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Abstract

In this paper, the stability of a gravity current propagating down an inclined channel is explored. The
gravity current is generated through a partial lock release. A local analysis of the flow about the lock is
conducted using classical methodologies in two-layer shallow water theory, which is here developed to allow
for drag and an angled channel. A global analysis of the flow is done by exploring the long-time forced steady
state, using non-linear simulations solving the full three-dimensional Navier-Stokes equations. A steady state
is forced through the inclusion of a so-called mask function. For sufficiently large slope angles, wave-like
instabilities are observed on the density interface (pycnocline) of the generated gravity current. Spectral
Proper-Orthogonal Decomposition of the time-series data provides evidence that instability arises via the
interaction of two asymmetric vorticity waves, occurring on either side of a critical layer, akin to a spatially
evolving Kelvin-Helmholtz instability. The work in this paper is exploratory in nature and motivates further
investigation.

1 Introduction

Many environmental fluid flows fall under the broad category of gravity currents, where a density difference
between the current and its surrounding ambient drives predominantly horizontal fluid motion (Simpson, 1997;
Ungarish, 2020). Examples include the spreading of toxic gas (Rottman et al., 1985), oil spillages (Hoult, 1972),
cold fronts (Simpson, 1997), katabatic winds (Simpson, 1997), salinity currents (Simpson, 1982), and turbidity
currents (Simpson, 1982).

To explore these currents laboratory experiments are used. One classical experiment is to separate two
regions of a flume by a lock-gate, establish a density difference between the two sides using a solute, and then
remove the gate generating a highly unsteady current (Simpson, 1997). The unsteadiness of such a current is
often undesirable, the physics of these flows being sufficiently challenging without it, and a steady current is
preferred. One method to achieve this is to use a lock gate that only partially raises, or a pair of gates with one
being completely removed and the other acting as a barrier blocking the upper portion of the flow. This setup
has been used to explore gravity currents colliding with obstacles (Lane-Serff et al., 1995; Baines & Whitehead,
2003; Pari et al., 2017) or flowing over slope breaks (Negretti et al., 2017). Baines & Whitehead (2003) used
this setup to simulate a current in an angled flume. To make a meaningful comparison between theory and
experiments for the flow in the flume, the inflow generated by the exchange under the lock must be understood
in detail, which is our aim in this work.

Previous theoretical work has explored flow under a lock using two-layer shallow water theory, often moti-
vated by ventilation flows through a doorway or other constriction. The fundamental theory was developed by
Armi (1986), Armi & Farmer (1986), and Farmer & Armi (1986), who classified solutions for steady flow. In
particular they explored the special case of fully controlled flow through a constriction where small disturbances
propagate away from the controlling constriction. A solution algorithm was developed by Dalziel (1991) for
these flows and showed good agreement with experiments in Dalziel & Lane-Serff (1991). All the work discussed
so far employed a hydrostatic pressure and neglected drag, which were first introduced into the model by Zhu &
Lawrence (2000). However, their construction of fully controlled flows was incorrect, as we will discuss. Another
modification to the two-layer theory that has been made is to include mixing through a varying volume flux
(Laanearu & Cuthbertson, 2023), which has been applied to non rectangular channels through the approach of
Laanearu & Davies (2007).
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Due to the choice of application, the validation of these models has used a small lock (or a barrier on the
floor) to mimic a doorway in a corridor (or oceanic sill), however the experimental setup we wish to explore has
a large lock with a narrow opening, and thus we will expect a plume upstream as modelled by Nabi & Flynn
(2013), using the theory of Dalziel (1991) for the exchange under the lock. They present a comparison between
theory and experiments, with experiments performed in an un-angled flume, and show a good comparison in
the transient dynamics, including the moving front and reflected bore.

Numerical methods have also been adopted to investigate lock-release type gravity currents (e.g. Härtel
et al., 2000; Gonzalez-Juez et al., 2009; Ooi et al., 2009; Nasr-Azadani & Meiburg, 2014; Wu & Ouyang, 2020).
Typically, currents are formed through an initial condition that horizontally separates a dense fluid from a
less dense fluid by an infinitesimally thin vertical boundary. At run-time, two gravity currents are produced
propagating in opposite directions, with well-defined heads characterised by strong three-dimensionality and
high levels of entrainment, and instabilities developing at the interface between them (of Kelvin-Helmholtz
type), depending on the initial density difference and the difference between momentum and scalar (density)
diffusivities. In contrast, comparatively few studies have investigated the exchange flow and resulting gravity
current beneath a partially opened lock-gate (Tokyay & Constantinescu, 2015). Despite resolving the exchange
flow beneath a partially opened gate, interest has so far been focused on interactions between currents and
topography rather than developing an understanding of how such an exchange flow influences the current
that propagates downstream. As we shall show in this work, the exchange flow can lead to a sharp interface
susceptible to wave-like instabilities dominating dynamics in the body of lock-released gravity currents.

Here, we document work started at the 2023 Summer Programme to investigate the exchange flow under
a lock gate as it would be used to seed a flow in an experiment (Lane-Serff et al., 1995; Baines & Whitehead,
2003; Pari et al., 2017; Negretti et al., 2017). We allow for the possibility that the flume is mounted at an angle,
and focus on the steady flow that would be seen at intermediate times before the reflected bore returns. We
do this using two approaches. Firstly, we extend the two layer shallow water model to include an angled flume
and drag. We present a solution algorithm for this system and an example solution. Secondly, we present some
3D simulations of the exchange flow and resulting gravity current, demonstrating unexpected instability at the
interface of the two fluids with a dependence on the slope angle. Further work will unify the two approaches
such that theoretical closures can be validated and revised. In addition, the instability observed at the interface
of the two fluids will be explored and quantified through further simulations of a wider parameter space and
linear stability analysis.

2 Formulation

We investigate the generation and stability of a gravity current generated by flow under a partial lock-gate. A
finite size tank is separated into two regions by a wall, with a gap at the bottom of the wall which is initially
blocked by a movable gate. The left and right sides of the tank are filled with fluids of density ρ1 and ρ2
respectively, where ρ1 > ρ2. We take a Cartesian coordinate system (x, y, z) attached to the angled tank such
that x is directed along the tank centre, y is the cross channel direction, and z is parallel to the vertical walls of
the tank. The tank has dimensions (Lx, Ly, Lz), and is tilted such that the coordinate system and channel are
at an angle θ downhill so that gravity is (g sin θ, 0,−g cos θ). The movable gate has length Lg. Upon release of
the lock-gate, a confined buoyant plume is realised in the dense fluid region, while a gravity current propagates
along the bottom of the tank in the lower-density region. Figure 1 shows the flow configuration.

For numerical simulations, we choose dimensions of the tank such that the two fluids are separated by a
wall which has an opening of height Lg = 1. The domain size is Lx = 25 in the streamwise direction, Lz = 10
in the vertical direction, and Ly = π in the spanwise y direction. The domain is partitioned by the gate into
a region of length 5 upstream and 20 downstream, a choice motivated by typical lock-release type laboratory
experiments.

Denoting the velocity vector u = (u, v, w), the pressure p, and the unit-normal to the boundaries n̂, we
enforce no-slip (u = 0) and insulated walls (∇ρ · n̂ = 0) on the x and z normal boundaries, and periodic
boundary conditions are applied in the spanwise (y) direction. These boundary conditions, along with the
Boussinesq Navier-Stokes equations (defined in Section 4), form a closed system for the unknowns {u, p, ρ}.
Before describing the numerical method used to solve this system and presenting the results, we first explore a
shallow water model which attempts to capture the local flow behaviour about the gate.
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Figure 1: Flow configuration. The flow is initialised
with a partial lock release, and a region of higher den-
sity ρ1 forms a gravity current as it enters the region
of lower density ρ2. The forcing regions (discussed in
Section 4) are marked in grey.
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Figure 2: Configuration of the two-layer shallow-water
theory. It provides a toy-model for the local behaviour
of the flow about the lock release under the gate. The
bottom topography z = b(x) is included in the figure
but is taken to be zero in the case of flow under a gate.

3 Shallow-water theory of lock exchange

We here extend the classical hydraulic theory of lock exchange, largely summarised in Dalziel (1991), to account
for flow on slopes with drag or other forcing. The reduced order model derived here decreases the complexity of
the equations, allowing analytical insights into gravity current properties. The model makes many assumptions
about the flow, as described below, but nonetheless provides insight into the behaviour of the flow under the gate.
We include bathymetry in the derivation, in part so that the model can more generally be applied to gravity
current interactions with bathymetry and bed slope, but primarily because it allows for a useful interpretation
of the effect of drag.

The upper level of the channel is denoted by z = b(x) +H(x), where b(x) is the bed elevation and H(x) the
channel depth. For the problem we consider here b(x) = 0 (but we include the general case), and H(x) takes a
constant value of H0 except around the lock. The flow configuration is shown in Figure 2. The hydraulic theory
employs a two layer shallow water model, where there is a sharp jump between the two layers at some elevation
h(x, t) (neglecting all variation and movement in the y direction). The region 0 < z − b < h is termed layer 1
and h < z − b < H layer 2, and we use subscripts to distinguish between the layers. In each layer the density
ρi is treated as constant, the pressure hydrostatic, and the x-component of velocity ui(x, t) independent of z.
We assume that the flow is Boussinesq, that is 0 < ρ1 − ρ2 ≪ ρr where ρr = 1

2 (ρ1 + ρ2) is the reference density.
The time-dependent governing equations are then

∂hi

∂t
+

∂

∂x
(hiui) = 0, (1a)

∂

∂t
(hiui) +

∂

∂x
(hiu

2
i ) +

∫ zi

zi−1

1

ρr

∂pi
∂x

dz =
ρi − ρr

ρr
ghi sin θ + hiFi for i ∈ {1, 2}. (1b)

In these equations, p is the pressure relative to the hydrostatic pressure of the reference density (z dependent
and continuous between layers), z0 = b, z1 = b + h and z2 = b + H are the interface elevations, h1 = h
and h2 = H − h are the layer thicknesses, and Fi capture additional forces such as shear forces acting across
interfaces. The hydrostatic pressure can be expressed as

p = p2 = pH + (ρ2 − ρr)g(H + b− z) cos θ for h < z − b < H,

p = p1 = pH + (ρ2 − ρr)g(H − h) cos θ + (ρ1 − ρr)g(h+ b− z) cos θ for 0 < z − b < h,
(2)

where pH is the pressure at z = b + H. Using that in each layer ∂pi/∂x is independent of z, along with
conservation of volume (1a), conservation of momentum (1b) can be rewritten as

∂ui

∂t
+

∂Gi

∂x
= Fi where Gi =

1

2
u2
i +

pi
ρr

+
ρi − ρr

ρr
g(z cos θ − x sin θ) (3)

is the Bernoulli potential of the streamline. Consequently, steady shallow water flow may be understood as
enforcing conservation of energy up to any work done by the forces Fi. To eliminate the unknown pressure pH
from the system we take the difference between the two layers to obtain

∂

∂t
(u1 − u2) +

∂∆G

∂x
= ∆F where ∆G = G1 −G2 =

1

2
(u2

1 − u2
2) + g′((h+ b) cos θ − x sin θ), (4)
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∆F = F1 − F2, and g′ = g(ρ1 − ρ2)/ρr. For the examination of steady states (∂/∂t = 0), the equations (1a)
and (4) can be written as

dq1
dx

= 0,
dq2
dx

= 0,
dE

dx
= 0, (5a)

where qi = uihi, E = E + g′B cos θ, (5b)

E =
1

2

(
q21
h2

− q22
(H − h)2

)
+ g′h cos θ, B = b− x tan θ − 1

g′ cos θ

∫ x

x0

∆F dx. (5c)

Here, q1 and q2 are the volume flux (per unit y) in the lower and upper layer respectively, and E is the total
energy difference between streamline energy (per unit mass) in the two layers modified by the work done by the
force difference ∆F . For the purpose of later analysis we split this energy into two components: E is termed the
partial energy difference and is the difference between the kinetic energy and pressure generated by flow depth,
which captures the way that the energy difference depends on h (except the effects of ∆F ); g′B cos θ contains
the pressure difference generated by variation in bed elevation, work done by the component of gravity in the
x direction, and the force difference ∆F . The purpose of splitting in this way is to obtain a system as close
as possible to the system without bed elevation, downslope gravity or additional forces, for which E = E , and
incorporate all of these effects in an effective bed elevation B, demonstrating that the inclusion of slope and
drag does not fundamentally change the nature of the solutions. However, unlike b, B is not a known function
of x but something to be determined as a part of the solution, because ∆F is (in general) dependent on hi and
qi (of course if ∆F is a function of x alone then B is a known function). This will complicate finding desired
solutions to the system beyond what has been explored previously (Dalziel, 1991).

Introducing some notation that will be required in the solution development, (5a) implies that q1 = q̂,
q2 = Q̂ − q̂, and E = Ê where q̂, Q̂, and Ê are constant values. Note that Q̂ is the net combined volume
flux in the two layers, and is a parameter to set when finding a solution. Since we are concerned with local
behaviour in a confined exchange flow, we will always choose Q̂ = 0. The total depth of the channel H(x), bed
elevation b(x), reduced gravity g′, slope angle θ, and net force ∆F (x, h1, h2, q1, q2) will be considered as known
going forward. We stress that q̂ and Ê are not known a priori and must be recovered as part of the solution.
These values arise as constants of integration and are the values we seek (along with h(x)) by imposing certain
criteria. In principle, the same is true for Q̂, but the criterion of vanishing net volume flux sets it to zero without
additional work, while further criteria are required for q̂ and Ê. We will first discuss some required properties
of the system, in particular the properties of the functions E and E defined in (5b) and (5c) respectively. From
these properties we will establish the criteria for the solution, and then use these properties and criteria to
develop a solution method.

3.1 Properties of the system

Suppose that at some x we have known values of H, q1, q2, E, and B from which we can calculate E . Deducing
h from these values is not straightforward as there are often multiple values of h which yield the given value of
E , see Figure 3. Given E → ∞ as h → 0 and E → −∞ as h → H, how many solution branches exist depends
on the inflection point at which ∂2E/∂h2 = 0, located at

hI = H
|q1|1/2

|q1|1/2 + |q2|1/2
, that is hI =

H

2
when |q2| = |q1|. (6)

If, at the inflection point, ∂E/∂h < 0 then E is monotonically decreasing. Conversely if ∂E/∂h > 0 at the
inflection point then two extrema appear, this condition is equivalent to

|q1|1/2 + |q2|1/2
(g′H3 cos θ)1/4

≤ 1, that is q21 ≤ g′H3 cos θ

24
when |q2| = |q1|. (7)

These extrema are of key importance, and going forward we will assume that they are present. Flows located
at one of these extrema are termed critical flow and satisfy ∂E/∂h = 0, equivalent to Fr = 1 where

Fr2 =
q21

g′h3 cos θ
+

q22
g′(H − h)3 cos θ

,
∂E
∂h

= (1− Fr2)g′ cos θ. (8)

We denote the two values of h (0 < h < H) which give critical flow by h− ≤ h+ (h− = h+ precisely when (7)
is equality). Note that Fr < 1 on h− < h < h+ and Fr > 1 for h < h− or h+ < h.
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Figure 3: The energy E as a function of h, each ren-
dered dimensionless. The different curves are for differ-
ent q1 = −q2 (Q̂ = 0), the values of q1/

√
g′H3 cos θ are

stated at the top left. The inflection point is labelled
with a circle, and the critical points with crosses where
the depth and energy are (h−, E−) or (h+, E+).

Figure 4: A side view of the flow under a lock, the bed
b and lock H+b potted as black lines. Here the driving
force balances the drag and there is no net flow Q̂ = 0.
The deep supercritical solution is shown in blue, the
subcritical in green, and the shallow supercritical solu-
tion in red. The physical solution transitions from deep
supercritical to subcritical along the solid lines, the un-
physical solutions shown in dashed. We also show the
critical depths h± in magenta dash-dot and the inflec-
tion depth hI in cyan dash-dot. In (a) Hlock = 0.5, in
(b) Hlock = 0.2.

Low amplitude, long wavelength disturbances to the system away from steady state generate two waves with
speeds λL < λR, and Dalziel (1991) observed that the Froude number Fr could be written as

Fr2 = 1 +
h1 + h2

g′h1h2
λLλR. (9)

When h− < h < h+ we have that Fr < 1, this flow is termed subcritical and λL < 0 < λR, the disturbances
propagate in both directions. Conversely, when h < h− or h+ < h we have Fr > 1 and λL, λR are of the
same sign. A careful analysis (Dalziel, 1991) reveals their direction: when h < h− then the flow is shallow
and supercritical, the waves swept in the direction of flow of the lower layer, while those satisfying h+ < h are
deep and supercritical, waves swept in the direction of the flow of the upper layer. We will refer to flows where
h = h− and h = h+ as shallow and deep critical respectively.

The partial energy difference E evaluated at the critical depths we denote by E±, evaluated at h± respectively,
from which we can calculate equivalent values of the full energy difference E± = E± + g′B cos θ. Given a value
of E , we can see from Figure 3 which types of solution are possible. For a shallow supercritical flow (h < h−) or
subcritical flow (h− < h < h+) to be possible at some point x we require that E− ≤ E , which is equivalent to
E− ≤ Ê. We next consider variation in x, remembering that Ê is constant in x. For the flow to continuously
transition from one of these flow regimes to the other (that is transition from one branch to the other) we must
have that E− increases up to a critical point at which E− = Ê after which it decreases again. Consequently, at
the critical point, E−(x) is a local maximum so that dE−/dx = 0. Similarly, to have either a deep supercritical
flow or subcritical flow we require that E+ ≥ Ê, and to transition from one solution branch to the other there
must be a critical point at which E+ = Ê, and E+(x) is a local minimum so that dE+/dx = 0. (These
conditions can be strengthened by additionally enforcing d2E−/dx2 ≤ 0 and d2E+/dx

2 ≥ 0, which we leave to
future work.)
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For flow under a lock gate, we expect the flow at x → −∞ to be deep (super)critical, while the flow at
x → ∞ is shallow (super)critical; this is the additional criteria we use to find q̂ and Ê. Such flow is termed fully
controlled and has two critical points, or in the edge case a single critical point at which h = h− = h+ = hI .
We denote the locations of the critical points by x+ < x−, with h = h+ at x = x+ and h = h− at x = x−.
Consequently, the values of the constants Ê, q̂ are determined by identifying the locations of the critical points
x± which can be connected by flow of constant flux and total energy difference. The most straightforward
algorithm is to directly solve for (x+, x−, q̂, Ê) under the conditions that E−(x−, q̂) = Ê and E+(x+, q̂) = Ê
and that a subcritical solution exists on the spatial interval x+ < x < x−, see Dalziel (1991) for details. However,
the algorithm will almost always reach a situation where the subcritical solution branch does not exist over the
spatial interval, meaning that E± cannot be calculated as these are dependent on B which depends non-locally
on the solution through an integral. Conversely the conditions dE−/dx = 0 and dE+/dx = 0 are local because
dB/dx is local. Specifically

dB
dx

=
db

dx
− tan θ − ∆F

g′ cos θ
(10)

so that
dE±
dx

=
q22

(H − h±)3
dH

dx
+ g′ cos θ

db

dx
− g′ sin θ −∆F (h±). (11)

There is no term proportional to dh±/dx because ∂E/∂h = 0 at h = h±. Consequently, without needing to
know B, for any given location x we can find what fluxes q1 can yield critical flow (for some E) by solving (11)
with q2 = Q̂ − q1. This allows candidate sets (x−, x+, q̂) to be established before seeking the value of Ê. We
briefly contrast condition (11) with that used by Zhu & Lawrence (2000), who (translating to our notation)
stated that the effect of drag was to move the critical points to locations where g′ cos θ · db/dx = ∆F . We see
that this is only true when g′ sin θ = 0 and dH/dx = 0, and while the former was true in their setup the latter
was not.

Before giving the general solution method for fully controlled flow, we give a simple example, taking Q̂ = 0,
b = 0, ∆F = −g′ sin θ, and H = 1 + (Hlock − 1) exp(−x2), choosing units so that g′ cos θ = 1. At the critical
points we require dE±/dx = 0 which implies that dH/dx = 0. Consequently, the critical points are at −∞, 0,
or ∞. The final step is to choose a pair of points x+ < x− and solve E+(x+, q̂) = E−(x−, q̂) as a function of
q̂ = q1(x+) = q1(x−), which yields the constant values of Ê and q̂. This final step is the only time when the
value of B is required, and constitutes finding the root of a scalar single variable function.

Solutions are plotted in Figure 4, which have x+ = 0 and x− → ∞. This allows for a transition from deep
supercritical flow on x < 0 to subcritical flow on x > 0 tending to shallow critical flow at x → ∞. This is the
solution we expect to manifest physically, and is shown as solid lines, while the other solution branches will not
be seen and are plotted in dashed lines. We also show the critical and inflection depths in dot dashed lines,
which do not satisfy the governing equations but rather are part of the solution construction.

3.2 The solution algorithm

To illustrate the solution algorithm, we consider the problem Q̂ = 0, b = 0, h∆F = −CDu2
1 = −CDq21/h

2, and
H = 1 + 1

2 exp(−x2), choosing units so that g′ cos θ = 1. We treat the drag as simply the drag between the
lower layer and the bed, which will be approximately true for the physically important region downstream of
the lock. We require that the solution tend to some limit on x → ∞, and consequently there must be a constant
valued solution for H constant. A constant valued solution is straightforward to construct from dB/dx = 0
which gives ∆F = −g′ sin θ, that is

h =

(
CD q̂2

g′ sin θ

)1/3

. (12)

At finite x, in particular around the lock-gate, the solution will not take on this constant value. Consequently,
for the steady state to exist, the solution must tend towards the constant solution as x increases. To identify
whether this is the case, we perturb it as

h(x) = (1 + ϵh̃(x))

(
CD q̂2

g′ sin θ

)1/3

(13)

and substitute into (5c) to obtain at leading order for 0 < ϵ ≪ 1

dh̃

dx
=

3 tan θ

1− Fr2
h̃, (14)
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Figure 5: Illustration of the solution algorithm for forced shallow water flow on a slope. (a) The solutions to
dE±/dx = 0, with the solutions to q1+(x+) = q1−(x−), E+(x+) = E+(x−) marked with crosses if x+ < x− and
circles if x+ = x−. (b) The solution to q1+(x+) = q1−(x−), coloured by the difference E+(x+)−E−(x−); where
the difference cannot be calculated because there is no valid depth on the subcritical solution branch then the
curve is marked with a grey dashed line. The solutions to E+(x+) = E−(x−) are marked with crosses and
circles as previously. (c) The solutions plotted as functions of x, only one exists for all x which is the unique
solution to this problem. (d) The solution plotted as though B were the bed elevation using the same line styles
as in Figure 4.

where Fr is evaluated at ϵ = 0. Consequently, for h̃ → 0 as x → ∞, we require that the flow is supercritical
Fr2 > 1. Thus, we are looking for a fully controlled solution which does not just tend to criticality at large x,
but rather crosses through criticality at finite x to shallow supercritical flow.

Our goal, then, is to construct a fully controlled solution, which was discussed in Section 3.1. We will need
to find a point x+ at which the flow is deep critical, and another at which x− is shallow critical at the same
flux q̂, remembering that x+ < x−, and then connect these by a solution of constant energy Ê, the result of
the algorithm being the full set of values (x+, x−, q̂, Ê) from which h(x) can be constructed. This algorithm
assumes that H(x), b(x), g′, θ, ∆F (x, h1, h2, q1, q2) and Q̂ are known. The algorithm is illustrated in Figure 5
where we take tan θ = 0.1 and CD = 0.08. We will state the operation to perform in italic text, and give some
details in roman text.

1. For each x, solve the equation dE−/dx = 0 for q1 producing a function q1−(x), and similarly solve
dE+/dx = 0 for q1 producing a function q1+(x), in both cases taking q2 = Q̂ − q1 (11). See Figure 5(a).
In practice an array of values of x will be used that is sufficiently dense for subsequent steps to use an
interpolation of the solution to generate q1±(x). Not every x will have a solution, and root-finding will be
required to find values of x where the solutions come into existence. The resulting solution curves show
the value of the flux q1 required for shallow critical flow (q1−(x)) or deep critical flow (q1+(x)) at each x.
A particular value of E will be required also, not calculated here.

2. Identify all triplets (x+, x−, q̂), x+ ≤ x−, satisfying q1+(x+) = q1−(x−) = q̂. See Figure 5(b). Practically,
we construct a discrete representation of curves through (x+, x−) space which satisfy q1+(x+) = q1−(x−),
and then set q̂ to this value of flux. For each triplet (x+, x−, q̂) on this curve, there is some function B(x)
for which there is a fully controlled flow that is critical at these two points with the given flux at some Ê.
Consequently, we have here constructed all solutions with constant flux q̂ satisfying the local properties
of criticality, but not the non-local property of constant Ê.

3. Identify the triplets (x+, x−, q̂) satisfying E(x+, q̂) − E(x−, q̂) = 0 though root finding. This gives the
value of Ê for the solution through Ê = E+(x+, q̂) = E−(x−, q̂) yielding (x+, x−, q̂, Ê). See Figure 5(b).
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To compute the value E+(x+, q̂) − E−(x−, q̂) we need to know the difference in effective bed elevation
B(x+)−B(x−). This is calculated by solving the differential equation (10) over the interval x+ < x < x−.
Starting at x = x+, h = h+, B = 0, Ê = E+(x+, q̂), we integrate (10) over the interval taking h on the
subcritical branch to obtain B(x−). This integration process is the most expensive part of the solution
process, which is why we save it for last. Sometimes, the integration will reach a point at which there is
no subcritical value of h, in which case the integration is abandoned.

While this solution method gives tuples for the form (x+, x−, q̂, Ê), and for each tuple there is a solution
h(x) in the interval x+ ≤ x ≤ x−, there is no guarantee the solution extends outside of of this interval. In Figure
5(c) we attempt to integrate the solutions outside of this interval. For one of the solutions, the integration is
successful, producing a solution for all x. For the other with x+ ≤ x− the shallow supercritical solution branch
ceases to have a solution on x > x− invalidating the solution. We also plot the cases where x+ = x− and
the solution can, in principle, transition directly from deep supercritical to shallow supercritical through the
inflection point; the integration fails in both cases. Consequently, we arrive at the unique fully controlled flow
for this setup.

For illustrative purposes, we plot the solution in Figure 5(d) treating the found B as the bed elevation. This
shows that the solutions to the present system are of the same type, if more general, than those discussed by
Armi (1986) and Dalziel (1991).

4 Simulations

To arrive at the shallow water model of Section 3 several key assumptions are made about the flow; namely that
the pycnocline is infinitesimally thin, the fluids immiscible and inviscid, and the resulting flow is (to leading
order) hydrostatic with velocity independent of z in each layer. These assumptions are restrictive, and so to
supplement this theory we simulate a lock-gate flow and the resulting gravity current using 3D Large-Eddy-
Simulations (LES). To construct a pseudo-steady flow we implement artificial forcing, allowing a study of the
key features of lock-release gravity currents and their dependence on the slope angle.

4.1 Methodology

We directly solve the dimensionless momentum and continuity equations with a scalar transport equation for
density:

Du

Dt
= −∇p+

1

Re
∇2u− ρĝ + Fu, (15)

∇ · u = 0, (16)

Dρ

Dt
=

1

RePr
∇2ρ+ Fρ. (17)

The flow is made dimensionless by the buoyancy velocity, ub =
√
g′Lg, where g′ = (ρ1 − ρ2)g/ρ2 is the

reduced gravitational acceleration and Lg is the opening height beneath the lock gate. Note that in contrast
to the shallow-water formulation, generalised to seek solutions for arbitrary lock-gate topography, here we seek
numerical solutions for the exchange flow underneath a rectangular lock-gate opening with dimensions Lg = 1

in height and 0.2 in width. The dimensionless density field is equal to ρ = ρ̂−ρ2

ρ1−ρ2
where ρ̂ is the dimensional

density, ρ1 is the density of the current, and ρ2 is the density of the ambient, such that ρ = 0 when ρ̂ = ρ2 and
ρ = 1 when ρ̂ = ρ1. The gravity vector ĝ = (sin θ, 0,− cos θ) has magnitude unity and acts at some angle θ
from the vertical direction. For θ > 0, gravity acts as if the domain sketched in Figure 1 were tilted clockwise.
The Reynolds number is defined as Re = ubLg/ν = 1000, and the Prandtl number is Pr = κ/ν = 1. This work
investigates solutions using two slope angles: θ = 0 and θ = 10 degrees, units henceforth omitted.

The forcing terms Fu and Fρ are used to restore the velocity and density fields at the extremes of the
streamwise domain over some timescale τf :

Fu = − u

τf
· f(x), Fρ = −ρ− ρ0(x)

τf
· f(x) (18)

where

ρ0(x) =

{
1, for x < 0,

0, for x ≥ 0.
, (19)
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Figure 6: Instantaneous density fields on a y normal slice at y = π/2 for θ = 0 (a) and θ = 10 (b).

and the mask function f(x) is given by

f(x) = 1− 0.5tanh(s(x+ 4)) + 0.5tanh(s(x− 16)), (20)

where s controls the width of the transitions from the fully unforced region where f ≃ 0 to the fully forced
region where f ≃ 1. The origins of the two tanh functions are set to x = −4 and x = 16, such that 20% of
respective fluid reservoirs are relaxed towards u = 0 and ρ = ρ0 (see Figure 1). The timescale τf controls the
rates at which the fields are relaxed. The cases presented here fix τf = 10 and s = 10. Through this forcing
strategy, we simulate a quasi steady-state system indicative of one with a spatial domain much larger. Such
forcing enables the exchange flow to be analysed using techniques suitable for steady-state analysis, such as
spectral POD. Further details of this forcing, and examples of its application to stably stratified shear flows,
can be found in Zhu et al. (2023) where a similar forcing strategy has been employed to generate arbitrarily
long simulations of exchange flow in stratified inclined ducts.

The domain is discretised into Nxz × Ny = 4444 × 10 body-fitted spectral elements, such that the gate
boundaries are explicitly resolved. Elements are clustered near the walls and at z = H, such that more elements
are present in the lower regions of the domain where the gravity current propagates. Each element is further
discretised by 83 Gauss-Lobatto-Legendre (GLL) nodes, and solved using NEK5000 (2019). Equations are
integrated in time using third-order backward differencing with a timestep of 10−3, and nonlinear terms are
dealiased using the 3/2 rule.

Subgrid scales are accounted for using modal based explicit filtering, equivalent to deconvolution LES or
hyper-viscosity (Fischer et al., 2001; Chatterjee & Peet, 2018). This filtering technique has been adopted and
validated for stratified and wall-bounded turbulent flows (Lai et al., 2019; Jin et al., 2021; Lloyd et al., 2022).
Note, however, that the main influence of sub-grid scale filtering occurs in the wall-attached plume of the
ambient fluid into the denser fluid reservoir; the gravity current and the interface beneath the lock-gate, are
well resolved.

Simulations are performed by initialising the flow with ρ0 and letting the system evolve to a pseudo-steady
state. Once reached, time-averaging is performed to obtain mean flow fields, and instantaneous data are sampled
on a spanwise-normal slice to obtain spatio-temporal coherence. Data are sampled on a uniform x − z grid of
resolution 500× 250 grid points every 100 timesteps.

4.2 Results

The instantaneous flow after a quasi-steady state has been reached is visualised by the density field in Figure 6.
The lock gate sets up an exchange flow with a dense current moving rightwards beneath the leftwards-moving
ambient flow. The ambient flow subsequently generates a fast vertically moving buoyant plume as it passes the
gate opening. As it rises it impinges on the upper boundary and generates strongly turbulent flow, setting up a
recirculating flow cell which diffuses the density field in the dense fluid reservoir (Figure 6). This upper region
of the dense reservoir (ceiling) is the most active in the domain. The influence of the forcing terms is clear in
Figure 6, particularly for the θ = 0 gravity current as it tends towards x = 20.

Temporally and spanwise-averaged velocity magnitude and density are presented in Figures 7 and 8, where
variables have been decomposed into their time and planar averaged components, represented with an overbar,

9



−5 0 5 10 15 20x

0

5

10

z
(a) θ = 0

0 5 10 15 20x

(b) θ = 10

0.0 0.2 0.4 0.6 0.8 1.0

|U |

Figure 7: Temporally and spanwise-averaged velocity magnitude for θ = 0 (a) and θ = 10 (b).
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Figure 8: Temporally and spanwise-averaged density fields for θ = 0 (a) and θ = 10 (b).

and their fluctuating components, represented by primes: u = U + u′, ρ = ρ + ρ′, where U = (U, V ,W )
and u′ = (u′, v′, w′) in (x, y, z). The mean flow fields clearly demonstrate the strong influence of θ on the
current; at θ = 10 we observe a thinner, faster current when compared to the zero slope case. The mean velocity
magnitude field of Figure 7 also highlights the recirculating flow cell in the dense fluid reservoir, generated from
the impinging ambient plume on the upper wall and the flux of dense fluid through the gate. This recirculating
fluid has its density restored to ρ1 as it moves downwards at the left boundary, which subsequently feeds into
the density current through the gate. Likewise, as the dense gravity current approaches x = 20 its density field
is relaxed towards ρ2 and its velocity field is relaxed towards zero, subsequently generating a very weak upward
movement of fluid, compared to the velocity magnitudes in the dense fluid reservoir. This ensures the ambient
fluid density is restored such that a steady current can be sustained. Note, however, that the effective Reynolds
number is reduced as the simulation reaches this steady state due to the turbulent diffusion of the density field,
particularly in the dense fluid reservoir. The extent of this reduction in density is controlled by the balance
between the forcing timescale, τf , and the rate at which the density field is mixed.

Quantitative differences between the two flows are more clear in the profiles of Figure 9 which sample the
mean flow data of Figures 7 and 8 at x = 5. The narrower current of the θ = 10 case is complemented with
a thinner interface thickness, approximated by z values corresponding to 90% bounds on ρ. We subsequently
observe higher density gradients, and substantially higher velocity gradients, for θ = 10 when compared to
θ = 0.

By increasing the slope angle we also observe a transition in the stability of the gravity current, evidenced
by wave-like activity in the instantaneous density data of Figure 6, and a positive vertical density flux ρ′w′ at
the gravity current interface in Figure 10. Here, primes represent deviations of a variable from their time- and
spanwise-averaged values. While the magnitude of this positive flux is small at the gravity current interface
compared to the buoyant plume, it clearly grows as the current moves downstream, and only emerges for θ = 10.
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Figure 10: Temporally and spanwise-averaged vertical density flux for θ = 0 (a) and θ = 10 (b).

The vertical density flux at the interface between the two fluids appears to be generated by wave-like motion
when observing the fluctuating vertical velocity and density fields (Figures 11 and 12). For θ = 0 only weak
fluctuations in density are present at the interface, yet at θ = 10 we observe regions of positive and negative
density fluctuations along the interface between the two fluids. In addition, we see a similar pattern in the
vertical velocity field, although there appears to be some sheared structure to these contours. Fluctuations in
the velocity and density field are indicative of wave-like activity at the density interface, yet the nature of these
waves is unclear from these figures.

In order to quantify the spatio-temporal structure of these waves we adopt Spectral Proper-Orthogonal
Decomposition (SPOD) using the method of Schmidt & Colonius (2020). Spanwise-normal slice data are
organised into snapshots r(x, t) consisting of vertical velocity and density fluctuations. Following the method
of Welch, snapshots are split into 38 consecutive and temporally overlapping (with a 50% overlap) blocks
(Nblk = 38), each containing 2048 snapshots. Fourier transforms are performed on each block, using a Hamming
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Figure 11: Fluctuating vertical velocity fields on a y normal slice at y = π/2 for θ = 0 (a) and θ = 10 (b).
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Figure 12: Fluctuating density fields on a y normal slice at y = π/2 for θ = 0 (a) and θ = 10 (b).

window, to obtain r̂(x, ω). For each frequency the data r̂ are arranged into a matrix R̂,

R̂ =


...

...
...

r̂1 r̂2 . . . r̂N

...
...

...

 , R̂ ∈ CM×N (21)

where M is the total number of degrees of freedom (the number of spatial grid points multiplied by the number
of variables: vertical velocity and density fluctuations) and N is the number of realisations (equal to the number
of data blocks, Nblk) at the given frequency. The SPOD modes, Φ̂, are eigenvectors of the sample cross-spectral
density Ĉ, given by

Ĉ =
1

N − 1
R̂R̂H . (22)

Eigenvectors Φ̂ have corresponding eigenvalues Λ̂ which quantify the energy content of a given mode. For more
information, see Schmidt & Colonius (2020).

The SPOD of y−normal slice data is shown in Figure 13. Modal energies are presented in panel (a) which
shows a clear and distinct peak at ω = 1.72. Here, there is an order of magnitude difference between energies
associated to the first and second modes, shown in panel (b). The second and third peaks in modal energy
occur at higher frequencies with lower magnitudes and occur with frequencies at scalar multiples of the frequency
associated with the largest peak, indicative of non-linear mode-mode interactions. The structure of the marked
mode in panel (a) is shown in panels (c) and (d), respectively presenting the vertical velocity and density
components. We see a very clear spatio-temporal structure with a dominant streamwise wavenumber.
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Figure 13: Spectral-POD of y−normal slice data for θ = 10. (a) shows eigenvalues λi as a function of temporal
frequency, ω, where the index i represents the mode number of Λ̂, ordered by their magnitude. (b) shows
eigenvalues for the frequency marked with the dashed line in (a) corresponding to the maximum energy in the
decomposition. The spatial structure of the mode marked in (a) is reported in panels (c) and (d), with the
vertical velocity component in (c) and density in (d). The dashed lines in (c) and (d) represent critical levels
where the modal wavespeed is equal to the mean streamwise velocity, c = ω/kx = U , where kx is obtained from
a Fourier transform of ϕρ (with windowing in x) in panel (d). The dash-dotted lines in (c) and (d) represent the
density interface at ρ = 0.5. The solid lines in (c) and (d) represent the z position of the maximum (negative)
shear at a given x position (see Figure 9).

The magnitude of the mode and its spatial extent in z grows as it moves downstream. The locus of the
mid-density isopycnals (η) where ρ = 0.5 are marked by the dashed-dotted line in panels (c) and (d). The
ρ = 0.5 isopycnals yield an approximate location of the density interface which also coincides with the velocity
interface where the shear is maximum owing to Pr = 1 chosen for this study (see Figure 9). Therefore the
dashed-dotted lines also mark the location of the pycnocline. There is a clear influence of shear on the modes
which creates vertical distortion in the distribution of the modes.

We find that shearing of the mode occurs directly in the location of maximum (negative) shear, marked
with the solid lines in Figure 13 (note that the maximum positive shear occurs at the wall where ρ ≈ ρ1). For
much of x, the location of maximum negative shear coincides with the location where we see critical levels,
where the modal phase speed c = ω/kx matches the background streamwise velocity, U . Here the wavenumber
kx has been obtained by taking a Fourier transform of the density contours in panel (d) and averaging in the
vertical direction. The subsequent spectral energy has a single and distinct peak at kx = 1.88 (not shown for
brevity). This dominant wavenumber suggests a streamwise length scale of λx = 3.44 which from inspection is
consistent with the distance between peaks of the streamwise varying modes in Figure 13 (c,d). This analysis
shows that the dominant mode has a well defined and distinct frequency and streamwise wavenumber, and
therefore phasespeed, with no spatial dependence. Critical levels occur at the region of strongest (negative)
shear where we observe distortion of the modes. For comparison, we have also reported the density interface in
Figure 13, but note that the centre of the modes correlates better with the critical levels and (negative) shear
maximum, except at small x where the differences between the two lines are nearly indistinguishable.

There are several key features of the dominant SPOD mode that indicate the mean flow is susceptible
to instability at the interface, and that the dominant SPOD mode is a spatially and temporally developing
interfacial instability. Firstly, note the comparable steepness in the mean velocity and density profiles at the
density interface (Figure 9), and their large respective gradients, particularly for θ = 10. From inspection of the
profiles in Figure 9 we see that the gradient Richardson number Rig = −∂zρ/(∂zU)2 is less than the critical value
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of 0.25 at the region of strongest shear for θ = 10, indicating the flow may be susceptible to shear instability.
However, we caution a deeper interpretation of this result given that the flow is spatially developing, has shear
and density profiles strongly spatially dependent, and has the density interface occur reasonably close to the
lower boundary. Secondly, note that the density mode extrema coincide with the regions of maximum (negative)
shear, and critical levels. Instabilities in stratified shear layers grow, and are dependent, on inflection points in
shear (Smyth & Carpenter, 2019). The coincidence of critical levels at the location of maximum (negative) shear
indicates a transfer of energy from the instability to the mean flow, which is also reflected by the increase in
vertical density flux ρ′w′ as the instability is advected downstream (Figure 12). The peaks in vertical velocity
modes ϕw on either side of the pycnocline as well as the existence of critical levels and the dominant short
wavenumber (kx = 1.88) strongly suggests that the growth in the modal energy is due to interaction of two
asymmetric vorticity waves proportional to ϕw on either side of critical level similar to the spatially evolving
Kelvin-Helmholtz instability. The peak in temporal frequency subsequently arises as a result of Doppler shift,
where the instability is advected downstream by the current. However, the true nature of such instabilities
requires further investigation. Additionally, the robustness of the dominant frequency and wavenumber to the
choice of (Re, θ), and computational domain size in our current SPOD analysis will be studied in future work.

5 Conclusion

In conclusion, we have approached the problem of a gravity current generated through an exchange flow under
a lock gate through two approaches. First, we have constructed a shallow water model to describe locally the
flow under a gate for two-layer flow down an inclined bed in which the far-field is a balance between drag and
gravity. A novel method for finding fully controlled solutions to the shallow water equations is presented, where
a new solution method was presented that allowed for the presence of drag terms in the system.

Second, full nonlinear simulations of the Navier-Stokes equations have been conducted, with the inclusion
of a so-called mask function to provide a forced buoyancy gradient to manifest long-time quasi-steady states.
Spectral-POD analysis of span- and time-averaged data demonstrates the occurrence of unstable waves prop-
agating along the density interface. These waves arise due to the susceptibility of the mean flow profiles to
instability and are spatially focused at the region of maximum (negative) shear. The coincidence of critical
levels with the maximum (negative) shear leads to the energy transfer from the instability to the mean flow,
demonstrated by an enhanced vertical density flux as the instability is advected downstream by the current.

In future work, it will be interesting to explore if the flow parameters (speed, height etc.) of the generated
gravity current can be accurately predicted via the shallow water theory over a range of initial conditions (density
difference, gate height, etc.). Full three-dimensional Navier-Stokes simulations are computationally expensive,
especially when exploring late-time pseudo-steady states of the system. Meanwhile, the shallow water theory is
analytically tractable, and while the solution mechanism described in Section 3 requires numerical computation,
these are performed in the order of seconds. The shallow water theory makes restrictive assumptions about the
nature of the flow, and hence as a first step its validity must be tested against full nonlinear simulations. If
reasonable agreement is found, the shallow water theory allows for exploration of gravity current generation in
a larger range of parameter space. Note, however, that the question of stability must be explored via the full
three-dimensional Navier-Stokes simulations. Furthermore, the modified shallow water theory presented here is
applicable to other applications, such as gravity current interaction with bathymetry.

Once the instability has been understood through the full simulations, we will aim to capture the dynamics
seen through the shallow water model. It is possible that the waves also arise in the model due to the steady
state solution ceasing to exist at steep angles, and thus the only solution would be a time dependent solution.
In this case there is the possibility of a direct comparison between the waves established in the full simulations
and those present in the shallow water model, which will likely be different, and the exploration of an improved
model. Alternatively, it may be that the steady solution exists for arbitrarily steep slopes, in which case it
may be possible to relate the onset of instability to some properties of the model. For example, an analogue
of the bulk Richardson number can be constructed from the velocity and density differences between the two
layers, and the vertical distance between the centres of the two layers. It may be possible to relate the onset of
instability to this or another dimensionless parameter constructed purely from properties of the model.
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