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Abstract

Ordinal data frequently occur in various fields such as knowledge level assessment,
credit rating, clinical disease diagnosis, and psychological evaluation. The classic mod-
els including cumulative logistic regression or probit regression are often used to model
such ordinal data. But these modeling approaches conditionally depict the mean char-
acteristic of response variable on a cluster of predictive variables, which often result
in non-robust estimation results. As a considerable alternative, composite quantile
regression (CQR) approach is usually employed to gain more robust and relatively
efficient results. In this paper, we propose a Bayesian CQR modeling approach for
ordinal latent regression model. In order to overcome the recognizability problem of
the considered model and obtain more robust estimation results, we advocate to using
the Bayesian relative CQR approach to estimate regression parameters. Additionally,
in regression modeling, it is a highly desirable task to obtain a parsimonious model
that retains only important covariates. We incorporate the Bayesian L1/2 penalty into
the ordinal latent CQR regression model to simultaneously conduct parameter estima-
tion and variable selection. Finally, the proposed Bayesian relative CQR approach is
illustrated by Monte Carlo simulations and a real data application. Simulation results
and real data example show that the suggested Bayesian relative CQR approach has
good performance for the ordinal regression models.
Keywords: Latent regression model; Ordinal response; Monte Carlo; CQR modeling;
L1/2 penalty

1 Introduction

In regression modeling, we often encounter response variables whose data type is ordinal.

For example, in the analysis of factors affecting credit rating, the responded credit rating

∗The corresponding author is Tian Yuzhu, pole1999@163.com.
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is typically ordinal; in the analysis of risk factors affecting disease development, the degree

of disease can also be considered as ordinal; in the analysis of students’ knowledge level,

the knowledge ability is classified into several ordinal levels. Ordinal regression models

including logistic regression and probit regression are generally employed to fit this type of

data. Another usual alternative is ordinal latent regression which is also used to capture

the mean characteristic through the continuous latent responses. One can refer to Cliff

(1996), Zhang et al.(2003), Agresti (2010), Manuguerra & Heller (2010), Montesinos-lopez

et al. (2015), Sha & Dechi (2019) and Tutz (2022) for a more detailed discussion. However,

the above modeling approaches mainly capture the mean characteristic of response variable

conditionally on covariates, which may result in non-robust estimates in the presence of

outliers. Unlike only modeling the empirical means, the QR approach studies the full

conditional distributions of response variable. One can refer to Davino et al.(2014) for

a comprehensive summary of QR modeling. However, constructing QR estimates for

ordinal variables becomes challenging because quantiles of ordinal categorical data cannot

be obtained through a simple inverse operation of the cumulative distribution function

(CDF). Meanwhile, the standard QR depicts a conditional distribution of the dependent

variable for a single quantile, making it challenging to select the most informative quantile

to gain efficient estimators.

As an alternative, the CQR approach combines the information of multiple quantile

levels which produce more robust and efficient estimation results than the mean regression

and single QR modeling. There have been many existing literatures on CQR modeling in

the last fifteen years. One can refer to Zou & Yuan (2008), Kai et al. (2010), Tang et

al.(2012), Jiang et al. (2014), Wang et al. (2018), Huang & Zhan (2022), etc. Additionally,

from the Bayesian framework, Huang & Chen (2015) and Alhamzawi (2016) discussed

the Bayesian CQR of linear models, Tian et al. (2017) and Tian et al. (2021) studied

Bayesian CQR for linear mixed models and weighted CQR of longitudinal data using

MCEM algorithm, respectively. In this paper, we will focus on the Bayesian CQRmodeling

of the ordinal latent regressions.

In high-dimensional regression modeling, many covariates are usually included in the

model, but only a small part are statistically significant. Many regularization methods
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including LASSO (Tibshirani (1996): Least absolute shrinkage and select operator), adap-

tive LASSO (Zou (2006)), SCAD (Fan & Li (2001): Smoothly clipped absolute deviation),

Enet (Hui & Hastie (2005): the Elastic-net), bridge penalized regression (Fu (1998)), and

L1/2-norm penalization (Xu (2010)) can be frequently used to conduct variable selection

and model estimation simultaneously. In the Bayesian framework, Park & Casella (2008)

proposed Bayesian LASSO regression, Alhamzawi et al. (2012) considered Bayesian adap-

tive LASSO QR, Polson et al. (2014) studied Bayesian bridge regression, Betancourt

et al. (2017) studied Bayesian fused Lasso regression for dynamic binary networks, Al-

hamzawi & Ali (2018) discussed Bayesian L1/2 Tobit QR, Mallick & Yi (2018) considered

Bayesian L1/2 regularization. Based on the above literature review, L1/2 penalty will be

incorporated into the Bayesian CQR modeling for the given ordinal model.

The remainder of this paper is organized as follows. Section 2 introduces the latent

ordinal regression model and the working likelihood. Section 3 presents the Bayesian

algorithm of the considered method. The selection of CQR level K and the relative CQR

estimation approach are also highlighted in the Subsection 3.4. Section 4 provides some

Monte Carlo simulations to illustrate the proposed modeling approach. Section 5 presents

two real-world applications to illustrate the proposed estimation procedure. The last

section draws some conclusions.

2 The ordinal latent CQR model and the working likelihood

2.1 The latent CQR model

The ordinal responses yi, i = 1, · · · , N are linked on the latent unobservable responses y∗i

as follows

yi =


1, δ0 < y∗i ≤ δ1;
r, δr−1 < y∗i ≤ δr; r = 2, · · · , R− 1,
R, δR−1 < y∗i ≤ δR;

(2.1)

where δ0, · · · , δR are cut-points whose coordinates satisfy −∞ = δ0 < δ1 < · · · < δR−1 <

δR = +∞, δr−1 and δr define the lower and upper thresholds of the interval corresponding

to observed outcome r. The latent responses y∗i are assumed to be generated from the
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following linear model

y∗i = xTi β + εi, (2.2)

where β = (β1, · · · , βp)T is the vector of regression coefficients, xi = (xi1, · · · , xip)T is the

explaining variable, εi is the random error term.

For latent regression model (2.2), CQR estimator β̂CQR can be derived by minimizing

the objective loss function

(α̂1, · · · , α̂K , β̂CQR) = arg min
α1,··· ,αK ,β

N∑
i=1

K∑
k=1

ρτk(y
∗
i − xTi β − αk), (2.3)

where αk is the τk-th quantile of the error term εi and satisfy monotonicity: α1 < · · · < αK .

The composite quantile levels can be simply set to τk = k
K+1 , k = 1, · · · ,K. Evidently,

the CQR for the case of K = 1 will degenerate into median regression. Although the

CQR estimator can result in higher estimation efficiency, the computation is a challenging

work due to the complexity of the objective function (2.3). Tian et al. (2016) studied

a likelihood-based CQR approach by using the CALD (Composite asymmetric Laplace

distribution) and derived an IWLSE (Iterative weighted least square estimation) solution.

Borrowing the CALD in Tian et al. (2016), the CQR working likelihood of y∗i in

model (2.2) can be represented by

N∏
i=1

f(y∗i |µi, σ) ∝
N∏
i=1

K∏
k=1

1

σ
exp

{
− ρτk

(y∗i − µik

σ

)}
, (2.4)

where µik = xTi β + αk is the τk conditional quantile of the response y∗i . In order to carry

out the fully Bayesian inference, the CQR working likelihood (2.4) can be represented as

the following hierarchical likelihood{ ∏N
i=1 f(y

∗
i |υi, µi, σ) ∝

∏N
i=1

∏K
k=1

1√
θ2,kσυik

exp
{
− (y∗i −µik−θ1,kυik)

2

2σθ2,kυik

}
,

υik ∼ Exp( 1σ ),
(2.5)

where θ1,k = 1−2τk
τk(1−τk)

, θ2,k = 2
τk(1−τk)

, µi = (µi1, · · · , µiK), and υi = (υi1, · · · , υiK) is the

latent variable, Exp( 1σ ) denotes the exponential distribution with parameter 1
σ .

Based on the hierarchical likelihood (2.5), we derive the conditional posterior distri-
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bution of latent variable y∗i as follows

f(y∗i |υi, µi, σ) ∝
K∏
k=1

1√
σθ2,kυik

exp
{
−

(y∗i − µik − θ1,kυik)
2

2θ2,kσυik

}
∝ exp

{
− 1

2

K∑
k=1

(y∗i − µik − θ1,kυik)
2

σθ2,kυik

}
∝ exp

{
− 1

2

[
y∗i

2 ·
K∑
k=1

1

σθ2,kυik
− 2y∗i ·

K∑
k=1

µik + θ1,kυik
σθ2,kυik

]}

∝ exp
{
− 1

2

K∑
k=1

1

σθ2,kυik
·
(
y∗i −

∑K
k=1

µik+θ1,kυik
θ2,kυik∑K

k=1
1

θ2,kυik

)2}

∼ N
(∑K

k=1
µik+θ1,kυik

θ2,kυik∑K
k=1

1
θ2,kυik

,
σ∑K

k=1
1

θ2,kυik

)
, N(ui, φ

2
i ). (2.6)

The conditional distribution f(y∗i |υi, µi, σ) will be used to conduct Bayesian posterior

inference of latent variable y∗i in Subsection 3.2.

2.2 The joint likelihood

Denote y = (y1, · · · , yN ), y∗ = (y∗1, · · · , y∗N ),υ = {υ1, · · · , υN}, α = (α1, · · · , αK) and

x = {x1, · · · , xN}. Based on (2.6) and model (2.1), the conditional cumulative distribution

function (CDF) of observed response yi is

P (yi ≤ r|y∗i , xi, β, σ, υ, δr, α) = P (y∗i ≤ δr|xi, υi, β, σ, α)

= Fy∗i
(δr) = Φ(

δr − ui
φi

), (2.7)

where Φ is the CDF of standard normal distribution. Then, the probability of yi being at

r-th category is

πir = P (yi = r|y∗i , xi, β, σ, υi, δr−1, δr, α)

= P (δr−1 < y∗i ≤ δr|xi, υi, β, σ, α)

= Φ(
δr − ui

φi
)− Φ(

δr−1 − ui
φi

). (2.8)

Hence, the conditional likelihood of observation data y can be expressed as

P (y|y∗, x, υ, β, σ, δ, α) =
N∏
i=1

R∏
r=1

πIir
ir , (2.9)
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where δ={δ1, · · · , δR−1}, Iir is the indictor function of yi, valued as 1 when yi = r, or 0

otherwise.

The marginal likelihood of the CQR for ordinal response y is

LO(Θ|y, x) =

∫ N∏
i=1

[
P (yi|y∗i , xi, υi, β, σ, δ, α) · f(y∗i |xi, υi, β, σ, α)

×
K∏
k=1

f(υik|σk)
]
dυdy∗, (2.10)

where Θ is a set of unknown parameters, f(y∗i |xi, υi, β, σ, α) is the conditional normal

pdf (2.6), f(υik|σ) is the pdf of exponential distribution in (2.5). The marginal likelihood

(2.10) encounters tedious high-dimensional integral which is difficult to maximize. MCMC

(Markov Chain Monte Carlo) algorithm can be naturally used to address the computa-

tional problem. To conduct the fully Bayesian inference in Section 3, the joint hierarchical

likelihood of the complete data {y, y∗, v} can be derived as follows

LC(Θ|y, y∗, v) =

N∏
i=1

[
P (yi|y∗i , xi, υi, β, σ, δ, α) · f(y∗i |xi, υi, β, σ, α)×

K∏
k=1

f(υik|σ)
]

= P (y|y∗, x, υ, β, σ, δ, α) · f(y∗|x, υ, β, σ, α) · f(υ|σ). (2.11)

3 Bayesian procedures

3.1 Speciation of priors

Firstly, for regression coefficient β, we impose penalization priors to conduct variable

selection. Commonly used penalty functions mainly include L1-norm penalty, L2-norm

penalty, SCAD penalty, Lξ (0 < ξ < 1) penalty. Xu (2010) revealed that L1/2 penalty

is the most sparse and robust among the Lξ. For achieving L1/2 penalized CQR for the

considered model, we exert a generalized Gaussian distribution (GGD) prior on regression

coefficient β as follows

π(β|σ, λ) =
p∏

j=1

π(βj |σ, λ), π(βj |σ, λ) =
(λσ )

2

2 · Γ(3)
exp

{
− λ

σ
|βj |1/2

}
, (3.1)

where λ > 0 is penalty parameter.

Mallick & Yi (2018) proposed a hierarchical representation of the GGD, which is

used to conduct more efficient Bayesian inference. Based on such a hierarchical form, the
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prior of βj can be represented by{
π(βj |σ, λ) =

∫∞
0 π(βj |sj) · π(sj |λ, σ)dsj ,

π(βj |sj) = Uniform(−s2j , s
2
j ), π(sj |λ, σ) = Gamma

(
3, λσ

)
.

Thereupon, the prior of β is hierarchically expressed as

π(β|σ, λ) ∝
p∏

j=1

[
π(βj |λ, σ, sj) · π(sj |λ, σ)

]
. (3.2)

For threshold parameter δ = (δ1, · · · , δR−1), the prior is selected according to the

recommendation of Sha & Dechi (2019). This method has good identifiability for the

monotonicity of threshold components. SupposeG(·) is the CDF of one continuous variable

whose domain lies in (−∞,∞), such that the probability of falling on each interval are

pr = P (δr−1 < ∆ < δr) = G(δr) − G(δr−1), j = 1, · · · , R and satisfy
∑R

r=1 pr = 1. By

mathematical transformation, we derive
δ1 = G−1(p1),
δ2 = G−1(p1 + p2),
...
δR−1 = G−1(p1 + · · ·+ pR−1).

For the probability parameters p1, · · · , pR , the priors are commonly set as the Dirich-

let distribution π(p1, · · · , pR |γ) = 1
B(γ)

∏R
r=1 p

γr−1
r , where γ = (γ1, · · · , γR) is positive hy-

perparameter vector, B(γ) =
∏R

r=1 Γ(γr)/Γ(
∑R

r=1 γr), Γ(·) denotes the gamma function.

By using the above transformation, the prior of δ becomes

π(δ) =
1

B(γ)

R∏
r=1

[G(δr)−G(δr−1)]
γr−1 ·

R−1∏
r=1

g(δr).

where g(·) is the density function of G(·).

The parameter λ is selected as the conjugate Gamma prior: π(λ) = Gamma(a, b).

The scale σ is set as the conjugate inverse Gamma prior: π(σ) = IGamma(c, d).

For given K, the prior of α is simply taken as π(α) =
∏K

k=1 π(αk), where π(αk) ∼

N(αk,0, ς
2
k,0), αk,0 and ς2k,0 are mean and variance hyperparameters. Quantile parameters

α1, · · · , αK need to satisfy the constraint: α1 < · · · < αK . For retaining the monotonicity

of their posterior estimates, the hyperparameters αk,0, k = 1, · · · ,K can be set as α1,0 <
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α2,0 < · · · < αK,0. The scale hyperparameters ς2k,0 can be taken as the same value for

convenience. A rational remark concerning the hyperparameter setting of prior π(α) can

be found in Tian et al. (2019).

The joint prior of all unknown parameters can be expressed as follows,

π(β|σ, λ)π(λ)π(σ)π(δ)π(α). (3.3)

3.2 The joint posterior

Incorporating the joint prior (3.3) into the joint likelihood (2.11) results in the joint pos-

terior density of parameters and latent variables as follows

P (β, σ, λ, δ, α, υ, y∗|y, x) ∝ LC(Θ|y, y∗, x, v) · π(β|σ, λ)π(λ)π(σ)π(δ)π(α). (3.4)

The hierarchical representation of joint posterior density (3.4) is

y|y∗, x, β, σ, δ, υ ∼ P (y|y∗, x, β, σ, δ, υ, α),
y∗|x, β, σ, υ ∼ f(y∗|x, β, σ, υ, α),
υik|σ ∼ Exp

(
1
σ

)
, i = 1, · · · , N, k = 1, · · · ,K;

β|S ∼
∏p

j=1Uniform(−s2j , s
2
j ),

S|λ, σ ∼
∏p

j=1Gamma
(
3, λσ

)
,

λ ∼ Gamma(a, b),
σ ∼ IGamma(c, d),

α ∼
∏K

k=1 π(αk)
δ ∼ π(δ).

(3.5)

The above joint posterior (3.4) is quite high-dimensional and complex to calculate

its posterior quantities. MCMC algorithm is employed to derive the posterior samples for

conducting Bayesian inference.

3.3 Gibbs sampler algorithm

by using the Gibbs sampler procedure of MCMC algorithm, we derive the fully conditional

posterior distributions of parameters and latent variables as follows.

◦ Sample δ from its fully conditional posterior distribution π(δ)·
∏R

r=1

∏N
i=1 I(δr−1 <

y∗i ≤ δr, yi = r). Specially, the coordinate δr can be sampled conditionally on δ(−r) =
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(δ1, · · · , δr−1, δr+1, · · · , δR−1) for r = 1, · · · , R− 1. It can be noticed that the fully condi-

tional posterior distribution of δr is

π(δr|y, δ(−r)) ∝ [G(δr+1)−G(δr)]
γr+1−1 · [G(δr)−G(δr−1)]

γr−1 · g(δr) · I(ωr1 < δr < ωr2),

where ωr1 = max(y∗i |yi = r), ωr2 = min(y∗i |yi = r + 1) and G(δ0) = 0, G(δR) = 1. In

applications, the distribution function G(·) can be simply set as a normal distribution

with mean µ0 and large scale σ0 for covering a wide range in (−∞,∞), where µ0 and

σ0 are hyperparameters. Conditionally, δr is a random variable whose transformation

G(δr) is distributed as the shifted G(δr−1) and scaled G(δr+1)−G(δr−1) Beta distribution

truncated at the interval [G(ωr1), G(ωr2)], equivalently,

G(δr)−G(δr−1)

G(δr+1)−G(δr−1)
· I(δr ∈ δr−1, δr+1) ∼ Beta(γr, γr+1)

truncated at
[

G(ωr1)−G(δr−1)
G(δr+1)−G(δr−1)

, G(ωr2)−G(δr−1)
G(δr+1)−G(δr−1)

]
. Specially, first draw a ηr from the above

truncated Beta distribution and then get δr = G−1(ξr), where ξr = G(δr−1)+ηr ·(G(δr+1)−

G(δr−1)), r = 1, · · · , R− 1.

◦ Sample υik from the generalized inverse Gaussian distribution

GIG
(1
2
,

ι2ik
θ2,kσ

,
θ21,k + 2θ2,k

θ2,kσ

)
,

where ιik = y∗i − αk − xTi β.

◦ Sample σ from the inverse Gamma distribution

IG
(3NK

2
+ 3p+ c,

K∑
k=1

N∑
i=1

( e2ik
2θ2,kυik

+ υik

)
+ λ

p∑
j=1

sj + d
)
,

where eik = y∗i − αk − xTi β − θ1,kυik.

◦ Sample β from the multivariate truncated normal distribution

N(β∗, B∗) ·
p∏

j=1

I(|βj | < s2j ),

whereβ∗ = B∗ ·
(

1
σ

∑N
i=1

∑K
k=1

xi·(y∗i −αk−θ1,kυik)
θ2,kυik

)
, B∗ =

(
1
σ

∑N
i=1

∑K
k=1

xix
T
i

θ2,kυik

)−1
.

Specially, the coordinates βj , j = 1, · · · , p of β can be conditionally sampled from

the following truncated normal distribution

TN(−s2j ,s
2
j )
(µβj

, σ2
βj
),
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where σ2
βj

=
(

1
σ

∑N
i=1

∑K
k=1

x2
ij

θ2,kυik

)−1
, µβj

= σ2
βj

·
(

1
σ

∑N
i=1

∑K
k=1

xijηik
θ2,kυik

)
, ηik = y∗i − ck −∑

u ̸=j xiuβu − θ1,kυik.

◦ Sample sj , j = 1, · · · , p from the left-truncated exponential distribution Exp(λ/σ)I{sj >

|βj |1/2}, using the inversion method, which can be enforced by two steps: (I) Sample

s∗j ∼ Exp(λ/σ); (II) Compute sj = s∗j + |βj |1/2.

◦ Sample λ from the Gamma distribution Gamma(3p+ a, b+
∑p

j=1 sj/σ).

◦ Sample αk, k = 1, · · · ,K from the normal distribution N
(
α∗
k,0, (ς2k,0)

∗
)
, where

α∗
k,0 = (ς2k,0)

∗
(

1
σ

∑N
i=1

ϵik
θ2,kυik

+
αk,0

ς2k,0

)
, (ς2k,0)

∗ =
(

1
σ

∑N
i=1

1
θ2,kυik

+ 1
ς2k,0

)−1
, ϵik = y∗i − xTi β −

θ1,kυik.

◦ Sample y∗i , i = 1, · · · , N from the truncated normal distribution

TN(δr−1,δr)(ui, φ
2
i ), yi = r, r = 1, · · · , R.

3.4 Selecting K and the relative CQR estimation

The selection of K is very critical in CQR applications. Although employing bigger K

in CQR modeling can produce higher estimation efficiency, more computational burden

encounters. A optimal K is an equilibrium between estimation efficiency and model com-

plexity. Many authors have found that the efficiency gain is relatively insignificant as K

increases. Jiang et al. (2014) studied CQR with K = 7 for the DTARCH model, and they

showed that increasing K does not change the results significantly. Huang & Chen (2015)

studied Bayesian CQR with K = 9 and declared that they tried several other values of K

from 5 to 20 and found the numerical results are not sensitive to this choice. In addition,

Tian et al. (2016, 2017) discussed CQR with the value of K from 3 to 9 and found that

increasing the bigger value for K does not results in higher efficiency gain significantly.

Hence, the value of K in CQR analysis is reasonably recommended to take from 3 to 9.

Another important issue in this paper is identifiability of ordinal latent regression

model. Recently, Grabski et al. (2019) proposed a relative estimation approach for the or-

dinal QR model to allow adaptive cutpoints for yielding identifiable results. The inference

addressed the ratios of the coefficients to the cutpoint vector, which is identifiable, rather
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than on the magnitudes of the original coefficients. We employ such a proposal to define

the Bayesian relative CQR estimators for ordinal latent regression coefficients. In simula-

tions and real data analysis, Bayesian relatively CQR estimates and standard deviations

(std) of ratio parameters
βj

δR−1
, j = 1, · · · , p are reported by using the corresponding poste-

rior samples, instead of original parameters βj . Then, to specify the statistical significance

of the coefficients based on the CQR approach, we use
β̂j

δ̂R−1
to affirm whether each βj is

significantly different from 0 or not. Meanwhile, in Section 5, for the aim of comparison,

we derive the restored CQR estimates β̂j of original coefficients by multiplying the relative

CQR estimates
β̂j

δ̂R−1
by the estimated δ̂R−1.

4 Simulation studies

4.1 Model parameters and data generation

In this section, simulation studies are presented to illustrate the sample performance of

the proposed Bayesian relative CQR approach. We generate 100 datasets from the la-

tent regression model (2.2) with N = 200, where covariates xi are generated from the

multivariate standard normal distribution and error εi are generated from two cases: (1)

standard normal distribution (N(0, 1)); (2) student t distribution with three degree (t3).

Consider the following two cases for regression coefficient vector.

Model 1: Sparse case with β = (1.2, 1.2, 0, 0, 0, 0)T ,

Model 2: High-dimensional sparse case with β = (βT
1:2, βT

3:20)
T , where β1:2 =

(1.2, 1.2)T , β3:20 = (0, · · · , 0)T .

The latent responses y∗i are divided into four ordinal categories based on the given

thresholds which result in the observed responses yi as follows

yi =


1, −∞ < y∗i ≤ δ1,
2, 0 < y∗i ≤ δ2,
3, 1.6 < y∗i ≤ δ3,
4, 3.2 < y∗i ≤ +∞.

(4.1)

where threshold parameters are set as δ1 = 0, δ2 = 1.6, δ3 = 3.2. Quantile levels K =

1, 3, 5, 7, 9 are considered in following simulations.
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4.2 Convergence diagnosis analysis

To guide the MCMC convergence, we first carry out a few test runs under the following

settings of initial values for regression coefficients and prior hyperparameters using the

Bayesian relative CQR approach for Model 1 with εi ∼ N(0, 1) and K = 5.

Setting 1: β(0) = (0, 0, 0, 0, 0, 0)T , a = b = 0.5, c = d = 0.5.

Setting 2: β(0) = (1, 1, 1, 1, 1, 1)T , a = 1, b = 10, c = 10, d = 1.

Setting 3: β(0) = (−1,−1,−1,−1,−1,−1)T , a = 10, b = 1, c = 1, d = 10.

For the above three settings, we run the Gibbs sampling algorithm 10000 iterations

for each case. Figure 1 displays three MCMC chains of regression coefficients starting from

the three settings in which the full mixing indicates a quick convergence of the MCMC

algorithm. Figure 1 also shows that different initial values and priors do not produce a

big impact on the algorithm convergence of Bayesian relative CQR approach. Hence, all

following simulations are conducted based on the initial values and priors in Setting 1.

About the computation time, we conduct a test by taking the case of the error term

t3 and K = 5 as an example for two given models. The computing times of Bayesian

relative CQR approach with L1/2 penalty for accomplishing one replication by running

10000 times Gibbs sampling iterations are 3.97 minutes for Model 1 and 5.61 minutes for

Model 2. We see that Bayesian CQR approach with K = 5 for high-dimensional Model

2 consumed more computational time than Model 1. Additionally, for the same model,

the bigger for K, the more time the CQR approach will take. It should be noted that

simulation studies in Section 4 and real-world data analysis in Section 5 are conducted

using a Dell desktop [OptiPlex 7050, Intel(R) Core(TM) i7-7700U CPU] via statistical

software R3.5.2. All codes of simulations and computations can be requested on the first

author.

4.3 Substantive simulations

In this subsection, we conduct some simulations to compare estimation performance for

the direct Bayesian CQR approach and Bayesian relative CQR. For Model 1, Figure 2

12
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Figure 1: MCMC chains starting from three combinations of different initial values and prior
hyperparameters for the Bayesian relative CQR. Notes: The red line denotes the MCMC plot of
Setting 1; The blue line denotes the MCMC plot of the Setting 2; The black line denotes the
Setting 3.
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displays two MCMC chains of 10000 Gibbs samples of regression coefficients under the

setting of t3 error with K = 5, in which the red line denotes Bayesian CQR approach and

the blue line denotes the Bayesian relative CQR approach. Figure 2 indicates that the

MCMC algorithms of two class of Bayesian CQR approaches are convergent and Bayesian

relative CQR approach has apparently better estimation performance. Similarly, for high-

dimensional Model 2, Figure 3 indicates the Bayesian relative CQR approach has equally

better estimation performance. To compare the estimation efficiency numerically between

the direct Bayesian CQR approach and Bayesian relative CQR approach, Tables 1-2 listed

the estimation bias (Bias), posterior root mean square error (RMSE), cover rate (CR) of

95% credible intervals, and variable selection results of 100 repeated simulations for two

given models under two errors only considering K = 5. For each repetition, 10000 times

Gibbs sampling algorithm is run for each combination, the previous 5000 burn-in samples

are removed and the remaining 5000 samples are remained to conduct posterior inference.

From Tables 1-2, we see that the Bayesian relative CQR approach has distinctly superior

results to the direct Bayesian CQR approach. Additionally, Tables 1-2 also manifest that

the Bayesian relative CQR approach produces robust results even for heavy-tailed t3 error.

Next, we conduct simulation comparisons to illustrate the proposed Bayesian relative

CQR over different K based on Bayesian L1/2 (BL1/2) penalty and usual Bayesian LASSO

(BLASSO) penalty. Based on 100 repeated simulations, the average posterior biases, and

posterior RMSEs of relative regression parameters under the considered combinations are

listed in Tables 3-4. Variable selection results of two Bayesian penalization approaches for

Models 1-2 are listed in Tables 5-6, where “NC” denotes the average correctly identified

number of important covariates, and “NIC” denotes the average wrongly identified num-

ber of unimportant covariates. The correctly identified numbers of each parameter are

also provided in Tables 5-6. The averaged posterior mean square error (APMSE) of the

identified model for 100 simulations is given by

APMSE =
1

100

100∑
s=1

(η̂(s) − η)T (η̂(s) − η), (4.2)

where η̂(s) is the s−th estimate of relative parameter η.

For Model 1 and Model 2, from Tables 5-6, we see the Bayesian relative CQR

14
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Table 3: Estimates of Bayesian relative CQR for Model 1 under different penalties

Methods Error K Estimates β1 β2 β3 β4 β5 β6 δ3

BL1/2 N(0, 1) K = 1 Bias −0.006 −0.005 −0.004 0.001 0.001 0.002 5.238
RMSE 0.041 0.039 0.022 0.026 0.025 0.028 5.286

K = 3 Bias −0.008 −0.004 0.001 −0.001 0.001 0.002 0.115
RMSE 0.042 0.041 0.024 0.031 0.026 0.021 0.441

K = 5 Bias −0.004 0.002 −0.001 0.000 0.003 0.001 −1.108
RMSE 0.048 0.045 0.020 0.022 0.022 0.019 1.147

K = 7 Bias −0.003 −0.006 0.001 0.001 −0.002 0.002 −1.597
RMSE 0.065 0.062 0.024 0.021 0.025 0.022 1.623

K = 9 Bias 0.008 0.011 0.002 0.002 0.001 −0.005 −1.934
RMSE 0.086 0.082 0.024 0.020 0.021 0.028 1.958

t3 K = 1 Bias −0.007 −0.006 0.002 0.002 −0.001 −0.009 2.996
RMSE 0.047 0.045 0.025 0.024 0.026 0.030 3.067

K = 3 Bias −0.006 −0.001 0.002 0.002 −0.002 0.000 −0.782
RMSE 0.047 0.044 0.022 0.027 0.025 0.030 0.843

K = 5 Bias 0.014 0.004 0.005 0.004 −0.003 −0.001 −1.695
RMSE 0.059 0.053 0.030 0.036 0.029 0.029 1.705

K = 7 Bias 0.008 0.000 0.001 −0.001 0.003 0.000 −2.088
RMSE 0.077 0.079 0.028 0.026 0.033 0.031 2.099

K = 9 Bias 0.008 0.008 0.004 −0.006 −0.001 −0.003 −2.289
RMSE 0.075 0.078 0.027 0.031 0.030 0.033 2.295

BLASSO N(0, 1) K = 1 Bias −0.008 −0.005 0.000 −0.001 0.002 0.002 5.208
RMSE 0.041 0.035 0.028 0.028 0.027 0.027 5.278

K = 3 Bias −0.002 −0.010 −0.004 −0.002 0.000 0.000 −0.042
RMSE 0.040 0.037 0.026 0.029 0.027 0.026 0.373

K = 5 Bias −0.011 −0.004 0.004 −0.003 0.003 0.001 −1.041
RMSE 0.050 0.049 0.024 0.026 0.027 0.030 1.082

K = 7 Bias −0.011 −0.006 −0.002 0.006 0.003 −0.005 −1.596
RMSE 0.057 0.062 0.025 0.031 0.027 0.025 1.622

K = 9 Bias 0.001 0.005 0.000 0.001 0.002 0.000 −1.935
RMSE 0.072 0.070 0.030 0.028 0.029 0.026 1.951

t3 K = 1 Bias 0.000 0.001 0.001 −0.004 0.000 0.007 2.974
RMSE 0.041 0.044 0.032 0.036 0.031 0.038 3.043

K = 3 Bias 0.000 0.002 −0.004 −0.004 0.000 −0.001 −0.808
RMSE 0.046 0.048 0.031 0.032 0.030 0.034 0.853

K = 5 Bias −0.009 −0.009 0.003 0.001 −0.001 −0.002 −1.643
RMSE 0.056 0.060 0.035 0.032 0.033 0.036 1.660

K = 7 Bias −0.008 −0.003 −0.002 −0.002 −0.001 0.002 −2.052
RMSE 0.075 0.069 0.038 0.034 0.033 0.034 2.061

K = 9 Bias 0.006 0.002 −0.001 −0.001 −0.007 −0.002 −2.271
RMSE 0.088 0.090 0.035 0.038 0.034 0.036 2.279
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Table 4: Estimates of Bayesian relative CQR for Model 2 under different penalties

Method Error K Est. β1 β2 β3 β5 β10 β15 β18 β20 δ3

BL1/2 N(0, 1) K = 1 Bias −0.008 −0.014 −0.004 0.001 0.003 0.001 0.000 0.001 5.616
RMSE 0.041 0.043 0.021 0.018 0.017 0.018 0.018 0.020 5.693

K = 3 Bias −0.009 −0.008 −0.001 −0.002 0.004 0.001 −0.004 0.003 0.150
RMSE 0.040 0.041 0.021 0.019 0.017 0.015 0.017 0.019 0.387

K = 5 Bias −0.002 −0.010 0.003 0.002 0.000 0.001 0.002 0.001 −1.047
RMSE 0.049 0.056 0.021 0.018 0.021 0.017 0.022 0.018 1.097

K = 7 Bias −0.007 −0.006 0.001 −0.001 0.002 0.000 0.003 −0.001 −1.546
RMSE 0.059 0.061 0.017 0.019 0.019 0.019 0.018 0.021 1.573

K = 9 Bias 0.016 0.009 0.003 −0.002 −0.001 0.002 −0.004 −0.001 −1.932
RMSE 0.083 0.083 0.019 0.024 0.019 0.019 0.018 0.021 1.948

t3 K = 1 Bias −0.005 −0.011 0.001 0.001 0.002 −0.004 −0.003 −0.004 3.176
RMSE 0.043 0.046 0.020 0.020 0.018 0.020 0.018 0.020 3.258

K = 3 Bias −0.009 −0.005 −0.002 0.000 −0.001 −0.002 0.003 0.000 0.767
RMSE 0.045 0.050 0.021 0.017 0.019 0.019 0.023 0.019 0.830

K = 5 Bias −0.002 −0.001 −0.002 0.002 0.002 0.001 −0.002 0.000 −1.669
RMSE 0.057 0.065 0.020 0.022 0.020 0.022 0.027 0.021 1.688

K = 7 Bias 0.018 −0.021 0.000 −0.001 0.001 0.000 −0.001 −0.001 −2.044
RMSE 0.103 0.115 0.020 0.024 0.020 0.027 0.025 0.021 2.058

K = 9 Bias 0.009 −0.001 −0.002 0.001 −0.001 0.000 0.001 −0.004 −2.261
RMSE 0.097 0.099 0.023 0.020 0.030 0.022 0.026 0.021 2.171

BLASSO N(0, 1) K = 1 Bias −0.019 −0.019 0.001 0.000 −0.001 −0.001 0.000 0.001 5.495
RMSE 0.045 0.048 0.24 0.026 0.024 0.025 0.025 0.022 5.521

K = 3 Bias −0.013 −0.019 −0.001 0.001 −0.002 0.000 −0.002 −0.004 0.261
RMSE 0.042 0.041 0.027 0.024 0.027 0.021 0.025 0.025 0.455

K = 5 Bias −0.001 −0.008 0.001 0.003 0.000 −0.001 0.000 0.000 −1.006
RMSE 0.048 0.057 0.026 0.026 0.026 0.027 0.025 0.022 1.058

K = 7 Bias −0.007 −0.006 0.000 0.001 −0.001 −0.004 −0.001 −0.002 −1.555
RMSE 0.057 0.063 0.026 0.024 0.028 0.022 0.027 0.023 1.579

K = 9 Bias 0.007 0.009 −0.003 0.000 0.000 −0.002 −0.001 0.000 −1.889
RMSE 0.081 0.080 0.028 0.027 0.024 0.026 0.027 0.027 1.910

t3 K = 1 Bias −0.011 −0.020 0.003 −0.003 0.003 0.003 0.002 0.002 3.185
RMSE 0.054 0.051 0.030 0.026 0.024 0.030 0.028 0.029 3.261

K = 3 Bias −0.013 −0.011 0.002 −0.004 −0.004 −0.001 0.001 −0.002 −0.771
RMSE 0.045 0.049 0.031 0.030 0.025 0.031 0.027 0.028 0.808

K = 5 Bias −0.013 −0.006 0.000 −0.003 −0.002 0.002 −0.001 −0.001 −1.591
RMSE 0.050 0.055 0.028 0.029 0.030 0.034 0.029 0.028 1.606

K = 7 Bias 0.004 −0.006 −0.003 −0.001 0.004 −0.001 −0.003 0.000 −2.031
RMSE 0.068 0.070 0.033 0.032 0.034 0.032 0.031 0.031 2.041

K = 9 Bias 0.006 0.011 −0.010 0.002 0.003 0.002 0.000 −0.002 −2.271
RMSE 0.091 0.080 0.034 0.031 0.033 0.029 0.030 0.032 2.278
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Figure 2: MCMC trace plots of 10000 Gibbs samples for Model 1 under t3 error for K=5 based
on BL1/2 estimation approach. Notes: The red line denotes direct Bayesian CQR estimates and
the blue line denotes Bayesian relative CQR estimates.

Table 5: Variable selections of Bayesian relative CQR for Model 1 under two penalties

Methods Error K APMSE NC NIC β1 β2 β3 β4 β5 β6

BL1/2 N(0, 1) K = 1 0.006 (0.004) 2 0.02 100 100 100 100 100 98
K = 3 0.006 (0.005) 2 0.01 100 100 100 99 100 100
K = 5 0.006 (0.005) 2 0.01 100 100 100 100 100 100
K = 7 0.010 (0.016) 2 0 100 100 100 100 100 100
K = 9 0.016 (0.027) 2 0.01 100 100 100 100 100 99

t3 K = 1 0.007 (0.005) 2 0.01 100 100 99 100 100 100
K = 3 0.007 (0.005) 2 0.03 100 100 100 99 99 99
K = 5 0.010 (0.009) 2 0.07 100 100 99 96 99 99
K = 7 0.015 (0.017) 2 0.02 100 100 99 100 99 100
K = 9 0.015 (0.018) 2 0.04 100 100 99 98 100 99

BLASSO N(0, 1) K = 1 0.006 (0.004) 2 0.02 100 100 100 99 99 100
K = 3 0.006 (0.004) 2 0.00 100 100 100 100 100 100
K = 5 0.008 (0.006) 2 0.01 100 100 100 100 100 99
K = 7 0.010 (0.010) 2 0.00 100 100 100 100 100 100
K = 9 0.013 (0.011) 2 0.00 100 100 100 100 100 100

t3 K = 1 0.008 (0.005) 2 0.05 100 100 100 99 100 96
K = 3 0.008 (0.005) 2 0.03 100 100 100 100 98 99
K = 5 0.011 (0.009) 2 0.05 100 100 98 98 100 99
K = 7 0.015 (0.014) 2 0.05 100 100 99 98 99 99
K = 9 0.021 (0.025) 2 0.04 100 100 99 97 100 100

19



0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

beta_1

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

beta_2

0 2000 4000 6000 8000 10000

−0
.6

−0
.2

0.
2

0.
6

beta_3

0 2000 4000 6000 8000 10000

−0
.6

−0
.2

0.
2

0.
6

beta_5

0 2000 4000 6000 8000 10000

−0
.6

−0
.2

0.
2

0.
6

beta_10

0 2000 4000 6000 8000 10000

−0
.6

−0
.2

0.
2

0.
6

beta_15

0 2000 4000 6000 8000 10000

−0
.6

−0
.2

0.
2

0.
6

beta_18

0 2000 4000 6000 8000 10000

−0
.6

−0
.2

0.
2

0.
6

beta_20

Figure 3: MCMC trace plots of 10000 Gibbs samples for Model 2 under t3 error for K=5 based
on BL1/2 estimation approach. Notes: The red line denotes direct Bayesian estimates and the blue
line denotes Bayesian relative CQR estimates.
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Table 6: Variable selections of Bayesian relative CQR for Model 2 under two penalties

Methods Error K APMSE(β/δ3) NC NIC β1 β2 β3 β5 β10 β15 β18 β20

BL1/2 N(0, 1) K = 1 0.009 (0.005) 2 0.02 100 100 100 100 100 100 99 99
K = 3 0.009 (0.005) 2 0.02 100 100 100 100 100 100 100 100
K = 5 0.012 (0.009) 2 0.01 100 100 100 100 100 100 100 100
K = 7 0.013 (0.011) 2 0.02 100 100 100 99 100 100 100 100
K = 9 0.020 (0.032) 2 0.04 100 100 100 100 100 100 100 100

t3 K = 1 0.011 (0.006) 2 0.02 100 100 100 100 100 100 100 99
K = 3 0.012 (0.006) 2 0.04 100 100 100 100 100 100 99 100
K = 5 0.017 (0.010) 2 0.08 100 100 100 100 100 100 99 100
K = 7 0.033 (0.096) 2 0.07 100 100 100 99 99 99 99 100
K = 9 0.029 (0.042) 2 0.12 100 100 100 100 97 100 99 100

BLASSO N(0, 1) K = 1 0.014 (0.006) 2 0.01 100 100 100 100 100 100 99 100
K = 3 0.014 (0.005) 2 0.05 100 100 100 100 99 100 100 100
K = 5 0.017 (0.009) 2 0.06 100 100 99 99 99 100 100 100
K = 7 0.018 (0.012) 2 0.03 100 100 99 100 99 100 100 100
K = 9 0.026 (0.018) 2 0.09 100 100 99 100 100 100 98 100

t3 K = 1 0.020 (0.009) 2 0.09 100 100 100 100 100 99 100 99
K = 3 0.019 (0.007) 2 0.06 100 100 98 99 100 100 100 100
K = 5 0.021 (0.010) 2 0.08 100 100 100 99 99 99 100 100
K = 7 0.027 (0.016) 2 0.18 100 100 98 99 99 99 99 98
K = 9 0.033 (0.030) 2 0.16 100 100 97 98 100 99 100 99

approach with L1/2 penalty can specify all parameters more accurately with the same

“NC” but smaller “NIC” than Bayesian relative CQR with LASSO penalty under two

error distributions over different K. We conclude that the Bayesian L1/2 relative CQR

approach has better estimation performance than the Bayesian LASSO relative CQR

approach. Hence, the Bayesian L1/2 relative CQR is consistently recommended due to its

good performance. Additionally, for differentK, the Bayesian L1/2 relative CQR approach

has different performance. From the estimation results in Tables 3-4, we see that although

regression coefficients can be precisely estimated for almost all of K, the Bias and RMSE

of threshold parameter δ3 are the smallest consistently only for K = 3. Comprehensively,

the Bayesian L1/2 relative CQR with K = 3 is recommended for all the considered models.

5 Real data example

We analyze a knowledge level dataset in Kahraman et al. (2013) in this section. It is

the real dataset about the students’ knowledge status about electrical DC machines. The
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dataset includes 403 instances and five attribute variables. The users’ knowledge class

was classified into four levels by the authors using an intuitive knowledge classifier: very

low (50 persons), low (129 persons), middle (122 persons), and high (130 persons). The

description of variables for the knowledge level is listed in Table 7. We analyze this dataset

using the recommended Bayesian L1/2 relative CQR approach with K = 3 to explore

which attributes have a significant impact on ordinal classification outcomes. The initial

values and priors of parameters are set the same to the simulations in Subsection 4.3. We

run 10000 times Gibbs sampling algorithm to conduct Bayesian posterior inference, the

previous 5000 burn-in samples are removed and the remaining 5000 samples are used to

calculate posterior estimates (Est.), standard deviation (St.d), 95% credible lower bound

(LB) and upper bound (UB). All computational results based on direct Bayesian CQR and

Bayesian relative CQR are listed in Table 8. The results of Restored CQR estimates of

original parameters based on Bayesian relative CQR approach are also listed in Table 8 for

the aim of comparison. Table 8 shows that the Bayesian relative CQR approach produces

better estimation results with smaller St.ds and shorter 95% interval lengths than the direct

Bayesian CQR approach. Additionally, although there is no overt difference between the

estimation values of the Restored approach based on Bayesian relative CQR and direct

Bayesian CQR approach, the former CQR approach has smaller St.ds and shorter 95%

interval lengths for all parameters which brings about more robust results.

The attribute STG have a negative effect on the knowledge level of use, while SCG,

STR, LPR and PEG have positive effects on response UNS. Additionally, according

to the 95% Bayesian credible intervals, we conclude that SCG, STR, and PEG are

significant attributes on the user’s knowledge level.

6 Conclusion

This paper propose a Bayesian L1/2 relative CQR approach for the latent ordinal regression

model. Monte Carlo simulations and a real data example are implemented to illustrate

the proposed procedures. Based on all simulations and real data analysis, we conclude

that Bayesian L1/2 relative CQR approach with K = 3 can accurately specify important

predictors for latent ordinal regression models. The suggested approach contribute robust
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Table 7: Description of variables for the knowledge level data

Variable Definition Description

Response UNS The knowledge level of user, 1=Very Low, 2=Low, 3=Middle, 4=high.

Covariates STG The degree of study time for goal object materails

SCG The degree of repetition number of user for goal object materails

STR The degree of study time of user for related objects with goal object

LPR The exam performance of user for related objects with goal object

PEG The exam performance of user for goal objects

Table 8: Estimates of Bayesian relative CQR and direct CQR of knowledge level data

Method Estimation STG SCG STR LPR PEG δ1 δ2 δ3

CQR Est. −0.259 1.564 0.865 6.254 19.97 6.385 10.87 16.65

St.d 0.555 0.628 0.516 0.798 1.757 0.869 1.188 1.645

95%LB −1.319 0.064 −0.259 4.568 15.350 4.323 8.059 12.546

95%UB 0.918 2.625 1.725 7.653 22.365 7.710 12.615 19.116

Relative CQR Est. −0.017 0.093 0.051 0.375 1.201 −− −− −−
St.d 0.034 0.035 0.030 0.029 0.045 −− −− −−

95%LB −0.088 0.004 −0.016 0.319 1.122 −− −− −−
95%UB 0.052 0.147 0.099 0.432 1.302 −− −− −−

Restored Est. −0.283 1.553 0.852 6.251 20.00
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estimation results even for non-normal latent regression models and can be naturally

extended to ordinal longitudinal data models.
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