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Abstract—Machine Learning (ML) models trained on biased
data can reproduce and even amplify these biases. Since such
models are deployed to make decisions that can affect people’s
lives, ensuring their fairness is critical. One approach to mitigate
possible unfairness of ML models is to map the input data
into a less-biased new space by means of training the model
on fair representations. Several methods based on adversarial
learning have been proposed to learn fair representation by
fooling an adversary in predicting the sensitive attribute (e.g.,
gender or race). However, adversarial-based learning can be too
difficult to optimize in practice; besides, it penalizes the utility of
the representation. Hence, in this research effort we train bias-
free representations from the input data by inducing a uniform
distribution over the sensitive attributes in the latent space. In
particular, we propose a probabilistic framework that learns these
representations by enforcing the correct reconstruction of the
original data, plus the prediction of the attributes of interest
while eliminating the possibility of predicting the sensitive ones.
Our method leverages the inability of Deep Neural Networks
(DNNs) to generalize when trained on a noisy label space to
regularize the latent space. We use a network head that predicts
a noisy version of the sensitive attributes in order to increase the
uncertainty of their predictions at test time. Our experiments in
two datasets demonstrated that the proposed model significantly
improves fairness while maintaining the prediction accuracy of
downstream tasks.

Index Terms—Fairness, Fair representation, Bias, Decision
making

I. INTRODUCTION

The growing deployment of Machine Learning (ML) systems
in business and government has shown that these systems can
learn, perpetuate, and even amplify biases that that society is
combating in the real world [1, 2]. The decisions provided by
ML models can have a profound effect on the course of people’s
lives e.g., hiring, detention, college admissions Therefore, it
is crucial to ensure that such decisions are sound and fair.
Fairness in ML has received a lot attention during the past
years.

A number of definitions of fairness have been proposed
to quantify the unfairness of ML models. These fairness
definitions can be categorized into three main categories. Group
fairness [3, 4, 5] evaluates the model’s performance within

different groups; based on a given sensitive attribute (e.g.,
gender, race, age), it requires the model to treated groups
equally. Individual fairness [5] requires that similar individuals
with respect to given task should receive a similar outcome.
counterfactual fairness [6] requires that the decisions provided
by the model remain the same if the sensitive attribute were
changed (e.g., in the case of a loan approval system, what
the outcome would have been if a female applicant had been
born a male). Our study focuses on achieving group-based
fairness notion such as statistical parity, equalize odds, and
equal opportunity, with an emphasis on statistical parity.

One way to mitigate unfairness is to map the input data
into a less-biased new space by means of learning fair
representations. The new representation of the data is therefore
likely to produce more fair outcomes when used for any
downstream tasks such as classification. Several approaches
based on adversarial learning have been proposed to learn a
fair representation [7, 8, 9, 10] by removing all dependencies
on the sensitive attributes from the data while preserving as
much of the other information as possible.

In the adversarial training, an adversary is trained to predict
the sensitive attribute from the latent space yielded by a
generator, while the generator is trained to fool the adversary in
predicting the sensitive attribute. However, such an adversarial
setup requires that any adversary cannot predict the protected
attribute; beside, such adversaries can be difficult to optimize
in practice [7, 11, 12]. Moreover, these approaches always lead
to a degradation of the predictor accuracy, in particular, Moyer
et al. [11] showed that adversarial training is unnecessary
and sometimes counter-productive. In addition, reducing the
tradeoff between fairness and accuracy is an active research
question within the fair ML community, which essentially
implies the task to provide models with high accuracy with
as little bias as possible. Our study addresses these issues
by proposing an alternative and straightforward approach
for learning fair representations without an adversary while
maintaining high utility on downstream tasks.

We introduce a new regularizing objective function that
yields a representation that maintains the utility of predictions
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and mitigates bias comparably better than the state-of-the-art
approaches. In essence, our proposed objective is not only to
make the prediction of the sensitive attribute impossible to
predict by an adversary, but instead to increase the uncertainty
of predicting the sensitive attribute from the latent space, i.e.,
make it almost uniform (close to 0.5). To induce the uniformity
over the sensitive attribute in the latent space, we use a neural
network that takes the latent code as input and predict a noisy
version of the sensitive attribute, i.e., a defined percentage (e.g.,
50%) of individuals are randomly switched between different
groups considered. The intuition here is that similarly to a
counterfactual world, the target variable (here the sensitive
attribute) of few samples is flipped in a way to confuse the
inherent characteristics of each individual, i.e., increase the
uncertainty of predicting the sensitive attribute of individuals
from the latent space and thus make them unreliable. Model
training on noisy labels has been shown to be a source of
uncertainty for DNNs [13, 14]. Furthermore, neural networks
can learn and fit data with noisy or random labels but fail
to generalize at testing time [15], i.e., although the model
achieves small training loss, the predictions on unseen data
are almost random (unreliable). By leveraging this weakness
of DNNs, our regularizer head trained on a noisy version of
the sensitive attribute enforces the latent space to provide
unreliable predictions (uniform) when used to predict the
sensitive attributes.

We showed theoretically that our process minimizes an upper
bound on the Kullback-Leibler divergence between the sensitive
attributes predicted from the latent space, p(s | z), and the
uniform distribution. Because our analytical guarantees do not
hold for the general conditional p(s | z), we cannot conclude
that our approach will be robust against all future adversaries.
We evaluate an adaptive adversary in our work, but we hope
that future work will build on our insights to formalize the
guarantee provided in a more general case or disprove this
guarantee empirically. We experimentally showed that our
approach is effective for enforcing the independence between
the learned representation and the sensitive attributes. As such,
the downstream classification tasks using our representation
provided better fairness performance in terms of statistical
parity along with a positive impact on equalized odds and
equal opportunity. Based on the obtained results, we claim this
objective is easy to train, the approach yields higher fairness
performance and does not penalize the utility of the model
much.

II. RELATED WORK

The objective of fair representation learning is to find
a function to map the input data into a fair space, i.e., a
space where the protected and non-protected attributes are
indistinguishable. Zemel et al. [16] were the first to propose
learning fair intermediate representations: similar to k-means,
their method involves finding k prototypes in the same space as
the input data. Each sample is assigned to the closest prototype
while adding a constraint in the optimization objective to satisfy
fairness and classification performance. Louizos et al. [17]

proposed the Variational Fair Autoencoder, an adaptation
of the variational autoencoder to learn a mapping function
that enforces the independence of the sensitive attribute and
the latent space. The authors treated the sensitive attribute
as nuisance variable and factored it out in the latent space.
As opposed to Louizos et al.’s [17] work, our fair mapping
function focuses not only on encouraging independence to the
sensitive attribute, but also on maintaining the high utility of
the representation on downstream tasks such as classification.

More closely related to our work, Edwards and Storkey [7]
proposed an adversarial approach to enforce statistical parity,
which involves three main components: the autoencoder that
yields the latent space (generator); the adversary trained to pre-
dict the sensitive attribute from the latent space; and a classifier
trained to maximize the utility of the latent representation with
respect to the class label. The autoencoder and classifier try to
fool the adversary in predicting the sensitive attribute from the
latent space while the adversary tries to maximize its accuracy
of prediction. Madras et al. [8] extended the previous work and
proposed new adversarial objectives that yield transferable fair
representation and also considered other fairness notions like
equal opportunity and equalized odds. Kenfack et al. [9] showed
that applying the adversary at multiple levels of representations
tightens the fairness bound of the learned representation. Feng
et al. [12] used an adversary that minimizes the Wasserstein
Distance between the distribution of the protected and non-
protected groups. Moyer et al. [11] learn fair representations
by minimizing the mutual information between the latent space
and sensitive attribute while maximizing the mutual information
between the latent space and loss of the task at hand.

These previous works mainly focus on improving fairness
and have shown a significant drop in the accuracy of predictions
compared to the unconstrained models. Our goal is to reduce
the fairness/accuracy tradeoff of the learned representation,
i.e., maintain a high accuracy of prediction on downstream
tasks while improving fairness. We propose a generalized
probabilistic model for fair representation learning and a
relaxation of the adversary objective that appears to be easier to
train and yields a better fairness/accuracy tradeoff than previous
work. As demonstrated by Dutta et al. [18], it is possible to
find data distribution such that optimal fairness and accuracy
are achieved simultaneously.

III. METHOD

In order to learn fair representations, we propose a prob-
abilistic hierarchical model that learns representations such
that it is (ideally) impossible to use them for predicting the
sensitive attributes thus achieving fairness with respect to these
attributes. First, we detail the probabilistic model for a single
level of hierarchy. Then, we discuss how to expand this model
to several levels within a hierarchical model.

A. Probabilistic Model

Let the user data be the triplet (x, s, y) containing both
nonsensitive information x and sensitive one s. Our task is
to predict the dependent variable y. We introduce a latent
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Fig. 1. Generative and inference models for our model’s variables. We assume
a fair generation process where the class y and features x depend only on
the latent variable z. For the inference of the latent variables z, we rely on x
and s, while obfuscating s.

variable z that models the user information while taking care
of obfuscating the sensitive information s.

We assume a generative model (Fig. 1)

p(x, s, y) =

∫
p(y | z)p(x | z)p(s | z)p(z) dz, (1)

and we are interested in maximizing its log-probability, i.e.,
max log p(x, s, y). We assume the inference model to be
q(x, s, z) = q(z|x, s)q(x, s) (see Fig. 1). By using a variational
inference approach, we obtain the evidence lower bound of
the log likelihood, that is,

log p(x, s, y) ≥ E
q(z | x,s)

[
log p(y | z) + log p(s | z)+

log p(x | z) + log
p(z)

q(z | x, s)

]
. (2)

This model reveals that we need to maximize the likelihood
of the class prediction, p(y | z), as well as the sensitive data
prediction, p(s | z). Simultaneously, we need to guarantee the
generation of the original data, p(x | z). Moreover, we need to
minimize the Kullback-Leibler divergence of the prior and our
proposed encoder, Eq(z | x,s) log q(z | x, s)/p(z).

For our objective, we simplify this model. First, we ap-
proximate the expectation over the latent q(z | x) by using
sampling. Besides, in its simplest form, we use a single sample.
Moreover, we do not work with the divergence but use implicit
distributions instead. Our simplified optimization problem is

max log p(y | z) + log p(s | z) + log p(x | z), (3)

where the sampling z ∼ q(z | x) is replaced with a determin-
istic function that substitutes the distribution (implemented
through a neural network). However, this problem yields unfair
representations since it maximizes the log-likelihood of the
sensitive attribute as well. To solve this problem, we propose
to make the sensitive distribution p(s | x) close to a uniform
distribution instead. The idea is that, instead of maximizing
the prediction of the sensitive attribute, we make the prediction
unreliable (thus, close to a uniform distribution). For example,
if the sensitive attribute is binary, instead of maximizing or

Algorithm 1 Fair representation learning.
Require: t ∈ [0, 1] a flipping probability (default 0.5), N training epochs,

K levels, and Θ = {θi}K−1
i=0 set of initialized network parameters.

for n← 1, N do
X,Y, S ← random mini-batch from dataset
Z1 ← [XS]
for i← 1,K do . Iterate over levels

Zi+1 ← Enci(Zi) . q(zi+1 | zi)
Ẑi ← Deci(Zi+1) . p(zi | zi+1)

end for
Ŷ ← Predy(ZK) . p(y | zK)
Ŝ ← Preds(ZK) . p(s | zK)
Sr ← flip(S, t) .Randomly flip S with prob. t
Lx ← MSE(ẐK , ZK) .Reconstruction loss
Ly ← CE(Ŷ , Y ) .Prediction loss
Ls ← CE(Ŝ, Sr) .Sensitive attribute loss
L = αLx + βLy + λLs
Θ← Θ− α∇ΘL .Update network param.

end for

minimizing the likelihood (which makes it predictable), we try
to maintain the likelihood close to 0.5.

For the implementation, we approximate the log-likelihood
log p(s | z) with the cross-entropy

Ls = CE(ŝ, sr), (4)

where ŝ is our prediction, and rather than the ground truth,
we use a stochastic process, sr, that randomly flips between
the possible classes for s. This last part is the key transfor-
mation that obfuscates the sensitive attribute. The other losses
approximate the other two log-likelihoods. Namely, they are a
mean-squared error minimization between the reconstruction x̂
and the data x

Lx = MSE(x̂, x), (5)

and the cross-entropy for the downstream task

Ly = CE(ŷ, y). (6)

Thus, our optimization problem (3) becomes the minimization
of

L = αLx + βLy + λLs, (7)

where α, β and λ are weights associated to each loss.

B. Hierarchical Representations

To produce even fairer representations, we explore a hierar-
chical structure of K levels of representations. The overall idea
is to construct representations following the probabilistic model
presented before (see Section III-A). The ith level posses a
latent variable zi that follows

p(zi, s, y) =

∫
p(zi, zi+1, s, y) dzi+1 (8)

as in our original joint (1), such that zi+1 is the latent
representation for the zi variable. In this way, it is possible to
construct a set of K joints and learn them simultaneously by
constructing a cascade of encoders and decoders (following
Fig. 2). We regularize them with our loss function (7) on the
highest level K. In our implementation, without the loss of
generality, the first level is the input data, i.e., z1 = [x s].
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Fig. 2. Fair hierarchical representations learning. The data zi of the ith level of
the hierarchy is encoded into a latent variable zi+1 and then reconstructed ẑi.
Its class y is predicted from the latent variable. Conversely, the corresponding
sensitive variable s is trained such that its likelihood is uniform. These three
tasks correspond to the likelihoods from our model (3), and are imposed over
every level (not shown in the figure for simplicity).
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Fig. 3. Fair prediction learning. We transform the data zi into its fair
representation zi+1 through the learned encoder q

(
zi+1 | zi

)
. Afterwards,

we learn the predictor q
(
y | zi+1

)
based on the learned fair representations.

Note that the sensitive information is not used in this stage (cf. Fig. 2).

C. How the uniformity of the sensitive attribute implies fairness

Our method aims to enforce statistical parity on any down-
stream tasks that use the representation learned by the encoder
part of our method, i.e., mapping of the input data into a fairer
space. Recall that Statistical parity promotes the independence
between the sensitive attribute (S) and the classifier outcome
(Ŷ ), i.e., Ŷ ⊥ S. Given the input data X , the encoder part of
our model maps it into the latent space Z. We regularize
the mapping by enforcing the uniformity of predicting S
given Z, we do this by optimizing the regularizer network
over a noisy version of S, in which the sensitive attribute of
some individual is flipped. Our experiments showed in final
representation individuals are equally likely to be assigned a
given group label, i.e., p(S | Z) ≈ 0.5. Moreover, Avigad [19]
showed how randomness in a sequence of binary numbers can
induce uniform distribution. When S is binary, enforcing the
uniformity implies that p(S = 1 | Z) = p(S = 0 | Z) ≈ 0.5,
therefore S ⊥ Z. Any classifier f trained from Z will also be
independent to S, i.e.,

Ŷ = f(Z) ⊥ S → P (Y | S = 1) = P (Y | S = 0),

thus, achieving statistical parity.
To enforce the prediction of sensitive attribute from learned

representation to be uniform (unreliable), our method leverages

the weakness of DNNs to generalize when trained on noisy
label [13]. In particular, Zhang et al. [20] show that deep neural
networks can easily fit data with partially or completely noisy
labels. In the case of partially noisy labels, the network still
receives a signal from clean samples but also learns noise. As
a result, the model does not generalize well on testing data,
i.e., yields small training error but large error on the test set.
As we want the latent variable to exhibit no information about
the sensitive attributes, we regularize the latent space with
a network head that predicts a noisy version of the sensitive
attributes. As such, the latent space will degenerate with respect
to the sensitive attribute and at test time the prediction of the
sensitive attribute from the latent space will be unreliable, i.e.,
almost uniform.

Assuming that the conditional probability of the sensitive
attribute distributes as a Bernoulli with probability u(z),
p(s | z) = B(u(z))—hereinafter, we refer to u(z) as u for
brevity. Given that distribution of flipping the ground truth is a
Bernoulli distribution B(r), we obtain that our flipping process
(described in Section III-A) is a Bernoulli B(u−2ur+ r) (see
the proof in the Appendix A). We show, by Theorem 1, that
our cross-entropy loss (4) is an upper bound of the Kullback-
Leibler (KL) divergence between the conditional p(s | z) and a
uniform distribution (when B(r = 0.5)). Thus, by minimizing
this loss (4), we enforce the conditional distribution to be the
uniform distribution.

Theorem 1. Let two independent Bernoulli distributions be
B(u) and B(r), and a third related to the parameters of the
previous ones be B(u− 2ur + r). The cross-entropy between
B(u) and B(u− 2ur + r) is an upper bound of the Kullback-
Leibler divergence between the two original distributions, i.e.,

KL(B(u) ‖ B(r)) < H(B(r),B(u− 2ur + r)). (9)

Proof. See Appendix B.

D. Model Training

We present the pseudo-code of our learning process in
Algorithm 1. We generalize the algorithm for layer-wise
training. We trained the model components simultaneously
to minimize the loss function (7). To enforce the uniformity
of the sensitive attributes, a key step in the training process is
flipping of the sensitive attribute with a probability t. In Feng
et al.’s [12] work, the adversary is trained within each minibatch
until convergence is reached for one training step of the
generator, while Edwards and Storkey [7] alternate the gradient
within each minibatch to update the generator or adversary.
Adversarial setting is hard to optimize in practice and provides
no convergence guarantees. In contrast to adversarial training,
our method is easier to train (more stable) and straightforward.
It is more efficient in terms of accuracy for similar levels of
fairness (cf. Section IV).

IV. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup, empirical
results, and the comparison of our approach, namely LFR-U,
with other fair-representation learning methods. We compare
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Fig. 4. Projection of the representations of 1000 random samples from the German and Adult datasets using PCA. The original data mixture is separated
when learned with a non-uniform prediction on the sensitive attribute (LR). In contrast, enforcing uniformity on the sensitive attribute distribution yields an
entangled space (LFR-U).

all the models in terms of accuracy, fairness, and their ability to
learn representations that cannot predict the sensitive attribute1.

A. Experimental setup

a) Baseline methods: We consider as baseline a simple
logistic regression (LR) model trained on the original data
with no fairness constraints. For the comparison, we consider
Correlation Remover (CR) [21], which applies a linear transfor-
mation to the non-sensitive feature columns in order to remove
their correlation with the sensitive feature columns. We also
consider adversarial-based approaches such as work done by
Edwards and Storkey [7], Madras et al. [8], who trained an
adversary to distinguish between samples from the protected
and unprotected groups, namely LFR. We consider statistical
parity and, since we are not interested in the transferability of
the learned representation, we used the binary cross-entropy
loss for the adversary and training process proposed by Edwards
and Storkey [7]. Furthermore, we consider the work of Feng
et al. [12], namely LFR-AF, where they trained an adversary to
minimize the Wasserstein distance between the distribution of
protected and unprotected groups. We used the implementation
provided by the authors. We also consider a simple Autoencoder
(AE) model that minimizes the loss of reconstructing the input
data from the latent space, and then use encoder part to map
(compress) the training data logistic regression model. The
goal of using an autoencoder is to analyze the effect of the
compression over the fairness on downstream task.

b) Data: We experimented on two datasets: German [22]
and UCI Adult Income [23] datasets. The German dataset
comprises 1000 samples of bank account information described
with 21 features. The target variable y predicts whether an
account is good or bad. The adult income dataset contains
48 843 instances of demographic information of American
adults, described with 14 features that are a mixture of
categorical, ordinal, and numerical data types. The target
indicates whether personal income levels are above or below

1Source code: https://github.com/patrikken/lfr-u

USD50 000 per year. We used sex (Male or Female) as the
sensitive attribute in both datasets.

c) Metrics: In addition to the typical accuracy, we also
consider the following fairness metrics used in the literature.
Let X = {xi}Ni ; xi ∈ Rd be our data, S = {si}Ni our binary
sensitive attribute such that si is contained within xi, and η(·)
a classifier that maps a given sample xi to a class label ŷi.
Statistical parity [5] is a fairness notion that promotes the
independence between the positive prediction and sensitive
attribute through

P
(
η(X) = 1 | S = 1

)
= P

(
η(X) = 1 | S = 0

)
. (10)

We measure statistical parity as

∆DP =

∣∣∣∣∣∣∣∣∣
∑

i:si=1

η(xi)

N1
−

∑
x:si=0

η(xi)

N0

∣∣∣∣∣∣∣∣∣ , (11)

where Ns is the number of samples with the sensitive attribute
set to s.

We also consider equalized odds [3, 4], which promotes the
conditional independence between the prediction outcome and
the sensitive attribute given the class label. That is

P
(
η(X) = 1 | S = 1, Y = y

)
=

P
(
η(X) = 1 | S = 0, Y = y

)
, (12)

for y ∈ {0, 1}. We measure it as

∆EOD =
∑

y∈{0,1}

∣∣∣∣∣∣∣∣∣
∑

i:si=1,yi=y

η(xi)

N
(y)
1

−

∑
i:si=0,yi=y

η(xi)

N
(y)
0

∣∣∣∣∣∣∣∣∣ , (13)

where N (y)
s is the number of samples with the sensitive attribute

set to s and the class label set to y.
Equal opportunity is similar to equalized odds (13) [3, 4].

However, it only considers the case where y = 1. We refer to
it as ∆EOP.



d) Model: All the components of models are defined as
multi-layer perceptron (MLP). The autoencoder part is defined
with model with two levels of representation (layers). The first
hidden layer is 15 units (z1), while the second one (i.e., latent
space) is 10 and 8 units (z2) for the Adult and German datasets,
respectively. Classifiers and regularizer networks are defined
as single-layer MPL with the number of input units equal to
the dimension of the latent space (z2). LFR-AF, AE, and LFR
models are built with the same autoencoder architecture. For
a fairer comparison, we enforced uniformity only at highest
hierarchy (z2).

We used Adam optimizer [24] with step size of 0.001 for
1000 steps and a batch size of 64. We, then, trained a logistic
regression model on the leaned representations to predict the
class labels or the sensitive attribute to assess the level of
dependency between the given representation and the learned
representation. We split the dataset into train and test sets. We
used the training set to learn the representations. We map the
test set into the learned space and used it to train the logistic
regressor using 10-fold cross-validation. We run the experiment
seven times and averaged the results shown in Figs. 5 and 6.
This evaluation regressor is different from the classifier, p(y |z),
used at training time to regularize the model—cf. Ly (6).

B. Learned Representations

To examine how the groups are distributed in the latent
space, we learned representations using the different methods
considered and projected them into two dimensions using
PCA. Figure 4 showcases the distribution of groups (Male
and Female) in the latent space. We trained representation
using our approach without inducing the uniformity of the
sensitive attribute in the latent space, i.e., without the noisy
prediction of the sensitive. Therefore, the learned representation
(Fig. 4 second column–LR) is enforced to discriminate between
the group label and the class label. As a result, the second
column of Fig. 4 shows that without the uniformity, groups are
linearly separable in the latent space. In contrast, we enforce
the uniformity in latent space, the learned representations are
entangled and therefore hard to distinguish (or predict).

Figure 4 also shows that similarly to other fair representation
learning methods, our methods is able to entangle different
groups in the latent space. This suggests that our method of
making the prediction of the sensitive attribute unreliable by
enforcing its uniformity is as good as defeating an adversary
(LFR and LFR-U). The advantage of our approach for obtaining
this representation is that it is easier to train and does not suffer
from the instability of the adversarial approach, which requires
to defeat an adversary and can sometimes be counterproductive.

C. Fairness Analysis

Figure 5 presents the fairness performances of logistic
regressions models trained with data representations of each
particular method. Overall, the representation yielded by our
method (LFR-U) outperforms the baseline models in terms of
accuracy and provides better performance in terms of statistical
parity, equalized odds, and equal opportunity compared on the
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Fig. 5. Fairness performance (↓) of classifiers trained with different
representations on the German and Adult datasets. Our model provides better
fairness performance compared to the baseline models considered while giving
similar accuracy compared to other fair representation techniques(cf. Fig. 6).
The symbol ↑ means higher values is better, and ↓ lower is better.

considered datasets. Whilst our method is designed to enforce
fairness in terms of statistical parity by inducing uniformity
of the sensitive attribute, our empirical results show that this
has a positive impact on other fairness notions (equalized odds
and equal opportunity).

While other methods learned representations that decreased
the accuracy compared to the baseline methods, ours impacted
it less (Fig. 4). The goal of the adversarial approach for fair
representation learning is to completely remove the dependence
on the sensitive attribute by defeating an adversary. However,
this optimization process does not guarantee that the trained
adversary is the optimal one and that there is no other
adversary that can predict the sensitive attribute from the
learned representation. In contrast, we enforce the uniformity
of the sensitive attribute in the latent space by leveraging a
noisy prediction of the sensitive attribute from the latent space,
such that each data point has the same probability (0.5) to
be assigned to a given group. Thus, instead of focusing on
learning optimal features that fool a classifier, we focus on
obtaining features that are equally likely to produce every class
in the sensitive attribute. The results (Fig. 5) also show that in
an unsupervised setting, a simple autoencoder (AE) reduces



the dependence on the sensitive attribute in the latent space and
thus improves fairness. This shows that sensitive information
can be cancelled out by compression, which can be useful in
the case where sensitive attributes are not observed.

D. Sensitive Attribute Obfuscation

We analyzed the amount of information of the sensitive
attribute that is still encoded in the latent space after the
learning by training a classifier to predict it from the learned
representation. We expected (ideally) the accuracy of this
classifier to be very low, i.e., the dependence on the sensitive
attribute has been removed from the latent space. A classifier
trained on the original data is quite accurate in predicting the
sensitive attribute s. As shown in Fig. 6, a logistic regression
model trained to predict the sensitive attribute in the original
dataset achieved more than 83% and 75% of accuracy in the
Adult and German datasets respectively. While our method and
adversarial-based methods provided less than 68% accuracy.
This shows that all approaches try to obscure information
about s in the latent space, while ours also maintains better
utility.

From privacy perspectives, a logistic regression model can
be seen as a weak adversary, i.e., a stronger adversary such as a
neural network can archive better performance on predicting the
sensitive attributes from the learned representation. However,
although the objectives (fairness and privacy) converge, the
primary goal is not to make the latent space robust against an
adversary wanting to reconstruct the sensible attributes. Thus,
the use of logistic regression in this case is not to evaluate
the robustness against an adversary but to evaluate the level of
obfuscation of the sensitive attribute, which is necessary for
fairness.

We also tested how much information about the sensitive
attribute is retained in the representation learned by our
method using a stronger adversary, i.e., a neural network. The
adversary is a two-layer MLP with 25 and 15 units in the
first and the second hidden layers respectively. The network
was trained seven times and the accuracy was averaged across
runs. The optimizer and the used parameters were the same
as in the previous experiment. Table I shows the accuracy
of predicting the sensitive attribute and class label using
the original representation and the representation provided
by our methods in the Adult and German datasets. These
results show that even a stronger adversary such as a neural
network is not accurate in reconstructing the sensitive attribute
from the representation regularized with our method. For
instance, on the Adult dataset, the MLP model achieved 84.5%
accuracy in predicting the sensitive attribute vs. 68.6% with our
representation, while achieving 82.6% in predicting the class
label compared to 85% with the original representation. The
representation used to train the adversary was optimized using
both the classifier and the regularizer heads, i.e., β = 1 and
λ = 1 (7), which shows that the representation preserved the
useful information for target downstream task while obfuscating
information about sensitive attributes.

TABLE I
COMPARISON OF THE ACCURACY OF PREDICTING y (↑) AND THE

SENSITIVE ATTRIBUTE s (↓) USING A MLP AS ADVERSARY ON ADULT AND
GERMAN DATASET.

Dataset Representation Accuracy s(↓) Accuracy y(↑)

Adult
Original 0.845 0.856

Ours 0.686 0.828

German
Original 0.690 0.783

Ours 0.592 0.701

TABLE II
COMPARISON OF ACCURACY OF PREDICTING y (↑) AND FAIRNESS (↓)

METRICS OF OUR METHOD WHEN REGULARIZING THE HIGHEST HIERARCHY
(z2), OR BOTH (z1 AND z2) ON THE ADULT DATASET.

Regul. Acc. ∆DP ∆EOD ∆EOP

Single 0.868 0.090 0.120 0.093

Both 0.876 0.089 0.085 0.024

E. Hierarchical Regularization

We analyzed the effect of regularizing our proposed model
in the hierarchical manner compared to only regularizing the
highest level. To evaluate the effect of this full regularization,
we trained (using the Adult dataset) our method (LFR-U)
enforcing uniformity at the highest level (z2) and at both levels
(z1 and z2). The results show that regularizing at multiple levels
further improves fairness with respect to equalized odds and
equal opportunity (Table II). We highlight that existing models
only regularize a single level. Thus, all of our other experiments
are with a single level regularization for a fair comparison.
For this set of experiments, we trained the representation with
higher weight (β = 1) on classifier head without reconstruction
(λ = 0), which led to better accuracy on predicting the class
label and lower fairness.

F. Ablation Study of Uniformity

We analyzed how the flipping probability t affects the learned
representation. The probability t is a hyper-parameter that can
be tuned to improve the accuracy or fairness performance of
the learned representations. The best choice of the flipping ratio
depends on how balanced the different groups in the dataset
are. When groups are not well-balanced in the dataset, samples
from well-represented group will have higher probability to
be flipped compared to samples from underrepresented groups,
which might restore the group balance during the training. In
previous experiments, we used t = 0.5. Figures 8 and 7 show
accuracy and fairness performance across a range of different
values of t for the German and the Adult datasets respectively.

When we set t = 0, it is equivalent to the use the original
dataset. Thus, the model learns to separate different groups in
the latent space. Therefore, the non-uniformity of the sensitive
attribute is enforced. Similarly, when t = 1, all the sensitive
attributes are flipped for the samples; and, again, the non-
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Fig. 6. Prediction accuracy of class labels y (↑) and sensitive attribute s
(↓) from the learned representation of different models. Our model (LFR-U)
provides comparative accuracy for predicting the class label and the sensitive
attribute s. Lower accuracy of predicting s shows that our method attempts to
obfuscate the sensitive attribute information in the data as adversarial-based
models. The symbol ↑ means higher values is better, and ↓ lower is better.
All evaluations are performed on the hold-out test sets.

uniformity is enforced but in a reversed way. Figure 7 shows
in the Adult dataset, the value of t that provides the best fairness
performances is 0.5, the figure shows that the level of unfairness
increases as the value t moves away from 0.5. Similarly, for
the German dataset the value of t that provides better fairness-
accuracy trade-off is between 0.5 and 0.6 (Fig. 8).

V. CONCLUSION AND FUTURE WORK

In this work, we introduced the idea that making a model’s
learned representations unreliable w.r.t. the sensitive attributes
enforces fairness. Our experiments showed that even while
using full data samples (i.e., including the sensitive attribute)
for training, we could obfuscate the sensitive attributes while
maintaining the prediction accuracy of the related tasks.
Moreover, we demonstrated experimentally on two datasets the
advantages of our proposal with respect to the accuracy and
fairness metrics. Interestingly, though our method is designed
to improve fairness in terms of statistical parity, our results
showed that other fairness notions such as equalized odds and
equal opportunities, got positively impacted. To summarize, our
proposal is to enforce uniformity over a prediction head for the
sensitive attributes, and this head is used as a regularizer for the
learned representations. Moreover, we explored a hierarchical
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Fig. 7. Accuracy of y (↑) and fairness (↓) performance of LFR-U with
different flipping probability on Adult dataset.
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Fig. 8. Accuracy of y (↑) and fairness (↓) performance of LFR-U with
different flipping probability on the German dataset.

model of representations that helps in enforcing the fairness
while providing a better prediction performance on class
labels. However, we observed a reduced accuracy compared to
the model trained without fairness constrains. Although this
decrease is less than that for other fair representation learning
techniques, reducing the tradeoff between fairness and accuracy
remains an important issue within the fair ML community.
Another possible research direction could be provide theoretical
guarantees for the representation learned in Algorithm 1, i.e.,



given the participants in a decision-making process, what
fairness guarantees the proposed method can provide.

REFERENCES

[1] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and
A. Galstyan, “A survey on bias and fairness in machine
learning,” arXiv preprint arXiv:1908.09635, 2019.

[2] P. J. Kenfack, A. M. Khan, S. A. Kazmi, R. Hussain,
A. Oracevic, and A. M. Khattak, “Impact of model en-
semble on the fairness of classifiers in machine learning,”
in 2021 International Conference on Applied Artificial
Intelligence (ICAPAI). IEEE, 2021, pp. 1–6.

[3] M. Hardt, E. Price, and N. Srebro, “Equality of
opportunity in supervised learning,” arXiv preprint
arXiv:1610.02413, 2016.

[4] S. Verma and J. Rubin, “Fairness definitions explained,”
in 2018 ieee/acm international workshop on software
fairness (fairware). IEEE, 2018, pp. 1–7.

[5] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and
R. Zemel, “Fairness through awareness,” in Proceedings
of the 3rd innovations in theoretical computer science
conference, 2012, pp. 214–226.

[6] M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva, “Coun-
terfactual fairness,” arXiv preprint arXiv:1703.06856,
2017.

[7] H. Edwards and A. Storkey, “Censoring representations
with an adversary,” arXiv preprint arXiv:1511.05897,
2015.

[8] D. Madras, E. Creager, T. Pitassi, and R. Zemel, “Learning
adversarially fair and transferable representations,” in
International Conference on Machine Learning. PMLR,
2018, pp. 3384–3393.

[9] P. J. Kenfack, A. M. Khan, R. Hussain, and S. Kazmi,
“Adversarial stacked auto-encoders for fair representation
learning,” arXiv preprint arXiv:2107.12826, 2021.

[10] E. Creager, D. Madras, J.-H. Jacobsen, M. Weis, K. Swer-
sky, T. Pitassi, and R. Zemel, “Flexibly fair representation
learning by disentanglement,” in International conference
on machine learning. PMLR, 2019, pp. 1436–1445.

[11] D. Moyer, S. Gao, R. Brekelmans, G. V. Steeg, and
A. Galstyan, “Invariant representations without adversarial
training,” arXiv preprint arXiv:1805.09458, 2018.

[12] R. Feng, Y. Yang, Y. Lyu, C. Tan, Y. Sun, and C. Wang,
“Learning fair representations via an adversarial frame-
work,” arXiv preprint arXiv:1904.13341, 2019.

[13] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee,
“Learning from noisy labels with deep neural networks:
A survey,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[14] Y. Bai, E. Yang, B. Han, Y. Yang, J. Li, Y. Mao,
G. Niu, and T. Liu, “Understanding and improving early
stopping for learning with noisy labels,” Advances in
Neural Information Processing Systems, vol. 34, pp.
24 392–24 403, 2021.

[15] P. Chen, B. B. Liao, G. Chen, and S. Zhang, “Under-
standing and utilizing deep neural networks trained with

noisy labels,” in International Conference on Machine
Learning. PMLR, 2019, pp. 1062–1070.

[16] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork,
“Learning fair representations,” in International confer-
ence on machine learning. PMLR, 2013, pp. 325–333.

[17] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel,
“The variational fair autoencoder,” in International con-
ference on learning representations, 2016.

[18] S. Dutta, D. Wei, H. Yueksel, P.-Y. Chen, S. Liu, and
K. Varshney, “Is there a trade-off between fairness and
accuracy? a perspective using mismatched hypothesis test-
ing,” in International Conference on Machine Learning.
PMLR, 2020, pp. 2803–2813.

[19] J. Avigad, “Uniform distribution and algorithmic random-
ness,” The Journal of Symbolic Logic, vol. 78, no. 1, pp.
334–344, 2013.

[20] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning (still) requires rethinking
generalization,” Communications of the ACM, vol. 64,
no. 3, pp. 107–115, 2021.

[21] S. Bird, M. Dudı́k, R. Edgar, B. Horn, R. Lutz, V. Milan,
M. Sameki, H. Wallach, and K. Walker, “Fairlearn:
A toolkit for assessing and improving fairness in ai,”
Microsoft, Tech. Rep. MSR-TR-2020-32, 2020.

[22] L. Jeff, M. Surya, K. Lauren, and A. Julia, “How we
analyzed the compas recidivism algorithm,” 2016.

[23] A. Asuncion and D. Newman, “Uci machine learning
repository,” 2007.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

APPENDIX A
FLIPPING PROCESS

The flipping process (cf. Section III-A) takes a Bernoulli
over the sensitive attribute, B(u), and flips it using another
independent Bernoulli with probability r, B(r). Given s ∼
B(u), f ∼ B(r), we compute the resulting sensitive value,
sr, from their joint p(s, f) = p(s)p(f), where there are four
possibilities:

p(s = 1, f = 1) = ur, (false fail) (14)
p(s = 1, f = 0) = u(1− r), (true success) (15)
p(s = 0, f = 1) = (1− u)r, (false success) (16)
p(s = 0, f = 0) = (1− u)(1− r). (true fail) (17)

It follows that,

p(sr = 1) =p(s = 0, f = 1) + p(s = 1, f = 0), (18a)
=(1− u)r + u(1− r), (18b)
=r − ur + u− ur, (18c)
=u− 2ur + r, (18d)

and, similarly we find

p(sr = 0) =p(s = 1, f = 1) + p(s = 0, f = 0) (19a)
=1− u+ 2ur − r (19b)

Consequently, the randomized sample p(sr) ∼ B(u−2ur+ r).



APPENDIX B
PROOF OF THEOREM 1

(Restated) Theorem 1: Let two independent Bernoulli
distributions be B(u) and B(r), and a third related to the
parameters of the previous ones be B(u− 2ur+ r). The cross-
entropy between B(u) and B(u− 2ur + r) is an upper bound
of the Kullback-Leibler divergence between the two original
distributions, i.e.,

KL(B(u) ‖ B(r)) < H(B(r),B(u− 2ur + r)). (20)

Proof. The KL divergence between the Bernoullis is

KL(B(u) ‖ B(u− 2ur + r))

= u log
u

u− 2ur + r
+ (1− u) log

1− u

1− u+ 2ur − r
, (21)

and similarly

KL(B(u) ‖ B(r)) = u log
u

r
+ (1− u) log

1− u

1− r
. (22)

By manipulating the former KL (21), we obtain

KL(B(u) ‖ B(u− 2ur + r))

= u log
u

r

r

u− 2ur + r
+ (1− u) log

1− u

1− r

1− r

1− u+ 2ur − r
,

(23a)
= KL(B(u) ‖ B(r))

+ u log
r

u− 2ur + r
+ (1− u) log

1− r

1− u+ 2ur − r
(23b)

= KL(B(u) ‖ B(r)) + C(u, r), (23c)

where C(u, r) is a function of u and r.
Then, we can expand the LHS

KL(B(u) ‖ B(u− 2ur + r)) =KL(B(u) ‖ B(r))
+ C(u, r), (24)

H(B(u),B(u− 2ur + r)) =KL(B(u) ‖ B(r))
+H(B(u)) + C(u, r), (25)

and we can bound it by

H(B(u),B(u− 2ur + r)) > KL(B(u) ‖ B(r)). (26)
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