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1. Introduction

Maintenance is defined as the combination of all the 
technical and administrative actions, including supervision, 
intended to retain an item or restore it to a state in which it can 
perform its required function [1]. In Industry 4.0 context, 
Predictive Maintenance (PdM) is a strategy that utilizes
digitized sensor data along with data analytics to continuously 
monitor the state of machine components or processes to 
determine when and where maintenance may be required.
According to Zhang et al. [2], predictive maintenance can both 

minimize maintenance costs and maximize a device's service 
life.

Industry 4.0 is driven by technologies such as Internet of 
Things (IoT), Big data, Cyber-Physical Systems (CPS), 
Artificial Intelligence (AI), etc. machine operation Data such as 
speed and power and environment data such as humidity is 
often continuously measured and recorded. PdM is realized by 
analyzing such data. PdM can realize high-quality maintenance 
operations and reduce maintenance cost and improve product 
quality and increase customer satisfaction. In addition, 
generating new sources of income is also a potential advantage 
of PdM.
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Although the advantages of PdM have been widely 
recognized, there are several barriers to implementation in 
practice. One of the main barriers is a lack of systematic 
methods to support enterprises in selecting the most suitable 
PdM technique for their specific needs. There are five types of 
PdM techniques used in practice: experience-based, model-
based, physical-based; data-driven; and hybrid. Each one has 
its particular requirements in terms of hardware, software, 
information, etc. Accordingly, implementation cost and time 
for each PdM technique vary, as does their capability spectrum.
PdM technique capability refers to each technique's tasks, such 
as accurate component state prediction, fault prognostic, and 
assets service live extension. Selecting the most suitable PdM 
technique for a given setup or scenario is critical for any 
successful implementation in industry for cost and time 
optimization and, of course, overall financial viability and 
return on investment in the long run. A brief overview of the 
five main PdM techniques being used is provided as follows.

Experience-based PdM techniques are, as the name 
suggests, derived from experience. Human experts gain 
experience and derive specific rules and other factors through 
years of practical experience in maintaining technical systems
[3]. In experience-based PdM, tacit knowledge identifies 
faults, describes component wear and tear, and predicts
component failure [4]. Computer-aided experience-based PdM 
systems can help perform automated diagnostics and 
prognostics runs and be implemented at modest cost and 
varying levels of complexity, such as Excel spreadsheet 
protocols or rule-based expert systems. Another strength of 
experience-based techniques is that they provide explicative 
results [5]. In contrast, a weakness of experience-based 
techniques is that their capability in terms of prognostics is 
rather limited [4].

Data-driven PdM techniques represent the other end of the 
spectrum. In Industry 4.0, manufacturing systems are equipped 
with sensors that can continuously measure and record 
operational data such as vibrations, humidity, noise, and more.
The data obtained from these sensors can then be analyzed to 
monitor and assess component wear and derive prognostics on 
the remaining service life or a component or tool [4]. Several
approaches have been used to build data-driven PdM systems 
in practice, for example, Artificial Neural Network (ANN), 
Support-Vector Machines (SVM), Decision Trees (DT), and
more. Most of them exhibit high accuracy in fault prediction 
and component remaining useful life (RUL) estimating [6-9]. 

Model-based PdM techniques rely on mathematical models 
that can be used to describe/capture the state of degeneration of 
systems or components. Model-based techniques for fault 
diagnosis and prognosis use residuals as features, in which the 
analytical model is used to check the consistency between the 
measured results and the expected behaviour of the process
[10]. Some commonly used models include Markov chains, 
Gaussian, linear system, and Wiener. These models are suitable 
for component RUL estimation since they are regression 
models. In addition to the high prediction accuracy, the most 
significant advantage of model-based techniques is their 
reusability [10]. On the other hand, model-based techniques are 
computationally expensive and require advanced mathematical 
understanding for their development. Another drawback of 

model-based techniques is that mathematical models can only
describe a limited number of wear and tear types. 

Physics-based PdM techniques are based on the laws of 
physics to assess the degeneration of components. They
generate highly accurate component wear and tear simulations
using physics behaviour models [4]. The physics-based and 
model-based techniques can both be described by mathematical 
equations. However, model-based techniques do not 
necessarily have anything to do with physical law or 
phenomenon, and they can be statistical or stochastic equations.
Physics-based models can monitor and assess part wear and tear
utilizing computational simulations. However, only limited
physics wear and tear phenomena can be described and 
simulated accurately, such as fatigue and crack for mechanical 
components, rotor cage damage and degradation evaluation of 
industrial robots. In addition, the external environment, such as 
temperature and pressure, may influence the prediction 
accuracy [11], and the physics-based technique also requires
advanced knowledge in physics to develop.

Hybrid PdM techniques. In Industry 4.0 context, 
manufacturing systems are becoming more complex.  They
often include multiple manufacturing stations or facilities to 
realize the ever-growing demand for high-quality products with 
increased customizability up to a lot size of one, at a 
competitive cost, and decreasing lead times. Not all 
components of such highly sophisticated manufacturing 
systems can be assessed with a single model and thus require 
using several PdM techniques in concert [4,12]. For example, 
Dulaimi et al. [13] present multiple data-driven systems on a 
simulated jet engine; Grabot [14] combines experience-based 
techniques with data-driven techniques for complex systems.
However, the main drawback of the hybrid approach is that it is 
far more expensive to implement than any of the single 
technique PdM systems. 

Although in the proceeding a basic overview of the general 
characteristics of different PdM techniques is presented, their 
successful implementation depends on many other factors, such 
as the machinery to be equipped with PdM technology, the 
exact types of wear and tear to be monitored, implementation 
cost and cost of staff training, the enterprise's long-term strategy, 
return on investment, etc. To date, there is no specific one-size-
fits-all method to allow enterprises to evaluate their specific 
PdM needs effectively and efficiently and to identify the most 
feasible solution(s). To bridge this gap, the authors conducted 
an in-depth critical literature review to identify several key 
factors to be considered in PdM technique selection and 
implementation. Based on this, the authors propose a 
corresponding decision-based framework for helping decision-
makers in industry to devise the right PdM strategy and 
solutions for their specific needs. The remainder of this paper 
is organized as follows. In Section 2, a review of actual 
industrial PdM implementation cases as a baseline to identify 
or deduct relevant factors. The decision-based framework is 
proposed in Section 3, followed by a discussion on limitations, 
future work, and conclusions in Section 4. 
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2. Literature Review

In this section, a summary of the relevant literature review 
pertaining to the identification of key PdM technique selection 
and implementation factors is provided. Accordingly, the 
following research questions are postulated:

• RQ1: What are the key factors affecting PdM technique
selection and implementation in industry?

• RQ2: How do these factors affect the selection of the 
most suitable PdM technique(s)?

Papers covering real life PdM selection and implementation 
case studies of the last ten years are selected for this review.
Cases in the experimental environment are excluded, as are 
simulated cases. The databases used for the search are 
IEEEXplore Digital Library, ScienceDirect, and Springer.
Two quality criteria are used for paper selection which are: 1.
The paper includes the preparation phase (defining the goal of 
PdM implementation, defining critical components, and 
determining the parameter(s) that indicate deterioration). 2.
The paper includes the data acquisition phase (hardware 
infrastructure design and data availability). These two phases 
include most of the information related to PdM technique 
selection and implementation. Key factors identified for
consideration in the PdM selection and implementation process
are as follows.

Data availability is the most frequently-mentioned factor in 
the reviewed literature. It can be divided into two categories.
The first one is historical data availability. Historical data in 
maintenance can be defined as data gathered from technical 
knowledge, inspection, and historical records. In terms of PdM
under Industry 4.0, historical data refers to the recorded system 
condition, including working parameters (speed, force, etc.), 
environment (temperature, pressure, humidity, etc.) and fault 
record. Historical data has a crucial effect on building Data-
driven PdM systems since training, and testing prediction 
models is required [6-9]. The second category is data 
acquisition which refers to acquiring required data. Each type 
of PdM technique, including experience-based, data-driven, 
model-based and physics-based, requires a particular amount 
and quality of data to operate. They differ in terms of data type, 
and their amount and quality vary from one PdM technique to 
another. In the data acquisition process, engineers need to 
consider whether the required data can be collected. For 
example, from machine operation records [15-17] or installed 
sensors to monitor required parameters [6,17,18]. Data 
acquisition is vital to selecting and implementing any type of 
PdM technique because all of them need data to conduct 
prediction.

Critical components in maintenance refer to the 
components that significantly impact maintenance cost, system 
availability, product quality, and safety.  For each scenario, the 
most relevant primary factors need to be chosen. Since each 
technique has its limitations and some can only be applied to 
select components, the most critical components need to be 
identified before evaluating the suitable techniques. 

Expert knowledge refers to the knowledge that supports the 
PdM selection and implementation process. Using expert
knowledge is the primary way to identify critical components, 
define mathematical models in model-based systems [19] or 

physical wear and tear models in physics-based systems [20-
22], and to develop data-driven prediction models [16,18,23].
Typically, most companies can benefit from vast internal expert 
knowledge gained from years of experience. However, if such 
knowledge is not readily available, it may be necessary to 
derive it from past production and maintenance records or look 
for external alternatives. 

Secondary data has a similar function and effect as expert 
knowledge when selecting and implementing PdM. However, 
the source of secondary data and expert knowledge can be 
different. For example, secondary data can be research results 
from research publications, patents or published company 
reports [15,22,24].

Cost. Most of the reviewed literature is focused on verifying 
PdM techniques or systems in practice but lacks detailed cost 
consideration. Albeit cost is one of the most significant factors 
for a successful PdM implementation from a cost-benefit 
analysis or return of investment point of view. The cost of PdM 
implementation includes the cost of sensors, system 
installation, IT systems for data analysis, training for operators, 
consulting, etc. PdM will not be the suitable maintenance 
approach if the cost cannot be justified. 

External support refers to help from research groups or 
professional consultants. Enterprises may need external help in 
any phase of the selection and implementation process.
Seeking external help is because the enterprise-internal 
knowledge and experience cannot support the whole 
implementation process. 

The review in this paper covered publications related to real-
world predictive maintenance applications. Six factors that 
were considered by most of the authors and impact PdM 
technique selection are identified in the selection and 
implementation process. However, no research pointed out the 
direct link between factors and technique selection. The 
following section presents the PdM technique selection 
framework to link the identified factors and PdM technique 
selection.

3. The Decision-Based Framework for Predictive 
Maintenance Technique Selection

A Decision-Based Framework for Predictive Maintenance 
Technique Selection is presented in this section (Figure 1). 

Fig. 1. The Decision-Based Framework for Predictive Maintenance 
Technique Selection.
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The framework is supported by five algorithms that help make 
critical decisions in the PdM implementation process. These 
algorithms are:

(1) Algorithm to Define PdM Implementation Ambition 
Level (Algorithm Ⅰ), 

(2) Algorithm to Define PdM Implementation Critical 
Component (Algorithm Ⅱ), 

(3) Algorithm to Check if Model-based PdM Technique is 
Applicable (Algorithm Ⅲ), 

(4) Algorithm to Check if Physics-based PdM Technique is 
Applicable (Algorithm Ⅳ); and 

(5) Algorithm to Check if Data-driven PdM Technique is 
Applicable (Algorithm Ⅴ). 

They are presented in Sections 3.1-3.5, respectively.
Any enterprise using the framework first needs to evaluate 

their ambition using Algorithm Ⅰ and check the suitable 
techniques for their ambition level. In industry 4.0, PdM 
implementation ambition level referees to ambition or objective 
of enterprise for PdM implementation. Most of the enterprises 
do not claim they have a specific ambition level or objective 
when implementing PdM. However, it is identified that 
enterprises have specific tasks to achieve when developing 
PdM systems, such as diagnosing component accurate future 
state, predicting component RUL and extending assets service 
life. The cost, knowledge, skill, resource and experience 
requirements of achieving these tasks vary case to case basis.
In this paper, the authors defined four ambition levels based on 
the tasks that enterprises are aimed to achieve to describe 
different implementation ambition levels:

• AL 1: diagnose assets fuzzy future state;
• AL 2: diagnose single component accurate future state and 

RUL; 
• AL 3: diagnose multiple component accurate future state 

and RUL; and
• AL 4: extend assets service life through optimized 

maintenance actions.
Next, critical components (CC) and fault types (FT) need to 

be defined using Algorithm Ⅱ. After that, the applicability of 
suitable techniques on the defined critical components needs to 
be evaluated (using Algorithms Ⅲ, Ⅳ or Ⅴ, respectively).
After the applicable technique is defined, the required hardware 
and software can be determined. Next, the implementation cost 
must be evaluated. The PdM technique can be selected and 
implemented if the cost is acceptable. If the cost is not 
acceptable, the other applicable techniques or cheaper hardware 
or software alternatives need to be considered. 

3.1 Algorithms to Define PdM Implementation Ambition Level 
(Algorithm Ⅰ)

For enterprises, the ambition level needs to be defined before 
the selection and implementation process because the required 
cost, knowledge, recourse and time for these levels are 
different. In addition, each PdM technique is only suitable for 
some of these ambition levels. The Algorithms to Define PdM 
Implementation Ambition Level and the Ambition level and 
PdM technique relationship map are presented in this section 
(Figure 2).

Fig. 2. Algorithms to Define PdM Implementation Ambition Level 
(Algorithm Ⅰ) and the Ambition level and PdM technique relationship map.

The Step 1 is to decide whether there is a need to predict the 
system's future state accurately. If not, then ambition level is 
AL1; if yes, then the next is Step 2, predicting multiple 
components, for example, tools, spindle and bearing of one 
milling machine. If there is no need for predicting on multiple 
components, the ambition level is AL 2; if there is, then the next 
is Step 3, extending the assets service life, for example, 
delaying the retirement time of machine. If there is no need for 
extending the assets service life, then the ambition level is AL 
3. Otherwise, the ambition level is AL 4. 

Each PdM technique is only suitable for some of these 
ambition levels. Experience-based technique is mapped with 
AL 1. Enterprises with AL 1 only aimed at predicting system 
or component fuzzy future state. In AL 1, typically, enterprises
aim at making sure no fault will happen on their devices before 
finishing a specific job. In this case, accurate system or 
component RUL prediction is not required. Although all PdM 
techniques can achieve such fuzzy predictions, the experience-
based technique is the only one that requires relatively low cost 
and effort to develop. Other techniques except experience-
based are not cost-effective for AL 1. 

AL 2 is mapped with model-based, physics-based and data-
driven techniques. Enterprises with AL 2 aim to diagnose and 
prognosticate fault of a single component accurately. The 
successful implementation of model-based [19,24], physics-
based [20-22] and data-driven [6,7,9] PdM techniques is 
presented in several publications. The results showed that these 
three techniques can accurately diagnose and predict fault for 
various components. However, model-based and physics-
based may be limited by use cases because they can only 
describe limited part wear and tear. The hybrid approach also 
can achieve such tasks. On the one hand, applying a hybrid 
approach to a single component cannot increase prediction 
accuracy, increasing implementation cost and effort. 

AL 3 is mapped with a model-based, physics-based, data-
driven and hybrid approach. Enterprises with AL 3 aimed at 
accurately diagnosing and prognostic fault of multiple 
components. As described in the preceding paragraph, these 
techniques can accurately diagnose and prognose the fault of 
various components since many successful implementations 
have been published. Compared to data-driven techniques and 
hybrid approaches for multiple components cases, the model-
based and physics-based techniques have limited capability
because they can only describe limited part wear and tear. 

AL 4 is mapped with a data-driven and hybrid approach.
Enterprises with AL 4 aimed to extend assets service life 
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through optimized maintenance actions. Usually, the assets 
service life extension is realized by diagnostic and prognostic 
on several systems or components of assets and optimizing
maintenance planning, for example, rail systems. The quantity 
of components monitored for AL 4 is usually larger than AL 3.
In this case, model-based and physics-based techniques usually 
cannot predict many components since they can only describe 
limited part wear and tears. In this case, a hybrid approach that 
combines different techniques is typically employed to 
compromise the difficulty of predicting many components.

3.2 Algorithm to Define PdM Implementation Critical 
Component (Algorithm Ⅱ)

The second algorithm to support PdM technique selection is 
the Algorithm to Define PdM Implementation Critical 
Component (Figure 3). As presented in Section 2, critical 
components substantially impact PdM technique selection 
because each technique has its characteristics, and some part
wear and tear cannot be accurately described by physical law or 
mathematical model. Therefore, critical components need to be 
defined before evaluating the suitable techniques. Step 1, is to 
determine is their available knowledge within the enterprise to 
define critical components, and fault types need to be examined.
The most applied methods to define critical components uses 
internal expert knowledge and experience to determine critical 
components and fault types [16,18,23]. If unable to define 
critical components with internal knowledge, the next is Step 2,
checking whether the enterprise has history maintenance record 
data to define critical components and fault types. Evaluating 
the components with the highest maintenance rate, cost or effort 
from history maintenance records is another method that 
defines critical components and fault types [18,20,23]. If the 
history maintenance record is unavailable, the next is Step 3, 
determining critical components and fault types from secondary 
data (published research or industry report). Enterprises 
engineers can learn what critical components to select from the 
published research or industry report. Finally, suppose the 
secondary data is unavailable.  In that case, the next is Step 4,
evaluating if the enterprises can receive external research 
groups or consultants to help to define critical components and 
fault types.

3.3 Algorithm to Check if Model-based PdM Technique is 
Applicable (Algorithm Ⅲ)

The third support algorithm is the Algorithm to Check if 
Model-based PdM Technique is Applicable (Figure 3). This 
algorithm starts with Step 1, checking available mathematical 
models to predict component states within the enterprises. The 
reusability of the previously developed mathematical model 
within the enterprise on new cases needs to be checked. If there 
are no available mathematical models within the enterprise, the 
next is Step 2, evaluating whether the enterprise has the expert 
knowledge to develop the mathematical models. For example, 
an enterprise can check if they can develop a Markov chain, 
Gaussian, linear system, or Wiener part wear model. If the 
enterprise cannot create such models, the next is Step 3,
checking whether such mathematical models can be learned 

from secondary data. The secondary data here refers to the 
published mathematical model from research or industry 
reports. For example, if an enterprise predicts fatigue crack 
growth in fuselage panels, they can learn from [19]. If 
secondary data is unavailable, the next is Step 4, evaluating if 
the enterprise can receive external research groups or 
consultants to help define such models. After the model is 
defined, the required data to run the model can be determined.
The last is Step 5, checking if such data can be acquired from 
the system by examining sensor type and location.

Fig. 3. Algorithm to Define PdM Implementation Critical Component 
(Algorithm Ⅱ) and Algorithm to Check if Model-based PdM Technique is 

Applicable (Algorithm Ⅲ).

3.4 Algorithm to Check if Physics-based PdM Technique is 
Applicable (Algorithm Ⅳ)

The following algorithm to support PdM technique selection 
is the Algorithm to Check if Physics-based PdM Technique is 
Applicable (Figure 4). The phases of algorithm Ⅳ are precise 
as algorithm Ⅲ. The only difference between them is that 
algorithm Ⅳ exam the availability, exciting knowledge, 
secondary data and external help for the physics wear and tear
model.

Fig. 4. Algorithm to Check if Physics-based PdM Technique is Applicable 
(Algorithm Ⅳ) and Algorithm to Check if Data-driven PdM Technique is 
Applicable (Algorithm Ⅴ)

3.5 Algorithm to Check if Data-driven PdM Technique is 
Applicable (Algorithm Ⅴ)

The last algorithm to support PdM technique selection is the 
Algorithm to Check if Data-driven PdM Technique is 
Applicable (Figure 4). This algorithm starts with Step 1, 
checking if recorded historical data can be used to train the data-
driven model within the enterprise. If not, the next is Step 2, 
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checking whether these data can be recorded for a period of 
time. If the answer is yes, then the next is Step 3, checking
whether the data-driven prediction model can be developed. If 
not, the next is Step 4, to check if the data-driven model can be 
defined by learning from secondary data. Here, secondary data 
refers to the models updated to the open-source databases or 
published by researchers and companies. At last, if the 
secondary data is not available, the last is Step 5, to consider 
seeking external research groups or consultants help. It should 
be noticed that support Algorithm III, Ⅳ and Ⅴ cannot help to 
decide what specific mathematical, physics or data-driven 
model to use for each technique.

4. Discussion and Conclusions

In industry 4.0, selecting the most suitable PdM technique is 
critical for any successful PdM implementation in the industry 
that leads to cost and time reduction. No method allows
enterprises to select PdM techniques considering their 
situations, such as knowledge and experience on PdM and 
ambition level. Hence, in this paper, we introduced the 
Decision-Based Framework for Predictive Maintenance 
Technique Selection.

The Decision-Based Framework for Predictive Maintenance 
Technique Selection is a process reference framework
supported by five algorithms for the implementation of 
predictive maintenance. It guides enterprises to select a suitable 
PdM technique in the implementation process considering 
several factors identified from the literature review. The 
identified factors are Data Availability, Critical Component, 
Expert Knowledge, Secondary data, Cost and External 
Assistant. This paper linked these factors with the PdM 
techniques, allowing enterprises to assess their situation and 
select suitable PdM techniques.

The limitations of this proposed framework are:
• It is mainly based on research and secondary data from the 

literature. Actual industry data will be analyzed in the next 
phase of the project for refinement and validation. 

• It has not yet been fully validated using real-world test 
cases.

• In this paper, the PdM techniques are applied to critical 
components only. However, some critical components 
may not be benefitted from PdM. In this paper, the method 
for selecting suitable components for PdM is not included. 

As for future work, the focus is on validating the 
applicability and adaptability of the Decision-Based 
Framework for Predictive Maintenance Technique Selection 
conclusively in the first place. In addition, in future work, the
target is to develop a method to select suitable components for 
PdM considering cost efficiency, technology limitation, and 
uncertainty.  
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