to
rounding) as we found when testing whether the slope could
be 0. We therefore do not reject the null hypothesis of zero
correlation.



Probabilities direct the conduct of wise men (Cicero) o Figures often beguile me, particularly when I have the
arranging of them myself (Mark Twain) e All nature is art, unknown to thee; All chance, direction which thou
canst not see (Alexander Pope) o Figures won't lie, but liars will figure (Charles H Grosvenor) e Time and
chance happeneth to them all (Ecclesiastes) o Statistics will prove anything, even the truth (Lord Moynihan)
e A thousand probabilities do not make one fact (John Thurloe) e The law of probability gives to natural
and human sciences — to human experiences as a whole — the unity of life we seek (Agnes Meyer) o Statis-
tics, as you know, is the most exact of false sciences (Jean Cau) e With seasonally adjusted temperatures,
you could eliminate winter in Canada (Robert L Stansfield) ¢ To count is a modern practice, the ancient
method was to guess; and when numbers are guessed they are always magnified (Samuel Johnson) ¢ We
are employed in narrowing the circle within which the final truths must lie, rather than in an attempt at
once to seize them (Statistical Socizty of London) e Chances rule men and not men chances (Herodotus)
Everlasting Fate shall yield to fickle Chance (Milton) e Never make forecasts, especially about the future
(Samuel Goldwyn) e It does not follow that because something can be counted it therefore should be counted
(Harold L Enarson) e Democracy is an abuse of statistics (Jorge Luis Borges) e Statistics are no substitute
for judgment (Henry Clay) e A judicious man looks at Statistics not to get knowledge but to save himself
from having ignorance foisted on him (Thomas Carlyle) ¢ To understand God’s thoughts we must study
statistics, for these are the measure of his purpose (Florence Nightingale) o You cannot feed the hungry on
statistics (David Lloyd George) o Everything is peaceful and quiet and only mute statistics protest (Anton
Chekhov) e Chance fights ever on the side of the prudent (Euripides) e Chance never helps the men who
nothing do (Sophocles) o Chance is but the pseudonyme of God for those particular cases which He does
not choose to subscribe openly with His own sign-manual (Samuel Taylor Coleridge) e Use thou thy chance
(Vergil) e There is no more effective medicine to apply to feverish public sentiment than figures (Ida Tarbell) o
Oratory is dying; a calculating age has stabbed it to the heart with innumerable dagger-thrusts of statistics
(W Keith Hancock) e The mathematicians are a sort of Frenchmen: when you talk to them, they imme- -
diately translate it into their own language, and right away it is something utterly different (Goethe) o
Probable impossibilities are to be preferred to improbable possibilities (Aristotle) e Ignorance gives one a
large range of probabilities (George Eliot) e If your experiment needs statistics, you ought to have done a
better experiment (Lord Rutherford) e He uses statistics as a drunken man uses lampposts — for support
rather than illumination (Andrew Lang) e Statistics is the art of lying by means of figures (Wilhelm Stekel) o
Every investigator stands in need of expert criticism, for no pursuit runs between so many pitfalls and unseen
traps as that of statistics (Francis Galton) e Uncertainty is the very condition to impel man to unfold his
powers (Erich Fromm) e The more knave the better luck (English proverb) e It has been said that figures
rule the world; maybe. I am quite sure it is figures which show us whether it is being ruled well or badly
(Goethe) » What is the use of working out chances? There are no chances against God (Georges Bernanos)
o 'Tis best to live at random, as one can (Sophocles) o Life is a school of probability (Walter Bagehot)
o Almost all human life depends on probabilities (Voltaire) e Whatever chance will bring, we will
bear it philosophically (Terence) e I have set my life upon a cast, And I will stand the hazard of
the die (Shakespeare) e Providence gives us chance — and man must mould it to his own designs (Schiller)
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