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Abstract: It is always problematic that the initial value of the trajectory tracking error must be inside the area included 

in the prescribed performance constraint function. To overcome this problem, a novel fault-tolerant control strategy is 

designed for a second-order Multi-Input and Multi-Output Nonlinear System (MIMO-NLS) with unknown initial states, 

actuator faults, and control saturation. Firstly, a predefined time convergence (PTC) stability criterion is theoretically 

proven. Then, an error conversion function is introduced to convert the trajectory tracking error to a new error variable 

with an initial value of zero, and an adaptive fuzzy system is designed to approximate the compound interference 

composed of actuator fault, parameter perturbation, control saturated overamplitude, and external disturbance. Based on 

the backstepping control method, prescribed performance control method, and predefined time convergence stability 

theory, an adaptive fuzzy fault-tolerant controller for the new error variable is designed and theoretically proven for the 

predefined time convergence of the closed-loop system. The numerical simulation results of the guaranteed performance 

trajectory tracking control for industrial robots with actuator faults demonstrate that the adaptive fuzzy fault-tolerant 

control algorithm has strong fault tolerance to actuator faults and anti-interference capabilities. The convergence time 

and performance of trajectory tracking errors can be preset in advance, and the parameter settings of the prescribed 

performance constraint function are not affected by the initial state values.
 

Keywords: Robot control, fault-tolerant control, predefined time convergence, prescribed performance control 

(PPC), fuzzy system. 

 

1. INTRODUCTION 

 

For uncertain nonlinear systems that are highly 

complex in nature, only designing a controller to maintain 

system stability can no longer meet practical engineering 

requirements. More and more systems have started to pay 

attention to the improvement of controllability and 

suppression of steady-state error, overshoot, convergence 

time, and passive fault tolerance. Thus, the prescribed 

performance control (PPC) method based on the 

prescribed performance function (PPF) is widely utilized 

in the guaranteed performance control of all nonlinear 

systems. However, the parameter setting of the PPF is 

related to the initial value of the system state. When the 

initial value of the system state is outside the areas 

included in the PPF, the guaranteed performance control 

strategy will fail, resulting in the system instability. 

Studying the guaranteed performance control strategy 

with unknown initial state value is of great theoretical 

significance and engineering application value. 

The PPC method is widely utilized in the guaranteed 

performance control of different nonlinear systems 

because it can ensure that the overshoot of the trajectory 

tracking error is less than a set value. At the same time, it 

converges at no less than a certain set convergence speed 

and finally converges to a predetermined small range [1, 

2]. In paper [3], for robot systems with control input 

saturation constraints and parameter uncertainties, a 

performance-preserving control strategy is designed by 

using deep neural networks to approximate the uncertain 

parts of the system. In paper [4], a finite time performance 

function with sine function is constructed, and fuzzy logic 

system is utilized for approximating the uncertain part of 

the second-order nonlinear system. Then, a guaranteed 

performance control algorithm with finite time 

convergence is designed for second-order nonlinear 

system. Paper [5] designed a prescribed performance 

controller with selectable transient performance for 

nonlinear systems by an error conversion method so that 

the output of the closed-loop system converges according 

to the trajectory of the preset curve. Although the existing 

guaranteed performance control strategy can make the 

controlled system have prescribed performance, its design 

premise is that the initial state value of all controlled 
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systems must be inside the areas included in the PPF. 

Estimation of initial state value is always challenging in 

numerous engineering applications and even this value 

will change greatly according to the actual application 

background. Setting a larger parameter value of 

performance constraint function will reduce the control 

effect of the controlled system and waste more control 

energy. Setting a smaller parameter value of performance 

constraint function will limit the application range of the 

controller. To solve the problem of uncertain initial state 

in the PPC, the current paper introduces an error 

conversion function to convert the arbitrary initial value 

of state to the origin, so that the initial value of the 

transformed variable is located at the included areas of 

PPF, and gives a performance-preserving control strategy 

to solve the problem of uncertain initial state. 

The study introduces a cutting-edge and resilient 

strategy designed for global PDT tracking control of robot 

manipulators under inherent uncertainties [6]. Taking into 

consideration the effects of uncertainties and external 

interferences on trajectory tracking performance, the 

strategy employs a nonsingular robust control method, 

complemented by a nonlinear vector. This combination 

ensures that both positional and velocity tracking errors 

converge to the origin within a PDT. Key merits of this 

approach include its structural simplicity, straightforward 

implementation, and provision of an exact controller 

parameter to determine convergence time. The study also 

unveils a robust controller adept at ensuring precise 

trajectory adherence in robotic operations without 

requiring a temporal component within the trajectory 

definition [7]. By leveraging a robust velocity field and a 

controller uninfluenced by specific robot parameters, the 

proposed framework guarantees accurate trajectory 

tracking within a predefined time. Addressing the 

challenges of robust trajectory tracking for robot 

manipulators having uncertainties, the present study 

introduces a novel sliding surface and crafts a robust 

control mechanism to guarantee global approximate 

fixed-time convergence [8]. The analysis confirms that 

positional errors are bound to converge globally to a 

compact set around zero within a uniformly limited 

timeframe, subsequently decaying at an exponential rate. 

The proposed technique boosts faster transient responses, 

enhanced steady-state accuracy, and singularity-free 

operation, among other benefits. However, it utilized a 

fixed time sliding surface. In paper [9], the authors 

delineated a control strategy tailored for redundant 

manipulators, ensuring both PDT convergence of position 

purposes and robustness against model uncertainties and 

external disturbances. By harnessing dynamic consistency, 

this method realizes a rigid task hierarchy, empowering 

the robotic system to meet desired endpoints within its 

functional space, even amidst obstacles and joint 

constraints. Furthermore, article [10] presented a novel 

prescribed performance-tracking control mechanism for 

uncertain robotic manipulators, ensuring stability within a 

finite timeframe. It utilized a modified integral nonlinear 

SM plane and a super-twisting control law. In this study, 

scholars investigated that the system achieves precise 

trajectory tracking control. Notable features comprised 

estimated convergence rates, preset boundaries for 

maximum overshoot, and predetermined steady-state 

control error margins. Moreover, the controller optimized 

control torque without compromising robustness. The 

effectiveness of this control strategy was exemplified 

through industrial robot manipulator simulations, 

demonstrating global stability and finite-time 

convergence. Paper [11] presented a trajectory tracking 

controller for robotic manipulators, uniquely designed to 

operate without a dedicated model. It ensured tracking 

error convergence within a predefined interval, 

irrespective of the initial conditions. Utilizing the 

backstepping technique, the controller methodically 

determined the evolution law of the tracking error. The 

model perceived manipulator dynamics and disruptions as 

undetermined components, employing time-delay 

estimation for their identification. Exact mathematical 

validation confirmed the controller's global uniform 

prescribed-time stability. Its efficacy was further 

validated through simulations on a 2-DOF robot 

manipulator. Many scholars have explored rigorous 

hybrid methods employing predefined time control, such 

as complex neural control. These frameworks primarily 

focus on fixed and finite time [12, 13]. To address this 

research void, we have developed an innovative approach 

for a fuzzy fault-tolerant controller, ensuring optimal 

performance for MIMO-NLS. 

Numerous control algorithms are utilized in the 

guaranteed performance control design of nonlinear 

systems. Traditional PID control has defects, including 

unsatisfactory suppression effect of time-varying 

uncertainties and low control accuracy. Scholars used 

adaptive technology to enhance classical PID, which 

effectively improved the robustness of nonlinear systems 

to uncertain factors. A PI fault-tolerant controller with 

guaranteed performance was designed for nonlinear 

systems by using adaptive law to estimate the control 

gains of PI controller in [14]. Scholars are also trying to 

propose robust control for linear time-varying systems 

with combination of multiagent technology [15, 16]. 

Furthermore, for backstepping control [17], sliding 

mode control [18], neural network control [19], fuzzy 

control [20, 21], and other nonlinear control methods 

combined with the PPC methods, different PPC 

controllers [22] are proposed successively to effectively 

enhance the trajectory tracking transient performance of 

nonlinear systems. However, these methods can only 

make the trajectory tracking errors converge to zero 

asymptotically. In practical control, it is essential to 

improve the convergence speed of nonlinear system. To 

enhance the trajectory tracking speed of nonlinear 

system, the finite time convergence control theory is 

applied to the trajectory tracking control of nonlinear 

system with prescribed performance. In paper [23], a 

finite-time convergence controller with guaranteed 

performance is designed for nonlinear systems with dead 

zones. In actual scenario, the tracking errors of the 

nonlinear systems must converge to a preset area within 
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the prescribed performance requirements. In paper [24], 

a finite time control strategy with guaranteed 

performance based on event-triggered method is 

designed for linear systems experiencing the external 

perturbations, and finite time convergence is achieved. 

Although the finite time control can accelerate the 

convergence rate of trajectory tracking, the convergence 

time depends on the initial value of the system and the 

control parameters, making the convergence time 

uncontrollable [25]. The fixed time control theory was 

proposed by scholars to improve the controllability of the 

system's convergence time [26, 27]. The upper bound of 

the convergence time is independent of the initial value of 

the system. This theory is combined with PPF to design a 

guaranteed performance controller such that the 

convergence time of the trajectory tracking error is only 

dependent on controller parameters. System stability is 

determined by the control parameters that also affect the 

convergence time. The convergence time of the system 

is still difficult to set in advance, and it is hard to meet 

the needs of some engineering applications that 

especially require predetermined convergence. 

Therefore, scholars put forward the convergence concept 

of predefined time. In the PTC theory, the time of 

trajectory tracking error is regardless of the system 

parameters and initial state, and the convergence time 

can be set arbitrarily to make the system convergent as 

well as controllable. The mentioned study and the 

convergence theory of predefined time are introduced in 

[28]. By introducing acceleration function, a Lyapunov 

stability condition for a predefined time with an upper 

bound of convergence time is independent of the control 

parameters, and the initial value of the system is given. 

In addition, a robust controller with PTC is designed so 

that the trajectory tracking error convergence time of 

nonlinear systems can be predetermined in advance. 

Considering the above analysis, the current paper 

will design a fault-tolerant controller with predefined 

convergence time (PCT) and prescribed performance 

constraints of trajectory tracking errors for nonlinear 

systems with actuator faults, control saturation constraints, 

parameter perturbation, and external disturbance. The 

main innovations of this paper are as follows:  

(1) The trajectory tracking error conversion function 

is introduced to convert the trajectory tracking error at any 

initial position into a new variable with an initial value at 

the origin so that the error changes according to the 

prescribed performance constraint function after a 

specified time, and the transient performance of trajectory 

tracking error is guaranteed. It solves the problem that the 

parameters of the PPF cannot be determined when the 

initial state value is unknown in the PPC.  

(2) Using the theory of speed function, the Lyapunov 

stability condition for the PTC is given, and proof is also 

derived. The guaranteed trajectory tracking error 

convergence to any small region within the prescribed 

region is also given. Moreover, the theoretical basis of the 

convergence of predefined time is demonstrated. 

 (3) The control input with actuator fault and control 

saturation constraint was converted to unconstrained 

control input, and the adaptive fuzzy system was designed 

to approximate the compound interference composed of 

actuator fault, parameter perturbation, and control 

saturation over amplitude. The adaptive fuzzy fault-

tolerant controller has been constructed by using the 

combination of the control theory of backstepping and the 

predefined time. The theory proves that the predefined 

time stability of the closed-loop system enhances the 

passive fault tolerance of the nonlinear systems to the 

actuator fault and the strong robustness to the uncertain 

factors. 

The structure of the current paper is given as follows. 

Section 2 describes the control problem, which is the 

unconstrained transformation of the control input with 

actuator fault and control saturation constraints. Section 3 

introduces the transformation method of the PPF and the 

proof of the stability criterion of the PTC. Section 4 

illustrates the main design of adaptive fuzzy fault-tolerant 

controller with PTC and its stability. Numerical 

simulation is given in Section 5 that verifies the proposed 

control and mainly focuses on the dynamic performance 

under faults. The comparative simulation analysis is 

carried out under the conditions that the initial state value 

is outside the included area of the PPF. Then, the initial 

state value is inside the included area of that function for 

which the convergence time is different. Finally, the 

comparative results are discussed in detail with other 

adaptive controllers to verify the effectiveness and 

superiority of our proposed algorithm.
 

 

2.  CONTROL PROBLEM DESCRIPTION 

 

2.1. Nonlinear System Mode  

 

The generalized mathematical model of a MIMO-

NLS with actuator faults is taken as a problem. Consider 

the following nonlinear model:  

1 2

2

1

( ) ( )

( ) ( , ( ), ) ( ) ( ) ( )

( ) ( )

F

t t

t t t t t t

t t

=


= + +
 =

x x

x f θ x B u d

y x
  (1) 

where
1 2( ), ( ) mt t Rx x are the states of MIMO-NLS, 

denoting 
1 2( ) [ ( ), ( )]t t t =x x x ; ( )tθ is the system 

parameter; ( ) mt y R  represents the system output;

( )F mt u R  is the control input of the system having 

actuator fault; ( ) mt d R symbolizes an external 

disturbance of the system; ( )tB  is taken as a bounded 

invertible function matrix having appropriate dimension. 

Furthermore, there exists a constant 1 0M   such that the 

following Lipschitz condition is satisfied:  

d 1 d|| ( , , ) ( , , )|| || ||t t M−  −f θ x f θ x x x
     (2) 

 

2.2. Actuator Fault Model with Control Saturation 

Constraint 

 

The control input of the actual system is generated by 

the actuator, and an association of the control input and 

the torque is produced by the actuator which can be 

described as follows: 

d( ) ( )F t t=u Ηu               (3) 
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where m nΗ R  is the installation matrix of the actuator;

d ( ) nt u R  is the vector formed by the control torque 

generated by an actuator, which is the control input 

actually entered by the actuator into the nonlinear system. 

In practical engineering applications, actuator faults will 

occur due to wear and aging of actuator, and output 

bounded constraints will exist due to physical structure 

limitations. 

Common actuator faults comprise failure fault and 

additive deviation fault. Considering the influence of the 

actuator fault, the relationship between the actual control 

input d ( )tu  and the desired control input c ( )tu  of the 

actuator is as follows: 

( )
d c

c c

( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

t t t

t I t t

= +

= + − +

u F u u

u F u u      (4) 

In the above calculation, c ( )tu  depicts the control 

input from the actuator to the nonlinear system under the 

fault-free ideal state. ( )tu  indicates the additive deviation 

fault of the actuator. 1 2diag( , , , )a a a anf f f=F  is the 

failure loss factor matrix of the actuator. The element aif  

satisfies 0 ali ai auif f f   , for which constants alif and 

auif  are bounds, and 1auif  ; 0aif =  shows the 

complete failure of the actuator; 0< <1aif  designates 

that the i th actuator is invalid; 1aif =  specifies that the 

i th actuator works normally; >1aif  indicates that the i

th actuator is stuck, resulting in the increase of the fault 

gain; 1aif  depicts that the i th actuator is faulty. I  is 

the identity matrix. 

Note 1: In Formula (4), the control input d ( )tu  

with failure fault and additive deviation fault is converted 

into the sum of the actual input c ( )tu  of the system and 

the fault part c( ) ( ) ( ) ( )at I t t= − +δ F u u . 

Limited by the physical structure and safety 

requirements of the actuator, the control input c ( )tu  

under the fault-free ideal state of the actuator has a 

bounded constraint; that is, the maximum value maxu  

exists, and each component c ( )tu is satisfied: 

ci ci max

ci

max ci ci max

| |

sign( ) | |

u u u
u

u u u u


= 


   (5) 

To eliminate the influence of the control input 

saturation constraints on the design of fault-tolerant 

controllers, unconstrained input ( )tu  is introduced, and 

the deviation between bounded constraint input c ( )tu  

and unconstrained input ( )tu  is denoted as follows: 

c( ) ( ) ( )t t t = −u u u          (6) 

By substituting equation (6) and equation (4) into 

equation (3), the actuator fault model with control 

saturation constraints is obtained: 

( ) ( ) ( ) ( )F t t t t= +  +u Ηu Η u Ηδ
   (7) 

When system parameter ( )tθ  has parameter 

perturbation, let 0( ) ( ) ( )t t t= +θ θ θ , where 0 ( )tθ  

denotes the nominal parameter and ( )tθ  is the 

parametric perturbation part. Then, the parametric 

perturbation and actuator fault model are substituted into 

the second-order nonlinear system: 

1 2

2 0

1

( ) ( )

( ) ( , ( ), ) ( ) ( ) ( )

( ) ( )

t t

t t t t t t

t t

=


= + +
 =

x x

x f θ x B Ηu w

y x
  (8) 

where ( )( ) ( , ) ( ) ( ) ( ) ( )t t t t t t=  +  + +w f θ B Η u Ηδ d  is 

the compound interference item comprised of parameter 

perturbation, actuator fault, control saturation constraint, 

and external disturbance. 

The main objective is to design a fault-tolerant 

controller ( )tu  for the second-order nonlinear system (1) 

including parametric perturbation, external disturbance, 

and actuator fault so that the output ( )ty  of  system (1) 

can precisely track the given signal d ( )ty  within any 

predefined time sT . 

 

3. PRESCRIBED PERFORMANCE CONSTRAINT 

FUNCTION TRANSFORMATION AND 

PREDEFINED TIME CONVERGENCE 

 

3.1. Prescribed Performance Constraint Function 

Transformation  

 

For the derivation of the tracking error and 

mathematical proof of the proposed controller, we can 

describe the following form of error which is the error 

between the trajectory tracking and measured output of 

the system. 

d( ) ( ) ( )t t t= −e y y             (9) 

To ensure that the trajectory tracking error has good 

transient performance such as convergence rate, 

overshoot, and steady-state error in the whole control 

process, the PPF is generally adopted to limit the tracking 

error 
1( ) [ ( ), , ( )]mt e t e t =e  within the boundary range 

of the PPF [29]; that is, the trajectory tracking error 

( )ie t satisfies 

( ) ( ) ( )it e t t −               (10) 

where the expression of the PPF ( )t  is 

0( ) ( )e
k t

t    
−

 = − +
      (11) 

where parameters 0 , ,k   denote the preset positive 

constants. 0  denotes the initial value of the PPF;   is 

the steady-state value of that function, regulating the final 

steady-state interval of the performance; k  determines 

the convergence rate of the PPF. 

In the existing PPC strategy, the premise to ensure 
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the establishment of ( ) ( ) ( )it e t t −    is that the 

initial value of tracking error (0)ie  must meet 

0| (0) |ie  . Otherwise, the controller will fail. For the 

guaranteed effectiveness of the controller, it is vital to 

approximate the initial amount (0)ie  of the error to 

determine the value 0  in the performance function 

during the controller design. However, it is difficult to 

estimate the initial value of the controlled system in some 

engineering applications, and even the initial value of 

some nonlinear systems will change randomly. Thus, it is 

impossible to reset the parameter 0  in the performance 

function every time. To solve this problem, the tracking 

error ( )te  is transformed as follows: 

1( ) ( ) ( )t t t=z e
             (12) 

where 1( )tz  is the conversion error of tracking error 

( )te . The conversion function ( )t  is defined as follows: 

sin( ) 0
2( )

1

t
t T

Tt

t T












 

= 
 

     (13) 

where T  is the parameter to be set in the conversion 

function and T  determines the latest time for error ( )te  

to enter the prescribed performance area. Obviously, the 

transformation function ( )t  increases monotonically 

and satisfies 0 ( ) 1t  . According to the definition of 

( )t , 1(0) 0=z  is always true regardless of the value of 

(0)e , which makes the selection of parameter 0  in the 

PPF more free. After time t T , ( ) 1t = , then 

1( ) ( )t t=z e . If the fault tolerant controller can make 

1| ( ) | ( )iz t t  valid, then the tracking error | ( ) | ( )ie t t  

is always valid after the predefined time  t T= . 

After the introduction of transformation function 

( )t , the transformation error vector 1( )tz  satisfies the 

performance function constraint in 0t  . However, the 

error ( )te  satisfies the performance constraint only after 

t T  . In practical engineering applications, when an 

initial cost of the error (0)e  is completely unknown, it is 

not strictly required that the trajectory tracking error ( )te  

meets the performance constraint | ( ) | ( )ie t t   at 

0t =  . However, that trajectory error ( )te   turns 

convergent according to the transient performance of the 

PPF after the predefined time T  . Therefore, 

transformation function ( )t   is utilized for converting 

the error ( )te  into a new conversion error vector 1( )tz . 

It is feasible to design fault tolerant controller based on 

1( )tz . 

 

3.2. Stability Condition for the Predefined Time 

Convergence 

 

In this section, a function and conditions will be 

determined for the PTC of the tracking error. Such kind 

of function for PTC can be taken in the form of a speed 

function [30, 31] as follows:  

( )
, 0

(1 )( ) ( )
( )

1
,

h

s

sh h

f s f s

s

f

T t
t T

b T t b T t
t

t T
b







 

− − +
= 
 



 (14) 

where the constants 0 1fb  , 2h   ; 0sT   is the 

default convergence time; ( )t  is a separate increasing 

function with an initial value of (0) 1 = . Generally, 

2( ) 1t t = +  or ( ) tt e =  can be selected. The velocity 

function ( )t  has the following properties: 

 

1） ( )t  increases monotonically in [0, ]st T  and 

does not change in [ , )st T  . Then, ( )t  is bounded; 

that is, 1 ( ) 1 ft b  . 

2） ( )t  has a continuous and bounded derivative 

( ) ( )i t  up to order 1h i− − , ( 0,1,2, , 1)i h= − . 

3） Let 1( ) ( ) ( )t t t  −= & . Then, ( )t  has a 

continuous and bounded derivative 
( ) ( )i t  up to order

2h i− − , ( 0,1,2, , 2)i h= − . 

Taking the derivative of equation (14), we obtain 
1

2

(1 )( ) [( ) ( ) ( )]
, 0

( ) [(1 )( ) ( )]

0,

h h

s f s s

sh h

f s f s

s

T b T t T t t h t
t T

t b T t b T t

t T

 

 

− − − − +
 

= − − +




     

  (15) 

Lemma 1 [32]：Consider a first-order system

( , )t=η h η ，where ( , )=η z ν , function ( , )th η  is 

piecewise continuous with respect to t  and satisfies the 

local Lipschitz condition with respect to η . For any 

positive number zb , it is assumed that there are 

continuously differentiable positive definite functions 

( )U v  and 1( )V z  such that 1( )V →z  for || || zb→z  

and 1 2(|| ||) ( ) (|| ||)U  ν ν ν  hold (where || ||z  is the 

norm of 2L  space and 1 2( ), ( ) ν ν  are a class K

function). Let 1( ) ( ) ( )V V U= +η z ν ，and || (0) || zbz . 

If the inequality 
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( )
V

V V


=  − + 


η h
η

      (16) 

holds，where the paramaters , 0   , then, there is 

|| ( ) || zt bz  for [0, )t  , and v  is bounded. 

Lemma 2 [32]: For arbitrary positive number zb  

and arbitrary vector ( )tz  satisfying || ( ) || zt bz , the 

following inequality is always true: 
2

2 2

( ) ( )
log

( ) ( ) ( ) ( )

z

z z

b t t

b t t b t t



 

 
 

− − 

z z

z z z z
 (17) 

To make it easier to design a controller with a PTC 

behavior for nonlinear systems, a theorem has been 

established, presenting Lyapunov stability conditions for 

convergence. This criterion is provided in the form of a 

theorem and has been backed up by theoretical proof. 

Theorem 1: For arbitrary predefined time 0sT   

and arbitrary infinitesimal constant 0  , if the non-

negative continuous differentiable function ( )V t  is 

satisfied  

1 2

( )
( ) ( ) ( )

( )

t
V t V t C

t


 


 − + +         (18) 

where the parameters 1 21, 1, 0C    , function ( )t  

is defined as equation (14). If 2,fb   is chosen 

appropriately, ( )V t   will always exist at time st T . 

Proof: According to equation (18),  

2

2

2 1

1 2

1

2 1 1 1

1

1 1

1 1

( )
( ) ( ) ( )

( )

d( ( ) ) ( )
( ( ) ) ( ( ) )

d ( )

d( ( ) ( ( ) ))
( ) ( ( ) )

d

( ) ( ) ( (0) )
t

t
V t V t C

t

V t C t
V t C V t C

t t

t V t C
t V t C

t

V t C t e V C




 


 




 




 

 − −

 − + +

−
 + −  − −

−
  − −

  + −

       

(19) 

where 1 1 2

( )

( )

t
C C

t


 



 
= + 

 
 ; if 2st T  , ( ) 0t =  

holds, then 1 1C C = ；if the value of 1   is large 

enough, 1C   can approach any small positive 

number. According to equation (14), we can get 

1
(1 )( ) ( )

lim ( ) lim
( )s s

h h

f s f s

fht T t T
s

b T t b T t
t b

T t






−

→ →

− − +
= =  . Then, 

2 2lim ( )
s

f
t T

t b
 −

→
=  holds. For the reason of 

20 , 1fb   ，if the value of fb  is small enough，

and the value of 2   is large enough， then, the 

value of 2

fb


 is going to be very small. Because 

1 1
t

e
−
 and (0)V  is bounded，if 20 1, 1fb    ,

1 1    are chosen appropriately， function ( )V t  

approaches any infinitesimal number   at time

st T→ ， meaning lim ( )
st T
V t 

→
=  . Since ( ) 0V t   

and ( ) 0V t   , meaning ( )V t   decreases 

monotonically, combined with lim ( )
st T
V t 

→
=  , we 

know that when st T , we also have ( )V t  . 

4. DESIGN OF ADAPTIVE FUZZY FAULT-TOLERANT 

CONTROLLER 

Fig. 1 depicts the overall control diagram of the 

proposed adaptive fuzzy fault-tolerant controller with 

PTC characteristics. Adaptive fuzzy fault-tolerant 

controller is composed of equivalent controller and 

adaptive fuzzy compensation controller. The equivalent 

controller is designed by the PPC method to ensure the 

PTC and the preset transient performance of the trajectory 

tracking error of the MIMO nominal system. In the 

adaptive fuzzy system, the weighted vector is updated 

according to the system state, and the compensator is 

generated to compensate the compound interference items

( )tw  of the system.

1 2

2

( ) ( )

( ) ( , ( ), ) ( ) ( )F

t t

t t t t t

=


= +

x x

x f θ x B u
Actuator

Fault-tolerant 

controller

Error Transformation

（Preset Performance）

Fuzzy System

e z1

w

x1,x2yd

Control 

saturation

Fault

u

d(t)

Fucu

 
Fig. 1. Structure diagram of adaptive fuzzy fault-tolerant control.  

 

4.1 Design of Equivalent Fault-Tolerant Controller with 

Predefined Time Convergence 

 

The first and the second time derivative of  

1( ) ( ) ( )t t t=z e  
are 

1 2 d( ) ( ) ( ) ( )( ( ) ( ))t t t t t t = + −z e x y
 (20) 

1 2 d

2 d

2 d

0

d

( ) ( ) ( ) 2 ( )( ( ) ( ))

( )( ( ) ( ))

( ) ( ) 2 ( )( ( ) ( ))

( )( ( , ( ), ) ( ) ( )

( ) ( ))

t t t t t t

t t t

t t t t t

t t t t t

t t

 



 



= + −

+ −

= + −

+ +

+ −

z e x y

x y

e x y

f θ x B Ηu

w y

 (21) 
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The backstepping control method is utilized for 

designing an equivalent fault-tolerant controller with PTC. 

Firstly, the virtual controller ( )tα  of 2 ( )tx  is designed 

for subsystem 1 2( ) ( )t t=x x . 

Let 2 2( ) ( ) ( )t t t= −z x α . Consider Lyapunov 

function 

2

1 2

1 1

1 ( )
( ) log

2 ( ) ( ) ( )

t
V t

t t t



 
=

− z z
and its time 

derivative 

1 2 d 1

1 2

1 1

1 2 1

2 2

1 1 1 1

1

d

1 2

2

1 1

( )( ( ) ( ) ( )( ( ) ( )) ( ) ( )
( ) )

( )( ) ( ) ( )

( ) ( ) ( ) ( )
( ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) )

( )

( ) ( ) ( )

( ) ( ) (

t t t t t t t t
V t

tt t t

t t t t
t t

t t t t t t

t t
t t

t

t t t

t t

  






 














 

 





+ −
= −

−

= +
− −

− −


−

z e x y z

z z

z x z
e

z z z z

z
y

z x

z z

d

2 2 2

1 1

2 2

1 1 1 1

1

2)

( ( ) ( ) ( ) ( ) ( )( )

( )( ( ) ( ) ( )) ( ) ( ) ( )

t

b t t t b t tt

tt t t t t t





  

 

 

 

+

 +
+ − 
 − − 

y
e e z z

z z z z

  

(22) 

where constant b  is the bound of ( )t ，constant 
d

by&

is the bound of ，and parameter   is an arbitrary 

positive number. According to the mathematical 

expression of the performance function ( )t , 

inequality ( ) 0t− &  holds，then d ( )ty   =  

d

2 2 2

2

( ( ) ( ) ( ) ( )
0

( )( ( ) ( ) ( ))

b t t t b t

tt t t

  







+
− 

−

y
e e

z z

& & & . Since b  and 

d
by  are unknown, so    is unknown. To make the 

controller have stronger self-adaptability, ̂  is set as 

the estimate of  , and the estimation error is denoted 

as ˆ( )t   = − . A new Lyapunov function 

1 2

2 1( ) ( ) 0.5V t V t r −= +  is constructed. Then, 

1 2 1 1

2 2 2

1 1 1 1

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1 1
ˆ ˆ( ( ) ( ) )

2 2

t t t t t
V t

t t t t t t

t t
r

 

 

    


 

 
 +

− −

+ − +

z x z z

z z z z
  (23) 

The virtual controller of 2 ( )tx is given as 

1 2 1

1 1

1 2 2

1 1

( )
ˆ( ) ( ) ( )

( )

( ) ( )( )
ˆ ˆ2 ( )

( ) ( ) ( ) ( )

t
t k k t

t

t t rt
k k t

t t t t







  

 






= − + +




  = − + + +  − 

α z

z z

z z

  

(24) 

where 1 2,k k  
indicate the parameters of the virtual 

controller to be designed and
1 1 2( ) ,k t k k=  2( )t k= . 

If the value of 2 ( )tx  is ( )tα , the virtual controller 

(24) is substituted into equation (23), and then 

1 1 2 1

2 2

1 1

1 1

2

1 1

1 1

1 2 2

1 1

1 1

2

( )
ˆ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ) 1 1
ˆ ˆ( ( ) ( ) )

2( ) ( ) ( )

( ) ( )( )
( ( ) ( ) )

( ) ( ) ( ) ( )

ˆ( ) ( ) ( ))

( )

t
t t k k t

t
V t

t t t

t t
t t

rt t t

t tt
t k t k

t t t t

t t t

t


 






    




 

 

 

















 
− + + 
 


−

+ + − +
−

= − +
−

−
+

z z

z z

z z

z z

z z

z z

z z 1 1

2

1 1 1 1

1 1

1 2 2

1 1

1 1

2

1 1

1

1 2

( ) ( ) 1

2( ) ( ) ( ) ( ) ( )

1
ˆ ˆ( ( ) ( ) )

( ) ( )( ) 1
( )

( ) 2( ) ( ) ( )

ˆ( ( ) ) ( ) ( )) 1
ˆ ˆ( ( ) ( ) )

( ) ( ) ( )

( )
( )

( )

t t

t t t t t

t t
r

t tt
k k

t t t t

t t t
t t

rt t t

t
k k

t





    



 

  
    









 









+ +
− −

− +

 − + +
−

−
+ − +

−

= − +

z z

z z z z

z z

z z

z z

z z

z 1

2

1 1

1 1

2

1 1

( ) ( ) 1

2( ) ( ) ( )

( ) ( )) 1
ˆ ˆ( ( ) ( ) )

( ) ( ) ( )

t t

t t t

t t
t t

rt t t




    











+
−

+ − +
−

z

z z

z z

z z

 

 

 

1 1

2 1 2 2

1 1

1 1

2

1 1

1 1

1 2 2

1 1

1 1

2

1 1

( ) ( )( ) 1
( ) ( )

( ) 2( ) ( ) ( )

ˆ ˆ( ) ( )) ( ) ( )

( ) ( ) ( )

( ) ( )( ) 1
( )

( ) 2( ) ( ) ( )

( ) ( )) ( )

( ) ( ) ( )

t tt
V t k k

t t t t

t t t t

rt t t

t tt
k k

t t t t

t t t

t t t



 

   






 






















 − + +
−

 +
+ −  − 

= − + + +
−

+
−

z z

z z

z z

z z

z z

z z

z z

z z
1 2

1 1

2

1 1

1 1

1 2 2

1 1

1 1

2

1 1

( )
ˆ( ) 2 2

( )

ˆ ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( ) 1
( )

( ) 2( ) ( ) ( )

ˆ( ) ( ))(1 ( )) ( )(1 ( ))

( ) ( ) ( )

ˆ( )

t
t k k

r t

t t tt

r t t t

t tt
k k

t t t t

t t t t t

rt t t

t


 



 





 

   


















  
+ +  

  
 
 − − − 

= − + + +
−

− −
−

−

+

z z

z z

z z

z z

z z

z z

1 2

( )
2 2

( )

t
k k

r t

 



 
 
 
  
 +  

  

  

(25) 

We can observe that when time t  exceeds the 

time T , and whenever a tracking error arrives the 

included area of the prescribed function, at least there is 

1 ( ) 0t− = . In addition, according to 

2 21 1
ˆ ( )

2 2
     = −  − +

    (26) 

if t T , there is  
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1 1

2 1 2 2

1 1

1 2

1 1

1 2 2

1 1

2 2

1 2 1 2

1 2

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

ˆ( ) ( ) 1
(2 2 )

( ) 2

( ) ( )( ) 1
(2 2 ) log

( ) 2 ( ) ( ) ( )

( ) ( ) 1
(2 2 ) (2 2 )

( ) 2 ( ) 2 2

(2 2

t tt
V t k k

t t t t

t t
k k

r t

t tt
k k

t t t t

t t
k k k k

t r t r

k k



 

  

 



 

   

  











 − +
−

+ + +

 − +
−

− + + + +

 − +

z z

z z

z z

z z

2

2 1 2

( ) ( ) 1
) ( ) (2 2 )

( ) ( ) 2 2

t t
V t k k

t t r

 

  
+ + +

  

(27) 

Since

2

1 2

( ) 1
(2 2 )

( ) 2 2

t
k k

t r

 

 
+ +  is bounded, and it is a 

positive number，according to Theorem 1, if the 

controller parameter is properly selected, 2 ( )V t  will 

always have 2 ( )V t   at time st T T  , where 

denotes an arbitrary small constant, which means that 

1( )tz  has a convergent nature and approaches to zero 

within the predefined time  sT . Combined with the 

properties of the barrier Lyapunov function described in 

Lemma 1, we can observe that 1( )tz  meets the 

performance function constraint 1| ( ) | ( )iz t t . 

Combined with the definition of 1( )tz , the tracking 

error ( )te  satisfies the performance constraint

| ( ) | ( )ie t t  at t T . 

Then, the fault-tolerant controller is designed for 

subsystem 2 0( ) ( , ) ( ) ( ) ( )t t t t t= + +x f θ B Ηu w . Denote

2 2( ) ( ) ( )t t t= −z x α , and consider Lyapunov function as

3 2 2 2

1
( ) ( ) ( )

2
V t V t z t z= + , and we can obtain: 

3 2 2 2

2

1 2 2 1 2

2 0

( ) ( ) ( )( ( ) ( ))

( ) ( ) 1
(2 2 ) ( ) (2 2 )

( ) ( ) 2 2

( )( ( , ( ), ) ( ) ( ) ( ) ( ))

V t V t t t t

t t
k k V t k k

t t r

t t t t t t t

  

  





= + −

 − + + + +

+ + + −

z x α

z f θ x B Ηu w α

(28) 

The proposed controller is given as 

 
1 2 21 1

0

( )
( ) ( )

( ) ( ) ( )

ˆ( , ( ), ) ( ) ( )

t
k k t

t t t

t t t t




− −

 
− + 

=  
 − + − 

z
u Η B

f θ x α w
 

(29) 

Where 1−
H  is the generalized inverse of H . ˆ ( )tw  

is the estimation of ( )tw . Substituting controller (29) 

into equation (28), we get  

2

3 1 2 2 1 2

2 0

2

1 2 2 1 2

1 2 2 2 2

1

( ) ( )
( ) (2 2 ) ( ) (2 2 )

( ) ( ) 2

1
( )( ( , ( ), ) ( ) ( ) ( ) ( ))

2

( ) ( ) 1
(2 2 ) ( ) (2 2 )

( ) ( ) 2 2

( )
( ) ( ) ( ) ( ) ( )

( )

(2 2

t t
V t k k V t k k

t t r

t t t t t t t

t t
k k V t k k

t t r

t
k k t t t t

t

k

  

 



  

  







 

 − + + +

+ + + + −

= − + + + +

− + +

= − +

z f θ x B Ηu w α

z z z w

2

2 2 1 2

1 2 2 2 2

2

1 2 3 1 2

2

( ) ( ) 1
) ( ) (2 2 )

( ) ( ) 2 2

( ) 1
(2 2 ) ( ) ( ) ( ) ( )

( ) 2

( ) ( )
(2 2 ) ( ) (2 2 )

( ) ( ) 2

1
( ) ( )

2

t t
k V t k k

t t r

t
k k t t t t

t

t t
k k V t k k

t t r

t t

  

  





  

 



 



+ + +

− + +

= − + + +

+ +

z z z w

z w

 

where ( )tw  is the estimated error of compound 

interference; that is, ˆ( ) ( ) ( )t t t= −w w w . If the fuzzy 

system can accurately approximate ( )tw , there is 

( ) 0t =w . Since 

2

1 2

( ) 1
(2 2 )

( ) 2 2

t
k k

t r

 

 
+ + is positive 

and bounded，according to Theorem 1, if the controller 

parameters are properly selected, 3 ( )V t  always has 

3 2( )V t   at time st T T  , where 2  is any small 

constant. Obviously, 2 ( )tz  converges to any small area 

of origin at st T ; that is, 2 ( )tx  also converges to that 

area having virtual control input ( )tα  within a 

predefined time sT . According to the property of barrier 

Lyapunov function, 1( )tz  satisfies the performance 

function constraint 1| ( ) | ( )iz t t , and the tracking error 

( )te  also satisfies the performance constraint

| ( ) | ( )ie t t  at t T . 

 

4.2 Adaptive Fuzzy System Approximates Compound 

Interference 
  

 

The compound interference ( )tw  is approximated 

by a fuzzy system composed of single value fuzzification, 

product inference machine, and barycenter average 

defuzzification. Compound interference is the expression 

of 1 2,x x . Therefore, the input of the fuzzy system is 

2

1 2[ , ] mR  = a x x . It is sumed that the fuzzy system is 

composed of N  fuzzy rules. The thi
 

fuzzy rule Ri is as 

follows: If 1a is 1

i , …… , and  2ma is 2

i

m , then s  

is ib    ( 1,2, ,i N= ). As given in the above equation, 
i

j  represents a membership function of 
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(j 1,2, , )ja m= ; then, the output of fuzzy system can be 

given as follows:  
2

1 1

2

1 1

( )

( )

( )

mN
i

i j j

i j

mN
i

j j

i j

a

s

a

 



= = 

= =

= =

 


χ a ζ

      (30) 

where 

2 2

11 1

( ) ( ) ( )
m mN

i i

i j j j j

ij j

a a  
== =

=  a  , 1[ ( ),=χ a

2 ( ), , ( )]N  
a a ,

1 2[ , , , ]N   =ζ . When the 

fuzzy system is utilized to approach the compound 

interference ( )tw , the fuzzy system is designed in the 

form of respective approaching 1 2( ), ( ), , ( )mw t w t w t ; 

that is, the fuzzy system is utilized to estimate the 

components of the compound interference ( )tw . 

2

1 1

1 1

1 1 12

1

1 1

( )

ˆ ( ) ( )

( )

mN
i

i j j

i j

mN
i

j j

i j

a

w t

a

 



= = 

= =

= =

 


χ a ζ

 

2

2 2

1 1

2 2 22

2

1 1

( )
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i
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a
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a

 
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= = 

= =

= =

 


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2

1 1

2

1 1

( )

ˆ ( ) ( )

( )

mN
i
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i j

k k kmN
i

kj j

i j

a

w t

a

 



= = 

= =

= =

 
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which can be re-written as  

1 12

2 22

2

ˆ ( ) 0 0

ˆ 0 ( ) 0
ˆ

ˆ 0 0 ( )

( )

m m

w

w

w







    
    
    = =
    
    
     

=

ζχ a

ζχ a
w

ζχ a

Φ a ζ

(31) 

   When the optimal weighted vector 


ζ  of the fuzzy 

system is obtained, the fuzzy system can accurately 

approximate the compound interference item ( )tw ; that is, 

( ) =w Φ a ζ
            (32) 

In the actual process, it is impossible to obtain the 

optimal weighting vector 
ζ  and only its estimate ζ̂  

can be obtained. Thus, the adaptive modification law of 

the weighting vector of the fuzzy system is 

2 1 2

( )ˆ ˆ( ) (2 2 )
( )

t
k k

t


 



= − +ζ Φ a z ζ
    (33) 

where 0   
is the parameter to be designed.  

Note 1: In many studies, weight vectors of fuzzy 

approximation system do not converge or converge 

asymptotically. However, the weight vector designed in 

this paper can converge in a predefined time. 

 

4.3 Stability Analysis 

 

Theorem 2: Considering MIMO-NLS (1) with 

uncertain parameters, external disturbance, actuator fault, 

and control saturation constraints, if the adaptive fuzzy 

systems (31) and (33) approach compound interference, 

the prescribed performance fault-tolerant controller (29) 

based on adaptive fuzzy systems can ensure that the 

trajectory tracking errors of the nonlinear system are 

uniformly bounded within the predefined time, and the 

trajectory tracking error has preset transient and steady-

state performance. 

Proof：Denoting the weight error of the fuzzy system 

as ˆ= −ζ ζ ζ ，construct a Lyapunov function as 

4 3

1
( ) ( )

2
V t V t



= + ζ ζ
       (34) 

The time derivative of the Lyapunov function is 

 

1

4 3

2

1 2 3 1 2

2

2

1 2 3 1 2

2

1 2 3 1 2

ˆ( ) ( )

( ) ( )
(2 2 ) ( ) (2 2 )

( ) ( ) 2

1 1 ˆ( ) ( )
2

( ) ( )
(2 2 ) ( ) (2 2 )

( ) ( ) 2

ˆ1
( ( ) )

2

( )
(2 2 ) ( ) (2 2

( )

V t V t

t t
k k V t k k

t t r

t t

t t
k k V t k k

t t r

t
k k V t k k

t



  

 

 

  

 

 





− 

 

 

= −

 − + + +

+ + −

= − + + +

+ + −

= − + + +

ζ ζ

z w ζ ζ

ζ
ζ Φ a z

2

1 2

2

1 2 3 1 2

* *

1 2

1 2 4

( )
)

( ) 2

1 ( ) ˆ(2 2 )
2 ( )

( ) ( )
(2 2 ) ( ) (2 2 )

( ) ( ) 2

1 ( ) 1 1
(2 2 )( )

2 ( ) 2 2

( )
(2 2 ) ( )

( )

t

t r

t
k k

t

t t
k k V t k k

t t r

t
k k

t

t
k k V t

t



 





 

  

 



 







 

+ + +

 − + + +

+ + + −

 − + + 

ζ ζ

ζ ζ ζ ζ

(35) 

where

2
* *

1 2

( ) 1
( )( ) 0

( ) 2

t
k k

t r

 

 

 = + + + ζ ζ . 

According to Theorem 1, if the controller parameters are 

properly selected, 4 ( )V t  always has 4 3( )V t   at 

time st T T  . In the above expression, 3  indicates 

a small constant. It depicts that the tracking error of 

MIMO-NLS is going to converge within the predefined 

time sT . It is obvious that the tracking error ( )te  also 

satisfies and meets the performance criterion such as

| ( ) | ( )ie t t  at t T . 

 

5. NUMERICAL SIMULATION ANALYSIS 

 

Consider the dynamic equation of a 2DF 

manipulator with actuator fault, external disturbance, 
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and parameter perturbation [33, 34]: 

( ( )) ( ) ( ( ) ( )) ( ) ( ( )) ( )Ft t t t t t t+ + = +D q q C q ,q q g q u d (36) 

where ( ), ( ) ( )t t tq q q,  denote the angle, angular velocity, 

and angular acceleration of the manipulator, respectively. 

( )F tu  represents the input variable with actuator fault 

constraint and control input saturation constraint. The 

expression for inertia matrix ( ( ))tD q ，centripetal force 

matrix ( ( ), ( ))t tC q q , gravity vector ( ( ))tg q ，and 

external disturbance ( )td  are characterized as 

11 12 11 12 1

21 22 21 2

( ) , ( ) , ( )
0

D D C C g
t t t

D D C g

     
= = =     
     

D C g
 

2 2 2

11 1 1 2 1 2 1 2 2 1 2

2 2

12 2 2 1 2 2 2 22 2 2 2

2

21 2 2 1 2 1 2

( 2 cos( ( )))

( cos( ( )) ),

( cos( ( ) ( )))

c c c

c c c

c c

D m l m l l l l q t I I

D m l l l q t I D m l I

D m l l l q t q t

= + + + + +

= + + = +

= + +

  

11 2 1 2 2 2

12 2 1 2 2 1 2

21 2 1 2 2 1

sin( ( )) ( )

sin( ( ))[ ( ) ( )]

sin( ( )) ( )

C m l l q t q t

C m l l q t q t q t

C m l l q t q t

= −

= − +

=
  

1 1 1 2 1 1 2 2 1

2 2 2 2 1 2

( ) cos( ( )) cos( ( )

( )), cos( ( ) ( ))

c c

c

g m l m l g q t m l g q t

q t g m l g q t q t

= + +

+ = +  

3cos( ) 4sin(0.3 )
( ) 0.2

1.5sin(0.2 ) 3cos(0.5 )

t t
t

t t

+ 
=  

− + 
d

 

In the overall design of robot, the nominal system of 

robot arm is often utilized to design the controller of robot 

arm. The inertia matrix, centripetal force, and gravity 

matrix are decomposed into the sum of nominal matrix 

and perturbation momentum as follows:

0( )= ( ) ( )t t t+D D D ， 0( )= ( ) ( )t t t+C C C ，

0( )= ( )t tg g ( )t+g , where 0 ( )tD ， 0 ( )tC ， 0 ( )tg  are 

nominal matrices and ( )tD ， ( )tC ， ( )tg  are 

perturbation matrices given as: 

0 0( ) 0.05 , ( ) 0.05 ,t t =  =D D C C  0( ) 0.05t =g g
. 

Suppose the maximum allowable input of the 

actuator is Max 300 .N m=u , and the actuator installation 

matrix H , failure coefficient matrix aF , and deviation 

fault ( )tu , respectively, are 

1 1/ 3

0 1/ 3

 
=  
 

H ，
0.7 0

0 0.9
a

 
=  
 

F ，
0.2

( )
0.1

t
− 

=  
 

u
N m 

The actuator fault and parameter perturbation were 

substituted into the manipulator model, and the nominal 

system model of the 2-degree-of-freedom manipulator 

was obtained as follows:  

  0 0 0( ) ( ) ( ) ( ) ( ) ( )+ ( )t t t t t t t+ + =D q C q g u w
  (37) 

From the above calculation, the expression 

( )= ( ) ( ) ( ) ( ) ( )+ ( ) ( ) ( )t t t t t t t t t− − − + +w D q C q g d u η

denotes a compound interference. Let’s take 1( )= ( ),t tx q  

2 ( ) ( )t t=x q . The dynamic equation of the manipulator 

(37) is converted to  

1 2

1 1

2 0 0 2 0 0

1 1

0 0

1

( ) ( )

( )= ( ) ( ) ( ) ( ) ( )

+ ( ) ( ) ( ) ( )

( ) ( )

t t

t t t t t t

t t t t

t t

− −

− −

=


− −


+
 =

x x

x D C x D g

D Hu D w

y x

 

visible，
1

0 0 0 2 0( , ( ), ) ( )( ( ) ( ) ( ))t t t t t t−= − +f θ x D C x g ，

1

0( ) ( )t t−=B D .The membership degree functions of the 

fuzzy system are listed as follows:  
2 2 2

22

( ) ( ) ( ) ( ) ( )
6 24 12 24 24

1 2 3

( ) ( )( ) ( )
6 2412 24

4 5

( ) e , ( ) e , ( ) e ,

( ) e , ( ) e

i i i

i i

    

  

  

 

− + − + −

− −− −

= = =

= =

a a a

aa

a a a

a a
 

 The input of the fuzzy system is 1 2[ ; ]=a x x , and 

there are 45  rules for fuzzy system. The relevant 

parameters in the nominal matrix of the manipulator are 

shown in Table 1.  

 
Table 1. Parametric symbols and values of the robotic 

manipulator. 

Parameter Value Unit 

Robot arm’s mass (m1) 10 kg 

Robot arm’s mass (m2) 5 kg 

Robot arm’s length of joint (l1) 1.00 m 

Robot arm’s length of joint (l2) 0.50 m 

Length of joint (lc1) 0.50 m 

Length of joint (lc2) 0.25 m 

Moment of inertia (I1) 0.83 kg.m2 

Moment of inertia (I2) 0.30 kg.m2 

Gravitational acceleration (g) 9.81 m·s−2 

 

The parametric values used for the simulations of 

the adaptive fuzzy controller are given in Table 2. 

 
Table 2. Demonstration of the controller parametric values. 

Element Description 

Total simulation time  10 s 

Performance function  ρ0=3; ρ∞ =0.1; kρ=0.9 

Transfer function Tφ=2 

Speed Function 
h=5, κ(t)=1+t2,bf=0.008, 

Ts=3 

Fault-tolerant 

controller 
η=100.5;k1=40;k2=0.5; r=0.02 

Reference position 

signal 

y1d =3 sin(3t) 

y2d =3 cos(3t) 

 

5.1 Simulation of Initial State Values Outside 

Prescribed Performance Constraint Functions 
Let the initial angle and initial angular velocity of the 

manipulator be (0) [4.1, 1] , (0) [1.5,1.5]q q = − =  , 

respectively. Obviously, the initial angle of the 

manipulator is outside the inclusion region of the 

performance constraint function. The following figures set 

different convergence rates kρ of performance functions 

for numerical simulation analysis. The simulation results 

are depicted in the following figures (see Fig. 2 to Fig. 6) 

having the parameters kρ=0.6, kρ=0.9, kρ=1.9 kρ=3.1. 
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(a) kρ=0.6 

 
(b) kρ=0.9 

 
(c) kρ=1.9 

 
(d) kρ=3.1 

Fig. 2. Angle tracking curve under different convergence rates. 

 

 
(a) kρ=0.6 

 
(b) kρ=0.9 

 
(c) kρ=1.9 

 
(d) kρ=3.1 

Fig. 3. Angle tracking error under different convergence rates. 
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Fig. 4. Angular velocity tracking curve under different 

convergence rates. 

 
Fig. 5. Angular velocity tracking error under different 

convergence rates. 

 
Fig. 6. Actual control input under different convergence rates. 

 

Both Fig. 2 and Fig. 3 illustrate that angle tracking 

error of the manipulator gradually enters the inclusion 

area of that function from the outside, stays within the 

inclusion area of the PPF after the predefined time 

2T s =  , and finally reaches the steady state within the 

3sT s=  . A large convergence rate will cause angle 

tracking error to jump out of the included region of the 

PPF. However, it guarantees that angle tracking error 

remains within the included region of the PPF after the 

predefined time 2T s =  and remains stable within that 

constraint function region during the preset convergence 

time 3sT s= . Fig. 2 and Fig. 3 indicate that changing the 

convergence rate of the performance function has little 

impact on the convergence of the angular tracking error of 

the manipulator. This demonstrates that our proposed 

control has an advantage to solve the control problem if 

the initial state of the MIMO-NLS is outside the included 

region of the PPF. 

Fig. 4 and Fig. 5 display that under the different 

convergence rates of performance functions, the velocity 

tracking errors of the manipulator can all converge and 

stabilize to 0 after 2.1s, and the convergence time is less 

than the PCT 3sT s=  . Simultaneously, changing the 

convergence speed of the PPF does not disturb the 

convergence characteristics of the angular velocity. 

Fig. 6 shows that the value of the control input is less 

than the maximum value Max 300 .N m=u  of the control 

saturation constraint, and there is no oscillation 

phenomenon. The variation of the convergence rate 

affects the input control torque. A larger convergence rate 

will result in a larger jump in the control torque before 

angle tracking error is convergent. When angle tracking 

error reaches a stable state, the trend of control torque 

under different convergence speeds is similar. 

 

5.2 Simulation of Initial State Value in Prescribed 

Performance Constraint Function 

 

Suppose that the initial angle and initial angular 

velocity of the manipulator are 

(0) [1.1,1.6] , (0) [1.5,1.5]q q = =  , respectively. 

Obviously, the initial value angle is located inside the 

inclusion region of the PPF. The convergence speed of the 

performance constraint function is set as kρ=0.6, kρ=0.9, 

kρ=1.9, kρ=3.1, and the simulation results are shown in 

Fig. 7 to Fig. 11. 

Fig. 7 and Fig. 8 demonstrate that angle tracking 

error of the manipulator is exponentially converged and 

reaches the steady state within 1s. The convergence time 

is less than sT , and the angular velocity tracking error has 

a small overshoot, and there is no chattering. The actual 

simulation results demonstrate that, under the condition of 

the same control parameters, whenever an initial value of 

error is less than the initial value 0 of the PPF, based on 

the fault-tolerant controller designed in this paper, then 

this error can converge to a stable state, and the initial 

value angle tracking error is less than the initial value 0

of the PPF. The faster the convergence time of the tracking 

error of the angular velocity, the better the dynamic 

performance becomes. 

Fig. 9 and Fig. 10 illustrate that the convergence 

trajectory curve of angular velocity tracking error is 

relatively smooth without chattering. The convergence 

time of the tracking error of the angular velocity is 1 

second, which is shorter than the specified convergence 

time of 3 seconds ( 3sT s= ). Different convergence rates 

of PPFs have a little influence on the convergence trend 

and dynamic characteristics of angular velocity tracking 

errors. 

Fig. 11 indicates that when the initial angle tracking 
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error of the manipulator is within the included region of 

the PPF, it takes less time for the actual control torque 

input to the manipulator to reach saturation. During the 

whole control process, the control input torque changes 

smoothly, and there is no chattering phenomenon. 

Changing the convergence speed of the performance 

function does not affect the variation trend of the control 

torque. 

 
(a) kρ=0.6 

 
(b) kρ=0.9 

 
(c) kρ=1.9 

 
(d) kρ=3.1 

Fig. 7. Angle tracking curve under different convergence rates. 

 
(a) kρ=0.6 

 
(b) kρ=0.9 

 
(c) kρ=1.9 
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(d) kρ=3.1 

Fig. 8. Angle tracking error under different convergence rates. 

 
Fig. 9. Angular velocity tracking curve under different 

convergence rates. 

 
Fig. 10. Angular velocity tracking error under different 

convergence rates. 

 

Fig. 11. Actual control input under different convergence rates. 

 

5.3 Simulation of Different PCT  

Let the initial values of the angle and angular 

velocities be set as (0) [1.1,1.6] , (0) [1.5,1.5]q q = =  , 

respectively. The convergence speed of performance 

function is set as kρ=0.9, the time T  in the conversion 

function ( )t   is set to 1s, and the PCT sT   is set as 

1.5s，2s，3s，and 4s correspondingly. The simulation 

results have been depicted in Fig. 12 to Fig. 16. 

 
Fig. 12. Angle tracking curve under different predefined times. 

 

Fig. 13. Angle tracking error under different PCT. 

 

 
Fig. 14. Angular velocity tracking curve under different PCT. 
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Fig. 15. Angular velocity tracking error under different PCT. 

 
Fig. 16. Actual control input under different PCT. 

Fig. 12 and Fig. 13 illustrate that the angle tracking 

error of the manipulator can still converge to a stable state 

before the PCT. Moreover, the convergence time of angle 

tracking errors is less than 1.5s, and the convergence curve 

is relatively smooth. The larger the convergence time, the 

faster the convergence speed angle tracking errors. Upon 

reaching a state of equilibrium, the simulation results 

demonstrate that the angle tracking errors remain constant 

despite any alteration to the controller's parameters and 

the PDCT sT T  . The robotic manipulator's angle 

tracking error gradually converges within the boundaries 

of the PPF and settles into a state of stability. 

Fig. 14 and Fig. 15 reveal that the angular velocity 

tracking error of the manipulator reaches stability within 

1.5 seconds following three adjustments with varying 

predetermined convergence times. This indicates that the 

fault-tolerant controller effectively enables the angular 

velocity of the manipulator to converge to zero within the 

PDCT. Furthermore, the results demonstrate that different 

predetermined convergence times do not significantly 

affect the convergence characteristics of angular velocity 

tracking errors, with a longer convergence time resulting 

in faster convergence of the angular velocity tracking 

errors. 

Fig. 16 displays the variation trend of the actual 

control input torque of the manipulator under different 

PCT. In the whole control process, the control torque 

saturates initially but settles in a legitimate range as the 

state vector settles. When the angle tracking error of the 

manipulator does not reach a stable state, different PCT 

will affect the change of the control input torque. The 

smaller the PCT, the longer the change time of the control 

torque. When angle tracking error reaches a stable state, 

the control input torque under different PCT is the same. 

 

5.4 Comparative Simulation of Different Control 

Methods 

In order to highlight the effectiveness and advantages 

of the proposed algorithm, the controller in paper [17] is 

improved, and an adaptive law is designed to estimate 

complex interference items to compensate the influence of 

uncertain parts on the system. A prescribed performance 

sliding mode adaptive controller (PPSMAC) is designed 

as follows: 

1 1

0 3 3 1 2 3 3
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2 2
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1 2 2
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2
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
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(38) 

where parameters 3 4, 0k k   are controller gains, and the 

trajectory tracking error is 
1 2( ) [ ( ), ( )]t e t e t =e . 

The following simulation results compare the 

proposed algorithm with the prescribed performance 

sliding mode adaptive controller (PPSMAC). PTFTC 

control parameters are unchanged, and the parameters of 

performance function, the actuator fault, and the 

maximum value of control saturation constraint are the 

same as the relevant parameter settings in the PTFTC. The 

controller parameters of PPSMAC are selected as k3= 50; 

c=10; k4= 20. 
The simulation results indicate that when the initial 

angle of the manipulator falls outside the boundaries of 

the PPF, the manipulator, utilizing the PPSMAC, is unable 

to converge. This indicates the limitations of the PPSMC 

in resolving control problems involving initial angles that 

are situated outside the defined performance function. 

When the initial angle of the manipulator is set within the 

PPF, the initial angle and angular velocity are established 

as (0) [1.1,1.6] , (0) [1.5,1.5]q q = = . 

 
Fig. 17. Angle tracking curve under different controllers. 
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Fig. 18. Angle tracking error under different controllers. 

 

 
Fig. 19. Angular velocity tracking curve under different controllers. 

 

Fig. 20. Angular velocity tracking error under different controllers. 

 
Fig. 21. Actual control input under different controllers. 

 

Fig. 17 and Fig. 18 illustrate that both controllers 

effectively ensure that the angle tracking error curve of the 

manipulator evolves within the boundaries of the PPF, 

swiftly converging towards zero and accurately tracking 

the desired signal. Fig. 18 reveals that under the control of 

PPSMAC, although the angle tracking error of the 

manipulator is stable within the PPF, fluctuations are 

present. On the other hand, the PTFTC ensures that once 

the angle tracking error of the manipulator reaches 

stability, the trajectory tracking error curve takes on the 

form of a straight line. The rate of convergence for the 

angle tracking error using the PPSMAC is quicker in 

comparison with that of the PTFTC. Similarly, angular 

velocity tracking curve for both controllers is 

demonstrated in Fig. 19. However, the convergence time 

of angle tracking error with the PPSMAC is unpredictable, 

while the convergence time with the PTFTC can be 

predetermined, enabling better control over the 

convergence time. Fig. 20 demonstrates that under both 

controllers, the angular velocity tracking error of the 

manipulator stabilizes within 1.5 seconds. However, the 

angular velocity tracking error based on the PPSMAC still 

fluctuates to a certain extent and fails to achieve complete 

stability. Fig. 21 shows that the actual control torque trend 

of the two controllers is almost the same. The main reason 

for the similar control effect of the two controllers is that 

no matter how big the control input value is in the 

theoretical calculation, the actual input torque of the two 

control algorithms to the manipulator system is similar 

after the control torque limiting and failure calculation. 

The comparative simulation of the two control 

strategies highlights the following observations: when the 

initial angle of the manipulator falls outside the 

boundaries of the prescribed performance constraint 

function, only the proposed controller can achieve 

stability in the angle tracking error. However, if the initial 

angle of the manipulator is situated within the defined 

performance function, both controllers are effective in 

ensuring that the angle tracking error of the manipulator 

reaches stability. The controller designed in this paper has 

a convergence time that can be predetermined, which 

allows for better control over the convergence time for 

both the angle tracking error and the angular velocity 

tracking error. Additionally, the controller leads to smaller 

steady-state errors for both angle tracking error and 

angular velocity tracking error. 

 
 

6. CONCLUSION 

 

Based on the tracking error conversion function and 

PTC theory, a fault-tolerant control strategy with PCT and 

prescribed performance is designed for second-order 

MIMO-NLS with unknown initial state value, parameter 

perturbation, external disturbance, actuator fault, and 

control saturation constraints. 

(1) A performance-constrained fault-tolerant 

control strategy was developed, adjusting the tracking 

error to meet the desired performance criteria after a 

specified time period and guaranteeing transient 

performance. This approach resolves the issue of 

undetermined performance constraint parameters due to 

unknown initial state values in performance-preset 
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control, thus broadening the applicability of the 

performance-prescribed control method. 

(2) The utilization of a speed function enables the 

establishment of a Lyapunov stability criterion for the 

convergence time that can be set at will. The theoretical 

validity of this criterion is established, thereby enhancing 

the theoretical foundation of PTC. 

(3) The overamplitude saturation variable is 

introduced to convert the control input with actuator fault 

and control saturation constraints into unconstrained 

control input. An adaptive fuzzy system is designed to 

approximate the compound interference. A fault tolerant 

controller with PTC based on adaptive fuzzy system is 

presented to ensure that the error of nonlinear system 

converges to any bounded range within the predefined 

time. The passive fault tolerance of nonlinear system to 

actuator fault and the strong robustness to uncertain 

factors are enhanced, and the application range of fault 

tolerant controller is expanded. 

Although the fault-tolerant controller in the current 

paper enhances the fault-tolerant ability and robustness 

of the nonlinear system, the controller designed in this 

paper contains the nominal variable information of the 

nonlinear system. Under the current development trend 

of artificial intelligence, establishing a model-free 

adaptive fault-tolerant controller and enhancing the 

universality and self-tuning of the controller will be the 

primary development trend in the future. 
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