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Towards pre-emptive resilience in military supply chains: 
A compromise decision support model-based approach
Shehu Sani Mohammed a, Dirk Schaeferb and Jelena Milisavljevic-Syeda

aSustainable Manufacturing Systems Centre (SMSC), School of Aerospace, Transport and Manufacturing, 
Cranfield University, Bedford, UK; bSchool of Engineering, University of Lincoln, Brayford Pool, Lincoln, UK

ABSTRACT
The complex and dynamic nature of military supply chains (MSC) 
requires constant vigilance to sense potential vulnerabilities. 
Several studies have employed decision support models for the 
optimization of their operations. These models are often limited 
to a best single-point solution unsuitable for complex MSC con-
stellations. In this article, the authors present a novel approach 
based on decision support models to explore a range of satisficing 
solutions against disruptions in MSCs using a compromise Decision 
Support Problem (cDSP) construct and Decision Support in the 
Design of Engineered Systems (DSIDES). Two cases were evaluated: 
(1) a baseline scenario with no disruption and (2) with disruption to 
achieve target values of three goals: (1) minimizing lead time, (2) 
maximizing demand fulfilment and (3) maximizing vehicle utiliza-
tion. The results obtained in Case 1 identified a more stable solution 
space with minimal deviations from the target value, while in Case 2 
the solution space was unstable with deviations from the target 
values
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1. Introduction

Supply chain planning and operations is a difficult task for both the military and civilians 
alike, and any weaknesses may affect its ability to satisfy customers or meet combat needs 
(Ganapathy et al., 2003; Burns & Berkowitz, 2010, Bordetsky & Ascef, 2013). These 
weaknesses in the supply chain, maybe a result of numerous failures that have been 
noticed due to a few common disruptions, which include earthquakes, floods, storms, 
hurricanes, and so on (Hatefi et al., 2015). Supply chain managers are forced to adopt 
more resilient approaches to insulate the supply chain from disturbance (Han et al.,  
2020). Furthermore, disruptive events such as fires at distribution centers, natural 
disasters such as floods or earthquakes, or labour strikes at transportation companies 
can have a significant impact on the entire supply chain and must be identified in a timely 
manner in order to implement an appropriate mitigation strategy (Taghizadeh, 2021). 
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A definition of supply chain disruption provided by Craighead et al. (2007) is the 
‘unplanned and unanticipated events that disrupt the normal flow of goods and materials 
within a supply chain’. Gaonkar and Viswanadham (2003) defined supply chain resilience 
as the ability to maintain and recover after being disturbed. Hollnagel et al. (2006) 
defined the pre-emptive resilience capability of a system as the capability to recognise, 
anticipate and defend against the changing shape of risk before adverse consequences 
occur.

Although military and commercial supply chains operate on similar structures of 
three basic levels (producer, distributor, and retailer or end-user), they differ in a number 
of aspects, such as readiness for war at any time, great flexibility during times of war, 
a large diversity of items, and a long span with unstable demand; which demonstrate 
a divergence from standard civilian outcomes (Xiao et al., 2007). The major goal of the 
civilian supply chain is profit, while the major goal of the military supply chain is troop 
readiness (Burns et al., 2010). Another distinct aspect is that in commercial SC the flow of 
products is unidirectional between suppliers and retailers. In military SC, the flow 
between suppliers and end-users is bidirectional mostly because of preventive and 
corrective maintenance of equipment (Sokri, 2014). The complex and dynamic nature 
of the MSC has continuously increased the difficulty in improving its resilience and made 
it a more daunting task for military logistic planners since after the first world war (Sani 
et al., 2022). Therefore, the complexity of the MSC can be seen in the high rate of the 
consumption of military materials as a result of the development of military equipment 
and the widespread employment of sophisticated high-tech weapons in conflict (Xiong 
et al., 2020).

Since combat is reliant on logistics and with more than 70% of the bulk of combat 
supplies, such as ammunition, rations, water, and medical supplies, passing through this 
chain, the MSC logistical activities, equipment, and facilities have become priority attack 
targets for the opponent (Kova’cs et al., 2009, Özceylan and Paksoy, 2014, Pan & Nagi,  
2010; Ross et al., 2008). An example would be an entity that is destroyed or disabled, 
which may impact other interconnected entities (Özdamar and Ertem, 2015). This affects 
the supply chain’s normal operations and could lead to either delays in logistic flows or 
failures in wars (Zhou et al., 2016). According to the Global Terrorism Database (GTD) 
2022 there has been a total of 79 attacks on military bases, logistic facilities, and supply 
lines in northeastern Nigeria between 2011 and 2021. This accounts for about 45% of 
combat causalities (loss of men and equipment) and significantly hindered the progress 
of combat operations in this region (Amao, 2020). Therefore, to boost the chances of 
success in warfare and to avoid undermining the overriding goal of the military’s supply 
chain, which is to keep the war-fighter properly equipped and ready for combat, there is 
a need to develop a viable decision-support tool that highly supports predictive decision- 
making. Motivated by this, the research seeks to address the following gaps; first, several 
studies have focused on improving the level of preparedness for supply chain disruptions 
using traditional decision models like multicriteria decision models, deterministic deci-
sion-making models, and computational simulation/optimization models. These models 
are often limited to a single-point solution (optimization) usually optimal in nature and 
do not provide flexibility for designers/planners to reach a compromise. Designers and 
engineers need an approach for negotiating satisficing solutions for their problems rather 
than optimal solutions due to the increasing complexity and interactions of the system 
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with its environment resulting in more and more uncertainty within the system 
(Nellippallil et al., 2020). Second, with growing interest in the realization of complex 
systems, there is a need for developing methods to explore the solution space that is 
defined by models that approximate reality and are typically incomplete.

The aim of this research is to develop a decision support model based on 
a compromise Decision Support Problem (cDSP) construct and Decision Support in 
the Design of Engineered Systems (DSIDES) to explore a range of satisficing solutions. 
The concept of ‘satisficing’ first used by Simon (Brown, 2004) supposes that a decision 
maker will search for an alternative offering satisfactory performance on all criteria 
without necessarily attempting to maximize this performance. We model a case of 
MSC transportation of ration (water, food) from several base depots to combat units 
operating in a low-intensity conflict region of northeastern Nigeria, highly vulnerable to 
terrorist activity. The solution space was explored based on two cases: (1) a baseline 
scenario with no disruption and (2) disruption at one of the base depots in order to 
achieve target values of three goals: (1) minimizing lead time, (2) maximizing demand 
fulfilment and (3) maximizing vehicle utilization. We were able to identify a range of 
satisficing solutions that would help to mitigate disruptions along the MSC. Our work 
presents a novel approach to using decision support models to explore a range of 
satisficing solutions to manage disruptions in the MSC, using the cDSP construct and 
DSIDES. It would enable practitioners to have a good insight into the important variables 
as well as parameters required to establish a correlation among the various aspects of 
resilience in the supply chain. It also adds valuable insights to the theory and context of 
MSC resilience and recommends the most effective approach to achieve robust decisions 
in the management of disruption in MSC to satisfy daily combat demands.

The remainder of this paper is structured as follows. A review of related work is 
presented in Section 2 followed by an outline of the chosen research methodology in 
Section 3. A detailed elaboration on how the model is developed is presented in Section 4, 
followed by results and discussion in Section 5 and managerial insights in Section 6. 
Finally, conclusions are provided in Section 7.

2. Literature review

2.1. Supply chain disruptions and resilience

According to Barroso et al. (2008), a disruption is ‘an unexpected incident that disrupts 
the normal operation and stability of an organization or a supply chain.’ Supply chain 
disruptions can occur for a variety of reasons, including external factors such as natural 
disasters and internal factors such as a failure to integrate all supply chain operations 
(Ponomarov and Holcomb, 2009). Tang (2006) added that natural catastrophes include 
earthquakes, floods, and hurricanes, as well as man-made calamities, such as terrorist 
attacks, economic crises, and strikes, as a result, the impact of disruption on the supply 
chain is determined by proactive resilience measures as well as recovery contingency 
plans. There have already been numerous definitions of resilient supply chains. 
Christopher and Rutherford (2004), the most well-known authors in this field, underline 
two essential foundations in their broad definition: system flexibility and adaptation. 
Resilience, according to Fiksel (2006) economic definition, is “an enterprise’s ability to 
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survive, adapt, and flourish in the face of chaotic change. “Resilience is defined by Sheffi 
and Rice (2005) as ‘the ability to bounce back from a disruption.’ The basic goal of these 
standards is to construct a supply chain that is resistant to risk.

2.2. The concept of pre-emptive resilience

In the wake of widespread disruptions, supply chain managers need to be pre-emptive for 
event readiness and for reducing the susceptibility to disruptions (Pettit et al., 2010; 
Christopher & Peck, 2004; Jüttner and Maklan, 2011). Hollnagel et al. (2006) described 
the pre-emptive resilience capability of a system as the capability to recognise, anticipate, 
and defend against the changing shape of risk before adverse consequences occur. In 
a similar vein, a supply chain needs to forecast, identify risk, assess risk, and monitor 
deviation, sensing the early warning signal to prepare for mitigating disruptions (Pettit 
et al., 2011; Knemeyer et al., 2009). Further, preparation for recovery can be taken in 
advance if the disaster can be forecasted (Sheffi & Rice, 2005), which is also effective for 
organizations to identify risks in a timely fashion. Such type of risk identification 
initiative helps to know about the sources of risk (Christopher & Peck, 2004). As 
a result, one can take precautions against disruptions. Similarly, pre-emptive approaches 
such as early warning signal analysis are important in the sense that advanced informa-
tion can be obtained about the likelihood of disruptions (Pettit et al., 2010). 
Organizations need pre-emptive capabilities to overcome uncertainties of business 
environments. Such capabilities can also be commensurate with the capability of supply 
chain readiness in the face of turbulence. Therefore, supply chain readiness is essential to 
overcome disruptive events and to develop resilience capability.

2.3. Strategies for building a resilient supply chain

According to Wicher et al. (2012), building resilient supply chains in practice can lead to 
a lot of issues and difficult decisions. The implementation of quality management 
decision-making and logistic approaches are significant components in getting them 
under control.Building reserves and developing inventory plans are two more ways 
mentioned for ensuring a continuous supply over a long period of time and being 
ready to withstand shock. This they said was demonstrated by the US Defense 
Department, which released around 5 million masks from its stockpiles in March 2020 
to aid in the fight against the COVID-19 pandemic.

2.4. Disruptions in the military supply chain

Supply chain disruptions are a combination of the unanticipated triggering event and the 
subsequent effects that risk material flow and normal business operations significantly 
(Wagner & Bode, 2006, Ivanov et al., 2017). Tsiamas and Rahimifard (2021) categorised 
disruptions as ‘anticipated’ which are those with some level of recorded historical data 
about their nature, range, and frequency, while ‘unanticipated’ are those without reliable 
and dependable historical data. Since combat is reliant on logistics, enemy attacks on 
logistics activities, equipment, and infrastructure are inevitable. Hence, an MSC network 
is a priority target for disruptions (Özceylan and Paksoy, 2014, Pan & Nagi, 2010; Ross 
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et al., 2008). As a priority target, MSCs often face disruptions since they operate in 
uncertain and risky environments. Disruptive triggers can be classified into ‘Natural 
(earthquake, floods, fire, etc.) and man-made (terrorist attacks, accidents, etc.)’ 
(Fahimnia et al., 2015) and could disrupt an MSC causing battle losses and casualties. 
Such disruption will thus affect the normal operations of the supply chain (Pettit et al.,  
2010). To live or win in combat, the armed force needs supplies (such as food, water, and 
fuels) which may be subject to natural calamities and terrorism with a high chance of 
jeopardizing the overall success of the operation. For example, in Afghanistan, the US 
military fuel supply chain to forward operating bases suffered frequent roadside bomb 
attacks by terrorists, which jeopardized the army’s ability to complete its missions 
(Davids et al., 2013; Mihály, 2017).

In the wake of COVID-19, both military and commercial supply chains showed low 
resilience and slow recovery capabilities leading to unprecedented vulnerabilities to lead 
times (Ivanov, 2021,). Wincewicz-Bosy et al. (2022) identified and studied the impact of 
COVID-19 on the military food supply chain in Poland using process mapping. The 
conducted research led to the conclusion that the pandemic undoubtedly caused huge 
disruption and prompted the need to revise the existing solutions used in the supply 
chain in order to ensure the continuity of the feeding processes. In their research, 
Gaonkar and Viswanadham (2003), concluded that a wide variety of disruptive events 
including natural disasters and terrorist attacks pose a severe risk to the supply chain. The 
current Russian invasion of Ukraine had severely disrupted and negatively impacted the 
global food supply chain leading to shortages, increased lead times, and price increases 
(Jagtap et al., 2022). Loredo et al. (2015) for RAND Corporation (California, USA), 
identified disruptions in supplier, demand and process and suggested how they can be 
prevented to support Army Material Commands (AMC). Therefore, we identified 
natural disasters, terrorism and war as the reoccurring disruptions associated with 
the MSC.

2.5. Existing models for military supply chain resilience

Military logistic planners should be able to model and predict supply chain 
disruptions in a proactive rather than a reactive way for the purpose of solving 
disruptive event problems (Sani et al., 2022). For a military peacekeeping opera-
tion, Ryczynski and Tubis (2021) developed a risk analysis method that incorpo-
rates the Kaplan and Garrick approach as well as fuzzy theory to build the 
resilience of the fuel supply chain. The model supports decision-making and the 
proper functioning of supply systems in all high-risk conditions. However, the 
model may show insufficient measurement accuracy in complex systems. Xu et al. 
(2016) integrated a defender – attacker game with supply chain risk management, 
and the defender’s optimal preparation strategy. Kaddoussi et al. (2011) proposed 
a general agent framework for disruption management optimization for the 
military with the goal of reducing the impact of disruptions and uncertainty in 
a ‘highly distributed crisis management supply chain’ using a disruption manage-
ment agent (DMA). Similarly, for the purpose of military logistics deployment, 
Salmeron et al. (2009) developed a stochastic mixed integer programming model 
for deployment planning of U.S. sealift cargo delivery in wartime to proactively 
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provide probabilistic information on the time and locations of potential enemy 
attacks on seaports of debarkations (SPODs). However, the results showed that 
with their model, the expected total disruption was reduced only by 8%, which 
shows low resilience against unexpected disruption.

Rogers et al. (2018), designed a military logistics network planning system 
(MLNPS) as an app on the Army’s enterprise resource planning (ERP) system 
(Global Combat Support System-Army), to identify and mitigate logistical problems 
prior to and during the military’s operations. They claimed that the impacts of an 
approaching storm on the logistical network can be predicted using the MLNPS to 
allow commanders time for the network adjustments to reduce the impacts. 
However, as a deterministic tool, the MLNPS does not adequately assess uncertainty 
or permit analysis of risk. Zhao et al. (2011) studied the resilience of complex 
supply network topologies against random and targeted disruptions using a military 
logistic network as a case study. They presented Degree and locality-based attach-
ment (DLA), a hybrid and customizable network growth model in which new nodes 
create connections based on both degree and locality. They discovered that the DLA 
model’s supply network design provides balanced resilience against both random 
and targeted disturbances. However, it is posited that their resilience against 
targeted disruptions is not adequate despite the fact that it has a high probability 
of occurrence.

Xiong et al. (2017) described the modelling of military supply chain networks using 
Arena Simulation, with a focus on evaluating their effectiveness, especially under condi-
tions of disruption. They simulated a POL (petrol, oil and lubricant) network to solve the 
problem of supply chain network effectiveness evaluation from the perspective of 
dynamic and discrete networks. By applying the model and algorithms to a POL supply 
network in a theatre, they obtained the values of supply capability and efficiency metrics 
in a dynamic environment. Kim et al. (2017) designed a new ‘Parallel Model’ to replace 
the ‘Substitute Model’ in the Republic of Korea Military Supply system. Analysis of the 
two models’ critical factors in warfare; the supply line’s destruction ratio and the mean of 
demand using in-system dynamics simulation showed that the parallel supply model was 
a more resilient and effective method in the MSC. Sethi and Sharma (2018) dwelled upon 
the conceptual development of an ideal performance measurement framework for the 
MSC and discussed some of the principal performance measurement frameworks, like 
the Balanced Scorecard and Supply Chain Operations Reference model (SCORM). 
Rossetti and Bright (2018) described the conceptual modelling of bulk petroleum supply 
chains for the U.S. Defense Logistics Agency under contingency planning scenarios, such 
as increased surge demand and disruption events. Their methods, insights, and capabil-
ities were developed to facilitate the analysis of the resilience of commercial bulk 
petroleum supply chains under conditions of disruption. Jenkins et al. (2020) developed 
an integer mathematical programming formulation to determine the location and alloca-
tion of MEDEVAC assets over the phases of a military deployment to support operations 
ranging from peacekeeping through combat to post-combat resolution. Although, these 
models contribute greatly to improving the resilience of the MSC, as the network is 
becoming increasingly complex and evolving, finding the optimal solution is computa-
tionally expensive, and difficult and does not provide the much-needed flexibility of 
selecting alternative solutions. Hence the need to develop a more efficient model.
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2.6. Decision support models for supply chains

To effectively manage supply chain disruption, it is vital to employ appropriate 
decision support models that consider random event.). Raj (2014) concentrated on 
supply chain resilience measurement in terms of recovery time with a new metric 
based on a semiparametric model called the Cox-PH model. The model’s ability to 
capture numerous origins of failure is significant. Taghizadeh and Taghizadeh 
(2021) evaluated the benefit and impact of using digital technology on supply 
chain resilience and presented a simulation model to explore three ‘what-if ’ 
scenarios.

Carvalho et al. (2011) in their research provided a tangible model of an auto-
mobile supply chain. Their simulation study looked at how supply chains behave 
when they are disrupted using Arena simulation. A Supply Chain Disturbance 
Management Fuzzy Decision Support System was proposed by Nunes et al. (2011) 
to simulate the uncertainty associated with the disruptions and their impact on the 
supply chain. Teniwut and Hasyim (2020) stated that the most widely used 
approach in the application of the supply chain decision support system is 
a numerical simulation, which includes the use of linear programming, semantic, 
fuzzy logic, and multi-criteria and multi-objective decision making. Azaron et al. 
(2018) developed a stochastic programming approach for multi-period supply chain 
design problems under uncertainty. The supply chain design problem involved 
making location and allocation decisions to support the required flows in 
a supply chain. Dweiri et al. (2016) proposed a decision support model for supplier 
selection based on the analytic hierarchy process (AHP) using a case of the auto-
motive industry in Pakistan. Although these models have greatly improved the 
performance of supply chains, they cannot be applied to complex problems like 
the MSC. Also, the vastness of data, decision variables, intricate interrelationships 
among variables and system constraints affects the performance of these models 
leading to poor decisions. Therefore, the cDSP presents a promising approach for 
developing decision support models due to its ability to incorporate several uncer-
tainties. A detailed methodology used to achieve the objectives of this research is 
explained in Section 3.

3. Methodology

This study is carried out based on the methodology developed by Mistree (1995) using 
the cDSP for obtaining a range of satisficing solutions. The cDSP is employed in this 
research to develop the model as well as explore the solution space to obtain a range of 
satisficing solutions in order to achieve the goals of minimizing lead time, maximizing 
demand fulfillment and vehicle capacity utilization in the MSC. To understand the 
behaviour of the MSC, the whole network structure consisting of entities of that make 
up the MSC was modelled. Data regarding demand, locations, and transportation as well 
as the variables and parameters were used to formulate the model. While the cDSP was 
used to solve the model and obtain the solution points using DSIDES. The entire process 
is explained in Section 3.1 while Section 3.2 highlights the network structure of the MSC.
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3.1. The compromise Decision Support Problem (cDSP) construct

The cDSP is a hybrid formulation in that it incorporates concepts from both tradi-
tional mathematical programming and goal programming and makes use of some 
new ones (Hughes, 1993; Mistree et al., 1993). According to Ahmed et al. (2014), the 
cDSP is a concept derived from both traditional mathematical programming and goal 
programming for solving multi-objective problems. It provides the opportunity for 
military logistic planners to explore various ranges of satisficing solutions rather than 
traditional models, which are often limited to a single-point solution usually optimal 
in nature and not suitable for complex problems like the MSC. A satisfactory or 
satisficing solution is the point of feasibility where system goals are achieved as close 
as possible (Nellippallil et al., 2020). In the cDSP, the formulation of the objectives is 
in form of system goals, deviation variables, and deviation functions. However, in 
traditional mathematical programming, the modelling of the objective function is 
only done in terms of the system variables. Using the cDSP construct, several 
solutions are identified by carrying out trade-offs among multiple conflicting goals. 
A set of design variables can be found using the cDSP to satisfy the problem’s bounds 
and constraints and at the same time achieve as close as possible a number of 
conflicting objectives. The solution to this problem represents a trade-off between 
that which is desired (as modelled by the aspiration space) and that which can be 
achieved (as modelled by the design space) (Mistree et al., 1993). Therefore, it may be 
impossible to obtain a design that satisfies all the levels of aspiration. Hence, 
a compromise solution has to be accepted (Hernandez et al., 2001; Mistree et al.,  
1993).

The model was developed in six successive steps (Figure 1). The first step is formulat-
ing the supply chain problem. The problem considered in this research is that due to the 
complex and dynamic nature of the MSC, there is a need to develop a viable decision 
support tool that highly supports predictive decision-making to support and facilitate the 
flow of ratio thus improving its resilience by minimizing delivery time, maximizing 
distribution and vehicle utilization. The model is based on an existing military supply 
chain operating in a low-intensity conflict region, where combat units are deployed to 
several crisis-prone locations within northeastern Nigeria . Operating in this high-risk 
area, the ration supply chain is prone to a series of disruptions by terrorist attacks and 
also adverse weather effects like a sandstorm, there is a need for logistic planners to take 
proactive decisions against unexpected disruptions to ensure the continuity of supply.

The second step is framing the cDSP. After creating the design problem, the mathe-
matical model was then formulated by identifying what is given, what needs to be found 
(design variables) and what needs to be satisfied (goals and constraints). After finding 
these, a relationship between them is satisfied. The third step is solving the mathematical 
model using DSIDES. The model is interfaced with the DSIDES to solve the model and 
obtain results. This involved using the DSIDES solver for exercising the cDSP and 
exploring the design space. The general strategy for using DSIDES includes discovering 
regions where feasible designs exist based on satisfying the system constraints and bounds 
or where feasible designs might exist by minimizing the violation of system constraints. 
From the neighbourhood of the better feasible or near feasible regions, refine the feasible 
design space extremities by adjusting the variable bounds and solve the cDSP using a pre- 
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emptive (lexicographic minimum) representation of the system goals and a higher-order 
search algorithm, for example, ALP – Adaptive Linear Programming (Sabeghi et al., 2015).

The fourth step is the exploration of the solution space. As we aim to obtain a range of 
satisficing solutions, the results obtained after solving the mathematical model using 
DSIDES are then used for the solution space exploration in order to identify a range of 
satisficing solutions that satisfy the overall requirements of the logistic planner, which are 
given in the mathematical formulation. To obtain the range of satisficing solutions, 
scenarios being generated are assigned different weights on the goals. Three goals are 
mandated in this method (to be able to use a ternary plot), and Scenarios 7 to 10 are 
recommended as a minimum to cover the aspiration space (Sabeghi et al., 2015). Total of 
13 different scenarios have been run and the final solution value of the deviation variable 
for each goal is documented. The values of deviation variables are normalized between 0 
and 1. Thereafter, ternary plots are generated for each goal using the MATLAB code. 
There are six separate files in the MATLAB code of ternary plots, which are tersurf, 
terplot, ternaryc, termain, terlabel, tercontour and ter_main. The solution space created in 
this plot represents the relation of one goal with respect to the other two.

3.2. Network structure

In this research, the MSC was modelled from the existing network structure, exclusively 
tailored towards the Nigerian Army Supply Chain in which the entities include various 

Figure 1. Research methodology.
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facilities consisting of a three-tier supply chain, which consists of a ration processing unit 
(RPU) (Tier 1), base depots (Tier 2) and combat units (Tier 3) and three levels of decision 
planning (strategic, tactical, and operational) as shown in Figure 2. When compared to 
a regular supply chain, MSCs are one of the most discrete networks with more entities 
and an obvious dynamic element (Xiong et al., 2017). Entities, such as factories, depots, 
and end users, are mutually independent due to functional localization, geographical 
location, capacity, and so on.

The first tier is the production node which constitutes the ration processing unit that 
produces all the ration required to support the final consumer (combat units). 
The second tier of this supply chain is the storage/supply node also known as base depots 
(BD) which encompasses all facilities collecting and storing the ration supplied from the 
RPU for distribution to the combat units. The third tier of the supply chain is the combat 
units that are in need of ration supplies for the smooth conduct of their operation. The 
strategic decision phase covers the period from production to distribution and all 
decisions that have to do with allocation, selection of facilities, and security, while the 
tactical decision phase covers the flow of ration, level of inventory, etc. Lastly, the 
operational decisions phase is about the coordination of the logistics for the purpose of 
meeting the demands of the combat units, on-time delivery, and replenishment.

4. Model development

The model was built and designed the scenarios to test for no disruption and disruption 
at the base depots.

4.1. cDSP mathematical formulation (Initial solution for no disruption)

The model is formulated as a cDSP. There are seven system variables; quantity of ration 
transported from base depot 1,2,3 to combat unit 1,2,3 (x1; x2; x3Þ, number of expected 

Figure 2. Military supply chain network.
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vehicles to transport ration from base depot 1,2,3 to combat unit 1,2,3 x4; x5; x6ð Þ, speed 
of vehicle x7ð Þand three goals to be: (1) minimum delivery time and (2) maximum 
distribution, and 3) maximum vehicle utilization. The mathematical formulation is 
shown in Figure 3.

4.1.1. Assumptions
● The facilities in the entire supply chain have capacity restrictions, such as storage 

limits.
● Only ration flows through the supply chain.
● Ration flow is only in one direction (upstream to downstream).
● No disruption at the combat unit nodes.
● Rations are transported by limited-capacity vehicles.
● Combat demands can be fulfilled by other base depots during disruption.
● Delivery time is equal to or greater than the transportation time.
● The duration of the operation is a minimum of 6 months.

4.1.2. Given
System parameters

Distance from base depot 1 to combat unit 1ðD1Þ ¼ 80:34 km 

Distance from base depot 2 to combat unit 2ðD2Þ ¼ 109:55 km 

Distance from base depot 3 to combat unit 3 D3ð Þ ¼ 51:62 km 

Weekly demand of combat units = 56.7 tons

Base depot supply capacity = 65 tons

Vehicle capacity (C) = 5 tons
Target of goals

Figure 3. Baseline scenario (no disruption).

PRODUCTION & MANUFACTURING RESEARCH 11



Delivery time target = 4 hrs

Delivery target = 65 tons

Number of vehicle target = 11
Function of goals 

f1 xð Þ ¼ ðD1 þ D2 þ D3Þ=x7 (1) 

f2 xð Þ ¼ x1 þ x2 þ x3ð Þ (2) 

f3 xð Þ ¼ x4 þ x5 þ x6 (3) 

4.1.3. Find
System variables

Quantity of ration transported from base depot 1,2,3 to combat unit 1,2,3 (x1; x2; x3Þ

Number of expected vehicles to transport ration from base depot 1,2,3 to combat unit 
1,2,3 x4; x5; x6ð Þ, speed of vehicle x7ð Þ

Deviation Variables

d�1 ; d
�
2 ; d

�
3 (4) 

4.1.4. Satisfy
System constraints

C1 : x1 þ x2 þ x3ð Þ=11 � 65 (5) 

C2 : x1 þ x2 þ x3ð Þ � 65 (6) 

System goals
Delivery Time – Goal 1 

Dt;Target

f 1 xð Þ

� �

� d�1 þ dþ1 ¼ 1 (7) 

Distribution maximization – Goal 2 

f2 xð Þ
DF;Target

þ d�2 � dþ2 ¼ 1 (8) 

Vehicle utilization – Goal 3 

f3 xð Þ
V;Target

þ d�2 � dþ2 ¼ 1 (9) 
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4.1.5. Bounds
0 � x1 � 25 0 � x4 � 4
0 � x2 � 20 0� x5 � 3
0 � x3 � 20 0 � x6 � 4
40 � x7 � 60

4.1.6. Minimize
The deviation function 

Z ¼
X3

i¼1
wi � di� þ diþð Þ

X3

i¼1
wi ¼ 1 (10) 

We minimize the deviation function. The aim is to minimize the over or under 
achievement of a goal from the target specified value. The objective function is repre-
sented as a weighted sum of the deviation variable and is known as the deviation function 
(Z). The objective for us through the cDSP formulation is to minimize these deviation 
variables and achieve the target values of the goals as close as possible.

4.2. cDSP mathematical formulation (disruption at one base depot)

The disruption at one base depot is shown in Figure 4.

4.2.1. Given

System parameters

Distance from base depot 1to combat unit 1 D1ð Þ

Distance from base depot 2 to combat unit 2 D2ð Þ

Figure 4. Disruption at one base depot.
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Distance from base depot 3to combat unit 3ðD3Þ

Weekly demand of combat units = 56.7 tons

Base depot supply capacity = 65 tons

Vehicle capacity (C) = 5 tons
Target of goals

Delivery time target = 4 hrs

Delivery target = 65 tons

Number of vehicle target = 11

Function of goals 

f1 xð Þ ¼ ðD2 þ D3Þ=x7 (11) 

f2 xð Þ ¼ x2 þ x3ð Þ (12) 

f3 xð Þ ¼ x5 þ x6 (13) 

4.2.2. Find

System variables
Quantity of ration transported from base depot 2,3 to combat unit 2,3 (x2; x3Þ

Number of expected vehicles to transport ration from base depot 1,2,3 to combat unit 
1,2,3 x5; x6ð Þ, speed of vehicle x7ð Þ

Deviation Variables

d�1 ; d
�
2 ; d

�
3 (14) 

4.2.3. Satisfy

System constraints

C1 : x2 þ x3ð Þ=11 � 65 (15) 

C2 : x2 þ x3ð Þ � 65 (16) 

System Goals
Delivery Time – Goal 1  

Dt;Target

f 1 xð Þ

� �

� d�1 þ dþ1 ¼ 1 (17) 

Distribution maximization – Goal 2 

14 S. SANI MOHAMMED ET AL.



f2 xð Þ
DF;Target

þ d�2 � dþ2 ¼ 1 (18) 

Vehicle Utilization – Goal 3 

f3 xð Þ
V;Target

þ d�2 � dþ2 ¼ 1 (19) 

Bounds
(1) � x2 � 20 0 � x6 � 4 0 � x5 � 3
(2) � x3 � 20 40� x7 � 6 0

Minimize
The deviation function 

Z ¼
X3

i¼1
wi � di� þ diþð Þ

X3

i¼1
wi ¼ 1 (20) 

4.3. Solving the mathematical model using DSIDES

The model is interfaced with the DSIDES to solve the problem. This involved using the 
DSIDES solver for exercising the cDSP and exploring the design space using a higher- 
order search algorithm, such as Adaptive Linear Programming (ALP). Details of the 
results are given in Section 5.

4.4. Solution space exploration

The results obtained after solving the mathematical model using DSIDES are used for the 
solution space exploration to identify robust solution space. The solution space in the 
cDSP comprises the design space (defined by the constraints and variable bounds) and 
the aspiration space (defined by the goals) (Triantaphyllou & Sánchez, 1997). We 
generated scenarios by assigning different weights to the goals. Three goals are mandated 
in this method (to be able to use a ternary plot), with a recommended minimum of 7 to 
10 scenarios to cover the aspiration space (Sabeghi et al., 2015). We then ran scenarios 
and the final solution value of the deviation MATLAB code. Six separate files were 
prepared in the MATLAB code of ternary plots, which are tersurf, variable for each goal is 
documented. Ternary plots were then generated for each goal using the terplot, ternaryc, 
termain, terlabel, tercontour, and ter_main. The solution space in this plot represents the 
relation of one goal with respect to the other two.

5. Results and discussions

The results obtained from the solution are further used for the solution space exploration 
for the two cases; Case 1(no disruption) and Case 2 (disruption at one base depot).
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5.1. Exploration of the solution space – Case 1 (No disruption)

In exploring the solution space, different weights were assigned for several scenarios. 
A total of 13 different scenarios were assigned for case 1 (no disruption). Details of the 
scenarios are provided in Table 1. These scenarios are selected based on judgment to 
effectively capture the design space for exploration in a ternary space with different 
combinations of weights on goals. While formulating the cDSP, all the goals are normal-
ized, hence the solution for these goals lies between 0 and 1. If the objective is to reduce 
a certain goal, then the lower the value, i.e. closer to 0, the better the solution and, if it is to 
increase, any goal then the closer the value to 1, the better the solution.

On exercising the cDSP for these different scenarios, we are able to obtain setpoints 
and the achieved values of each of the goals. Ternary plots were then constructed. For 
Goal 1, we are interested in identifying regions to minimize the deviation function where 
the delivery time value is nearly 4 h. On analysing Figure 5, the region identified by the 
orange dashed line is a delivery time very close to the specified target value which is 
acceptable. The blue area which contains the minimum value of the deviation variable is 
desired. However, the red area is where less desirable solutions stand where the deviation 
values are large while the desirable stable solutions stand in the blue area. Here, we 
assume that a delivery time of a maximum of 4.02 h is acceptable.

For Goal 2, we are interested in maximizing distribution and the target value identified 
is 65 tons. In Figure 6, we see that the values in the region demarcated by the black dashed 
line are the region where the values of the deviation function are acceptable which is close 
to the target Value 1 on the ternary plot. The acceptable region lies between 0.7 and 1 
which corresponds to any value between 60 and 65 tons. The red region indicates the 
stable and acceptable regions.

For Goal 3, the interest of the logistic planner is to achieve the maximum vehicle 
utilization within the defined limits. The target value for this goal is 11 vehicles. On 
analysing Figure 7, we see that the dark red contour within the blue dashed lines predicts 
the value of the goal close to the target. This indicates the acceptable region from 0.68 
which corresponds to 9 vehicles as the acceptable value for Goal 3.

Since we are interested in identifying regions that satisfy all the three goals mentioned 
above, there is a need to visualize these spaces together in a single ternary plot. Therefore, 
the plots were superimposed. The superimposed plot of the regions of interest in 

Table 1. Scenarios with weights for goals.
Scenarios W1 W2 W3 G1 G2 G3

1 1 0 0 4.02769835 56.70259 7.01671
2 0 1 0 4.83105507 64.9701 3.01415
3 0 0 1 5.83105507 49.7026 10.98269
4 0.6 0.2 0.2 4.02769835 58.9677 7.903421
5 0.2 0.6 0.2 4.02852454 61.9701 10.98269
6 0.2 0.2 0.6 4.026 60.3465 12.32292
7 0.5 0.35 0.15 4.02769835 62.9689 8.97926
8 0.15 0.5 0.35 4.02645633 64.9843 7.99449
9 0.35 0.15 0.5 4.06456332 54.9843 10.9945
10 0.7 0 0.3 4.02622144 57.7144 7.69309
11 0.3 0.7 0 4.0897333 63.9881 8.69467
12 0 0.3 0.7 4.06456332 56.7086 10.99449
13 0.34 0.33 0.33 4.02886721 60.9489 5.97869
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Figure 6. Ternary plot for Goal 2—Distribution.

Figure 5. Ternary plot for Goal 1—Delivery time.
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Figure 7. Ternary plot for Goal 3—Vehicle Utilization.

Figure 8. Superimposed ternary space for all goals.
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a ternary space is shown in Figure 8. The region marked in red satisfies the requirements 
for all three goals. We can identify the common region which in our case is the area in the 
middle of the red hexagon bounded by the yellow and blue lines.

From the superimposed ternary plot, several solutions weights points (A, B, C, D) are 
identified and analysed. The results associated with these solution weight points are 
summarized in Table 3. On analysing Figure 8 and Table 2, it is seen that the red banded 
region satisfies all the requirements for robust decision, maximizing delivery time, 
maximizing distribution, and maximizing number of vehicles utilization in the best 
possible manner.

Next, we identify the system variable values for scenarios obtained by solving the 
cDSP. These system variable values are presented in Table 2. We use these system 
variable values to obtain the actual amount of ration to be transported to the combat 
units as well as the number of vehicles required.

5.2. Exploration of the solution space – Case 2 (disruption at one base depot)

In exploring the solution space, weight was assigned to several scenarios. We have 
also exercised 13 different scenarios for the baseline (no scenario). Different 
weights are assigned to each goal in these scenarios. Details of the scenarios are 
provided in Table 3. While formulating the cDSP, all the goals have been normal-
ized hence the solution for these goals lies between 0 and 1. If the objective is to 
reduce a certain goal, then the lower the value, i.e. closer to 0, the better is the 
solution and, if it is to increase, any goal then the closer the value to 1, the better 
the solution.

Table 3. Scenarios with weights for goals.
Scenarios W1 W2 W3 G1 G2 G3

1 1 0 0 6.03919627 2.90E + 01 2.02E + 00
2 0 1 0 6.35553755 4.00E + 01 2.02E + 00
3 0 0 1 6.35575494 2.90E + 01 7.00E + 00
4 0.6 0.2 0.2 6.03939256 4.00E + 01 6.99E + 00
5 0.2 0.6 0.2 6.03939256 4.00E + 01 6.99E + 00
6 0.2 0.2 0.6 6.03939256 4.00E + 01 6.99E + 00
7 0.5 0.35 0.15 6.04057055 3.99E + 01 6.97E + 00
8 0.15 0.5 0.35 6.03939256 4.00E + 01 6.99E + 00
9 0.35 0.15 0.5 6.03939256 4.00E + 01 6.99E + 00
10 0.7 0 0.3 6.1942591 2.90E + 01 6.99E + 00
11 0.3 0.7 0 6.35575494 4.00E + 01 7.00E + 00
12 0 0.3 0.7 6.35575494 4.00E + 01 7.00E + 00
13 0.34 0.33 0.33 6.03939256 4.00E + 01 6.99E + 00

Table 2. Identified boundary solution points after exploration.

Solution Points

Supply chain Variables Achieved Values of Goals

X1 X2 X3 X4 X5 X6 X7 Delivery Time Distribution Vehicle utilization

A 24.99 19.99 17.98 2.99 2.99 2.99 59.97 4.02 58.96 8
B 29.99 19.99 19.99 3.99 1.99 1.99 59.99 4.02 64.98 8
C 22.99 14.99 16.99 3.99 2.99 3.99 59.99 4.02 54.98 11
D 24.58 18.32 17.44 4.55 2.87 4.89 60 4.79 60.35 12
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For Goal 1, the regions to minimize the deviation function where the delivery time value 
is nearly 4 h were identified. On analysing Figure 9, the region identified by the purple 
dashed line is a delivery time that is within the desirable stable solutions in the blue area. 
Here, we assume that a delivery time of a maximum to 6 h is acceptable but not desired.

For Goal 2, we are interested in maximizing distribution and the target value identified is 
65 tons. In Figure 10, the acceptable region lies between 0.9 and 1 which corresponds to any 
value between 39 and 65 tons. The red region indicates the stable and acceptable regions.

For Goal 3, the interest of the logistic planner is to achieve the maximum vehicle 
utilization within the defined limits. The target value for this goal is 11 vehicles. On 
analysing Figure 11, the dark red contour within the yellow dashed lines predicts the 
value of the goal close to the target. This indicates the acceptable region from 0.8 
which corresponds to 1 corresponding to 7 to 11 vehicles as the acceptable value for 
Goal 3.

From the superimposed ternary plot, several solution weight points (A, B, C) are 
identified and analysed. The results associated with these solution weight points are 
summarized in Table 4. On analysing Figure 12 and Table 3, it is seen that the black- 
banded region satisfies all the requirements for robust decision, maximizing delivery 
time, maximizing distribution, and maximizing number of vehicles utilization in the 
best possible manner. The values of the variables are also shown in Table 4.

6. Discussion

The results obtained indicate that the military logistic planners have a range of 
satisficing solutions to make robust decisions. Likewise, the ternary plots produced 
would assist the logistic planners understands the interactions of a particular goal 

Figure 9. Ternary plot for Goal 1—Delivery time.
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with other goals as different weights are put on them. In analysing the overall results, 
in Case 1, the identified robust solutions space tends to be much smaller when 
compared to Case 2 when there is disruption at one of the base depots, this is due 
to the fact that the state variables, which are quantity of ration transported from base 
depot 1,2,3 to combat unit 1,2,3 (x1; x2; x3Þ; number of expected vehicles to transport 

Figure 10. Ternary plot for Goal 2—Distribution.

Figure 11. Ternary plot for Goal 3—Vehicle Utilization.
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ration from base depot 1,2,3 to combat unit 1,2,3 x4; x5; x6ð Þ and speed of vehi-
cle x7ð Þare not directly influenced by any disruptions hence achieving more stability 
with minimal deviations from the target values. For example, the target value for Goal 
1 which is minimizing delivery time is 4 h, however, the value for Goal 1 obtained in 
Scenario 1 of Table 1 is 4.02 h. This indicates a minimal deviation from the target 
value, which is acceptable. Hence, the region bounded by A, B, C and D satisfies all 
the requirements for robust decision making where the goals of maximizing delivery 
time, maximizing distribution, and maximizing the number of vehicles utilization can 
be achieved in the best possible manner irrespective of the disruption. However, in 
Case 2 where there are disruptions, for example, at one base depot, the variable 
x1andx4 which are directly associated with the base depot disrupted take the value of 
0, while the other state variables, such as the quantity of ration transported from base 
depot 2, 3 to combat unit 2, 3 (x2; x3Þ; number of expected vehicles to transport ration 
from base depot 1, 2, 3 to combat unit 1, 2, 3 x5; x6ð Þ and speed of vehicle x7ð Þ tend to 
be more unstable. This instability indicates the presence of disruption and how the 
effects of the disruption propagate through the supply chain process. This means the 
achieved values for the goals have deviated further away from the target values. For 

Figure 12. Superimposed ternary space for all goals.

Table 4. Identified solution points after exploration.

Solution Points

Supply chain Variables Achieved Values of Goals

X2 X3 X5 X6 X7 Delivery Time (hr)
Distribution 

(tons) Vehicle utilization

A 19.98 19.99 3.99 3.99 39.99 6.04 40 7
B 19.98 19.99 3.99 3.99 39.99 6.04 40 7
C 19.98 19.99 3.99 3.99 39.99 6.04 40 7
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example, the target value for Goal 1 is 4 h while the achieved value is 6.04 h. This 
indicates a huge deviation from the target value. However, the time is still acceptable, 
there will be little delays in the delivery of supplies. Hence, the region bounded by A, 
B and C satisfies all the requirements for robust decision making within an acceptable 
target for the set goals of maximizing delivery time, maximizing distribution, and 
maximizing number of vehicles utilization can be still achieved but with certain 
deviations from the target of the goals set. As for the limitations of this study, it 
should be noted that the DSIDES server is domiciled at the Systems Realization 
Laboratory, University of Oklahoma and permission has to be granted to enable 
usage, which may sometimes lead to delays in accessibility. Another limitation is 
that as the problem becomes more complex with disruptions occurring at two base 
depots and all the base depots (worst case) it became more difficult to achieve 
a convergence hence the solutions were not feasible. Therefore, the disruption sce-
narios had to be limited to just the baseline scenario and disruption at one base 
depot. In addition, the complexity of the MSC had to be because our analyses of the 
scenarios were confined to a limited number of variables and SC locations. Finally, it 
should be noted that research on MSC, unlike research conducted in the civilian 
sphere, is confronted with a lack of access to open data enabling more accurate 
mathematical modelling related to uncertainty and disruptions. Regardless of the 
limitations, the presented analyses and conclusions may be useful in practical, man-
agerial, and scientific dimensions and constitute a starting point for broader, in-depth 
research.

7. Theoretical and managerial implications

The developed formulations contribute by representing real situations and pro-
posing solutions of potential assistance to decision-makers. Therefore, from the 
scientific point of view, the contribution involves a novel approach to developing 
a decision support model that presents designers and engineers the opportunity 
for negotiating satisficing solutions for their problems rather than optimal solu-
tions. Therefore, giving them the flexibility to make trade-offs among the goals, 
and the values of the design variables leading to robust decision-making not 
found in the reviewed literature. However, several practical contributions emerge 
from this research;

● It considers a large number of variables and parameters that give an in-depth 
analysis in distinguishing between desirable and stable and less desirable solutions 
against unexpected disruption.

● It gives the logistic planners and decision makers an insight of certain proactive 
decisions against unexpected disruptions, such as alternative routes, alternative 
modes of transportation, etc., required to improve the resilience of the supply chain.

● The approach facilitates the representation of several situations experienced by 
decision-makers due to the variations mainly in the parameters influenced by 
unexpected disruption.
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8. Conclusion

The authors present research on a decision support model to identify and evaluate 
a range of satisficing solutions for improving the resilience of MSCs during disruption. 
They modelled a military supply chain for providing ration (food and water) to combat 
troops in conflict-prone areas. The supply chain enables the distribution of this ration 
from the base depot to the combat units and is thus prone to disruptions from weather or 
terrorist activity. The model is developed based on two cases: baseline without disruption 
and disruption at one of the base depots. The solution space has been explored with 
a range of satisficing solutions obtained based on the target value of the goals which are 
minimizing lead time, maximizing demand fulfilment, and vehicle utilization. The 
decision support would be instrumental in helping military logistics planners to obtain 
insight into the trade-offs among goals and the values of the design variables leading to 
robust decision making against disruption at various stages in the supply chain.

This research represents a novel approach to using decision support models to 
explore a range of satisficing solutions to manage disruptions in the MSC, using 
the Compromise Decision Support Problem (cDSP) construct and Decision 
Support in the Design of Engineered Systems (DSIDES) as a platform. Our 
work would therefore add valuable insights to the theory and context of MSC 
disruption and recommend the most effective approach to achieve robust deci-
sions in the management of disruption in MSC by minimizing lead time to an 
acceptable time limit, maximizing demand fulfilment and vehicle utilization to 
satisfy daily combat unit demand. Nevertheless, our study suggests several direc-
tions for further research. One exciting research path would focus on a simulation 
model using Anylogistix to improve pre-emptive resilience in case of unexpected 
disruption. Another interesting future research avenue would create generic 
actions to prepare for unexpected disruption through digital technologies that 
enhance end-to-end visibility along the MSC. Finally, another promising research 
path would analyse how predictive analytics can help military logistic planners be 
prepared for unexpected disruption, adjusting their SC accordingly.
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