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A B S T R A C T

This study presents a data-driven, probability embedded approach for the failure prediction of IM7/8552
unidirectional carbon fibre reinforced polymer (CFRP) composite materials under biaxial stress states based
on micromechanical modelling and artificial neural networks (ANNs). High-fidelity 3D representative volume
element (RVE) finite element models were used for the generation of failure points. Fibre failure and the friction
between fibres and matrix after fibre/matrix debonding were taken into consideration and implemented as
VUMAT subroutines, respectively. Uncertainty quantification was conducted based on a coupled experimental–
numerical approach and failure probabilities were inserted into the failure points to generate the database
for the training of ANNs. A total of 15 biaxial stress combinations were considered for the generation of
datasets. Two strategies were considered for the construction of form-free failure criteria based on the ANNs
for regression and classification problems. It is found that for the regression problems, an ANN model with 2
hidden layers and 64 neurons can achieve a mean square error (MSE) of 0.027% and a mean absolute error
(MAE) of 0.78%. For the classification problems, an ANN model with 3 hidden layers and 32 neurons, presents
an excellent performance in the prediction with a probability of 98.1%. A good agreement was observed
between the failure strength of composites under transverse and in-plane shear predicted by these ANNs and
failure envelopes theoretically predicted by Tsai–Wu and Hashin failure criteria.
1. Introduction

Carbon Fibre Reinforced Polymer (CFRP) composites are finding
increasing applications in aerospace, automotive, marine and many
other industries due to their excellent strength and stiffness per unit
weight, as well as the capability of tailoring to achieve desired stiffness
and strength in a specific direction. However, despite years of exten-
sive research on the failure analysis of CFRP composites, a complete
and validated methodology for predicting their failure, including the
progressive failure process, has yet to be fully realised. This is largely
due to their complex failure mechanisms compared to isotropic materi-
als. CFRP composites are hierarchical, spanning three different length
scales (i.e. micro-, meso- and macro-), and it is this ’tyranny of scales’
that makes failure prediction challenging, especially under multiaxial
loading conditions.

A large number of failure theories, criteria and models have been
proposed to predict the ultimate strength of composite lamina/
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laminates. These failure criteria include, but are not limited to, stress-
based non-interactive [1–4], and stress/strain based fully interactive
criteria [5–7]. The more widely used failure criteria and theories were
compared in the ’World Wide Failure Exercises II (WWFE-II)’, according
to their predictive capabilities of the failure strength of composite
lamina/laminates under various loading conditions. It was concluded
that no failure theory could accurately handle all the loading cases
presented [8].

Computational micromechanics analysis is increasingly being utilised
to model the complex failure behaviour of CFRPs under multiaxial
stress states, by taking advantage of the rapid development of com-
puting power. In general, a Representative Volume Element (RVE)
is adopted within the framework of the finite element method by
modelling the constituent and their influence on the mechanical re-
sponse of composites. This approach allows the consideration of the
effects of the geometry and the spatial distribution of the fibres,
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and accurate modelling of matrix and fibre/matrix interface. The
detailed stress or strain field generated can lead to accurate estimates
of the onset and propagation of damage as well as the prediction
of failure strength [9–11]. Moreover, computational micromechanics
modelling provides an alternative to the experimental approaches when
it comes to complicated loading conditions such as biaxial or triax-
ial loads. Recently, micromechanics-based modelling was successfully
applied to investigate the mechanical behaviour of composites under
different combined loading conditions, such as combined transverse
tension/compression and out-of-plane shear [12,13], combined trans-
verse tension/compression and in-plane shear [13–17], and combined
transverse compression and axial tension [18], combined longitudinal
compression and in-plane shear [13]. During the combined transverse
compression and in-plane shear loadings, the friction between the fibres
and matrix, after the fibre/matrix interface fails, plays an important
role in the failure mode transition between interface-dominated failure
in pure shear and matrix-dominated failure in pure compression [15].
This leads to an increase of shear strength under a moderate transversal
compressive stress state, which has been observed experimentally [19]
and predicted analytically [20]. Such effects under moderate com-
pression cannot be predicted by computational micromechanics-based
modelling if the fibre/matrix friction is omitted, as reported in [21,22].
The increase in shear strength can also be captured by assuming arbi-
trarily large fibre/matrix interface shear strength [16]. This, however,
results in unrealistic predictions of the transverse tension and in-plane
shear strengths [15]. The combined effect of friction with cohesive
behaviour has been addressed by other authors [23,24] when using
traditional cohesive elements, which eventually led to the development
of a cohesive element formulation that takes both mechanisms into
account.

In recent years, artificial neural networks (ANNs), within the frame-
work of machine learning, have been explored in the failure prediction
of composite materials [21,25,26]. An ANN consists of three kinds
of layers: an input layer, hidden layer(s) and an output layer. ANN
can discover intricate patterns from a large database by using a back-
propagation algorithm to indicate how a network should change its
internal parameters that are used to compute the representation in
each layer from the representation in the previous layer to match the
target [27]. Thus, it is commonly used either to construct a surrogate
model that can improve the computational efficiency, or to approxi-
mate a function which has no explicit mathematical form or is difficult
to obtain. Yan et al. [28] employed ANNs to construct a surrogate
model using regression for the constitutive law and classification for
the damage information based on unit cell modelling. Failure analy-
sis was performed on open-hole composite laminates under uniaxial
tension with the ANN-based surrogate model and it was found that
the proposed model offered substantive computational benefits over
conventional FE models while maintaining sufficient accuracy. Liu
et al. [29] proposed a new failure criterion for fibre tows within textile
composites based on micromechanical modelling with a mechanics of
structure genome (MSG) and a deep neural network model. Failure
analysis of a plain weave composite example was performed with the
proposed yarn failure criterion and other traditional failure criteria
(i.e. Hashin, Tsai–Wu). It was found that the proposed failure criterion
performs better than traditional ones with regards to accuracy. In
addition, a neural network enhanced system, containing a subsystem
with multiple neural networks was proposed to learn nonlinear in-
plane shear constitutive law and failure initiation criterion of CFRP
composite lamina. Lee et al. [30] conducted biaxial tests on cross-
ply CFRP composite tube under combined axial tension/compression
and torsion with a range of biaxial stress ratios. An ANN was used to
construct the failure criterion for the composite subjected to certain
biaxial loadings and compared to the ones obtained from the Tsai–Wu
failure criterion and a combined optimised tensor polynomial theory.
It was found that the ANN performs best among these three methods,
2

yielding the smallest root-mean-square error. In previous work [21], a
high-fidelity micromechanics-based RVE model was utilised to generate
the failure points under triaxial transverse, out-of-plane and in-plane
shear loadings, and an ANN was used to construct the failure prediction
of IM7/8552 unidirectional composites specifically for those loadings.
This study extended the previous work to a more general failure
prediction which covers various biaxial loading conditions and takes
the failure probability into account. The more data the ANN receives
from other loadings, the more powerful and accurate it becomes.

Computational micromechanics analysis is usually adopted to as-
sess conventional failure criteria through a few biaxial loading condi-
tions [12,13,15–17]. The objective of this study is to construct failure
criteria for IM7/8552 UD composites under biaxial loadings via ANN
models based on computational micromechanical modelling consider-
ing failure probability. The training database contains the failure data
associated with failure probability from all possible biaxial loading
conditions. Failure probability is obtained through coupled numerical–
experimental data under transverse and in-plane shear, which is as-
sumed to follow a Weibull distribution. In this study, computational
micromechanics-based RVE models are developed to provide off-line
training datasets of UD CFRP composite laminae under biaxial loadings,
described in Section 2. The RVE model is built with three different
phases (i.e. fibres, matrix and fibre/matrix interfaces). Periodic bound-
ary conditions are used to apply biaxial loadings. The friction between
the fibres and matrix, after interface failure, is enabled by implement-
ing a cohesive frictional damage model via a VUMAT in ABAQUS. The
fibre failure is predicted using the maximum stress failure criterion, and
the effects of hydrostatic stress on the yielding and damage behaviour
of the epoxy matrix is modelled with a Drucker–Prager plastic damage
model. Five RVE models, with different arrangements of fibres, are
used to compute the failure strengths under biaxial stress states. In
Section 3, densification and pre-processing of data obtained from the
five 3D high-fidelity RVE models are performed using failure proba-
bility with curve fitting. One database with failure probability is used
for regression problems and another one without failure probability
is used for classification problems. Section 4 illustrates the setup,
training, validation and testing processes of ANNs for regression and
classification problems. Results and discussion for both regression and
classification problems of composite failure are given in Section 5.

2. Computational modelling of RVEs

2.1. 3D micromechanics-based RVE models

RVEs have been shown to be a reliable way of predicting the elastic
mechanical properties of the UD composite lamina. In our previous
works [16,21] and that of others [9,13], it has been shown that 50
fibres are sufficient to capture the failure of unidirectional composites
with a fibre volume fraction of 60%. By setting the average fibre
radius to 3.5 μm, based on experimental measurements of IM7/8552
UD lamina [31], an RVE of 50 μm × 50 μm is obtained. It was reported
in [32] that the depth of the RVE has an insignificant influence on
the failure strength prediction under transverse loads. Therefore, an
RVE with 5 μm depth was used for the numerical simulation under
transverse loads [21], while an RVE with 50 μm depth was adopted to
capture fibre failure, as shown in Fig. 1. The microstructure is generated
by a discrete element method-based approach combining experimental
data and an initial periodic shaking algorithm [33]. This algorithm
overcomes the jamming limit appeared in previous methods [34] and
is capable of generating high volume fractions of fibres with random
distributions and controllable inter-fibre distances by shaking an initial
hexagonal packing of the fibres. Two-dimensional RVE model with pe-
riodic fibre distributions was generated and the final RVE was achieved
by extruding the model along the fibre direction.

Five RVE models with random fibre distributions were created

for the generation of failure data, in order to provide training and
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Fig. 1. 3D geometrical RVE models with three phases: (a) RVE models with different fibre distributions, (b) RVE1 with 5 μm depth for inter-fibre failure cases and RVE6 with 50
μm depth for fibre failure cases.
validation datasets for the ANN, see Fig. 1(a). These models were devel-
oped using ABAQUS/Explicit, in which the fibres and the matrix were
discretised with hexahedral solid elements with reduced integration
scheme (C3D8R) and wedge elements (C3D6). A convergence study
was conducted to determine the size of mesh with a good compromise
between result accuracy and computational cost. The interface was
meshed using first-order cohesive elements (COH3D8), as shown in
Fig. 1(b). A periodic mesh was used on the RVE to allow the application
of periodic boundary conditions (PBCs). Mass scaling is sometimes
applied to accelerate numerical simulations in ABAQUS/Explicit. A
ratio of the kinetic energy over the internal energy of the system below
10% suggests that the mass scaling has insignificant effects on the
numerical results [35]. Consequently, the stable time increment was
set to 5 × 10−6 s in this study.

2.2. Constitutive models of fibres, matrix and interface

2.2.1. Constitutive model of fibres
The carbon fibres were modelled as linearly elastic, transversely

isotropic solids. For the fibre failure cases where longitudinal tension
and compression are involved, the maximum stress failure criterion
was used to model the brittle fracture of fibres. The criterion was
implemented into ABAQUS/Explicit via a VUMAT subroutine. The
maximum stress failure criteria compare the measured strengths of
a given material with the calculated stresses. Therefore, tensile and
compressive failure of fibres can be predicted by:

𝐹𝑡 =
𝜎11
𝑋𝑡

, 𝑓𝑜𝑟 𝜎11 > 0, (1)

𝐹𝑐 = −
𝜎11
𝑋𝑐

, 𝑓𝑜𝑟 𝜎11 < 0. (2)

where 𝐹𝑡 and 𝐹𝑐 are the failure indices for longitudinal tensile and
compression failure, respectively. 𝜎11 is the stress of fibre in the longitu-
dinal direction, and the fibre fails immediately when the indices reach
3

one. 𝑋𝑡 and 𝑋𝑐 are the uniaxial longitudinal tensile and compressive
failure strengths of fibres, respectively. Under longitudinal compres-
sion, composite failure is triggered by the mechanism of fibre kinking,
which is strongly influenced by elastic properties and geometry of the
fibres [36] as well as manufacturing-induced void content [37] and
other imperfections [38]. A 3D RVE model containing 50 fibres resulted
in 1.2 million DOFs with a fibre length of 500 μm and took over 72 h to
complete a single simulation under uniaxial longitudinal compression
using an HPC cluster and GPU acceleration [39]. It is impractical to
use such a model to generate failure points under biaxial loadings.
Although the single fibre unit cell RVE can predict a similar ultimate
load as the one obtained from the multi-fibre RVE, it cannot capture
kinking banding features [39]. On the other hand, in the biaxial loading
condition, two different failure modes compete at the transition point
and one failure mode dominates when it is far from the transition
point [15,16]. It is still challenging to conduct the biaxial longitudinal
related simulations with the fibre kinking feature taken into account.
When such a model is developed, failure data under biaxial longitudinal
related loadings can be easily replaced for an improved ANN. There-
fore, to keep the loading approach consistent with periodic boundary
conditions, a simplified RVE model was adopted with degraded fibre
strengths to represent the aforementioned uncertainties. It should be
noted that although this RVE model cannot capture the kinking band,
it can predict the failure strength under longitudinal loadings and is
still capable of capturing other failure modes under biaxial loads. The
initially degraded failure strength of fibres calibrated from experiments
are 3.95 GPa and 1.74 GPa under longitudinal tension and compression,
respectively, which are listed in Table 1.

2.2.2. Constitutive model of matrix
The polymeric matrix is generally modelled using an isotropic

elasto-plastic criterion with damage. In order to capture matrix failure,
the Mohr–Coulomb criterion [14], the extended Drucker–Prager yield
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Table 1
Mechanical properties of constituents of IM7/8552 composite [40,41].

IM7 fibres

𝐸1 (GPa) 𝐸2 = 𝐸3 (GPa) 𝜈12 𝐺12 (GPa) 𝐺23 (GPa) 𝑋𝑓𝑡 (GPa) 𝑋𝑓𝑐 (GPa)

287 13.34 0.29 23.8 7 3.95 1.74

8552 matrix

𝐸 (GPa) 𝜈𝑚 𝜎𝑡 (MPa) 𝜎𝑐 (MPa) 𝐺𝑚 (𝐽∕𝑚2)

4.08 0.38 99 130 100

Interface

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝐾𝑠=𝑡 𝐾𝑛 𝑡0𝑛 𝑡0𝑡=𝑠 𝐺𝐼𝐶 𝐺𝐼𝐼𝐶=𝐼𝐼𝐼𝐶
(μm) (GPa∕mm) (GPa∕mm) (MPa) (MPa) (J/m2) (J/m2)

0.1 253 682 58 92 2 100

IM7/8552

𝑋𝑡 𝑋𝑐 𝑌𝑡 𝑌𝑐 𝑆12 = 𝑆13 𝑆23

(GPa) (GPa) (MPa) (MPa) (MPa) (MPa)

2.326 1.017 62 255 100 57
w
m
s
T
p

𝛿

H
𝐾
f

model associated with a ductile damage criterion [9,16], the modified
Drucker–Prager plastic damage model [15,21,42] and the paraboloidal
elasto-plastic yielding criterion with an isotropic damage constitutive
model [13,22] are commonly adopted. In this paper, the built-in
Drucker–Prager (DP) plastic damage model in ABAQUS was adopted
for predicting the mechanical performance of 8552 epoxy subjected
to multiaxial stress states. The DP plastic damage model is based on
the yield function proposed by Lubliner et al. [43] associated with
modifications accounting for damage evolution subjected to tensile and
compressive loads [44]. The yield function is described in terms of a
von Mises equivalent stress and hydrostatic pressure stress as [45]:

𝐹 = 1
1 − 𝛼

(𝑞 − 3𝛼𝑝 + 𝛽⟨�̂�𝑚𝑎𝑥⟩ − 𝛾⟨−�̂�𝑚𝑎𝑥⟩) − 𝜎𝑐𝑦 = 0,

𝛼 =
𝜎𝑏0 − 𝜎𝑐0
2𝜎𝑏0 − 𝜎𝑐0

; 𝛽 =
𝜎𝑐𝑦
𝜎𝑡𝑦

(1 − 𝛼) − (1 + 𝛼); 𝛾 =
3(1 −𝐾𝑐 )
2𝐾𝑐 − 1

.
(3)

herein 𝛼 is the pressure sensitivity factor of the yield function, ranging
rom 0 to 0.5, 𝑞 is the von Mises equivalent stress, 𝑝 is the hydrostatic

pressure stress, �̂�𝑚𝑎𝑥 is the maximum principal stress, ⟨⟩ represents
he Macaulay brackets to return the argument if positive and zero
therwise. 𝜎𝑏0 and 𝜎𝑐0 represent biaxial and uniaxial compressive yield
trengths, respectively. 𝜎𝑡𝑦 and 𝜎𝑐𝑦 are effective tensile and compressive

yield stress, respectively. 𝐾𝑐 is the ratio of the second stress invariant
on the tensile meridian to that on the compressive meridian [46].
The plasticity model assumes non-associated potential plastic flow. The
plastic flow of the material is controlled by the flow potential 𝐺, and
is expressed as

𝐺 =
√

𝜖𝜎𝑡0 tan𝜓 + 𝑞 − 𝑝 tan𝜓 (4)

here 𝜖 is a parameter referred to as the eccentricity, 𝜎𝑡0 is the uniaxial
ensile stress at failure, 𝜓 is the dilation angle in the 𝑝 − 𝑞 plane. The
nternal friction angle controls the dependence of the plastic behaviour
f the material on hydrostatic pressure. After onset of damage under
ensile loads, in order to ensure the correct energy dissipation of the
atrix, an exponential cohesive law is adopted to control the quasi-

rittle behaviour of the material, which is characterised by a scalar
amage variable [46]. For the behaviour of matrix under compressive
oads, perfect plastic behaviour is assumed based on experimental ob-
ervations [47]. More details about the Drucker–Prager plastic damage
odel and its numerical implementation can be found in [21,46].

.2.3. Constitutive model of interface
The interface between fibres and matrix is modelled as cohesive

lements governed by the bilinear traction–separation law [46]. The
hickness and stiffness of the fibre/matrix interface were identified in
ur previous work [21]. The damage onset of this interface is deter-
4

ined by a quadratic interaction criterion, and damage propagation is 𝐹
controlled by the energy-based mix-mode Benzeggagh–Kenane fracture
criterion [48]. The interfacial strengths are calibrated from uniaxial ex-
periments (i.e. tension, compression and shear) [41], while the fracture
energies are set at 2 J∕m2 [15] and 100 J∕m2 [15,21] for Mode I and
Mode II, respectively. It was experimentally observed that the shear
strength increases in UD composite laminae under a moderate trans-
verse compressive stress when subjected to biaxial loads [19], com-
pared to pure shear stresses. This is difficult to be captured adequately
with current built-in cohesive zone element in ABAQUS [46] since
when modelling with the conventional cohesive element, the friction
can only be considered when the cohesive element is totally damaged
and removed from the finite element mesh. This phenomenon was also
theoretically predicted by Puck’s failure theory and numerically simu-
lated with a cohesive surface together with a pure Coulomb model [15]
or a cohesive-friction damage approach implemented into ABAQUS via
a VUMAT subroutine [17,23,49]. Here the cohesive-frictional model
for the fibre/matrix interface was used and its main part was briefly
reported below, and its implementation and one element verification
can be found in Appendix.

The constitutive equation of the standard cohesive law is defined as

𝐭𝐮 =

⎡

⎢

⎢

⎢

⎣

𝑡𝑢1
𝑡𝑢2
𝑡𝑢𝑛

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐾1 0 0

0 𝐾2 0

0 0 𝐾𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝛿1
𝛿2
𝛿𝑛

⎤

⎥

⎥

⎥

⎦

(5)

here the 𝑡𝑢𝑛, 𝐾𝑛 and 𝛿𝑛 are the traction, penalty stiffness and displace-
ent for Mode I, respectively; 𝑡𝑢𝑖 , 𝐾𝑖 and 𝛿𝑖 (i=1,2) are the traction,

tiffness and displacement for Mode II and Mode III, respectively.
he mix-mode equivalent displacement jump 𝛿 and mode-dependent
enalty stiffness 𝐾𝐵 can be defined as [49]:

=
𝐾1𝛿21 +𝐾2𝛿22 +𝐾𝑛⟨𝛿𝑛⟩

2

√

𝐾2
1 𝛿

2
1 +𝐾

2
2 𝛿

2
2 +𝐾

2
𝑛 ⟨𝛿𝑛⟩2

,

𝐾𝐵 =
𝐾2

1 𝛿
2
1 +𝐾

2
2 𝛿

2
2 +𝐾

2
𝑛 ⟨𝛿𝑛⟩

2

𝐾1𝛿21 +𝐾2𝛿22 +𝐾𝑛⟨𝛿𝑛⟩
2
.

(6)

Following Turon et al. [24], a local mixed mode ratio 𝐵 is defined
to describe the evolution of the damage variable when subjected to
mixed-mode loading, hence the ratio 𝐵 reads:

𝐵 =
𝐾1𝛿21 +𝐾2𝛿22

𝐾1𝛿21 +𝐾2𝛿22 +𝐾𝑛⟨𝛿𝑛⟩
2
. (7)

ere assuming 𝐾𝑠 = 𝐾1 = 𝐾2, the mode-dependent penalty stiffness
𝐵 can be expressed as 𝐾𝐵 = (1 − 𝐵)𝐾𝑛 + 𝐵𝐾𝑠. The damage activation

unction 𝐹 (𝛿) for the interface damage initiation is defined [49]:
(𝛿) = 𝐻(𝛿) − 𝑟𝐷 (8)
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where 𝐻(𝛿) is a function of equivalent displacement which increases
monotonically and 𝑟𝐷 is the threshold function. The interface damage
s initiated when the function 𝐹 (𝛿) reaches zero. These functions are
pdated at every time increment 𝑠 during the analysis where 𝑡 indicates
he actual time, and defined as:

𝐻(𝛿) = 𝑚𝑖𝑛{ 𝛿 − 𝛿
0

𝛿𝑓 − 𝛿0
, 1},

𝑟𝐷 = 𝑚𝑎𝑥{0, 𝑚𝑎𝑥[𝐻(𝛿(𝑠))]}, 0 < 𝑠 < 𝑡 ∀𝑡.
(9)

where 𝛿0 and 𝛿𝑓 are the displacement jumps for the interface damage
onset and final failure, respectively. The Benzeggagh and Kenane (BK)
criterion [48] is adopted for the determination of these parameters:

𝛿0 =

√

𝐾𝑛(𝛿0𝑛 )2 + [𝐾𝑠(𝛿0𝑠 )2 −𝐾𝑛(𝛿0𝑛 )2]𝐵𝜂

𝐾𝐵
,

𝛿𝑓 =
𝐾𝑛𝛿0𝑛𝛿

𝑓
𝑛 + [𝐾𝑠𝛿0𝑠 𝛿

𝑓
𝑠 −𝐾𝑛𝛿0𝑛𝛿

𝑓
𝑛 ]𝐵𝜂

𝐾𝐵
.

(10)

here 𝛿0𝑛 and 𝛿𝑓𝑛 are the displacement jumps at damage onset and
inal failure in pure Mode I, respectively. 𝛿0𝑠 and 𝛿𝑓𝑠 are the equivalent

pure shear mode onset and final displacement jumps (𝛿𝑠 =
√

𝛿21 + 𝛿
2
2),

espectively. In addition, 𝜂 represents the BK law coefficient and here
s taken as 1.45 [15,21] These parameters can be directly calculated
rom pure mode stiffnesses and critical energy release rates since the
tandard cohesive model is bilinear:

0
𝑖 = 𝑡0𝑖 ∕𝐾𝑖, 𝛿

𝑓
𝑖 =

2𝐺𝑖
𝑡0𝑖

(𝑖 = 1, 2, 𝑛). (11)

where 𝑡0𝑖 and 𝐺𝑖 represent the critical traction at damage onset and
critical energy release rates for pure mode, respectively.

The damage variable 𝐷 can be expressed as a function of the
threshold function (𝑟𝐷), mix-mode onset (𝛿0) and failure displacement
jumps (𝛿𝑓 ) [24], reads:

𝐷 =
𝑟𝐷𝛿𝑓

𝑟𝐷𝛿𝑓 + (1 − 𝑟𝐷)𝛿0
. (12)

Therefore, the tractions obtained from the cohesive damage model
for mixed-mode loadings are listed as:

𝐭𝑢 =
{

𝐊𝜹𝑖(𝑖 = 1, 2, 𝑛), 𝛿 ≤ 𝛿0,
(1 −𝐷)𝐊𝜹𝑖, 𝛿 > 𝛿0.

(13)

The post-failure behaviour of cohesive element can be governed
by the Coulomb friction law over the cracked region, in which the
displacement is normally divided into two parts, namely an elastic part
(𝛿𝑐𝑒) and inelastic (𝛿𝑐𝑖) part, where 𝛿𝑐𝑒 (𝛿𝑐𝑒 = 𝛿 − 𝛿𝑐𝑖). The traction in
the cracked part is described:

𝐭𝐜 =
⎡

⎢

⎢

⎢

⎣

𝑡𝑐1
𝑡𝑐2
𝑡𝑐𝑛

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐾𝑠 0 0

0 𝐾𝑠 0

0 0 𝐾𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝛿1 − 𝛿𝑐𝑖1
𝛿2 − 𝛿𝑐𝑖2
−⟨−𝛿𝑛⟩

⎤

⎥

⎥

⎥

⎦

(14)

The Coulomb friction function is introduced as:

𝛷 = 𝜇𝑡𝑐𝑛 + 𝑡
𝑐
𝑠 . (15)

where 𝜇 is the friction coefficient and the equivalent shear traction is
expressed by the single shear mode as:

𝑡𝑐𝑠 =
√

(𝑡𝑐1)
2 + (𝑡𝑐2)

2. (16)

The evolution of inelastic displacement jump 𝛿𝑐𝑖𝑖 is defined by a
non-associative relationship as [50]:

𝛿𝑐𝑖𝑖 =

⎡

⎢

⎢

⎢

⎣

𝛿𝑐𝑖1
𝛿𝑐𝑖2
0

⎤

⎥

⎥

⎥

⎦

= �̇�

⎡

⎢

⎢

⎢

⎢

𝜕𝛷
𝜕𝑡𝑐1
𝜕𝛷
𝜕𝑡𝑐2

⎤

⎥

⎥

⎥

⎥

= �̇�

⎡

⎢

⎢

⎢

⎢

𝑡𝑐1
𝑡𝑐𝑠
𝑡𝑐2
𝑡𝑐𝑠

⎤

⎥

⎥

⎥

⎥

(17)
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⎣ 0 ⎦ ⎣ 0 ⎦
ith 𝛿 the displacement jump and the multiplier �̇� is uniquely defined
in the Kuhn–Tucker conditions:

�̇� ≥ 0, 𝛷 ≤ 0, �̇�𝛷 = 0. (18)

Finally, the cohesive damage law associated with the Coulomb
friction for the post-failure behaviour is given by:

𝐭 = (1 −𝐷)
⎡

⎢

⎢

⎣

𝐾𝑠 0 0
0 𝐾𝑠 0
0 0 𝐾𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛿1
𝛿2
𝛿𝑛

⎤

⎥

⎥

⎦

+𝐷
⎡

⎢

⎢

⎣

𝐾𝑠 0 0
0 𝐾𝑠 0
0 0 𝐾𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛿1 − 𝛿𝑐𝑖1
𝛿2 − 𝛿𝑐𝑖2
−⟨−𝛿𝑛⟩

⎤

⎥

⎥

⎦

(19)

2.3. Periodic boundary and loading conditions

Periodic boundary conditions (PBCs) are normally used to ensure
the periodic displacement field and traction continuity within the RVE
once it is constructed with periodic mesh. In the commercial FE code
ABAQUS/ Explicit [46], the PBCs are implemented by generating the
relations between the nodes of surfaces and their counterparts on the
opposite side. The unified PBCs equations read in terms of displacement
vectors 𝐔𝟏, 𝐔𝟐 and 𝐔𝟑:

⎧

⎪

⎨

⎪

⎩

𝑢(0, 𝑥2, 𝑥3) − 𝑢(𝐿1, 𝑥2, 𝑥3) = 𝐔1,
𝑢(𝑥1, 0, 𝑥3) − 𝑢(𝑥1, 𝐿2, 𝑥3) = 𝐔2,
𝑢(𝑥1, 𝑥2, 0) − 𝑢(𝑥1, 𝑥2, 𝐿3) = 𝐔3.

(20)

where 𝐿𝑖(𝑖 = 1, 2, 3) and 𝐔𝑖(𝑖 = 1, 2, 3) are the length of the RVE
and imposed displacement, respectively. Three dummy nodes on three
principal axes are introduced to apply loads and origin of the RVE is
fixed to avoid rigid body motion. The imposed strains were computed
from the imposed displacements divided by the corresponding lengths,
while the predicted normal and shear stresses were computed from the
resultant normal and tangential forces acting on the RVE faces divided
by the cross-sectional area.

Although some of the biaxial loadings conditions are unlikely to
occur in practice, it is still worth obtaining all the possible failure
points under biaxial loadings to ensure the generality of the proposed
failure criteria. Meanwhile, the failure data obtained under biaxial
loadings can lay the foundation for the failure data under triaxial or
other multiaxial stress states. Fig. 2 presents an example of biaxial
loading conditions and the combinations of biaxial loads in 3D stress
states. Take biaxial longitudinal and transverse loads as an example,
failure strengths of the RVE under longitudinal tension/compression
and transverse tension/compression should be computed. However,
due to the transversal isotropy of the cross section of RVEs, the trans-
verse stresses in two directions (i.e. 𝜎2 and 𝜎3) and in-plane shear
stresses (i.e. 𝜎6 = 𝜏12) and 𝜎5 = 𝜏13 are equivalent. Therefore, a
total 15 stress combinations is reduced to 9 combinations, which are
shown in Fig. 2(b). There are 5 to 20 different representative loading
cases in each stress combination, depending on the combination with
transversal and/or shear stresses. One cell in the matrix shown in
Fig. 2(b) represents a biaxial stress combination, and same colours in
the matrix represent equivalent loading conditions.

3. Data generation and pre-processing

3.1. Probability-embedded failure prediction framework

Composite materials have wider scatter in their mechanical prop-
erties compared to homogeneous materials. Therefore, it is important
to take the scattering of the properties as well as their average value
into account when designing composite structures [30]. Variation in
fibre distribution, voids in the matrix and fibre waviness exist in com-
posites even though the manufacturing process is strictly controlled.
Such microstructural uncertainties introduced by the manufacturing
process result in the stochastic composite strengths under multiaxial
stress state [51]. Imtiaz and Liu [52] proposed a framework to predict

the failure envelopes of composite materials under biaxial loadings
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Fig. 2. (a) Biaxial loading conditions imposed on the RVE with 𝜎1 and 𝜎2 as an example (solid arrows represent tension and dash lines represent compression); (b) Biaxial stress
combinations under 3D stress states (Here 𝜎1 represents longitudinal tensile/compressive stress, 𝜎2 and 𝜎3 represent transversal tensile/compressive stresses, 𝜎6 (𝜏12) and 𝜎5 (𝜏13)
represent in-plane shear stresses and 𝜎4 (𝜏23) represents out-of-plane shear stress, same colour in different grids represent equivalent loading conditions, while different colours
represent different biaxial loadings).
considering failure probability with plane stress assumption. They con-
sidered the scattering in strength parameters and quantified the failure
probability in composite lamina. They proposed three probability quan-
tification methods, namely: (a) a pure data driven approach, (b) a
probability-embedded failure criteria with an assumption of self-similar
failure surface, and (c) probability-embedded failure criteria with an
assumption of self-similar failure surface and Weibull distribution. Here
in this work, a framework is extended from plane stress problems
into three-dimensional stress problems by using the third approach
which quantifies the failure probability via Weibull distribution with
an assumption of self-similar failure surface, thus taking a step further
towards the data-driven failure prediction of composites under general
loading conditions.

Fig. 3 shows a schematic diagram for failure prediction of com-
posites under biaxial stress states (𝜎𝑖 − 𝜎𝑗 , 𝑖, 𝑗 = 1, 2…6, 𝑖≠ 𝑗). In the
context of composite failure theory, 𝜎1, 𝜎2 … 𝜎6 represent the stresses
in longitudinal, transverse and shear directions. Mean failure surface
with average failure probability of 50% can be determined with curve
fitting techniques. The failure surface with probability of 𝑃𝑓𝑚𝑎𝑥 cor-
responds to maximum failure probability since it covers all possible
experimental data, while the region within the failure surface with
the probability of 𝑃𝑓𝑚𝑖𝑛 represents safe stress states. The experimental
data in biaxial stress plane can be divided into different small segments
along angular coordinate in which each segment represents a specific
range of loading conditions (i.e. different applied strain or stress ratios),
such as region 𝑆 in Fig. 3. Ideally, each segment should be considered
independently so that a specific distribution of scattering in failure
strength can be obtained. However, the independent consideration of
scattering distribution for each segment may require a large number
of biaxial/multiaxial experiments which is practically impossible and
some biaxial/multiaxial loading conditions may not even be achieved
experimentally, which should rely on virtual experimentation from
numerical simulations.

Based on the assumption of self-similar failure surface, the mean
failure surface with average probability (𝑃𝑓 = 50%) can be expanded
or contracted with different failure probabilities. The failure criteria
with mean failure probability reads:

𝑓𝑚𝑒𝑎𝑛(𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6) = 𝑓 (𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6)𝑃𝑓=0.5 = 0. (21)

Thus failure surfaces with other failure probabilities can be determined
with

𝑓𝑚𝑒𝑎𝑛(𝜎1∕𝑍(𝑃𝑓 ), 𝜎2∕𝑍(𝑃𝑓 ), 𝜎3∕𝑍(𝑃𝑓 ), 𝜎4∕𝑍(𝑃𝑓 ), 𝜎5∕𝑍(𝑃𝑓 ), 𝜎6∕𝑍(𝑃𝑓 )) = 0.

(22)

where 𝑍(𝑃𝑓 ) is the scattering parameter, which is used to determine the
relationship between the mean failure surface with the failure proba-
bility of 0.5 and other failure surfaces. Here the scattering parameter Z
is defined as:

𝑍 = 𝑂𝐵 (23)
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𝑂𝐴
where 𝑂𝐴 is the distance from origin to the mean failure surface for
a specific loading condition, and 𝑂𝐵 =

√

𝜎2𝑖 + 𝜎
2
𝑗 (𝑖, 𝑗 = 1, 2…6, 𝑖≠ 𝑗).

Here the mean failure surface is determined using curve fitting tech-
niques, and then it is used to compute the 𝑍(𝑃𝑓 ) for experimental
and/or numerical data.

The scattering distribution of failure strength of composite materials
is usually characterised by normal, log-normal or Weibull distribu-
tion [30,53]. Here in this study, the normal and Weibull distributions
are considered to describe the scattering of strengths for different
loading conditions. Typical probability density functions (PDFs) are
expressed as

𝑓 (𝑍𝑡)𝑁𝑜𝑟𝑚𝑎𝑙 =
1

𝜎
√

2𝜋
𝑒𝑥𝑝[−

(𝑍𝑡 − 𝜇)2

2𝜎2
],

𝑓 (𝑍𝑡)𝑊 𝑒𝑖𝑏𝑢𝑙𝑙 =
𝑘
𝜆
(
𝑍𝑡
𝜆
)𝑘−1𝑒𝑥𝑝[−(

𝑍𝑡
𝜆
)2]

(24)

where 𝑍𝑡 is the scattering parameter of 𝑡th sample, 𝜇 and 𝜎 are the
mean value and standard deviation of the normal distribution, respec-
tively. 𝑘 and 𝜆 are the shape and scale parameters in the probability
density function of Weibull distribution. The cumulative distribution
functions for both methods can be written in terms of the scattering
parameter (𝑍𝑡) as

𝑃𝑓 (𝑍𝑡)𝑁𝑜𝑟𝑚𝑎𝑙 = 𝑃 (𝑍 ≤ 𝑍𝑡) =
1
2𝜋 ∫

𝑍𝑡

−∞
𝑒𝑥𝑝[−(

𝑍2
𝑡
2

)]𝑑𝑍,

𝑃𝑓 (𝑍𝑡)𝑊 𝑒𝑖𝑏𝑢𝑙𝑙 = 𝑃 (𝑍 ≤ 𝑍𝑡) = 1 − 𝑒𝑥𝑝[−(
𝑍𝑡
𝑍0

)𝑘].
(25)

where 𝑃𝑓 is failure probability of 𝑍𝑡, 𝑘 is the shape parameter to
describe the scattering degree and 𝑍0 is a scale parameter of the
distribution, also termed as the mean value in the Weibull cumulative
distribution function. The mean rank method is used to determine the
value of 𝑃𝑓 (𝑍𝑡) at 𝑍𝑡 [52]. The Benard’s approximation for the median
rank method reads

𝑃𝑓 (𝑍𝑡) =
𝑡 − 0.3
𝑛 + 0.4

. (26)

where 𝑛 is the total number of the samples. The shape parameter and
mean value of the Weibull distribution can be determined from

𝑙𝑛(𝑙𝑛( 1
1 − 𝑃𝑓 (𝑍𝑡)

)) = 𝑘𝑙𝑛(𝑍𝑡) − 𝑘𝑙𝑛(𝑍0). (27)

It should be noted that 𝑍 < 𝑍0 means lower failure strength compared
to the strength on the mean failure surface and vice versa. Thus, the
number of failure cases increase as 𝑍 increases.

3.2. Coupled experimental–numerical datasets with failure probability

A mesh convergence study was performed to ensure that the RVE
models capture accurately the mechanical behaviour and correspond-
ing progressive damage process of each constituent while reducing
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Fig. 3. Probability-embedded failure criteria of composite materials under biaxial stress states (𝜎𝑖 − 𝜎𝑗 , 𝑖, 𝑗 = 1, 2…6, 𝑖≠ 𝑗) with an assumption of self-similar failure surfaces and
Weibull distribution.
Fig. 4. (a) Comparison between 3D RVE models with different numbers of elements: low mesh density with 12𝑘, medium mesh density with 22𝑘 and high mesh density with
42𝑘 elements; (b) Comparison of computational time obtained from the three types of mesh density; Comparisons of (c) predicted elastic properties and (d) failure strengths with
experimental data [40,41] under various uniaxial loadings.
computational costs. A good compromise should be made between the
accuracy of numerical results and computational time via a comparison
with experimental results. The RVE1 model from Fig. 1(b) was selected
for the convergence study under various uniaxial loading conditions.
Fig. 4 presents the comparison of simulation time, predicted elastic
properties and failure strengths under various transverse and shear
related uniaxial loadings from the convergence study. Three types
of RVE models were generated with a different number of elements,
ranging from 12𝑘 (low mesh density), 22𝑘 (medium mesh density) to
42𝑘 (high mesh density) elements, see Fig. 4(a). A minimum number
of 12𝑘 elements was adopted due to the complexity of the RVE models.
It can be seen in Fig. 4(c–d) that the numerical results obtained from
the RVE models with three mesh densities are in good agreement with
the experimental data. However, it is very challenging to accurately
capture the stress distribution of the matrix in fibre-rich regions with
the low mesh density. The computing time of the numerical simulations
with low mesh density takes 1–1.5 h, compared to 5–7 h with medium
mesh density and 27–45 h with high mesh density, see Fig. 4(b).
Therefore, the RVE model with 22𝑘 elements was adopted for the rest
of the simulations under biaxial loadings.
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Fig. 5 presents a comparison between numerical predictions and
experimental results of a UD composite lamina under transverse and
in-plane shear loading conditions. The microscale uncertainties, such as
fibre distribution within the RVE model, were taken into consideration.
The numerical results were obtained from the RVE models with five
different fibre distributions, which are denoted by differently-shaped
black data in Fig. 5. This numerical data can enrich the dataset obtained
from expensive and time-consuming biaxial experiments [19], which is
represented by the blue squares. A black line was fitted based on both
experimental and numerical datasets, using a univariate spline method
in Python due to the smooth surface it can generate with a limited
number of datasets, and is defined as the mean failure surface.

Based on the definition of the scattering parameter, 𝑍𝑡 was com-
puted for each test in a total of 116 experimental and numerical
failure cases. Numerical and experimental data within similar scattering
parameter ranges were grouped together. Then 𝑃𝑓 (𝑍𝑡) for scattering
data were computed using the median rank method, and the shape
parameter and mean value of Weibull distribution can be determined.
Fig. 6 shows how the two parameters of the Weibull distribution
were determined. A comparison between the fitted Weibull distribution
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Fig. 5. Comparison between numerical predictions and experimental data [19], and the upper and lower bounds of normal and Weibull distributions.
Fig. 6. (a) Determination of shape parameter and mean value of the Weibull distribution with median rank method, (b) Comparison between the Bernard approximation and
fitted Weibull distribution.
function and the Bernard approximation is also shown. 𝑘 and 𝑍0 are
calculated to be 17.771 and 1.029, respectively. The failure probability
curve obtained through the Weibull distribution function agrees well
with the failure probability from the Bernard approximation, Fig. 6(b).
In addition, it was found that the two-parameter Weibull distribution
function is sufficient to characterise the failure probability of composite
strength under biaxial stress states as it can be represented by a straight
line, Fig. 6(a). Recently, the lower and upper bounds on the probability
of failure were calculated by means of random set theory, in which an
efficient probability-based reliability method, called subset simulation,
was employed [54]. The lower and upper bounds were used in the fail-
ure analysis of composite in [16], in which the bounds were determined
with the lowest and highest biaxial failure strengths obtained from
numerical simulations to assess the conventional failure criteria. In this
study, due to the limitation of experimental and numerical data, a 95%
confidence interval was considered to describe the failure probability,
in which the lower bound 𝑃𝑓𝑚𝑖𝑛 and the upper bound 𝑃𝑓𝑚𝑎𝑥 are set to
0.025 and 0.975, respectively.

3.3. Database generation for regression problem

Due to the transverse isotropy of the cross section of the UD com-
posite lamina, a total of 15 biaxial stress combinations can be reduced
8

to 9 combinations, shown in Fig. 2. To rationalise the computational
cost of micromechanics-based high fidelity modelling, the first RVE
model was selected for the rest of the loading cases to determine the
mean failure surface. In addition, because of the lack of experimental
data of the other biaxial loading cases, an assumption was made that
the strengths share the same scattering pattern with the combined
transverse and in-plane shear loading as shown in Fig. 5. Fig. 7 presents
the failure envelopes of an IM7/8552 UD composite lamina under
different biaxial loadings with failure probabilities. Failure points were
collected from biaxial loading cases to determine the mean failure
surface. Here 2.5% lower and 97.5% upper bounds were selected for
the demonstration considering a 95% confidence interval. It should be
noted that it is still a matter of debate whether the failure envelope for
composite lamina under biaxial transverse compression should be open
(i.e. no failure) or not [8], therefore from the perspective of numerical
modelling, an extra artificial failure point was added to close the failure
envelope, see Fig. 7(d). The resolution of the database depends on
the interval selection of failure strength on the failure surface and
the failure probability of the surface. In this study, 1% interval of
failure probability between the lower and upper bounds and 300 data
points on the failure envelope with failure probabilities in each stress
combination were selected, resulting in a database containing half a
million samples.
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Fig. 7. Failure envelopes of IM7/8552 UD composite lamina with failure probabilities (𝜎1 is longitudinal stress, 𝜎2 and 𝜎3 are transverse stresses, 𝜎6 and 𝜎5 are in-plane shear
stresses and 𝜎4 is the transverse shear stress).
3.4. Database generation for classification problem

Material failure can also be treated as a classification problem. With
a proper failure criterion defined, the state of safety or failure can
be classified. In most engineering applications, a credibility variable
is commonly used as a safety factor to measure the confidence of the
numerical simulation. One of the advantages of ANN is that the output
of a classification problem (i.e. accuracy) is actually a probability of
the categorisation based on the failure criterion. In this section, a
failure classification problem was introduced based on the previously
generated database for regression problems. The mean failure surface
with the failure probability of 50% was used as the failure envelope in
the classification problem. Thus, the region, where points are inside the
failure surfaces with probabilities between 2.75% and 50%, is regarded
as a safe region and their probabilities were replaced with 0; while
the region inside the failure surfaces in which points with probabilities
between 50% and 97.5%, is regarded as a failure region and their
probabilities were replaced with 1. Then a new database was generated
for the failure classification problem. The failure envelopes, and safe
and failure regions for IM7/8552 composite lamina in different biaxial
loading conditions is shown in Fig. 8.

4. Artificial neural networks

An artificial neural network (ANN) is a machine learning algorithm
which mimics the neurological processes of a human brain, and is used
to tackle various problems in industry, such as image recognition, ma-
chine translation, novel material discovery, and more recently, failure
prediction of materials. ANN generally consists of three basic layers:
9

an input layer, hidden layers, and an output layer. The input layer,
where data is entered, and the output layer are connected through the
hidden layer in a neural network. Neurons in each layer are fully or
partially connected to the neuron in preceding and subsequent layer
with unique weights. The input signal propagates through the hidden
layers on a layer-by-layer basis towards the output layer. The back-
propagation training algorithm [55] is usually adopted to determine
the weights (𝑤𝑖𝑗) to iteratively minimise a chosen cost function. The
training process is terminated when the loss function (i.e. mean-square-
error (MSE), root-mean-square-error (RMSE) or mean-absolute-error
(MAE)) reaches a pre-specified threshold, or a pre-specified number of
learning epochs is completed.

These weights between neighbouring neurons help to determine
the importance of any given variable, with larger weights contributing
more significantly to the output. A bias term 𝑏𝑗 is used to cover a
wider range. All inputs from the last layer are then multiplied by
their respective weights and then summed to the bias, so the input 𝑧𝑗
obtained by a given neuron 𝑗,

𝑧𝑗 =
𝑘
∑

𝑖=0
𝑎𝑖𝑤𝑖𝑗 + 𝑏𝑗 (28)

where 𝑘 is the number of neurons at the current layer. An activation
function is used to compute a scalar value for each neuron with 𝑧𝑗
in the current layer to decide whether the information carried by this
neuron should pass to the next layer. There are four commonly used
activation functions, namely Tanh, ReLu, Sigmoid and Softplus. In this
study, a ReLu activation function is used, which has been proved to
have a better training performance for deep neural networks compared
to others [56]. During the training process, the weights and bias of the
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Fig. 8. Failure envelopes, and safe and failure regions of IM7/8552 UD composite lamina under different biaxial loading conditions.
network are updated to minimise the loss function. The loss function
measures the difference between the true and predicted values. The
loss function can be defined as the commonly used mean square error
(MSE) and mean absolute error (MAE), in Eq. (29). The MSE and
MAE represent the average of the squared difference and the absolute
difference between the original and predicted values in the dataset,
which measures the variance of the residuals and the average of the
residuals in the dataset, respectively. In most regression problems, the
MSE was used for the training and validation of the ANNs [28], here
the MAE was used for the evaluation of the network; while the binary
cross-entropy loss function (Eq. (30)) was used for the classification
problems.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|

(29)

where 𝑛 is the number of training samples, 𝑦𝑖 is the true output in the
training datasets while �̂�𝑖 is the prediction of output using the ANN
architecture.
𝐶𝐸 = −𝛴𝐶=2

𝑖=1 𝑡𝑖𝑙𝑜𝑔(𝑓 (𝑠𝑖)) = −𝑡𝑖𝑙𝑜𝑔(𝑓 (𝑠𝑖)) − (1 − 𝑡𝑖)𝑙𝑜𝑔(1 − 𝑓 (𝑠𝑖))

𝑓 (𝑠𝑖) =
1

1 + 𝑒−𝑠𝑖
(30)

where 𝑠𝑖 and 𝑡𝑖 are the score and the ground truth label for the class
𝐶𝑖. Since the classification problem only has two classes, so 𝑖 = 2
and 𝑠2 = 1 − 𝑠1, 𝑡2 = 1 − 𝑡1. In general, the training process can be
considered as a typical application of a gradient-based optimisation
algorithm and statistical estimation in a back-propagation manner. In
the current study, the Adam [57], an algorithm for first-order gradient-
based optimisation of stochastic objective functions, was used based
10
on adaptive estimates of lower-order moments for both regression and
classification problems. In this optimisation process, the weights and
bias of all the network are updated iteratively until the desired error
tolerance is met or the maximum number of iterations (epoch) is
reached. Due to the paired input and output data, both training for
regression and classification problems are categorised as supervised
learning.

Under biaxial loading, there are a total of 15 possible stress com-
binations, or biaxial loading conditions, as shown in Fig. 2(b), where
one grid entry represents one biaxial loading condition. The regression
problems of composite failure can be dealt with using two strategies.
In the first strategy, only one ANN is used to cover all 15 biaxial
loadings. To more accurately predict the failure probability under
biaxial loadings, and to consider the failure mode in each loading, the
second strategy uses 15 ANN models which are used for the prediction
of failure probability under 15 different biaxial loading conditions,
Fig. 9.

In the context of neural networks, the probability embedded failure
criterion for the regression problem is the mapping of failure proba-
bility of composite materials from different stress state combinations.
The ANN can provide a form-free criterion for the mathematical form
defined in Eq. (22). A database, containing 505,000 samples generated
from 3D high-fidelity micromechanical failure analysis and biaxial
experimental data, was used to feed the ANNs. Each sample accepts six
stress components as input and provide a failure probability as output.
The database consists of three parts: training data, validation data and
test data, and was split in a 80:10:10 ratio. The validation data is used
for the optimisation of hyperparameters of the ANN, while the test data
is to test the performance of the ANN with unseen data.

For the regression problem, in the first strategy, the database, with
the 15 loading cases, was split as a whole in the 80:10:10 ratio for
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Fig. 9. The computational framework containing a set of ANNs for the construction of failure criterion.
training, validation and test, respectively. While in the second strategy,
each dataset of the database were split in the same ratio for the training
of each ANN separately. For the classification problem, the database
transformed from the regression problem was also split in the 80:10:10
ratio for the training. The focus of this study was on the biaxial loading
conditions, and more data from the micromechanical failure analysis
under triaxial loading conditions will be generated in future to enrich
the database.

5. Probability embedded data-driven failure criteria based on ar-
tificial neural networks

5.1. Probability embedded failure criteria with one ANN for regression
problems

The ANN structure and hyperparameters (i.e. batch size and num-
ber of epochs) have significant influences on its performance, thus
manual parametric studies for the hyperparameters optimisation were
conducted on the number of hidden layers and neurons as well as the
batch size and the number of epochs. Fig. 10 shows the comparison
of MSE and MAE in training and validation processes, and predicted
and true values with different ANN structures. With three hidden
layers, the MSE decreases as the number of neurons increases. A better
prediction can be obtained with the ANN model with 128 neurons in
each hidden layer compared to the ones with 32 and 64 neurons. In
addition, when one more hidden layer was added to the ANN model
with 128 neurons, the MSE obtained in validation process decreases
by 26.5% and the prediction capability improves as well. Therefore,
the six-layer ANN model with 128 neurons in each hidden layer was
used for the parametric study of hyperparameters. The batch size is
a hyperparameter of gradient descent that controls the number of
training samples to update the model’s internal parameters, while the
number of epochs is another hyperparameter of gradient descent that
controls the number of complete passes through the entire training
dataset. Fig. 11 shows the comparison of MSE and MAE in training and
validation processes, and predicted versus true values with different
batch sizes. It can be seen that when the batch size is 500, the predicted
values obtained from the ANN model are underestimated and the MAE
has large fluctuations. When the batch size increases to 1000, better
performance of the ANN model is achieved. However, the prediction
was not improved significantly when the batch size increases to 2000
with the predicted values being slightly overestimated. This is probably
because the structure of the current ANN model has limited capability
11
to take 2000 sample at a time. Therefore, the selected ANN model has
four hidden layers, and 128 neurons in each layer. With the optimal
batch size, the MSE and MAE obtained from predictions can reach
0.094% and 1.6%, respectively, and the predicted values have excellent
agreement with the true values.

5.2. Probability embedded failure criteria with multiple ANNs for regression
problems

It is found in Figs. 10–11 that the MSE, as an indicator of accu-
racy in the ANN prediction, can reach 0.094%, however, due to the
structure of the datasets, this error cannot be improved significantly by
adjusting the ANN structure or hyperparameter. When multiple ANNs
are used, corresponding to specific loading conditions, this error can
be significantly improved to 0.027%, which ensures the accuracy of
the prediction in biaxial loadings. An ANN model, containing 2 hidden
layers with 64 neurons in each layer, was used for the construction
of ANNs in the second strategy, which consists of 15 ANNs. Different
datasets were fed to the ANN model to construct failure criterion for
each loading case with failure probabilities. The training, validation
and test processes of the ANN model for the biaxial longitudinal and
transverse loading combination is selected for demonstration, which is
shown in Fig. 12. Fast convergence of MAE and MSE can be observed
in training and validation processes. Excellent agreement is found
between the predicted and true values, with a MSE value of 0.027%
and a MAE value of 0.75%, which suggests an accurate and robust ANN
model.

5.3. Probability embedded failure criteria with one ANN for classification
problems

For the classification problem, a four-layer ANN was initially used
for training, in which the hidden layer has 6 neurons. This is similar
to the ANN architecture used in our previous work [21] for training
the failure points under triaxial loading conditions. However, it can be
found in Fig. 13 that only 77.9% prediction accuracy can be achieved.
When the number of the neurons in hidden layers increase from 6 to 16,
the prediction accuracy of the ANN models increase by 21%. Further
increases of neurons do not contribute significantly to the improvement
of the prediction accuracy. Comparing the loss and accuracy obtained
from training and validation processes, the ANN model with 32 neurons
in the hidden layers converges faster than the one with only 16 neurons.

In addition, it can be seen from the ANN model with three hidden
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Fig. 10. Comparison of MSE, MAE and prediction obtained from the ANN with different structures. (The batch size and number of epochs used here are 1000 and 300, respectively).

Fig. 11. Comparison of MSE, MAE and prediction from the ANN with different batch sizes.
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Fig. 12. Comparison between predicted and true values.
Fig. 13. Comparison between predicted and true values.
layers that one more hidden layer added to the ANN model can only
improve the ANN convergence without much improvement in predic-
tion accuracy. The computing time for a whole training, validation and
testing cycle obtained from all ANN models was less than 4 min on a
workstation with Intel(R) Xeon(R) Gold 6226R processor containing 16
cores.
13
5.4. Comparison between biaxial failure strengths predicted by trained ANN
models and failure criteria

Fig. 14 presents comparisons between the failure prediction of
composites under transverse and in-plane shear loadings with trained
ANNs and Tsai–Wu and Hashin failure criteria. 100 random biaxial
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Fig. 14. Comparison between failure strengths of composites predicted by trained ANN models, and Tsai–Wu and Hashin failure criteria under biaxial transverse and in-plane
shear loadings: (a) overall ANN for regression problem; (b) single ANN for regression problem; (c) overall ANN for classification problem; (d) overall ANN for regression problem
and overall ANN for classification problem when set the failure probability of 50% as the threshold.
stresses were generated within the lower and upper bounds following
Weibull distribution, see Fig. 5. Regarding the regression problem of
composite failure, the overall ANN, aimed for all loading conditions,
with the structure of 6-128-128-128-128-1 and a single ANN, aimed
specifically for transverse and in-plane shear loading, with the structure
of 6-64-64-1, were selected for the failure prediction of composites,
which can be found in Fig. 14(a) and (b), respectively. The colour of
dots represents different failure probability, ranging from 2.5%–97.5%,
at the biaxial stress state, and lighter dot means the composite is highly
likely to fail at this stress state. The black line is fitted mean failure
envelope, representing the failure probability of 50%, obtained from
coupled numerical and experimental data, see Fig. 5. It can be found
that few lighter dots predicted by the overall ANN fall within the black
line, while the single ANN performs better with the comparison of the
fitted envelope, due to its smaller MSE. Both of failure criteria cannot
capture the increase of shear strength under moderate compressive
stresses in the transverse compression and in-plane shear quadrant, and
Hashin failure criterion overestimates the biaxial failure strength when
shear stress is dominant in the transverse tension and in-plane shear
quadrant.

Regarding the classification problem of composite failure, a shallow
ANN with the structure of 6-32-32-32-1 was selected for the failure
prediction of composites under combined transverse and in-plane shear
loadings. The Fig. 14(c) represents the comparison of failure points
predicted by the ANN and failure envelopes, in which the red star
represents the failure point while the black dot represents the safe
point. Overall, it can be clearly seen that the ANN performs well
compared to the fitted mean failure envelope. Still, 3 black dots, which
represent safe stress states, fall beyond the fitted envelope due to the
prediction accuracy of 98.1%. In addition, comparison between the
14
failure prediction from the ANN for the classification problems and
the overall ANN for the regression problem where the threshold of the
failure probability is set to 50%, are conducted in Fig. 14(d). Red and
black colours represent failure and safe states, respectively; circle and
star represent the ANN for classification problems and the overall ANN
for regression problems, respectively. It is found that both predictions
have excellent accuracy regarding the fitted envelope, while few wrong
prediction can also be found in both predictions, this discrepancy
mainly comes from the fitting nature of artificial neural network.

6. Conclusions and future work

This study explored the application of artificial neural networks
(ANNs) in the failure prediction of unidirectional carbon fibre rein-
forced polymer composites based on micromechanics modelling. 3D
high-fidelity representative volume element (RVE) models were set up
to provide the failure points under biaxial loading conditions. Five
RVE models with different fibre distributions were used to provide
failure points under transverse and in-plane shear loadings for the
determination of the mean failure surface. Two ABAQUS VUMAT sub-
routines were developed to predict fibre failure and capture the friction
under transverse compression and in-plane shear loadings. A coupled
experimental–numerical framework was applied to conduct uncertainty
quantification and generate datasets for transverse and in-plane shear
loadings with probabilities. A total of 15 biaxial stress combinations
was considered for the generation of the datasets. In each combination,
a minimum of 10 representative biaxial loading cases were computed
to provide the failure points. Three data-driven probability embedded
strategies were considered to construct the failure criteria for unidi-
rectional CFRP composites in terms of regression and classification
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problems. Parametric studies were conducted for the selection of ANN
models.

It was found that all three strategies have excellent performance
in the probabilistic failure prediction of composite materials. For the
failure regression problems, in the first strategy, the selected ANN
model with 4 hidden layers, and 128 neurons per layer had a mean
square error (MSE) of 0.094% and a mean absolute error (MAE) of
1.6%; while in the second strategy, the single ANN model within
the framework achieved an MSE of 0.027% and an MAE of 0.75%.
Both strategies are consequently considered to be promising in the
probabilistic failure prediction of UD CFRP composites. For the failure
classification problems, a shallow ANN model with only 3 hidden
layers, in which 32 neurons were used, demonstrated excellent perfor-
mance in the failure prediction of composites under biaxial loadings,
with a prediction accuracy of 98.1%. The comparison between the
failure strength of composite materials predicted by these three ANNs
and failure envelopes predicted by Tsai–Wu and Hashin failure criteria
was conducted and it was found that all three networks have good
performance regarding the comparison with the fitted envelope. Both
of failure criteria cannot capture the increase of shear strength under
moderate compressive stresses in the transverse compression and in-
plane shear quadrant, and Hashin failure criterion overestimates the
biaxial failure strength when shear stress is dominant in the transverse
tension and in-plane shear quadrant. The computing time for a single
numerical simulation of biaxial loadings took 6–11 h depending on
different biaxial stress combinations, while a complete ANN training,
validation and testing cycle took less than 4 min on a workstation with
Intel(R) Xeon(R) Gold 6226R processor containing 16 cores.

The novel aspects of this study include:

• The introduction of failure probability into the database used
to train ANN models for the failure prediction of IM7/8552 UD
composites under biaxial loading conditions.

• The comparison of failure prediction between ANN models for
regression and classification problems and conventional Hashin
and Tsai–Wu failure criteria.

• The completeness of failure analysis of IM7/8552 UD compos-
ites under all possible biaxial loading conditions using coupled
computational micromechanics and artificial neural networks.

It should be noted that this ANN-based failure approach for fail-
ure prediction based on 3D high-fidelity micromechanics modelling is
demonstrated for IM7/8552 unidirectional composite materials. Extra
effort should be made for the failure prediction of composites under
biaxial loading conditions if a new material system is introduced, result-
ing in the necessity of the generation of general failure criteria. There
are two limitations of this study. On the one hand, the fibre failure
was simulated with a maximum stress failure criterion, neglecting fibre
kinking mechanisms in longitudinal compression and stochastic fibre
strength in longitudinal tension, therefore improved RVE models need
to be considered to capture such phenomena. On the other hand, the pa-
rameters of Weibull distributions used for the rest of the biaxial loading
conditions are assumed to be the same as the ones calculated from the
coupled experimental–numerical data under transverse and in-plane
shear loadings due to the limitation of experimental data. However,
this is not always true due to the uncertainties in composites, resulting
in the variety of Weibull parameters for different loadings. This can
be improved by advanced experimental approaches to generate more
specific data or advanced numerical approaches with uncertainties
considered. Currently, the machine learning-based failure criteria are
being implemented into ABAQUS via a VUMAT subroutine to conduct
the progressive failure analysis of unidirectional composites with an
15

open hole and woven composites under complex loadings. b
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Appendix. Cohesive-frictional damage model

The cohesive-frictional damage model for the fibre/matrix interface
is illustrated in Fig. A.1. It should be noted in Fig. A.1(b) and A.1(c)
that the compression does not contribute to the failure of cohesive
elements, resulting in the ultimate failure displacement in the combined
compression and shear loads to be same as the one in pure shear load.

The approach proposed by Alfano and Sacco [23] is briefly de-
scribed below, in which a Representative Elementary Area (REA) of
the interface is assumed to be divided into two equal parts, namely an
‘uncracked’ part 𝐴𝑢 and a ‘cracked’ part 𝐴𝑐 . In the ‘uncracked’ part the
nterface is fully bonded while in the ‘cracked’ part a unilateral contact
ith friction occurs. Denoting by A the area of the REA and by 𝐷 the

atio 𝐴𝑐∕𝐴, then the following relationship holds

= 𝐴𝑢 + 𝐴𝑐 , 𝑤𝑖𝑡ℎ𝐴𝑢 = (1 −𝐷)𝐴,𝐴𝑑 = 𝐷𝐴 (A.1)

he homogenised interface traction over the REA is defined as

= (1 −𝐷)𝐭𝑢 +𝐷𝐭𝑐 , (A.2)

here the damage variable 𝐷 indicates the cracked proportion over the
ntire material, 𝐭𝐮 is the elastic traction of the uncracked part and 𝐭𝑐
epresents the traction caused by friction on the cracked part. When
he cohesive element fails (𝐷 = 1), the interface follows the Coulomb
riction law.

Fig. A.2 illustrates the one element test with the subroutine regard-
ng the influence of friction on cohesive shear traction when subjected
o different constant compressive stresses. Two steps are used in this
est: in step 1, the compressive displacement is applied and keeps
onstant through the step 2; in step 2, the shear displacement is applied
ntil the failure, see Fig. A.2(b). It can be found in Fig. A.2(c) that with
friction coefficient of 0.4 [15], the strength and toughness close to

he maximum shear stress are both affected by the compressive stress
fter the introduction of friction. In addition, there is still a possibility
o dissipate energy through frictional sliding after final failure when
ompression exists. Therefore, this model can be used to capture the
ohesive shear behaviour under compression and the dry frictional

ehaviour on a crack surface [58].
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Fig. A.1. Cohesive-frictional damage model for the fibre/matrix interface: (a) Representative Elementary Area and decomposition of displacement jumps [23]; (b) traction–separation
laws of standard cohesive zone model (black lines) and cohesive-frictional model (blue lines) (𝛿0𝑠 , 𝛿0𝑠 and 𝑡0𝑠 , 𝑡

0
𝑠 represent the displacements and tractions at the damage onset of

standard cohesive and cohesive-frictional damage models, respectively); (c) graphical representation of standard cohesive damage model (black lines) and cohesive-frictional damage
model (blue lines) under mixed mode loadings when compression is involved.
Fig. A.2. The influence of friction on cohesive shear traction under different constant compressive stresses, following Alfano and Sacco [23]. (𝐾𝑛 = 𝐾𝑠 = 105 GPa/mm for test
reason).
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