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A B S T R A C T

Current technology has made it possible to automate a number of agricultural processes that were traditionally
carried out by humans and now can be entirely performed by robotic platforms. However, there are certain
tasks like soft fruit harvesting, where human skills are still required. In this case, the robot’s job is to
cooperate/collaborate with human workers to alleviate their physical workload and improve harvesting
efficiency. To accomplish that in a safe and reliable way, the robot should incorporate a safety system whose
main goal is to reduce the risk of harming human co-workers during close human–robot interaction (HRI). In
this context, this paper presents a theoretical study, addressing the safety risks of using collaborative robots in
agricultural scenarios, especially in HRI situations when the robot’s safety system is not completely reliable and
a component may fail. The agricultural scenarios discussed in this paper include automatic harvesting, logistics
operations, crop monitoring, and plant treatment using UV-C light. A human injury assessment is conducted
based on converting the HRI in each agricultural scenario into a formal mathematical representation. This
representation is later implemented in a probabilistic model-checking tool. We then use this tool to perform a
sensitivity analysis that allows us to determine the probability that a human may get injured according to the
occurrence of failures in the robot’s safety or perception systems. Results of the sensitivity analysis show that
an agricultural robot with a robust human perception system can still harm people if they are not well-trained
to interact with the robot for certain scenarios. This illustrates how the probabilistic modeling methodology
presented in this work can be used by safety engineers as a guideline to construct their own HRI models and
then use the results of the model-checking to enhance the safety and reliability of their robot’s safety system
architectures and on-site safety policies.
1. Introduction

In 2021, the UK agricultural economy suffered a shortage of British
and Eastern European workers compounded by Brexit and the Covid
pandemic. The shortage of workers who could complete specialized
harvesting tasks made UK farmers consider scaling back production
as crops were left rot in fields (The Daily Mail, 2021). To attenuate
the economic impact of pickers shortage, it is expected that for the
next decades, the traditional fully manual harvesting operations will
be transformed to semi or fully automated operations where robotic
platforms are used to pick fruits and vegetables (Zhou et al., 2022).
However, the performance of current picking robots has not yet been
able to surpass the efficiency of experienced human pickers. This
is why in the next few years, it is expected that fruit harvesting
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will see the use of cooperative/collaborative robots that must interact
with human co-workers to complete harvesting tasks in a coordinated
manner (Banjanović-Mehmedović and Gurdić, 2021).

The use of cooperative/collaborative robots, such as the ones con-
ceptualized in Peng and Vougioukas (2020), Guevara et al. (2021) and
Vásconez and Auat Cheein (2022), involves an additional technolog-
ical challenge over and above those that must be normally faced by
robots that navigate autonomously without interacting with humans.
For instance, the existence of human–robot interaction (HRI) forces the
robot to incorporate a perception system able to determine where the
humans are located and what actions they perform (Vasconez et al.,
2021). Additionally, and more importantly, is to incorporate a safety
system (which uses the information taken from the perception system)
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to be able to activate safety stops in conditions where it is not safe for
the robot to continue to operate.

In the last decade, safety solutions and considering HRI for collab-
orative robots have been focused mostly on industrial manufacturing
environments (Robla-Gómez et al., 2017; Wang and Wang, 2021). In
these environments, commercial robotic platforms follow standards in
their kinematic/mechanical design to satisfy safety requirements and
risk assessment methodologies that have been previously established,
for example, International Organization for Standardization (2018a,
2015) and Huck et al. (2021). On the other hand, for agricultural en-
vironments, there are only safety standards for traditional agricultural
machinery and tractors (International Organization for Standardiza-
tion, 2018b), but there is not yet any standard for designing safe
agricultural robots, a.k.a. agri-robotics. This lack of standards is one
of the main reasons why studies related to safety systems or HRI in
agri-robotics have been sparse. As far as our knowledge, the authors
in Mayoral et al. (2021, 2023) are one of the pioneers in incorporating
a safety module into an open-field robot used for grass cutting. This
safety module consists of a human-aware braking system that allows
the robot to perform safety stops according to the level of risk in
unplanned HRIs. These works were tested in a simulated version of a
Thorvald II robot commercialized by SAGA robotics.1 This is a modular
platform whose mechanical design can be easily modified according to
the user’s requirements. The modularity of Thorvald II robots makes
them suitable platforms for designing a generic safety system that
can be applied to a wide range of agricultural scenarios. We have
been building such a generic safety system, one that is constructed
as a wrapper around the software that is responsible for Thorvald II
autonomous navigation (Grimstad and From, 2018), and that can be
valid for different agricultural scenarios compatible with the Thorvald
II standard kinematic design. These scenarios include crop monitoring
(Kirk et al., 2020), UV-C treatment of plants (Gadoury, 2021), fruit
harvesting (Parsa et al., 2023), and logistics operations (Ravikanna
et al., 2023; Guevara et al., 2023).

In this context, the aim of the work in this paper is to perform
a theoretical human injury assessment on the safety system proposed
in Guevara et al. (2023) in case a component of the safety system fails.
A critical failure may cause the robot to be unaware of the presence
of nearby people and injure them by colliding with them. Moreover,
there is the possibility of injuring people without being in contact with
them. This can happen when a robot is equipped with UV-C LEDs used
for plant treatment (Guettari et al., 2021). To perform a human injury
assessment, planned and unplanned HRIs from a range of different
agricultural scenarios covered by the Thorvald II robot are modeled as
discrete-time automata processes and then translated to an equivalent
representation based on a probabilistic modeling language that can be
used for model-checking purposes.

In the literature, model-checking tools such as UPPAAL (Bengtsson
et al., 1996), NuSMV (Cimatti et al., 2002), or PRISM (Kwiatkowska
et al., 2011) have been successfully used to evaluate the effectiveness
of theoretical models and analyze quantitative properties of systems
across a variety of application domains, including robotic systems.
For instance (Dakwat and Villani, 2018) presented a safety assessment
based on the concepts of Systems Theory Process Analysis (STPA) and
model-checking using UPPAAL applied to a robotic flight simulator; Vi-
centini et al. (2020) presented a safety assessment methodology based
on model-checking for collaborative robots used to assist operators in
tasks such as carrying/loading tools during industrial assembly pro-
cesses. These works introduced important contributions to industrial
robots safety systems, however, the applicability of the safety assess-
ments in these works is limited by the deterministic nature of their
models, which in terms of HRI, constrains the human behavior to a

1 SAGA robotics website https://sagarobotics.com/.
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small number of realistic situations since it does not include the proba-
bility of erroneous human behavior as was done for instance in Bolton
et al. (2021, 2019). On the other hand, works such as Araújo et al.
(2017), Zhao et al. (2019) and Lacerda et al. (2019) used the PRISM
tool to evaluate probabilistic representations of robotic systems which
addressed the uncertainty of unexpected situations by introducing the
probabilities of making state transitions. These kinds of models are
better suited to perform a sensitivity analysis and obtain statistical
metrics of reaching a specific critical model state as was presented
in Mazzeo et al. (2018) and Cheng et al. (2021).

The work mentioned above contains important contributions in the
context of model-checking methodologies and safety assessments for
cooperative/collaborative robots in structured environments. However,
those studies cannot be completely translated to agri-robotics since
agricultural applications typically involve environmental conditions
that are either unstructured or are not fully controlled. Moreover,
so far, there are no studies about the potential hazards (in terms of
producing human injuries) of modular robots like the Thorvald II that
can be used in several kinds of agricultural scenarios, as opposed to
studies that concentrate on a single function. Given this, the work
presented here aims to contribute to the state of the art by:

• Defining safety requirements and modeling the planned/
unplanned HRIs of four agricultural scenarios where commercial
modular platforms like Thorvald II robots are planned to be
used in the next decades. The scenarios that we model cover
crop monitoring, UV-C treatment of plants, fruit harvesting, and
logistics operations.

• Performing a human injury assessment based on the model pro-
posed above. Probabilities of human injury are calculated by
performing a sensitivity analysis using a probabilistic model-
checking tool. The resulting probabilities can then be used as
metrics to evaluate what kind of failure in a proposed safety
system architecture can cause the most chance of human injury.

We hope that this can be useful to safety engineers in two ways. First,
by showing how tools such as PRISM can be used to measure the
reliability of safety systems, we hope to convince safety engineers that
the use of model-checking techniques can help them in their work.
Second, by providing example models that can be the basis for applying
model-checking techniques in other situations we hope to make the use
of such techniques easier.

This paper is organized as follows. The prerequisites, main concepts,
and safety requirements are introduced in Section 2. The probabilistic
modeling of HRI in agricultural scenarios is described in Section 3,
showing an example of how to implement a simplified model of a UV-C
treatment scenario using the PRISM modeling language. The results of
the sensitivity analysis of each scenario, generated by the PRISM model-
checking tool, are presented in Section 4, and these results are discussed
in Section 5. Finally, the conclusions are presented in Section 6.

2. Background

This section briefly introduces the agricultural context of the work
and the key elements from the safety system implemented in Guevara
et al. (2023) on which this paper builds.

2.1. Agricultural scenarios

This work covers HRIs in four agricultural scenarios: UV-C treat-
ment, scouting for data collection, and harvesting operations divided
into logistics support and automated picking. For all the scenarios, it
is intended to use Thorvald II robots whose configuration can be easily
modified to fit the requirements of each agricultural scenario. As can be
seen in the examples in Fig. 1, the Thorvald II has four steerable wheels
which allow it to move in any direction without restrictions unlike a
typical car-like or differential-drive robot.

https://sagarobotics.com/
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2.1.1. Logistics
We use the term logistics to refer to a scenario in which a service

robot assists human pickers in transporting fruit that has been picked,
allowing human pickers to concentrate on picking fruit as was pre-
sented in Ravikanna et al. (2023). As in a traditional picking operation,
human pickers remove the fruit from the plant and place them in small
containers, the punnets that are familiar from the supermarket. These
containers are then placed in larger trays. The picker works with a
given tray until it is full, and then summons a robot. The full tray
is placed on the robot, which also brings a new tray, and the robot
then leaves the current picker location, moves to the end of the row of
plants, and waits there until a new picker summons it. When the robot
is fully loaded, it transports the full trays to the collection point. To do
this the robot has to navigate along paths outside the polytunnel. The
Thorvald II robot configuration used during the logistics is presented in
Fig. 1(a) where it can be seen that the robot moves between the crop
rows transporting trays with fruits.

2.1.2. Picking
The picking refers to the scenario when a harvesting robot performs

automatic picking operations as was presented in Parsa et al. (2023).
In this scenario, the robot is moving slowly along the rows while a
manipulator on it is picking the fruits and placing them on the trays.
During this operation, the Thorvald II robot uses the same configuration
showed in Fig. 1(a) (i.e it is moving between the crop rows), but the
harvesting platform includes a robotic manipulator which performs the
picking task.

Since the current harvesting robots do not have good enough har-
vesting rates to be an efficient solution on their own, then the har-
vesting operations still require human pickers. Thus, similar to the
logistic scenario, in the picking scenario the robots share the workspace
with humans but unlike the logistics scenario, they do not require
human interaction during the picking process to accomplish their tasks.
The only situation when robots require human interaction is for load-
ing/unloading of trays of harvested fruit at collection points. Thus, we
can treat this scenario as a complementary operation to the logistics
scenario.

2.1.3. UV-C treatment
In commercial growing operations, plants are typically sprayed with

various pesticides in order to keep diseases, such as powdery mildew, at
bay. However, with a growing interest in reducing the use of chemicals,
there is interest in using robots that can treat strawberry crops with UV-
C light which has been demonstrated to be effective against powdery
mildew according to Hall and Jin (2017) and Gadoury (2021).

The Thorvald II robot configuration used during the UV-C treatment
is presented in Fig. 1(b), where the robot is moving along the rows and
straddles the tables on which the strawberries grow so that the UV-C
emissions are directed inwards. The UV-C dose is carefully calibrated
to not damage the strawberry plants but it can harm any other living
thing that comes closer than 7 m to the robot. Thus, it is mandatory to
restrict access to the polytunnels during UV-C treatment. However, it
is always possible that untrained people (visitors) decide to come close
to the robot to have a look, or accidentally find themselves too close to
the robot. For these unplanned HRIs it is crucial that the robot safety
system can get an early human detection in order to alert the human
of the danger and stop UV-C operations immediately.

2.1.4. Scouting
The term scouting refers to the scenario when the robot operates

in an autonomous way, following a predefined pattern inside the
polytunnel, in which the fruit is typically grown in the UK, in order to
collect data about the crop. For example, in Kirk et al. (2020) the robot
was used to count fruit in order to make yield forecasts. The robot can
traverse the polytunnel using: (i) the same configuration and pattern
3

as for UV-C application allowing each plant to be imaged from both
sides simultaneously, or (ii) using the same configuration and pattern
as for harvesting operations imaging the plants from one side at a time.
Currently, scouting is performed using a robot in the UV-C treatment
configuration. Typically, the data collection is an independent task,
however, it is possible to perform the data collection in parallel with
the picking or logistics operations. The latter means that from a safety
perspective, the scouting scenario does not introduce hazards that are
not already covered by the other scenarios. For this reason, in the
following sections, we will only deal with UV-C treatment, picking, and
logistics operations.

2.2. Safe human–robot interaction

In order to determine if a HRI is safe or not, we can follow the
methodologies used by previous work such as Herrera et al. (2017),
Vasconez et al. (2019) and Liu et al. (2019). These works were based on
concepts of social interactions which divide the personal space around
people into four zones according to the relative distance, denoted by 𝑑,
between the robot and a person where: (i) the public zone is the region
that is 𝑑 ≥ 3.6 m away from the person, (ii) the social zone is the region
that is 1.2 m ≤ 𝑑 < 3.6 m away from the person, (iii) the personal zone
is the region that is 0.45 m < 𝑑 < 1.2 m away from the person, (iv) and
the intimate zone is the region that is 𝑑 ≤ 0.45 m away from the person.

Thus, based on these four zones, in this work, we constrain robot
motion to be permitted only if the robot is either within the social zone
or the public zone of the nearest person, i.e 𝑑 > 1.2 m. The latter is a
general rule for all the agricultural scenarios studied here in order to
reduce the chance of causing human injury through some undesired
physical contact with the robot. However, during UV-C treatment the
people need to stay at least 7 m from the robot to avoid any skin or
eye injuries (Lucas et al., 2019). Thus, a stronger safety rule is required
for this specific scenario. This rule is that the robot that is carrying out
UV-C treatment is allowed to operate only if it is within the public zone
of the nearest person, and the robot is also more than 7 m away from
him/her.

Fig. 2 shows illustrative examples of possible HRIs that may happen
when Thorvald II robots are performing logistics tasks and UV-C treat-
ment. The example on the left shows three pickers (H1, H2, H3) sharing
the workspace with robot R1 (in logistics configuration). Pickers H1
and H2 are working in the same row as the robot R1 while picker H3
is working in another row. According to the safety distances mentioned
above, robot R1 is considered within the public zone of picker H1, and
within the personal zone of pickers H2 and H3. Then, in order to ensure
a safe HRI, the robot is not allowed to move while H2 continues to
be detected as being within 1.2 m of the robot. However, the robot is
allowed to operate next to H3 since any people detected in another
row are not considered at risk. This is because the maneuverability
constraints of the Thorvald II robot inside the polytunnels do not allow
it to move sideways. In the case of picker H1, they are located far
enough from the robot to not be considered in danger, thus the robot
can move without restriction with respect to them.

The example in the middle considers the same robot R1, but this
time moving on paths outside the polytunnel with the collection point
as a goal. Since the footpaths are wider than polytunnel rows, in this
scenario the Thorvald II is allowed to perform sideways movements,
thus the worker H5 is at risk of a potential collision. On the other hand,
worker H6 located at the collection point is far enough to let the robot
continue with the motion without safety restrictions.

In the example on the right, there are three untrained people
(H6, H7, H8) approaching the robot R2 while it is performing UV-C
treatment. In this case, the human H6 is located at the same distance
from robot R2 as H1 was from robot R1 in the first example, however
for a UV-C treatment scenario, any people detected within 7 m from
the robot, make the robot stop operation in order to avoid potential
human injuries due to UV-C light radiation. Moreover, unlike logistics

operations, for UV-C treatment, even if a human is located in a row
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Fig. 1. The Thorvald II configuration used to: (a) perform logistics and picking during fruit harvesting operations; and (b) perform the UV-C treatment and crop monitoring.
Fig. 2. Illustrative examples of possible HRIs that may happen when Thorvald II robots are performing logistics tasks inside polytunnels (left), at footpaths next to the collection
point (middle) and while performing UV-C treatment (right).
next to the robot (as the human H7 in this example), the robot must
stop operations since the human is still at risk. The only human who is
at a safe distance is H8, however, if an untrained person is not aware of
the danger, he/she may decide to get closer at some point in the future.

2.3. Safety system requirements and policies

According to the descriptions of the agricultural scenarios given
above, the safety system implemented in the robot should include at
least the following components2:

SR-1 Audiovisual Feedback Alert System (AVFAS): The robots must
be equipped with colored beacons and speakers to periodi-
cally or explicitly inform people of the current robot’s behav-
ior/intentions (Al-Hussaini et al., 2020).

2 The policies and safety system components presented in this work are
being implemented on a Thorvald II robot as part of the Medium-Sized AGV
for soft-fruit Production (MeSAPro) project. A demo video can be seen at
https://www.youtube.com/watch?v=WLEGSuPtYJU.
4

SR-2 Human Detection System (HDS): The robots must be equipped
with sensors such as LiDARs, RBG-D Cameras or IR Cameras that
allow it to detect people in a range above 7 m (necessary in the
UV-C treatment) (Islam et al., 2019).

SR-3 Human Tracking and Motion Inference System (HTMIS): Based
on the HDS, the robot must be able to keep track of the position
of the person detected by the HDS and use this information to try
to infer the current person’s movements (Unhelkar et al., 2018).

SR-4 Human Action Recognition System (HARS): By using the infor-
mation taken from the HDS, the robot must be able to recognize
certain body gestures (used to control the robot) as well as com-
mon actions that pickers perform during harvesting operations
(see Vasconez et al. (2019) and Vasconez et al. (2021)).

SR-5 Collision Avoidance System (CAS): The robot must be able to
perform human-aware maneuvers while evading unexpected
people (for example where the robot crosses footpaths) and
while approaching a worker to unload/load trays (Hou et al.,
2020; Fan et al., 2020).

https://www.youtube.com/watch?v=WLEGSuPtYJU
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SR-6 Safety Contact System (SCS): In case of imminent contact (either
by robot failures or human mistakes), the severity of the human
injuries can be reduced by implementing a sensorized flexible
skin (such as the one presented in Cirillo et al. (2016)) that could
be mounted on strategic areas on the robot structure to detect
pressure changes and stop the robot immediately.

Based on these six components and the safety requirements of each
agricultural scenario, the following safety policies are proposed with
the aim of reducing the severity and/or occurrence of potential human
injuries.

SP-1 The AVFAS must activate visual alerts with the aim of making
the people who were planning to approach the robot aware of
the potential danger without the need to stop robot operations.
Moreover, the AVFAS can also activate auditory alerts with ex-
plicit prerecorded voice messages to make the robot’s intentions
easier to understand for untrained people.

SP-2 The AVFAS must activate audiovisual alerts periodically to warn
people of the robot’s current intentions, especially useful when
the robot is going to perform row transitions inside the poly-
tunnels. (When transitioning between rows the robot moves
sideways, and, given the position of the sensors, moves blind.)

SP-3 The AVFAS must activate visual alerts when a human is detected
within the public zone (𝑑 > 3.6 m) in order to make them
aware of the robot’s presence and potential danger. Moreover,
the robot must activate audiovisual alerts when a human is
within the social zone (1.2 m ≤ 𝑑 < 3.6 m) to ask if they need
the robot’s service (in case of operations inside polytunnels) or
to inform them that the robot yields priority to the human by
default (in case of operations outside polytunnels). According to
the replying body gesture, the robot has to pause the operation,
re-plan another route, or approach the human.

SP-4 The CAS can be used to slowly approach a picker to load/unload
trays only if the HTMIS infers that the picker is mostly stationary
or if the HARS recognizes a specific body gesture indicating it.

SP-5 The CAS can be used to perform safety evasion maneuvers out-
side the polytunnels only if the maneuverability space is wide
enough and the HTMIS infers that the human detected is going
to be stationary.

SP-6 A body gesture with the directive of pause/continue robot oper-
ations can be recognized by the HARS at any moment, inside or
outside the polytunnels.

SP-7 A safety stop can be automatically triggered by the HDS when
a human is detected within an unsafe distance from the robot
(𝑑 ≤ 7 m for UV-C treatment, or 𝑑 ≤ 1.2 m for the remaining
scenarios) or by SCS if a physical contact is detected.

P-8 As in-site safety policy, the farm workers and visitors must re-
ceive basic training about robot operation modes, the mean-
ing of visual and auditory alerts, and the potential hazards
of approaching them (especially critical for UV-C treatment
scenarios).

.4. Model-checking for safety analysis

Safety-critical systems are systems that cannot be allowed to fail.
uch systems, if they fail, may cause either economic damage or even
oss of life (Guha et al., 2021). To address this critical problem, formal
erification by model checking can be used to unearth deficiencies in
5

system (software, hardware, or safety policies) and then improve it. F
The so-called model checking is an algorithmic approach that veri-
ies whether a finite-state model of a system meets a given specification
also known as property) through an exhaustive search of the state
pace. In the context of robotic systems, formal verification has been
idely used to deal with safety issues in different ways. For instance,
uthors in Xin et al. (2022) presented a run-time verification framework
ombining sensor-level fault detection and system-level probabilistic
odel checking. Authors in Ozkan et al. (2023) presented a safety

erification of multiple industrial robot manipulators with path con-
licts using model-checking. Although those works are valid for formal
erification of solely robotic systems, they lack in analyzing the con-
equences on human co-workers’ safety due to either robot failures or
uman stochastic behavior.

For robotic applications that require HRI, a few works such as Askar-
our et al. (2019) presented a formal model of human erroneous
ehavior for safety analysis in collaborative robotics. Later, the same
uthors proposed in Vicentini et al. (2020) a risk analysis methodology
or collaborative robotic applications, which uses formal verification
echniques to automate the traditional risk analysis methods. The main
imitation of those two works is that the models used are determin-
stic which may capture some of the robot behaviors (under certain
onditions) but do not fully capture human stochastic behavior. In this
ontext, only a few works such as Gleirscher et al. (2022) and Zacharaki
t al. (2021) have addressed the formal verification in HRI scenarios by
sing probabilistic models for both human and robot agents.

. Modeling

To model the planned/unplanned HRIs in the agricultural scenarios
tudied in this work, it was decided to model the behavior of each
omponent involved in the interaction as a Markov decision process
MDP) as in Liang et al. (2022). The MDP is a discrete-time formalism
idely used to model sequential decision-making problems where

here is inherent uncertainty about the system’s evolution. The use of
DPs makes it possible for us to use a probabilistic model-checking

ool such as PRISM (Kwiatkowska et al., 2020; Lu et al., 2015) which
lready has support for solving MDPs against properties in Linear
emporal Logic (LTL), in particular allowing for the maximization of
he probability of satisfying an LTL formula. This, in turn, means that
he model of system behavior, in the form of an MDP, can be checked
gainst conditions, expressed in LTL, that correspond to states that
e wish to achieve (such as ‘‘the robot stops when the human makes

he appropriate signal’’) or wish to avoid (such as ‘‘the robot collides
ith the human’’). This section first introduces the assumptions used to

onstruct the proposed HRI model, then the discrete states that define
he MDP representation of the proposed model are shown, and finally, a
ase study is presented to illustrate how to implement each component
f the proposed model using the PRISM modeling language.

.1. Modeling assumptions

In order to construct a simplified but realistic HRI model, the
ollowing assumptions were used to describe the agricultural tasks,
obot operation modes, human behavior, and hazard situations.

.1.1. Defining the robot agricultural tasks as sequence of steps
To determine whether the agricultural scenarios described in Sec-

ion 2.1 are completed or not, they can be divided into a sequence
f steps. The robot finishes a specific agricultural task when it has
uccessfully completed all the steps. For instance, the sequence of steps
o complete the UV-C treatment scenario corresponds to a closed loop
n which the robot starts operation from its home location at the
torage shed, the robot moves from the shed to the polytunnel, the
obot performs the UV-C treatment, the robot moves back to the shed,
nd finally, the robot is back at the shed. Thus, as it can be seen in

ig. 3, for every agricultural scenario studied here, the sequence of
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Fig. 3. Diagrams with the sequence of steps that define all the agricultural scenarios.
steps corresponds to a closed loop that starts and finishes with the
robot at the shed. The number of steps and complexity depends on
the level of HRI expected in each scenario. For instance, in the case
of performing the logistics tasks, the corresponding sequence of steps
is more complex than for UV-C treatment (where it is not expected
to have HRI) since now it is possible to interact with human workers
on footpaths between the shed and the polytunnels or with pickers
inside polytunnels. Additionally, as can be seen in Fig. 3 (highlighted
in red), in order to determine when a robot has completed a specific
step within the sequence, there are conditions to be satisfied such as
traversing a specific distance or completing the harvesting of a certain
amount of fruit placed on trays. Thus since a planned/unplanned HRI
may happen each time the robot traverses a new polytunnel row or
footpath segment, then the inclusion of these conditions exponentially
increases the chances of having human injuries.

3.1.2. Robot operation modes
In order to successfully complete each of the sequential steps de-

fined above, the robot must have the ability to operate in different
modes and with different levels of autonomy to adapt to possible
unexpected situations. Therefore, we describe the robot motion during
the above-mentioned scenarios by 11 different modes divided into 3
groups:

• Standard operation modes: The operation modes in common for
all agricultural scenarios include: (1) Robot in pause mode, (2)
Robot moving along footpaths, (3) Robot performing a transition
between footpath segments, (4) Robot performing a transition
between rows inside the polytunnel.

• Custom operation modes: In order to perform certain agricul-
tural tasks, the robot must be configured in different ways (see
Fig. 1) and move at different speeds. Thus, while operating inside
the polytunnel, the robot can be working in three custom modes:
(5) Robot moving along a row transporting trays (normal speed),
(6) Robot moving along a row while picking fruit (slow motion)
(7) Robot moving along a row performing UV-C treatment (same
configuration used for scouting).

• Human-aware operation modes: The implementation of the
safety system components described in Section 2.3 aims to ensure
a safe HRI during planned and unplanned interactions. Thus, the
operation modes which make use of these safety components
include: (8) Robot stopping the current action because of human
detected within a dangerous distance or because a collision was
detected, (9) Robot approaching the human worker’s position
(reducing the speed) to load/unload trays, (10) Robot moving
away from the human’s position after loading/unloading trays,
(11) Robot performing evasive maneuvers on a footpath.
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3.1.3. Human decision-making
In order to emulate human decision-making during planned and

unplanned HRI, the following assumptions were considered according
to the human’s training level:

• If the HRI happens with the picker who summoned the robot,
then the picker starts the interaction being stationary, but they
can decide to stay stationary or move towards the robot if they
are within the social zone.

• If the HRI happens with a picker who did not call the robot, then
they start the interaction being stationary, but they can decide to
approach or move away when the robot is within the social zone.

• Untrained people inside polytunnels and workers at the end of the
rows are always moving to the robot position until they become
aware of the danger. If they become aware of the danger, then
they move away.

• Workers and untrained people on footpaths move toward the
robot until they become aware of the danger. If they become
aware of the danger, then they can decide to stop or move away.

• If workers or untrained people decide to remain stationary before
the robot enters their social zone, then the robot starts evading
them and the human can decide to keep stationary or walk next
to the robot.

• Only workers can perform hand gestures, and this can happen
only when the robot is within their social zone and the workers
are aware of the robot’s presence.

• If a person (independent of the training level) is injured, or if the
robot performs a safety stop, then the person becomes aware of
the danger and decides to move away from the robot.

• Workers who are supposed to place trays on the robot (inside and
outside polytunnel) are assumed to always be aware of the danger
of HRI.

• An untrained person who is going to interact with a robot can
become aware of the danger only if he/she is able to interpret the
audiovisual alerts activated by the AVFAS. If he/she is not able to
interpret the alerts, then he/she decides to continue approaching
till reaches an unsafe distance.

3.1.4. Hazard situations
Based on the agricultural scenarios described in Section 2.1 and

the safety system components defined in Section 2.3, it is necessary
to identify the potential hazards product of failures in any of the
components of the safety system. In this context, following the guide-
lines of traditional risk assessment techniques such as Failure Mode
and Effects Analysis (FMEA) (Chi et al., 2020) and System Theoretic
Process Analysis (STPA) (Sun et al., 2021; Huck et al., 2021), Table 1
summarizes a list of 8 critical situations expected to happen during the
robot operations in all agricultural scenarios studied here. The table
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Table 1
List of relevant failures modes which may happen in every agricultural scenario.

Scenarios Possible situations Failure code Possible failures Potential effect Consequence

UV-C scouting
logistics picking

Imminent collision is about to
happen

F-1 Robot fails to detect physical
contact

Robot keeps moving after
collision

Human is injured after
collision

Logistics picking A human is in
the robot’s way

F-2 Robot fails to detect the
human further away than
3.6 m

Audiovisual alerts are not
activated so the human is not
altered to the robot’s presence

Potential human injuries
due to collisions

F-3 Robot fails to interpret a body
gesture performed by the
human

Robot performs a different
action than the directive given
by the human

Potential human injuries
due to collisions

UV-C scouting
logistics picking

Untrained human approaching
the robot

F-4 Human cannot interpret the
audiovisual alerts

Untrainned human is still
approaching without being
aware of the danger

Potential human injuries
due to collisions or
UV-C light

Logistics picking

Robot at the end of the
rows when a human is
approaching laterally
(inside polytunnel)

F-5 Robot detects the humans
only when they are too close
(less than 3.6 m)

Robot and human are not aware
of each other’s presence in time

Potential human injuries
due to collisions

F-2 Robot fails to detect the
human further away than
3.6 m

Audiovisual alerts are not
activated and then human is
not made aware of the robot
presence

Potential human injuries
due to collisions

UV-C scouting
logistics picking

Robot tries to evade a human
in its way (only at footpaths)

F-6 Robot fails to accurately track
the human position

Robot fails to stop safely at
1.2 m from the human

Potential human injuries
due to collisions

Logistics picking Robot starts reducing speed to
finally stop next to a human
to load/unload trays

F-6 Robot fails to track accurately
the human position

Robot fails to stop safely at
1.2 m from the human

Potential human injuries
due to collisions

UV-C

Robot moving along a
row while a human is
approaching frontally
(inside polytunnel)

F-7 Robot fails to detect the
human further away than 7 m

Audiovisual alerts are not
activated and then human is
not made aware of danger

Potential human injuries
due to UV-C light

F-8 Robot fails to detect the
human on time when they are
within 7 m

Safety stop is not activated and
then robot keeps using UV-C
light

Potential human injuries
due to UV-C light

Robot at the end of the rows
when a human is approaching
laterally (inside polytunnel)

F-5 Robot detects the human only
when they are too close (less
than 3.6 m)

Robot stops using UV-C light
when it is too late

Potential human injuries
due to UV-C light
also shows the possible failures that can occur in each situation along
with their consequence in terms of human injuries.

Considering all the situations and failure modes presented in Ta-
ble 1, we can conclude that there are basically five kinds of ways to
produce human injuries:

I-1 Actual human injuries when 𝑑 ≤ 7 m and the robot continues
to carry out UV-C treatment in the polytunnels (UV-C treatment
scenario).

I-2 Actual human injuries when the human collides with the robot
but the robot stops just after the contact (in any agricultural
scenario).

I-3 Actual human injuries when the human collides with the robot
and it is still moving after contact (in any agricultural scenario).

I-4 Potential human injuries when 1.2 m ≤ 𝑑 < 3.6 m (social zone)
and the robot is not aware of the human’s intentions during
logistics and picking operations (logistics and picking scenarios).

I-5 Potential human injuries when 1.2 m ≤ 𝑑 < 3.6 m (social zone)
and the human is not aware of the presence of the robot (in any
agricultural scenario).

HI-2 and HI-3 are hazards that represent real physical human
injuries where the severity level depends on the robot’s motion state
after the collision. The remaining hazards represent only potential or
virtual injuries. In the case of HI-1, it is a virtual injury but may
produce real injuries if the human is exposed to UV-C radiation at an
unsafe distance for a long enough period of time (Lucas et al., 2019).
In the case of HI-5, since the robot is getting close to the intimate
zone, any failure in the HDS, or the HTMIS can produce delays in the
activation of safety stops which subsequently may lead to HI-2 or HI-3.
In the same way with HI-4, if HARS fails to interpret a body gesture
performed by a trained worker located next to the robot, an incorrect
action by the robot may lead to HI-2 or HI-3.
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As was initially mentioned in Section 2.1.4 and later was shown
in Table 1, the hazards identified for the scouting scenario overlap
with the hazards covered by the rest of the scenarios. Thus, to simplify
the modeling and human injury assessment, the following sections will
cover only the first three scenarios described in Section 2.1.

3.2. The PRISM language

To facilitate the representation of the MDPs, we decided to follow
the methodology presented in Lacerda et al. (2019), using the so-
called probabilistic STRIPS-like representation of factored MDPs (see
Figs. 4–8), based on the PRISM modeling language as the example in
(1).

The fundamental components of the PRISM language are modules,
variables, and constants. A model is composed of a number of modules
that can interact with each other. A module contains a number of local
variables. The values of these variables at any given time constitute the
state of the module. The global state of the whole model is determined
by the local state of all modules. The behavior of each module is
described by a set of commands. A command takes the form:

[𝑎𝑐𝑡𝑖𝑜𝑛] (𝑔𝑢𝑎𝑟𝑑_1 | 𝑔𝑢𝑎𝑟𝑑_2) & ... & 𝑔𝑢𝑎𝑟𝑑_𝑚

− > 𝑝𝑟𝑜𝑏_1 ∶ 𝑢𝑝𝑑𝑎𝑡𝑒_1 +⋯ + 𝑝𝑟𝑜𝑏_𝑛 ∶ 𝑢𝑝𝑑𝑎𝑡𝑒_𝑛 (1)

The i𝑡ℎ guard denoted by 𝑔𝑢𝑎𝑟𝑑_𝑖 for 𝑖 ∈ {1, 2,… , 𝑚} is a predicate
over all the variables in the model (including those belonging to other
modules) which may be related to other guards by logical operators
such as AND (&), OR ( | ), Not Equal (!=), among others. Each i-𝑡ℎ
update denoted by 𝑢𝑝𝑑𝑎𝑡𝑒_𝑖 for 𝑖 ∈ {1, 2,… , 𝑛} describes a transition
that the module can make if all the guards are true. A transition is
specified by giving the new values of the variables in the module,

possibly as a function of other variables or constants. Each update
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is assigned a probability (or in some cases a rate) which will be
assigned to the corresponding transition. The sum of all probabilities
of transitions written on the second side of (1) must be equal to 1. The
command also optionally includes an action, either just to annotate it,
or for synchronization.

With this base, the following subsections aim to introduce the
variables and probabilities (constants) needed to construct commands
as the one in (1) which represents the state transitions of the proposed
HRI model.

3.3. Modeling the agricultural tasks

As was mentioned in Section 3.1.1, the agricultural tasks are divided
into a sequence of steps. In order to define in which step of each
scenario we are, the variables x_uvc, x_logistics and x_picking were
introduced. Table 7 in the Appendix lists and describes the 4 discrete
values that variables x_uvc can take as well as the possible transitions
between them. On the other hand, Table 7 lists 9 values that the
variable x_logistic can take where 8 of them overlap with the values that
the variable x_picking can take. For these three variables related to the
agricultural tasks, the transition between two different values is always
deterministic, thus it is not necessary to introduce any probabilistic
term to model the transitions. However, it is necessary to introduce
some auxiliary variables to determine when an agricultural step has
been completed and a transition can be carried out. These auxiliary
variables are also listed in Table 7 and include: the number of full
trays that the robot is carrying represented by x_trays; the number of
times the robot performed two-way trips from polytunnel to collection
point represented by x_runs; and the number of rows and footpaths that
have been traversed by the robot represented by x_rows and x_segments
respectively.

The range of values that the auxiliary variables can take is con-
strained by the constants described in Table 8, which basically define
the scale of the field to be covered and the capacity of the robot to
transport full trays.

3.4. Modeling the robot operations

Depending on the agricultural scenario, the robot is expected to
perform specific operation modes that may or may not overlap with
another scenario. Thus, based on the robot operation modes introduced
in Section 3.1.2, the robot operation is defined by the variable x_robot
which can take 11 values listed in Table 9. Similar to the variables re-
lated to the agricultural tasks presented in Table 7, the variable x_robot
is purely deterministic, thus, it does not depend on any probabilistic
term to make transitions between two values.

3.5. Modeling the safety system components

According to the safety requirements presented in Section 2.3,
the proposed safety system is made up of 6 main components which
include: AVFAS, HDS, HTMIS, HARS, CAS, and SCS. To implement
these components in PRISM, their behavior has been characterized by
6 variables and 16 constants that are used to define the probability of
success/failure (i.e. the reliability) of each component.

Table 10 summarizes the values that the 6 variables x_hds, x_htmis,
x_hars, x_scs, x_visual and x_voice can take, highlighting with * the tran-
sitions that depend on probabilities. Table 11 shows a list of constants
that are introduced to define the probabilities to make transitions.
These constants can take any value between 0 and 1 depending on the
actual effectiveness of the safety system implemented. For instance, if
the HDS is considered ‘‘virtually perfect’’ (0% probability of failure)
to detect a human above 7 m, then, the constants x_hds_fail_1 and
x_hds_fail_5 are set as 0 while they are set as 0.9 if 90% of times the
HDS fails to detect a human on time. Notice that the performance of
HDS in terms of failures may be different inside the polytunnel than at
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footpaths due to the different levels of occlusion in each environment.
Thus, Table 11 shows independent constants for define the probability
of failure in each environment.

It is important to notice that in Tables 10–11 no variables or
constants were introduced to implicitly define the CAS, but its behavior
was included when x_robot = 3,8 and the success of the collision-free
maneuvering depends indirectly on the success of the remaining safety
system components.

Finally, the behavior of the AVFAS was defined by introducing
two independent variables for audio and visual alerts. According to
Table 10, the transitions of these variables are mostly deterministic,
but due to the probabilistic behavior of their potential failures, they
are modeled as part of the human side instead of the AVFAS itself.

3.6. Modeling human behavior

For PRISM implementation purposes, human behavior is described
by 5 variables whose possible values are listed in Table 12. The first
variable is denoted by x_human and determines if the human decides to
interact with the robot or not and captures what the human’s training
level is (trained or untrained). The second variable denoted by x_motion
represents the most relevant actions that trained farm workers typically
perform during harvesting operations and the expected actions from
untrained people who approach the robot without being aware of the
danger. The third variable is denoted by x_aware and represents the
uman knowledge about the robot’s intentions or potential danger.
he fourth variable denoted by x_gesture determines if the human

performs or not a body gesture to make the robot knows about his/her
intentions. Finally, the fifth variable denoted by x_dist represents the
distance between the human and the robot in discrete steps according
to the safety distances explained in Section 2.2. In order to introduce
probabilistic human behavior, 5 constants are used to define the prob-
ability of making a decision or another (see Section 3.1.3). Table 13
summarizes the list of probabilities used that include the probabilities
that unplanned HRI are going to happen, the probabilities that the
human gets aware of the robot’s presence or potential danger, the
probability that the human decides to perform a risky movement during
close HRI, and the probability that a trained worker performs a body
gesture to communicate him/her intentions to the robot.

It is important to notice that the transition probabilities may vary
according to the training level of the human interacting with the robot.
This can be seen in Table 13 where was used different constants
to characterize the behavior of untrained visitants and trained farm
workers.

3.7. Modeling the hazard situations

Finally, since the values of the variables at a given time constitute
the state of the whole HRI, then the PRISM model checker tool should
be able to determine if a potential hazard situation is happening or not
when a failure is introduced into the robot safety system. The failure
modes to be evaluated in PRISM were identified previously in Table 1.
Moreover, in Section 3.1.4, it was identified the hazard scenarios which
may lead to actual human injuries, remarking 𝐇𝐈 − 𝟏, 𝐇𝐈 − 𝟐 and 𝐇𝐈 − 𝟑.
These three possible human injuries can be evaluated in PRISM by
introducing the following conditions:

I-1 Pmax=? [ F task_finished=false & (x_dist≥2 & x_robot!=10 &
x_uvc=2) ].

I-2 Pmax=? [ F task_finished=false & (x_dist=5 & x_scs=1) ].
I-3 Pmax=? [ F task_finished=false & (x_dist=5 & x_scs=2) ].

here Pmax=? [F<t task_finished=false (<condition>)] is the nota-
ion of LTL properties to verify in PRISM. This particular notation
etermines the maximum probability of satisfying a specific condition
efore the simulated agricultural process ended. The auxiliary variable
ask_finished becomes true when the variables x_uvc, x_logistics, and
_picking have taken all their possible values and return to the initial
alue 0.
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Fig. 4. Diagram with the states transition for variable x_rows.
3.8. PRISM implementation: UV-C treatment case study

In the previous Subsections, all the variables, possible values and
transition probabilities were introduced in order to model the agricul-
tural scenarios defined in Section 2.1. This Subsection aims to illustrate
with an example how to use these elements to construct a simplified
UV-C treatment model in PRISM by using commands of the form (1).

Since this example is only for illustration purposes, a simplified
version of the UV-C treatment scenario is presented here, where only
the robot operations inside the polytunnels are modeled, i.e when x_uvc
= 2. The complete model with all the transitions presented in Tables 7,
9, 10, and 12 will be used in Section 4.

3.8.1. Commands to model the agricultural task
Since only operations inside the polytunnel are considered, then the

variable x_uvc does not need to be updated. However, the auxiliary
variable x_rows needs to be updated each time the robot covers a row.
Thus, in order to cover the possible transitions for the variable x_rows,
the following command is needed:

(𝑔𝑢𝑎𝑟𝑑_1 & 𝑥_𝑟𝑜𝑤𝑠 < 𝑁_𝑟𝑜𝑤𝑠) − > (𝑥_𝑟𝑜𝑤𝑠′ = 𝑥_𝑟𝑜𝑤𝑠 + 1); (2)

where the guard expression is defined by:

𝑔𝑢𝑎𝑟𝑑_1 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛 = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 8) (3)

The command in (2) updates x_rows starting from 0 and increasing in
steps of 1 till reach x_rows = N_rows which represents the condition
when the robot has covered all the rows that are expected to be treated.
To better understand how the command (2) is executed in PRISM, Fig. 4
illustrates the transition between states, where the number inside the
circles are the possible values of variable x_rows from 0 to N_rows,
and the numbers in red represent the probabilities of transition if the
condition guard_1 is satisfied.

3.8.2. Commands to model the robot operation
In order to make all possible transitions for the variable x_robot

during the UV-C treatment operation, the following commands are
needed:

(𝑔𝑢𝑎𝑟𝑑_2 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7) − > (𝑥_𝑟𝑜𝑏𝑜𝑡′ = 4); (4)

(𝑔𝑢𝑎𝑟𝑑_2 & (𝑥_𝑟𝑜𝑏𝑜𝑡 = 4 | 𝑥_𝑟𝑜𝑏𝑜𝑡 = 10)) − > (𝑥_𝑟𝑜𝑏𝑜𝑡′ = 7); (5)

(𝑔𝑢𝑎𝑟𝑑_3 & 𝑥_𝑟𝑜𝑏𝑜𝑡! = 10) − > (𝑥_𝑟𝑜𝑏𝑜𝑡′ = 10) & (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 1); (6)

where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_2 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛 = 0) (7)

𝑔𝑢𝑎𝑟𝑑_3 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_ℎ𝑑𝑠 = 2) (8)

Commands (4)–(5) aim to update the value of x_robot between moving
along a row and making transition between rows when no human
presence is detected. The command in (6) activates a safety stop
(i.e. stop motion and turning off the UV-C light) in case a human is
detected within the range 3.6 m ≤ 𝑑 ≤ 7 m. This command also
updates the variable x_aware to make the human aware of the danger.
To reactivate the robot operation after a safety stop, the condition
(guard_2 & x_robot = 10) has to be satisfied in command (5) which
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makes the robot resume the operation from a transition between rows.
Fig. 5(a) illustrates the execution of commands (4)–(6) where the color
used on each arrow indicates which condition/guard has to be satisfied
to make a transition.

3.8.3. Commands to model the safety system
To simplify this example, the safety system during the UV-C treat-

ment only includes the AVFAS and HDS. Thus, in order to make tran-
sitions for the variable x_hds when the robot is inside the polytunnels,
the following commands need to be implemented:

(𝑔𝑢𝑎𝑟𝑑_4 & 𝑥_ℎ𝑑𝑠 = 0) − > 1 − 𝑝_ℎ𝑑𝑠_1 ∶ (𝑥_ℎ𝑑𝑠′ = 1)

+ 𝑝_ℎ𝑑𝑠_1 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (9)
(𝑔𝑢𝑎𝑟𝑑_5 & 𝑥_ℎ𝑑𝑠 = 0) − > 1 − 𝑝_ℎ𝑑𝑠_5 ∶ (𝑥_ℎ𝑑𝑠′ = 1)

+ 𝑝_ℎ𝑑𝑠_5 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (10)
(𝑔𝑢𝑎𝑟𝑑_6 & 𝑥_ℎ𝑑𝑠 ≤ 1) − > 1 − 𝑝_ℎ𝑑𝑠_2 ∶ (𝑥_ℎ𝑑𝑠′ = 2)

+ 𝑝_ℎ𝑑𝑠_2 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (11)
(𝑔𝑢𝑎𝑟𝑑_7 & 𝑥_ℎ𝑑𝑠 ≤ 1) − > 1 − 𝑝_ℎ𝑑𝑠_6 ∶ (𝑥_ℎ𝑑𝑠′ = 2)

+ 𝑝_ℎ𝑑𝑠_6 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (12)
(𝑔𝑢𝑎𝑟𝑑_8 & 𝑥_ℎ𝑑𝑠 ≤ 2) − > 1 − 𝑝_ℎ𝑑𝑠_3 ∶ (𝑥_ℎ𝑑𝑠′ = 3)

+ 𝑝_ℎ𝑑𝑠_3 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (13)
(𝑔𝑢𝑎𝑟𝑑_9 & 𝑥_ℎ𝑑𝑠 ≤ 2) − > 1 − 𝑝_ℎ𝑑𝑠_7 ∶ (𝑥_ℎ𝑑𝑠′ = 3)

+ 𝑝_ℎ𝑑𝑠_7 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (14)
(𝑔𝑢𝑎𝑟𝑑_10 & 𝑥_ℎ𝑑𝑠 ≤ 3) − > 1 − 𝑝_ℎ𝑑𝑠_4 ∶ (𝑥_ℎ𝑑𝑠′ = 4)

+ 𝑝_ℎ𝑑𝑠_4 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (15)
(𝑔𝑢𝑎𝑟𝑑_11 & 𝑥_ℎ𝑑𝑠 ≤ 3) − > 1 − 𝑝_ℎ𝑑𝑠_8 ∶ (𝑥_ℎ𝑑𝑠′ = 4)

+ 𝑝_ℎ𝑑𝑠_8 ∶ (𝑥_ℎ𝑑𝑠′ = 𝑥_ℎ𝑑𝑠); (16)

(𝑔𝑢𝑎𝑟𝑑_12 & 𝑥_ℎ𝑑𝑠 = 4) − > (𝑥_ℎ𝑑𝑠′ = 3); (17)

(𝑔𝑢𝑎𝑟𝑑_13 & 𝑥_ℎ𝑑𝑠 = 3) − > (𝑥_ℎ𝑑𝑠′ = 2); (18)

(𝑔𝑢𝑎𝑟𝑑_14 & 𝑥_ℎ𝑑𝑠 = 2) − > (𝑥_ℎ𝑑𝑠′ = 1); (19)

(𝑔𝑢𝑎𝑟𝑑_15 & 𝑥_ℎ𝑑𝑠 = 1) − > (𝑥_ℎ𝑑𝑠′ = 0); (20)

where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_4 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡! = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 1) (21)

𝑔𝑢𝑎𝑟𝑑_5 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 1) (22)

𝑔𝑢𝑎𝑟𝑑_6 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡! = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 2) (23)

𝑔𝑢𝑎𝑟𝑑_7 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 2) (24)

𝑔𝑢𝑎𝑟𝑑_8 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡! = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 3) (25)

𝑔𝑢𝑎𝑟𝑑_9 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 3) (26)
𝑔𝑢𝑎𝑟𝑑_10 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡! = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 4)

(27)

𝑔𝑢𝑎𝑟𝑑_11 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7 & 𝑥_𝑑𝑖𝑠𝑡 = 4) (28)

𝑔𝑢𝑎𝑟𝑑_12 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑑𝑖𝑠𝑡 = 3) (29)

𝑔𝑢𝑎𝑟𝑑_13 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑑𝑖𝑠𝑡 = 2) (30)
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Fig. 5. Diagrams with the states transition for variables: (a) x_robot, considering only operations inside the polytunnels during UV-C treatment (b) x_voice and x_visual.
Fig. 6. Diagram with the states transition for variable x_hds, without considering transitions when robot operation x_robot = 7.
𝑔𝑢𝑎𝑟𝑑_14 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑑𝑖𝑠𝑡 = 1) (31)

𝑔𝑢𝑎𝑟𝑑_15 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑢𝑚𝑎𝑛 = 0 & 𝑥_𝑑𝑖𝑠𝑡 = 0) (32)

Commands in (9)–(16) cover the updates of x_hds from 0 to 4 which
depend of the probabilities of failure defined in Table 11. On the other
hand, commands in (17)–(20) cover the updates of x_hds from 4 to
0 which in this case are purely deterministic. Fig. 6 illustrates the
transitions of variable x_hds. However, for readability, the transitions
whose conditions depend on x_robot = 7 are not illustrated in this
diagram (i.e when the robot is making transitions between rows).

Then, in order to make the transitions for the two variables related
to AVFAS, the following commands are needed:

(𝑔𝑢𝑎𝑟𝑑_16 & (𝑥_𝑣𝑖𝑠𝑢𝑎𝑙! = 1 | 𝑥_𝑣𝑜𝑖𝑐𝑒! = 1))

− > (𝑥_𝑣𝑖𝑠𝑢𝑎𝑙′ = 1)&(𝑥_𝑣𝑜𝑖𝑐𝑒′ = 1); (33)
(𝑔𝑢𝑎𝑟𝑑_17 & 𝑥_𝑣𝑜𝑖𝑐𝑒 = 0) − > 𝑝_𝑎𝑙𝑒𝑟𝑡𝑠 ∶ (𝑥_𝑣𝑜𝑖𝑐𝑒′ = 2)

+ 1 − 𝑝_𝑎𝑙𝑒𝑟𝑡𝑠 ∶ (𝑥_𝑣𝑜𝑖𝑐𝑒′ = 𝑥_𝑣𝑜𝑖𝑐𝑒); (34)
(𝑔𝑢𝑎𝑟𝑑_17 & 𝑥_𝑣𝑖𝑠𝑢𝑎𝑙 = 0) − > 𝑝_𝑎𝑙𝑒𝑟𝑡𝑠 ∶ (𝑥_𝑣𝑖𝑠𝑢𝑎𝑙′ = 2)

+ 1 − 𝑝_𝑎𝑙𝑒𝑟𝑡𝑠 ∶ (𝑥_𝑣𝑖𝑠𝑢𝑎𝑙′ = 𝑥_𝑣𝑖𝑠𝑢𝑎𝑙); (35)
(𝑔𝑢𝑎𝑟𝑑_18 & (𝑥_𝑣𝑖𝑠𝑢𝑎𝑙! = 0 | 𝑥_𝑣𝑜𝑖𝑐𝑒! = 0))

− > (𝑥_𝑣𝑖𝑠𝑢𝑎𝑙′ = 0)&(𝑥_𝑣𝑜𝑖𝑐𝑒′ = 0); (36)

where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_16 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑑𝑠 ≥ 1) (37)

𝑔𝑢𝑎𝑟𝑑_17 = (𝑥_𝑢𝑣𝑐 = 2&(𝑥_𝑟𝑜𝑏𝑜𝑡 = 7 | 𝑥_𝑟𝑜𝑏𝑜𝑡 = 1 | 𝑥_𝑟𝑜𝑏𝑜𝑡 = 4)) (38)

𝑔𝑢𝑎𝑟𝑑_18 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_ℎ𝑑𝑠 = 0) (39)

Command (33) activates the audiovisual alerts (visual and voice alerts
in parallel) when the HDS detects a human above 7 m. Commands (34)–
(35) can also activate the audiovisual alerts, but in this case without the
need to detect a human, this activation depends on the probability that
at this specific moment a periodic alert was programmed to happen. In
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any case, after alerts were activated, they can be deactivated only if the
condition in (36) is satisfied. The execution of commands (33)–(36) is
illustrated in Fig. 5(b).

3.8.4. Commands to model the human behavior
To simplify this example, human behavior considers only the actions

performed by untrained people (since farm workers are aware of the
UV-C danger). Thus, the transitions of the variable x_gesture were not
included since only trained people are able to perform body gestures.

In order to update the value of x_human, the following commands
are required:

(𝑔𝑢𝑎𝑟𝑑_19 & 𝑥_ℎ𝑢𝑚𝑎𝑛 = 0) − > 𝑝_𝑖𝑛𝑡_1 ∶ (𝑥_ℎ𝑢𝑚𝑎𝑛′ = 1)

+ 1 − 𝑝_𝑖𝑛𝑡_1 ∶ (𝑥_ℎ𝑢𝑚𝑎𝑛′ = 𝑥_ℎ𝑢𝑚𝑎𝑛); (40)

(𝑔𝑢𝑎𝑟𝑑_20 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0) − > (𝑥_ℎ𝑢𝑚𝑎𝑛′ = 0); (41)

where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_19 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_𝑟𝑜𝑤𝑠 < 𝑁_𝑟𝑜𝑤𝑠) (42)

𝑔𝑢𝑎𝑟𝑑_20 = (𝑥_𝑢𝑣𝑐 = 2 & 𝑥_𝑑𝑖𝑠𝑡 = 0 & 𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 2 & 𝑥_𝑎𝑤𝑎𝑟𝑒 = 1) (43)

Command (40) is used to determine if an untrained person is going to
interact with the robot inside the polytunnels or not. Once an HRI has
happened, the variable x_human returns to the default value of 0 if the
condition in command (41) is satisfied.

Once we know that an untrained person is going to interact with a
robot, the actions which govern the human motion are represented by
the variable x_motion, which transitions are defined by the following
commands:

(𝑔𝑢𝑎𝑟𝑑_21 & 𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 0) − > (𝑥_𝑚𝑜𝑡𝑖𝑜𝑛′ = 1); (44)
(𝑔𝑢𝑎𝑟𝑑_22&𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 1) | (𝑔𝑢𝑎𝑟𝑑_23&𝑥_𝑚𝑜𝑡𝑖𝑜𝑛! = 2) | (𝑔𝑢𝑎𝑟𝑑_24

&𝑥_𝑚𝑜𝑡𝑖𝑜𝑛! = 2) − > (𝑥_𝑚𝑜𝑡𝑖𝑜𝑛′ = 2); (45)

(𝑥_ℎ𝑢𝑚𝑎𝑛 = 0& 𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 2) − > (𝑥_𝑚𝑜𝑡𝑖𝑜𝑛′ = 0); (46)
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Fig. 7. Diagrams with the states transition for variables: (a) x_human (b) x_motion and (c) x_aware.
where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_21 = ((𝑥_𝑟𝑜𝑏𝑜𝑡 = 4 | 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7) & (𝑥_ℎ𝑢𝑚𝑎𝑛 = 1&𝑥_𝑑𝑖𝑠𝑡!

= 5&𝑥_𝑎𝑤𝑎𝑟𝑒 = 0)) (47)
𝑔𝑢𝑎𝑟𝑑_22 = ((𝑥_𝑟𝑜𝑏𝑜𝑡 = 4 | 𝑥_𝑟𝑜𝑏𝑜𝑡 = 7) & (𝑥_ℎ𝑢𝑚𝑎𝑛 = 1 & 𝑥_𝑎𝑤𝑎𝑟𝑒 = 1))

(48)

𝑔𝑢𝑎𝑟𝑑_23 = (𝑥_𝑑𝑖𝑠𝑡 = 5 & 𝑥_ℎ𝑢𝑚𝑎𝑛! = 0) (49)

𝑔𝑢𝑎𝑟𝑑_24 = (𝑥_ℎ𝑢𝑚𝑎𝑛! = 0 & 𝑥_𝑟𝑜𝑏𝑜𝑡 = 10) (50)

Then, to make the untrained people aware of danger of approaching
the robot, the following commands are included to update x_aware:

(𝑔𝑢𝑎𝑟𝑑_25 & 𝑥_𝑎𝑤𝑎𝑟𝑒 = 0) − > 𝑝_𝑎𝑤𝑎𝑟𝑒_1 ∶ (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 1)

+ 1 − 𝑝_𝑎𝑤𝑎𝑟𝑒_1 ∶ (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 𝑥_𝑎𝑤𝑎𝑟𝑒); (51)
(𝑔𝑢𝑎𝑟𝑑_26 & 𝑥_𝑎𝑤𝑎𝑟𝑒 = 0) − > 𝑝_𝑎𝑤𝑎𝑟𝑒_3 ∶ (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 1)

+ 1 − 𝑝_𝑎𝑤𝑎𝑟𝑒_3 ∶ (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 𝑥_𝑎𝑤𝑎𝑟𝑒); (52)

(𝑔𝑢𝑎𝑟𝑑_27 & 𝑥_𝑎𝑤𝑎𝑟𝑒 = 1) − > (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 0); (53)

where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_25 = (𝑥_𝑢𝑣𝑐 = 2&𝑥_𝑟𝑜𝑏𝑜𝑡! = 10&𝑥_𝑑𝑖𝑠𝑡

≥ 1&𝑥_𝑣𝑖𝑠𝑢𝑎𝑙 ≥ 1&𝑥_ℎ𝑢𝑚𝑎𝑛 = 1) (54)
𝑔𝑢𝑎𝑟𝑑_26 = (𝑥_𝑢𝑣𝑐 = 2&𝑥_𝑟𝑜𝑏𝑜𝑡! = 10&𝑥_𝑑𝑖𝑠𝑡 ≥ 2&𝑥_𝑣𝑜𝑖𝑐𝑒

≥ 1&𝑥_ℎ𝑢𝑚𝑎𝑛! = 0) (55)

𝑔𝑢𝑎𝑟𝑑_27 = (𝑥_𝑢𝑣𝑐 = 2&𝑥_ℎ𝑢𝑚𝑎𝑛 = 0) (56)

Commands (51)–(52) update the variable x_aware in case of any of
the audiovisual alerts were activated at a specific x_dist. The variable
x_aware returns to the default value of 0 by using the command (53).

Finally, to fully model human behavior in this case, the variable
x_dist needs to be updated according to the relative distance between
the human and the robot. The latter is done by introducing the follow-
ing commands:

(𝑔𝑢𝑎𝑟𝑑_28 & 𝑥_𝑑𝑖𝑠𝑡 ≤ 3) − > (𝑥_𝑑𝑖𝑠𝑡′ = 𝑥_𝑑𝑖𝑠𝑡 + 1); (57)

(𝑔𝑢𝑎𝑟𝑑_29 & 𝑥_𝑑𝑖𝑠𝑡 ≤ 3) − > (𝑥_𝑑𝑖𝑠𝑡′ = 𝑥_𝑑𝑖𝑠𝑡 + 1); (58)

(𝑔𝑢𝑎𝑟𝑑_30 & 𝑥_𝑑𝑖𝑠𝑡 = 4) − > (𝑥_𝑑𝑖𝑠𝑡′ = 5) & (𝑥_𝑎𝑤𝑎𝑟𝑒′ = 1); (59)

(𝑔𝑢𝑎𝑟𝑑_31 & 𝑥_𝑑𝑖𝑠𝑡 ≥ 1) − > (𝑥_𝑑𝑖𝑠𝑡′ = 𝑥_𝑑𝑖𝑠𝑡 − 1); (60)

where the guards are defined by:

𝑔𝑢𝑎𝑟𝑑_28 = (𝑥_ℎ𝑢𝑚𝑎𝑛! = 0&𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 1) (61)
𝑔𝑢𝑎𝑟𝑑_29 = (𝑥_ℎ𝑢𝑚𝑎𝑛! = 0&𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 0

&(𝑥_𝑟𝑜𝑏𝑜𝑡 = 1|𝑥_𝑟𝑜𝑏𝑜𝑡 = 2|𝑥_𝑟𝑜𝑏𝑜𝑡 = 4)) (62)

𝑔𝑢𝑎𝑟𝑑_30 = (𝑥_𝑟𝑜𝑏𝑜𝑡! = 10&𝑥_ℎ𝑢𝑚𝑎𝑛! = 0) (63)

𝑔𝑢𝑎𝑟𝑑_31 = (𝑥_ℎ𝑢𝑚𝑎𝑛! = 0&𝑥_𝑚𝑜𝑡𝑖𝑜𝑛 = 2) (64)
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Commands (57)–(58) update the variable x_dist from 0 to 4 in case the
robot or the human are approaching each other. The command (59)
covers the remaining transition from 4 to 5 in case a safety stop was
not activated on time, and the command (60) makes the variable x_dist
update from 5 to 0 by steps of 1.

The state transitions of variables x_human, x_motion and x_aware are
illustrated in Fig. 7, and the transitions of variable x_dist are shown in
Fig. 8.

3.8.5. Synchronization
After defining the commands to update all the variables within a

PRISM module. We need to ensure that the commands are executed
in a specific order to emulate the behavior of the real system. One
way to synchronize the execution of the commands presented above
is to label each command with actions as illustrated in expression (1).
However, this kind of synchronization method depends on the product
of the individual rates of transition of all commands with the same
label. Thus, for synchronization purposes, we decided to use auxiliary
Boolean variables called flags which restrict the execution of commands
in a specific order each simulation cycle.

A flag can be assigned to one or more local variables within the
model. A flag is always initiated as false and can be updated to true
only after the corresponding variable was updated. Thus, a simulation
cycle starts with all the flags set as false and ends when all of them
are true (being reset as false after that). The order of updating these
flags is shown in Fig. 9 starting with the flag related with either x_uvc,
x_logistics, and x_picking, and ending with the flag related with variables
x_trays, x_runs, x_rows, and x_seg.

For instance, in order to execute the command in (4) to make the
variable x_robot change from 7 to 4, the command should be modified
as follows:

(𝑔𝑢𝑎𝑟𝑑_2 & 𝑓𝑙𝑎𝑔_ℎ𝑎𝑟𝑠 = 𝑡𝑟𝑢𝑒 & 𝑓𝑙𝑎𝑔_𝑟𝑜𝑏𝑜𝑡 = 𝑓𝑎𝑙𝑠𝑒) − > (𝑥_𝑟𝑜𝑏𝑜𝑡′ = 4)

& (𝑓𝑙𝑎𝑔_𝑟𝑜𝑏𝑜𝑡′ = 𝑡𝑟𝑢𝑒); (65)

Apart from this modification, it is necessary to include an additional
command per each variable in order to avoid being stuck in the
execution of the same flag forever when no update is required. By
considering again the x_robot as an example, the extra command has
to make flag_robot = true when none of the conditions in (7)–(8) are
satisfied. Thus, the extra command for the x_robot example takes the
following form.

(𝑓𝑙𝑎𝑔_ℎ𝑎𝑟𝑠 = 𝑡𝑟𝑢𝑒 & 𝑓𝑙𝑎𝑔_𝑟𝑜𝑏𝑜𝑡 = 𝑓𝑎𝑙𝑠𝑒 & 𝑔𝑢𝑎𝑟𝑑_𝑠𝑦𝑛𝑐 = 𝑓𝑎𝑙𝑠𝑒)

− > (𝑓𝑙𝑎𝑔_𝑟𝑜𝑏𝑜𝑡′ = 𝑡𝑟𝑢𝑒); (66)

where 𝑔𝑢𝑎𝑟𝑑_𝑠𝑦𝑛𝑐 = (𝑔𝑢𝑎𝑟𝑑_2 | 𝑔𝑢𝑎𝑟𝑑_3).
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Fig. 8. Diagram with the states transition for variable x_dist.
Fig. 9. Diagram with the order in which the local variables are updated in PRISM.
4. Results

Using a more completed PRISM-based model3 than the one pre-
sented in Section 3, this section presents a sensitivity analysis that
evaluates the probability of producing any of the three human injuries
modeled in Section 3.7 in the presence of any of the eight failure
modes identified in Table 1. The evaluation considers three cases where
we assumed three different overall performances of the robot safety
system. These three cases are called:

Ideal : when the safety system performance is as a much robust as
possible.

Regular : when the safety system is as reliable as would be expected
in normal conditions.

Worst : when the safety system is not reliable at all.

Note that in the ideal case there is still a low probability of having
failures since a ‘‘virtually perfect’’ performance with a probability of
failure equal to zero is not realistic. Table 14 shows the values of
the constants (used as probabilities of transition) that were chosen to
characterize the three cases evaluated. See Tables 11 and 13 for more
information about the constants listed in Table 14.

Then, the sensitivity analysis for each case was performed as fol-
lows. Table 2 indicates with X which constants (used as probabilities
of transition) influence a specific safety system failure mode. Thus,
to evaluate the consequences of a specific failure mode (see Table 1
for more information about the failure modes), the constant(s) marked
with X in the same column of Table 2 were varied from 0% to 100%
(in steps of 10%). The value of the rest of the probabilities needed for
modeling the safety system and human behavior were set according
to which case is evaluated (i.e. ideal, regular, or worst) as indicated
in Table 14. For the three cases evaluated, the agricultural tasks were
defined by using the following constant values: N_rows = N_runs = 5,
N_segments_shed = 2, N_segments_collect = 1, and N_trays = 2 (see
Table 8 for more information about these constants).

3 The PRISM-based model and properties used for the sensitivity analysis
can be found at https://github.com/LCAS/PRISM-HRI-model.
12
Sections 4.1–4.2 show graphically the results of the sensitivity
analysis but only from the ideal case. Later, Section 4.3 summarizes
numerically the results of evaluating all three cases in order to compare
the performance of the proposed safety system in each case. Figs. 10–
16 show 3D plots that give an idea of the consequences of introducing
different probabilities of a failure occurring (from 0 to 100%) as well
as varying the probability of having unplanned HRI (from 0 to 100%)
with trained farm workers and/or untrained visitors. In these plots, the
probabilities were given values of 0% only for visualization purposes,
however as mentioned before, even in an ideal case, there should still
be a low probability of having a failure (to keep it realistic).

As an example to understand how every resultant probability in
Figs. 10–16 was generated, let us consider that we want to know the
probability of having human injuries of type HI-3, if there is a proba-
bility of 50% of having a failure of type F-1 with a 20% probability of
encountering with an untrained person. Thus, to generate the resultant
probability for this specific example, the constants marked with X in
the column F-1 of Table 2 are set as 0.5, while the rest of the constants
in Table 14 are set with the values in the ideal case column. Finally,
to introduce unplanned HRIs with untrained/trained people, at least
one of the four constants related to the variable 𝑥_ℎ𝑢𝑚𝑎𝑛 indicated
in Table 13 needs to be configured accordingly. In this example, the
constants 𝑝_𝑖𝑛𝑡_1 (for untrained people inside polytunnels) and 𝑝_𝑖𝑛𝑡_3
(for untrained people outside polytunnels) need to be set as 0.2 while
the other two (related to trained workers) are set as 0.

It is important to clarify that the resultant probabilities of human
injuries in the sensitivity analysis does not represent a metric to quan-
tify the severity of human injuries after each HRI, but a metric to
quantify the probability of having at least a human injury after an
entire agricultural scenario (UV-C treatment, logistics or picking) is
fully completed.

4.1. Assessment of human injuries due to unplanned physical contact

This subsection shows the resulting probabilities of getting human
injuries after collisions. Injury HI-2 is the least critical since the robot
tries to minimize the impact by stopping immediately just after detect-
ing the physical contact. On the other hand, injury HI-3 represents the

https://github.com/LCAS/PRISM-HRI-model
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Table 2
List of constants belonging to different safety components that influence specific failure modes.

Safety system component Constant name Influence over each failure modea

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8

Human Detection System (HDS)

p_hds_1 X X
p_hds_2 X X
p_hds_3 X
p_hds_4 X
p_hds_5 X X
p_hds_6 X X
p_hds_7 X
p_hds_8 X
p_hds_9 X
p_hds_10 X
p_hds_11 X

Human Tracking and Motion Inference System (HTMIS) p_htmis_1 X
p_htmis_2 X

Human Action Recognition System (HARS) p_hars X
Audiovisual Feedback Alert System (AVFAS) p_alerts X
Safety Contact System (SCS) p_scs X

a See Table 1 for more information about the failure modes and Table 11 for more information about the constants listed here.
Fig. 10. Probability of human injury HI-3 in the ideal case due to failure F-1 during: (a,b) Logistics, (c,d) Picking, (e,f) UV-C treatment at footpaths. Evaluating different probabilities
of having unplanned interaction with: (a,c,e) trained workers, (b,d,f) untrained people. See Section 3.1.4 for more information about the failure modes and human injuries evaluated
here.
most critical scenario since the robot fails to detect the collision on time
and continues moving once it has hit the person.

See Sections 3.1.4 and 3.7 for more information about the human
injuries HI-2 and HI-3, and Table 1 for more information about the
failure modes F-1 to F-6.

4.1.1. Human injuries due to robot failing to detect physical contact (F-1)
According to Fig. 10, considering ideal performance of the overall

safety system but with a high probability of SCS failing to detect a
collision, the maximum probability of human injuries of type HI-3 is
2% when the robot is moving along footpaths in the UV-C treatment
scenario. These results show that the HDS and the AVFAS successfully
avoid unnecessarily close HRIs. On the other hand, in the picking
scenario, even if the HDS and the AVFAS have the same performance
as before, human injuries represent a probability of about 20%. This
increment in human injuries happens mainly during planned close HRI
when workers approach the robot to load/unload trays. In the same
13
way, since the logistic robots are expected to have even more HRI
with human workers than for picking robots, the probability of injury
reaches almost 25% for the logistics scenario.

4.1.2. Human injuries due to robot failing to detect the human further away
than 3.6 m (F-2)

According to Fig. 11, if the robot fails to detect a human (trained
or untrained) further away than 3.6 m, then the human injuries of type
HI-2 can reach a probability of around 30% in both cases logistics and
picking scenarios. Moreover, according to these graphical results, the
human training level is not a key factor that affects the consequences of
having an unplanned HRI. In both cases, trained and untrained people
interacting with the robot, the probability of injury is similar, though
the interaction with trained people is more dangerous due to the trained
people being expected to approach to the robot to load/unload trays.
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Fig. 11. Probability of human injury HI-2 in the ideal case due to failure F-2 during: (a,b) Logistics, (c,d) Picking. Evaluating different probabilities of having unplanned interaction
with: (a,c) trained workers, (b,d) untrained people. See Section 3.1.4 for more information about the failure modes and human injuries evaluated here.
Fig. 12. Probability of human injury HI-2 in the ideal case due to failure F-3 during: (a) Logistics, (b) Picking. See Section 3.1.4 for more information about the failure modes
and human injuries evaluated here.
4.1.3. Human injuries due to robot failing to interpret a body gesture
performed by the human (F-3)

According to Fig. 12, in case the robot fails to interpret correctly a
body gesture performed by a worker (during planned and unplanned
close HRI), then the consequences represent a high probability of
human injury of the type HI-2 with around 90% in case of logistics
and 80% in case of picking scenario. These results are due to the fact
that if a worker performs a hand gesture to command the robot to stop
when they are closely interacting, the HARS could interpret the gesture
as another command, which could make the robot move unexpectedly
toward the worker.

4.1.4. Human injuries due to human unable to interpret the audiovisual
alerts (F-4)

According to Fig. 13, when an untrained person is not able to
interpret the audiovisual alerts of the robot, the results are as critical as
14
the results shown for F-3. Since the human is not aware of the robot’s
presence/intention, then the human tends to get closer and closer,
producing probabilities of human injury of almost 100% in the worst
case for logistics, 90% for picking, and around 40% for UV-C treatment
when the robot is moving along the footpaths. These results evidence
the importance of properly implementing an AVFAS. The visual alerts
may not be clear enough for untrained people, and voice messages are
not always understandable for the pickers who may speak a different
language than the one used in the prerecorded messages.

4.1.5. Human injuries due to robot detecting the humans only when they
are too close (F-5)

According to Fig. 14, if the robot can detect people only when
they are already closer than 3.6 m, then the consequences can produce
human injuries of type HI-2 with up to 21% for logistics and 16%
for picking. Another important thing to highlight from the results
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Fig. 13. Probability of human injury HI-2 in the ideal case due to failure F-4 during: (a) Logistics, (b) Picking, (c) UV-C treatment at footpaths.
Fig. 14. Probability of human injury HI-2 in the ideal case due to failure F-5 during: (a,b) Logistics, (c,d) Picking. Evaluating different probabilities of having unplanned interaction
with: (a,c) trained workers, (b,d) untrained people. See Section 3.1.4 for more information about the failure modes and human injuries evaluated here. See Section 3.1.4 for more
information about the failure modes and human injuries evaluated here.
in Fig. 14 is that varying the probability of failure but keeping the
same probability of having unplanned interactions produces almost no
changes in the resulting injuries. This can be explained by the fact that
when a human approaches the robot at the end of the rows, the AFVAS
can still activate periodic alerts even if the HDS was not able to detect
a human on time. Thus, even if the HDS performance at the end of the
rows is bad, the periodic alerts of the AFVAS can keep the probability of
human injuries almost the same as when the HDS is working properly.

4.1.6. Human injuries due to robot failing to track the human position (F-6)
According to Fig. 15, when the robot fails to track accurately the

human’s position during close interactions with untrained people, the
resultant potential injuries HI-2 probabilities are of up to 28%, 20%
and 6% for logistics, picking and UV-C treatment respectively. The
results for trained workers are very similar but slightly lower since
the behavior of trained people is less unpredictable, making it easier
to track it.
15
4.2. Assessment of potential human injuries due to UV-C light side effects

This subsection shows the probabilities of producing potential hu-
man injuries due to UV-C exposure denoted by HI-1. These potential
injuries can be serious if the UV-C light is directly exposed to a human
for a prolonged time, causing severe burns of the skin and eye injuries
(photokeratitis) (Lucas et al., 2019).

See Sections 3.1.4 and 3.7 for more information about the human
injury HI-1, and Table 1 for more information about the failure modes
F-4, F-5, F-7, and F-8.

4.2.1. Human injuries due to human unable to interpret the audiovisual
alerts (F-4)

According to Fig. 16(a), the consequences of having unplanned HRI
with untrained people who cannot interpret the audiovisual alerts of
the robot are really critical in terms of UV-C treatment. Since, under
these conditions, the human is not aware of the danger, then they
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Fig. 15. Probability of human injury HI-2 in the ideal case due to failure F-6 during: (a,b) Logistics, (c,d) Picking, (e,f) UV-C treatment at footpaths. Evaluating different probabilities
of having unplanned interaction with: (a,c,e) trained workers, (b,d,f) untrained people. See Section 3.1.4 for more information about the failure modes and human injuries evaluated
here.
Fig. 16. Probability of human injury HI-1 in an ideal case due to UV-C light side effects evaluating: (a) Failure F-4, (b) Failures F-5, F-7 and F-8. See Section 3.1.4 for more
information about the failure modes and human injuries evaluated here.
decide to get closer than 7 m from the robot to have a look at it,
producing a probability of human injuries HI-1 of almost 90% even
when the probability of unplanned HRI is only 20%. This means that
if the unplanned HRI probability is higher than 20% then the human
injuries are basically unavoidable even if the overall safety system
performance is ideal (according to probabilities in Table 14).

4.2.2. Human injuries due to robot failing to detect the human on time (F-5,
F-7 and F-8)

According to Table 1, the failures in the HDS described in F-5, F-7
and F-8 can all produce human injuries HI-1 where the severity of the
consequences of each failure may be different due to the time of UV-C
exposure. Despite this, the model implemented in PRISM was simplified
to consider a potentially dangerous situation when a human gets closer
than 7 m to the robot without considering the exposure time. Then, the
consequences of the failures F-5, F-7, and F-8 are equivalent and were
treated as the same kind of failure for our analysis.

Thus, according to Fig. 16(b), if an unplanned HRI is going to
happen with a 100% probability, then there is a probability of getting
injured of almost 90% which remains constant independently of the
16
probability of a failure in the HDS (F-5, F-7, or F-8). These results
show the importance of ensuring that the polytunnel area is free of
people during UV-C treatment. In this case, even by assuming that
the overall safety system performance was ideal, the consequences of
having unplanned HRI cannot be fully compensated. Thus, the only
way for the safety system to attenuate the human injuries HI-1 is by
ensuring that the performance of the HDS and AVFAS is ‘‘virtually
perfect’’ (0% probability of failure), but since this is not realistic, then
the solution has to be addressed by changing the workspace usage
policies and increasing the security on the field to control unauthorized
access to polytunnels during UV-C treatment.

4.3. Summary of results for all cases

This subsection summarizes in Tables 3–5 the numerical results of
testing all three cases (ideal, regular, and worst) of overall safety system
performance. The results in these tables show the consequences of: (i)
having or not unplanned HRI, (ii) having HRI with trained or untrained
people, and (iii) having different failures. The columns ‘‘probability of
unplanned HRI’’ and ‘‘probability of failure’’ have two levels being the
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Table 3
Probabilities of human injuries (see Section 3.1.4) during UV-C treatment operations (see Section 2.1.3) due to failures in the safety system (see Table 1).

Scenario Overall safety system
performance

Human training
level

Probability of
unplanned HRI (%)

Probability of
failure (%)

Probability of getting human injuries
according to the failure evaluated (%)

HI-3 HI-2 HI-1

F-1 F-4 F-6 F-4 F-5,7,8

UV-C treatment

Ideal casea

Untrained
10 10 0.021 0.186 0.19 10.86 17.77

100 0.21 6.581 0.566 61.25 20.75

100 10 0.2 1.523 1.839 70.54 88.7
100 2 37.37 5.385 100 92.98

Trained
10 10 0.019 – 0.177 – –

100 0.19 – 0.557 – –

100 10 0.19 – 1.715 – –
100 1.9 – 5.299 – –

Regular casea

Untrained
10 10 0.072 0.486 0.46 17.23 27.36

100 0.727 5.721 0.9 61.25 34.18

100 10 0.679 4.495 4.24 87.73 97.92
100 6.645 32.72 8.17 100 99.59

Trained
10 10 0.068 – 0.427 – –

100 0.68 – 0.873 – –

100 10 0.638 – 3.962 – –
100 6.257 – 7.947 – –

Worst casea

Untrained
10 10 1.526 2.496 3.653 25.72 41

100 7.44 8.879 4.22 61.25 47.68

100 10 6.05 19.64 26.53 97.09 99.95
100 48.22 46.5 30.14 100 99.99

Trained
10 10 0.6 – 2.89 – –

100 5.97 – 3.46 – –

100 10 4.88 – 21.83 – –
100 41.33 – 25.67 – –

a See Table 14 to know the transition probabilities used in each case.
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10% lowest value and 100% as the highest value. The 10% was chosen
as the minimum threshold instead of 0% just to show a more realistic
numerical result. If interested anyways in the results of having 0%
as the minimum probability of having unplanned HRI and/or failures,
these results were shown graphically in Figs. 10–16, only for the ideal
case.

4.4. UV-C treatment

Table 3 shows the probability of getting injuries of types HI-1, HI-
and HI-3 according to the specific failure evaluated. The failures
-2 and F-3 are not evaluated in the UV-C treatment since those are
ailures related to farm workers, and it was established in SP-8 that
rained workers know that they cannot interact with robots inside the
olytunnel during UV-C treatment.

As was expected, the highest probabilities of getting human injuries
appen under the condition of 100% of probability of failure with 100%
f probability of unplanned HRI with untrained people. In the worst
ase, the highest probability of getting human injuries reaches 48.22%,
6.5% and 100% for injuries of type HI-3, HI-2 and HI-1 respectively.
n contrast, when comparing these results with the ideal case, the
uman injuries related to physical contact are almost negligible but the
njuries due to UV-C light exposure remain as dangerous as in the worst
ase. This result demonstrates the importance of training everybody
n the farm about the dangers of approaching a robot during UV-C
reatment but also the importance of the AVFAS to alert untrained
eople of the danger in case the training fails.

.4.1. Logistics and picking
Unlike for UV-C treatment, for logistics and picking, the failures F-

and F-8 are not evaluated but the failures F-2 and F-3 are included
nstead. Thus, Tables 4–5, show probabilities of injuries of types HI-2
nd HI-3 only.
17

f

According to these results, the probability of injury, when SCS fails
uring both logistics or picking, can reach above 90% in the worst case

and around 20% in the ideal case. In general, the probabilities of getting
human injuries during logistics operations have similar magnitudes but
are always higher than when the robot is on picking operations. For
instance, the probability of getting human injuries of type HI-2 can
each 100% during logistics (due to F-4), but for picking the resultant
robability is up to 92.35%. They both are really critical results, and the
light difference is due to in logistics the robot performs more two-way
rips from polytunnel to the collection point, so the chances of having
nplanned HRI are higher.

As was mentioned for UV-C treatment, mandatory training and
roper AVFAS design are crucial factors to attenuate the consequences
f F-4. Moreover, for logistics and picking, the HARS performance is
nother crucial factor to be considered since if F-3 happens with 100%
f probability, then it may produce human injuries of around 80% even
n ideal conditions.

. Discussion

.1. Performance of the safety system under failure modes

The sensitivity analysis in Section 4 showed that by evaluating eight
otential failures in the safety system, the probability of having human
njuries even in ideal conditions may be 100%. These critical situations
ccur when the robot or the human is not aware of the intentions or
ctions of the other one. The latter means that it is crucial to ensure
hat only trained people are going to interact with the robot closely (in
ogistics and picking scenarios), in order to reduce the likelihood that
he human is not aware of the robot’s intentions, but also to ensure that
eople are not going to approach the robot in critical operations (during
he UV-C treatment) since the human can get harmed by staying at 7 m
rom the robot for a long time.
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Table 4
Probabilities of human injuries (see Section 3.1.4) during logistics operations (see Section 2.1.1) due to failures in the safety system (see Table 1).

Scenario Overall safety system
performance

Human training
level

Probability of
unplanned HRI (%)

Probability of
failure (%)

Probability of getting human injuries
according to the failure evaluated (%)

HI-3 HI-2

F-1 F-2 F-3 F-4 F-5 F-6

Logistics

Ideal casea

Untrained
10 10 1.681 14.15 – 14.16 14.19 14.2

100 15.65 15.33 – 36.20 14.25 16.06

100 10 2.255 18.21 – 18.3 18.59 18.61
100 20.46 28.63 – 100 19.11 27.89

Trained
10 10 1.7 14.3 14.35 – 14.35 14.35

100 15.82 15.54 78.93 – 14.38 15.4

100 10 2.45 19.68 20.11 – 20.10 20.11
100 22.09 30.57 87.92 – 20.44 22.3

Regular casea

Untrained
10 10 3.549 22.32 – 22.4 22.44 22.13

100 30.56 23.74 – 37.73 22.78 25.14

100 10 5.376 30.96 – 31.7 31.97 31.08
100 42.73 42 – 100 35.12 40.8

Trained
10 10 3.574 22.44 13.28 – 22.58 22.34

100 30.74 24.05 69.71 – 22.88 24.7

100 10 5.682 32.31 22.42 – 33.54 33.22
100 44.58 44.73 81.93 – 36.18 37.92

Worst casea

Untrained
10 10 27.27 54.67 – 52.89 55.08 53.77

100 80.6 57.07 – 63.65 56.13 60.97

100 10 31 82.54 – 73.97 83.7 83.82
100 97.85 89.65 – 100 89.7 87.8

Trained
10 10 27.21 54.51 42 – 54.96 53.62

100 80.4 57.17 82.29 – 56.01 60.22

100 10 51.75 81.18 77.39 – 82.29 81.72
100 96.3 88.08 93.84 – 87.95 88.5

a See Table 14 to know the transition probabilities used on each case.
Table 5
Probabilities of human injuries (see Section 3.1.4) during picking operations (see Section 2.1.2) due to failures in the safety system (see Table 1).

Scenario Overall safety system
performance

Human training
level

Probability of
unplanned HRI (%)

Probability of
failure (%)

Probability of getting human injuries
according to the failure evaluated (%)

HI-3 HI-2

F-1 F-2 F-3 F-4 F-5 F-6

Picking

Ideal casea

Untrained
10 10 0.675 5.89 – 5.9 5.936 5.938

100 6.578 7.176 – 29.13 5.966 7.365

100 10 1.255 10.33 – 10.43 10.76 10.77
100 11.9 21.75 – 88.11 11.04 20.41

Trained
10 10 0.747 6.497 6.548 – 6.547 6.548

100 7.252 7.85 48.59 – 6.567 7.232

100 10 1.976 16.04 16.5 – 16.49 16.5
100 18.16 27.44 80.42 – 16.65 19.61

Regular casea

Untrained
10 10 1.485 9.826 – 9.927 9.983 9.768

100 14 11.47 – 26.95 10.18 11.83

100 10 3.348 19.86 – 20.71 21.17 20.12
100 29.07 32.61 – 81.47 22.87 30.26

Trained
10 10 1.629 10.71 6.466 – 10.9 10.73

100 15.25 12.59 40.29 – 11.06 12.32

100 10 4.798 27.72 20.33 – 29.19 28.55
100 39.13 40.98 73.37 – 30.21 34.83

Worst casea

Untrained
10 10 7.261 30.81 – 28.12 31.57 30.69

100 53.93 34.41 – 43.73 32.31 35.19

100 10 23.44 71.6 – 60.23 74.02 73.31
100 93.97 80.97 – 92.35 76.24 78.16

Trained
10 10 7.564 31.94 25.27 – 32.67 31.61

100 55.35 35.6 54.19 – 33.37 36.88

100 10 24.83 73.63 70.5 – 75.26 73.17
100 92.98 80.67 87 – 76.62 83.33

a See Table 14 to know the transition probabilities used on each case.
18
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Table 6
Metrics of PRISM model built for experiments.

Scenario modeled Human training States Transitions Model construction Propertya verification time (s)

level time (s) HI-1 HI-2 HI-3

UV-C treatment Untrained 18 003 19 276 0.163 0.243 0.325 0.316
Trained 11 561 12 371 0.097 0.001 0.161 0.156

Picking Untrained 67 965 72 516 0.676 0.013 3.989 3.913
Trained 155 035 165 501 1.586 0.014 5.144 4.944

Logistics Untrained 94 265 100 376 0.909 0.011 7.852 8.183
Trained 172 970 183 981 1.723 0.014 8.986 7.12

a See Section 3.7 for more information about the properties to verify.
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Then, if there is always a chance of having unplanned interactions,
key factor in avoiding human injuries is designing and implementing

n adequate audiovisual feedback system that alerts untrained people
o the danger before they get closer. This system must include intuitive
isual signals and explicit voice messages to make the robot’s operation
s transparent as possible for humans.

If these audiovisual alerts do not make the human move away,
he last safety barrier relies on the robot’s perception system. The
erception includes human detection/tracking, collision detection, and
ction recognition, which performances are highly dependent on the
ensors used and the capacity to process the sensor’s data online.

The consequences of having failures in any of the components of the
erception system vary between agricultural scenarios. For example, for
ogistics and picking, it is not very critical if the robot fails to detect
eople more than 3.6 m away, but it is more critical if the robot fails to
rack the position of people, or if the robot infers motion incorrectly or
ecognizes body gestures incorrectly. These failures during close inter-
ctions can lead to injuries (due to physical contact) with a probability
f up to 93% in the worst case.

On the other hand, for UV-C treatment, tracking, motion inference,
nd gesture recognition are not even components required by the
erception system, since only the early detection of people at distances
reater than 7 m is required. However, even if detection within this
istance range is assumed robust (up to 10% probability of failure), the
otential injuries from exposure to UV-C light can still be around 41%,
ue to HRI with untrained people. In fact, in all cases evaluated in this
ork, it was assumed a non-perfect robot perception performance to
ake it realistic, and that is why there was always a chance of having
uman injuries. In theory, if the on-site training policy, audiovisual
lerts, and robot perception accomplish their goals in conjunction, the
robability of getting human injuries could be minimized.

.2. Interpretation of resultant human injury probability

As mentioned at the beginning of Section 4, the resultant probabil-
ties from the sensitivity analysis do not represent a metric to quantify
he severity of human injuries after each HRI, but a metric to quantify
he probability of having at least a human injury (independent of the
everity). Then, taking as an example the results from Section 4.1.1, a
robability of having human injuries of 20% means that one per every
ive times a robot operates in picking mode, it causes at least a human

injury (unknown severity). This is of course unacceptable and alerts
safety engineers that additional mitigation strategies need to be put in
place to minimize it.

5.3. Granularity of the model

In this work, we used simplified models to describe the HRI and the
agricultural tasks to be performed by the robots. Thus, it is important
to mention that these simplifications do not reduce the validity of
the proposed models to determine if a human injury occurred but
may reduce the granularity of the output (i.e. injury severity level).
The main limitation of the models used in this work is related to the
19

assumptions used for modeling human injuries.
According to Section 3.1.4, HI-2 and HI-3 are hazards that represent
physical human injuries where the severity level depends on the robot’s
motion state after the collision. Those are the only two levels of
severity considered by the models proposed, however, if more realis-
tic/complete results are needed, a more granular output that considers
different robot speed levels before collision should be modeled. The
same limitation is present in HI-1 which is a hazard present during
UV-C treatments, in the proposed models we consider a human to be
injured at the moment a robot enters the 7 m safety threshold, however,
to get a more realistic measure of the injury severity, it will be required
to include in the modeling the distance and especially the time of being
exposed to UV-C radiation.

As stated in Vicentini et al. (2020), as the model gets more complex,
the formal verification tool needs more time to exhaustively explore
the corresponding state-space, leading to the well-known state-space
explosion issue of formal verification approaches. Thus, finding the
right level of detail for models representing systems is an open issue,
which inevitably involves using some level of abstraction.

Table 6 summarizes some metrics of the model built in PRISM that
generated the results in Section 4. The table includes the number of
states, number of transitions, time for model construction, and time for
property verification for every scenario. It is important to highlight how
the level of training (untrained vs trained) influences the size of the
model built. Overall, the model did not require extensive computations,
which means it can potentially be used for online formal verification.
However, the number of states and transitions will increase according
to the scale of the farming scenario modeled by the constants 𝑥_𝑟𝑜𝑤𝑠,
_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 𝑥_𝑟𝑢𝑛𝑠 and 𝑥_𝑡𝑟𝑎𝑦𝑠 (see Section 3.3).

.4. Scalability and versatility of the model

In the literature, models used for formal verification are usually
ery case-specific and may not be reused for applications of the same
ype (Askarpour et al., 2019). In this sense, in our work, the level of
bstraction for modeling the agricultural tasks as a sequence of steps
llustrated in Fig. 3, and the simplicity of state discretization of human,
obot, and safety systems, allow the proposed model to be adapted to
ifferent applications/tasks within the agricultural domain. The results
hown in Section 4.3 exemplify this statement since they all were gen-
rated by a single PRISM model file which describes three agricultural
cenarios (UV-C treatment, picking, logistics). These scenarios share
ost of the variables, constants, and commands. The key differences

etween scenarios are the type of human injury being evaluated and the
umber of safety components in place. Depending on the agricultural
cenario chosen for testing, one of the variables x_uvc, x_logistics, and

x_picking (described in Section 3.3) are used to only allow commands
related to that particular scenario to be executed.

Finally, if a different application is being modeled, where there are
additional safety requirements (e.g. additional components in the safety
system), then the sequential approach to execute the model components

(described in Section 3.8.5) allows easy adaptation and scalability.
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Table 7
List of variables used to model the agricultural tasks (see Section 3.3).

Variable
name

Initial
value

Possible
values

Description Transitions

Previous values Next values

UV-C Logistics Picking UV-C Logistics Picking

x_uvc 0

0 Robot at the shed 3 – – 1 – –

1 Robot moving from the shed to
polytunnel

0 – – 2 – –

2 Robot performing the UV-C treatment 1 – – 3 – –

3 Robot moving from polytunnel to the
shed

2 – – 0 – –

x_logistics
x_picking 0

0 Robot at the shed – 8 – 1

1 Robot moving from the shed to
collection point to place empty trays
on it

– 0 – 2

2 Robot interacting with the worker
who load empty trays on it

– 1 – 3

3 Robot moving from collection point
to polytunnel

– 2,7 – 4

4 Robot picking fruits along the rows
or only moving inside the polytunnel

– 3,5 3 – 5 6

5 Robot interacting with the worker
who summoned it inside the
polytunnel

– 4 – – 4,6 –

6 Robot moving from polytunnel to
collection point to unload full trays

– 5 4 – 7

7 Robot interacting with the worker
who unload full trays

– 6 – 8

8 Robot moving from collection point
to robot shed

– 7 – 0

x_runs 0 0,1,2, . . . Number of times that the robot
performed a two-way trip from
polytunnel to the collection point

– x_runs-1 – x_runs+1

N_runs The robot completed the maximum
number of runs before the robot
battery requires to be recharged

– N_runs-1 – 0

x_seg 0

0,1,2, . . . Number of footpath segments
traversed by the robot before
reaching the goal point

N_seg-1 N_seg+1

N_seg_shed-
N_seg_collect

The robot traversed all the footpaths
segments between the shed and the
collection point, assuming that
N_seg_shed > N_seg_collect

N_seg_shed-
N_seg_collect-1

N_seg_shed-
N_seg_collect+1

0

N_seg_shed Robot traversed all the footpaths
segments between the shed and the
polytunnel

N_seg_shed-1 0

N_seg_collect Robot traversed all the footpaths
segments between the shed and the
polytunnel

N_seg_collect-1 N_seg_collect+1 0

x_rows 0 0,1,2, . . . Number of rows traversed by the
robot

N_rows-1 – N_rows+1 –

N_rows Robot covered all the rows in the
polytunnel

N_rows-1 0

x_trays 0 0,1,2, . . . Number of times the robot replaced
the trays

– N_trays-1 – N_trays+1

N_trays All the trays on the robot are full of
fruit

N_trays-1 0
5.5. Comparison with related work

As mentioned in Section 2.4 only a few existing works have ad-
dressed the safety analysis of human–robot collaboration scenarios
by considering probabilistic model-checking approaches. Among those
works, the approach in Gleirscher et al. (2022) is the closest one to
20

our work. Similar to our work, the application, the robotic system, and
human behavior are modeled as MDPs using PRISM as a probabilistic
model-checking tool. However, in Gleirscher et al. (2022), the authors
investigate what is the likelihood of accident-free operation under
the control of a synthesized safety controller. Thus, their goal in the
results analysis is to demonstrate the correctness of safety controllers
under explicit conditions. In our case, the goal in the analysis of the

results is not to verify the correctness of the proposed safety system
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Table 8
List of constants used to define the scale of the agricultural tasks (see Section 3.3).

Constant name Possible values Description Related to
variable

N_rows 1,2,3, . . . Number of rows that the robot is able to cover before it has to
come back to the robot shed to charge the battery

x_rows
x_uvc

N_seg_shed 1,2,3, . . . Number of footpath segments required to be traversed when
moving from robot shed to the polytunnel

x_seg
x_uvc
x_logistics
x_picking

N_seg_collect 1,2,3, . . . Number of footpath segments required to be traversed when
moving from collection point to the polytunnel

x_seg
x_logistics
x_picking

N_runs 1,2,3, . . . Number of times a robot can perform two-way trips from
polytunnel to collection point before it has to come back to robot
shed to charge the battery

x_runs
x_logistics
x_picking

N_trays 1,2,3, . . . Number of times a robot can place full trays on it before it has to
come back to collection point to replace with empty trays

x_trays
x_logistics
x_picking
Table 9
List of values that the variable x_robot can take according to the agricultural scenario (see Section 3.4).

Variable Initial Possible Description Transitions

name value values Previous values Next values

UV-C Logistics Picking UV-C Logistics Picking

x_robot 0

0 Robot operation is paused (starting mode at the shed) 1 1 1 1 1 1
1 Robot moving along footpaths 2 2 2 2,3,10 2,3,8,10
2 Robot performing a transition between footpath segments 1,9,10 1,3,10
3 Robot evading a human at footpaths 1,2 9,10
4 Robot moving along the row performing UV-C treatment 7 – – 7,10 – –
5 Robot moving along a row transporting trays – 7 – – 7,8,10 –
6 Robot moving along a row while picking fruits – – 7 – – 7,10
7 Robot performing a transition between rows 4,10 5,9,10 6,10 4,10 5,10 6,10
8 Robot approaching to the worker position (reducing speed) – 1,5 – 9,10
9 Robot moving away from the worker position 3 3,8 2,10 2,7,10 2,10
10 Robot stops because of safety purposes 1,2, . . . ,8,9 2,7
Table 10
List of variables used to model the safety system (see Section 3.5).

Variable Initial Possible Description Transitions

name value values Previous values Next values

x_hds 0

0 No human detected 1 1,2,3,4
1 Human detected when 𝑑 > 7 m 0,2 0,2,3,4
2 Human detected when 3.6 m≤ 𝑑 ≤ 7 m 0,1,3 1,3
3 Human detected when 1.2 m< 𝑑 < 3.6 m 0,1,2,4 2,4
4 Human detected when 0 m< 𝑑 ≤ 1.2 m 0,1,2,3 3

x_htmis 0
0 No human tracked 1,2 1a,2a

1 Accurate human motion inference 0 0
2 Not reliable human motion inference 0 0

x_hars 0
0 No human gesture detected 1,2 1a,2a

1 Correct human gesture/action recognition 0 0
2 Wrong human gesture/action recognition 0 0

x_scs 0
0 No contact 1,2 1a,2a

1 Collision is detected 0 0
2 Collision is not detected on time 0 0

x_visual
x_voice 0

0 Audiovisual alerts are not activated 1,2 1,2a

1 Audiovisual indicators are activated when a human is detected 0,2 0
2 Periodic audiovisual indicators are activated (even when there is not a human detected) 0 0,1

a Probabilistic transition (see Table 11).
(taken from Guevara et al. (2023)), but to perform a sensitivity analysis
that shows the consequences of explicit conditions (failure modes)
translated into probabilities of human injuries.

Most of the studies on safety for human–robot collaboration includ-
ing Zacharaki et al. (2021) and Vicentini et al. (2020) have focused
on manufacturing settings which, unlike agricultural settings, are more
structured and have well-established safety standards and regulations.
Moreover, as mentioned in Section 5.4, most of the existing works use
models that are case-specific and are not suited to be re-used even for
21
applications of the same type. Here we have illustrated that the same
modeling abstraction level can be used for different applications within
the agricultural domain.

6. Conclusions

This paper has discussed the use of a probabilistic model-checking
tool, in particular PRISM, to provide a theoretical assessment of the
probability of human injuries occurring during planned and unplanned
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Table 11
List of constants used to define the probability of failure of each safety system component (see Section 3.5).

Constant name Possible values Description Related to variable

p_alerts [0,1] Probability that at this specific moment a periodic audiovisual alert is activated to warn nearby
human about danger

x_visual
x_voice

p_scs [0,1] Probability that the SCS fails to detect a collision x_scs

p_hds_1 [0,1] Probability that HDS fails in detect a human in the same row farther than 7 m

x_hds

p_hds_2 [0,1] Probability that HDS fails in detect on time a human at 7 m in the same row
p_hds_3 [0,1] Probability that HDS fails in detect on time a human at 3.6 m in the same row
p_hds_4 [0,1] Probability that HDS fails in detect on time a human at 1.2 m in the same row

p_hds_5 [0,1] Probability that HDS fails in detect a human at the end of the rows farther 7 m when the robot is
going to perform row transitions

p_hds_6 [0,1] Probability that HDS fails in detect on time a human at the end of the row at 7 m when the robot is
going to perform row transitions

p_hds_7 [0,1] Probability that HDS fails in detect on time a human at the end of the row at 3.6 m when the robot
is going to perform row transitions

p_hds_8 [0,1] Probability that HDS fails in detect on time a human at the end of the row at 1.2 m when the robot
is going to perform row transitions

p_hds_9 [0,1] Probability that HDS fails in detect a human on time in the same footpath above 3.6 m
p_hds_10 [0,1] Probability that HDS fails in detect a human on time in the same footpath at 3.6 m
p_hds_11 [0,1] Probability that HDS fails in detect a human on time in the same footpath at 1.2 m

p_htmis_1 [0,1] Probability that HTMIS fails to track accurately a human in the same row x_htmisp_htmis_2 [0,1] Probability that HTMIS fails to track accurately a human in the same footpath

p_hars [0,1] Probability that the HARS fails to detect the correct hand gesture x_hars
Table 12
List of variables used to model the human behavior (see Section 3.6).

Variable Initial Possible Description Transitions

name value values Previous values Next values

x_human 0
0 No human presence 1,2 1a,2a

1 Untrained human is interacting with the robot 0 0
2 Trained human is interacting with the robot 0 0

x_human_motion 0

0 Human stays stationary 0,1,2 1,2a,3a,4a

1 Human is moving to the robot position 0 0a,2a

2 Human is moving away from the robot position 0,1,3,4 0
3 Human approaching to the robot to place trays on it 0 2
4 Human walking next to the robot along the footpath 0 2

x_human_aware 0 0 Human is not aware of robot presence or potential danger of approaching to the robot 1 1a

1 Human is aware of robot intentions or danger of approaching to the robot 0 0

x_human_gesture 0 0 Human is not performing any specific body gesture 1 1a

1 Human performing a body gesture to make the robot knows about his/her intentions 0 0

x_human_distance 0

0 𝑑 >> 7 m 1 1
1 𝑑 > 7 m 0,2 0,2
2 3.6 m ≤ 𝑑 ≤ 7 m 1,3 1,3
3 1.2 m < 𝑑 < 3.6 m 2,4 2,4
4 0 m < 𝑑 ≤ 1.2 m 3,5 3,5
5 𝑑 = 0 m 4 4

a Probabilistic transition (see Table 13).
Table 13
List of constants used to model the probabilistic human behavior (see Section 3.6).

Constant name Possible values Description Related to variable

p_int_1 [0,1] Probability that an unplanned interaction is going to happen inside the polytunnels with an untrained
person x_human

p_int_2 [0,1] Probability that an unplanned interaction is going to happen inside the polytunnels with an trained
person

p_int_3 [0,1] Probability that an unplanned interaction is going to happen outside the polytunnels with an
untrained person

p_int_4 [0,1] Probability that an unplanned interaction is going to happen outside the polytunnels with an trained
person

p_aware_1 [0,1] Probability that visual alerts are correctly interpreted by untrained people
x_awarep_aware_2 [0,1] Probability that visual alerts are correctly interpreted by trained people

p_aware_3 [0,1] Probability that voice alerts are correctly interpreted by trained and untrained people

p_decision [0,1] Probability that the human decides to perform a risky movement or not x_motion

p_reply [0,1] Probability that the human performs or not a body gesture to make the robot knows about his/her
intentions

x_gesture
22
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t
a
I
a
P

Table 14
Values of the constants (used as probabilities of transition) that were chosen to
characterize the three cases tested (ideal, regular, and worst) in the Section 4.

Model component Constant Values for specific cases evaluated

name Ideal case Regular case Worst case

Safety system

p_hds_1 0.3 0.4 0.5
p_hds_2 0.2 0.3 0.4
p_hds_3 0.1 0.2 0.3
p_hds_4 0.1 0.1 0.2
p_hds_5 0.3 0.4 0.5
p_hds_6 0.2 0.3 0.4
p_hds_7 0.1 0.2 0.3
p_hds_8 0.1 0.1 0.2
p_hds_9 0.2 0.3 0.4
p_hds_10 0.1 0.2 0.3
p_hds_11 0.1 0.1 0.2
p_htmis_1 0.1 0.2 0.3
p_htmis_2 0.1 0.2 0.3
p_hars 0.1 0.2 0.3
p_alerts 0.9 0.7 0.5
p_scs 0.1 0.3 0.5

Human behavior

p_int_1 0,0.1,0.2,. . . ,0.9,1
p_int_2 0,0.1,0.2,. . . ,0.9,1
p_int_3 0,0.1,0.2,. . . ,0.9,1
p_int_4 0,0.1,0.2,. . . ,0.9,1
p_aware_1 0.8 0.7 0.5
p_aware_2 0.9 0.8 0.5
p_aware_3 0.9 0.9 0.5
p_decision 0.9 0.8 0.5
p_reply 0.9 0.8 0.5

See Tables 11 and 13 for more information about the constants listed here.

HRI in four specific agricultural scenarios, focusing on the conse-
quences of failures in unreliable robot safety systems. The paper illus-
trated how by performing a sensitivity analysis, the safety engineers can
obtain metrics to evaluate how reliable their safety system architectures
are and based on those preliminary results, make changes accordingly
before implementation in the real robots. Moreover, the results demon-
strated that minimizing the probability of human injuries depends not
only on the performance and reliability of the technology within the
safety system but also on in-site safety policies to ensure no human
errors. For instance, one of the agricultural scenarios evaluated was the
UV-C treatment, where no humans are allowed to interact closely with
robots. In this scenario, the human injury assessment demonstrated
that an agricultural robot with a robust human perception system (up
to 10% probability of failure) can still harm untrained people (from
exposure to UV-C light) with a probability of around 41%. Thus, the
only way to minimize the chances of producing human injuries in these
safety-critical applications is to ensure that only trained people interact
with agricultural robots, which is part of the in-site safety policies.

Finally, although the model-checking analysis presented here uses
simplified probabilistic models that are limited in granularity level,
their advantages include easily adapting to multiple scenarios and
being able to be used for online formal verification. If used for online
model-checking analysis, then the number of state transitions in the
model will be reduced due to requiring a shorter prediction time win-
dow, and the probabilities of failures should not come from a sensitivity
analysis but must be extracted from real-time robot sensing data such
as the level of noise in human detection/tracking readings. The online
model-checking analysis is going to be addressed in future work.

CRediT authorship contribution statement

Leonardo Guevara: Writing – original draft, Visualization, Valida-
ion, Software, Investigation, Formal analysis, Data curation, Conceptu-
lization. Muhammad Khalid: Writing – review & editing, Resources,
nvestigation. Marc Hanheide: Supervision, Methodology, Conceptu-
lization. Simon Parsons: Writing – review & editing, Supervision,
roject administration, Funding acquisition.
23
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Marc Hanheide owns shares in SAGA Robotics who manufactures the
Thorvald II robot used in the research described in the paper and
delivers autonomous services for the soft-fruit agricultural industry.

Data availability

No data was used for the research described in the article.

Appendix

See Tables 7–14.

References

Al-Hussaini, S., Gregory, J.M., Guan, Y., Gupta, S.K., 2020. Generating alerts to
assist with task assignments in human-supervised multi-robot teams operating
in challenging environments. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IROS, IEEE, pp. 11245–11252.

Araújo, R., Mota, A., Nogueira, S., 2017. Analyzing cleaning robots using probabilistic
model checking. In: International Conference on Information Reuse and Integration.
Springer, pp. 23–51.

Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F., 2019. Formal model of human
erroneous behavior for safety analysis in collaborative robotics. Robot. Comput.-
Integr. Manuf. (ISSN: 0736-5845) 57, 465–476. http://dx.doi.org/10.1016/j.rcim.
2019.01.001.

Banjanović-Mehmedović, L., Gurdić, A., 2021. Collaborative service robots: Challenges,
paradigms and applications. Serv. Robot.: Adv. Res. Appl. 139–163.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W., 1996. UPPAAL—a
tool suite for automatic verification of real-time systems. In: Proceedings of
the DIMACS/SYCON Workshop on Hybrid Systems III: Verification and Control:
Verification and Control. Springer-Verlag, Berlin, Heidelberg, ISBN: 354061155X,
pp. 232–243.

Bolton, M.L., Molinaro, K.A., Houser, A.M., 2019. A formal method for assessing the
impact of task-based erroneous human behavior on system safety. Reliab. Eng.
Syst. Saf. (ISSN: 0951-8320) 188, 168–180. http://dx.doi.org/10.1016/j.ress.2019.
03.010.

Bolton, M.L., Zheng, X., Kang, E., 2021. A formal method for including the probability
of erroneous human task behavior in system analyses. Reliab. Eng. Syst. Saf. (ISSN:
0951-8320) 213, 107764. http://dx.doi.org/10.1016/j.ress.2021.107764.

Cheng, R., Cheng, Y., Chen, D., Song, H., 2021. Online quantitative safety mon-
itoring approach for unattended train operation system considering stochastic
factors. Reliab. Eng. Syst. Saf. (ISSN: 0951-8320) 216, 107933. http://dx.doi.org/
10.1016/j.ress.2021.107933, URL: https://www.sciencedirect.com/science/article/
pii/S095183202100449X.

Chi, C.-F., Sigmund, D., Astardi, M.O., 2020. Classification scheme for root cause and
failure modes and effects analysis (FMEA) of passenger vehicle recalls. Reliab. Eng.
Syst. Saf. (ISSN: 0951-8320) 200, 106929. http://dx.doi.org/10.1016/j.ress.2020.
106929.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A., 2002. NuSMV 2: An OpenSource tool for symbolic
model checking. In: Brinksma, E., Larsen, K.G. (Eds.), Computer Aided Verification.
Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-540-45657-5, pp.
359–364.

Cirillo, A., Ficuciello, F., Natale, C., Pirozzi, S., Villani, L., 2016. A conformable
force/tactile skin for physical human–robot interaction. IEEE Robot. Autom. Lett.
1 (1), 41–48. http://dx.doi.org/10.1109/LRA.2015.2505061.

Dakwat, A.L., Villani, E., 2018. System safety assessment based on STPA and model
checking. Saf. Sci. (ISSN: 0925-7535) 109, 130–143. http://dx.doi.org/10.1016/j.
ssci.2018.05.009.

Fan, T., Long, P., Liu, W., Pan, J., 2020. Distributed multi-robot collision avoidance
via deep reinforcement learning for navigation in complex scenarios. Int. J. Robot.
Res. 39 (7), 856–892.

Gadoury, D.M., 2021. The potential of ultraviolet light to suppress grapevine powdery
mildew. Progress. Crop Consult. 38–44.

Gleirscher, M., Calinescu, R., Douthwaite, J., Lesage, B., Paterson, C., Aitken, J.,
Alexander, R., Law, J., 2022. Verified synthesis of optimal safety controllers for
human-robot collaboration. Sci. Comput. Program. (ISSN: 0167-6423) 218, 102809.
http://dx.doi.org/10.1016/j.scico.2022.102809.

Grimstad, L., From, P.J., 2018. Software Components of the Thorvald II Modular Robot.
Model. Identif. Control 39 (3), 157–165. http://dx.doi.org/10.4173/mic.2018.3.2.

Guettari, M., Gharbi, I., Hamza, S., 2021. UVC disinfection robot. Environ. Sci. Pollut.
Res. 28 (30), 40394–40399.

http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb1
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb2
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb2
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb2
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb2
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb2
http://dx.doi.org/10.1016/j.rcim.2019.01.001
http://dx.doi.org/10.1016/j.rcim.2019.01.001
http://dx.doi.org/10.1016/j.rcim.2019.01.001
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb4
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb4
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb4
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb5
http://dx.doi.org/10.1016/j.ress.2019.03.010
http://dx.doi.org/10.1016/j.ress.2019.03.010
http://dx.doi.org/10.1016/j.ress.2019.03.010
http://dx.doi.org/10.1016/j.ress.2021.107764
http://dx.doi.org/10.1016/j.ress.2021.107933
http://dx.doi.org/10.1016/j.ress.2021.107933
http://dx.doi.org/10.1016/j.ress.2021.107933
https://www.sciencedirect.com/science/article/pii/S095183202100449X
https://www.sciencedirect.com/science/article/pii/S095183202100449X
https://www.sciencedirect.com/science/article/pii/S095183202100449X
http://dx.doi.org/10.1016/j.ress.2020.106929
http://dx.doi.org/10.1016/j.ress.2020.106929
http://dx.doi.org/10.1016/j.ress.2020.106929
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb10
http://dx.doi.org/10.1109/LRA.2015.2505061
http://dx.doi.org/10.1016/j.ssci.2018.05.009
http://dx.doi.org/10.1016/j.ssci.2018.05.009
http://dx.doi.org/10.1016/j.ssci.2018.05.009
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb13
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb13
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb13
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb13
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb13
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb14
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb14
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb14
http://dx.doi.org/10.1016/j.scico.2022.102809
http://dx.doi.org/10.4173/mic.2018.3.2
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb17
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb17
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb17


Computers and Electronics in Agriculture 222 (2024) 108987L. Guevara et al.
Guevara, L., Hanheide, M., Parsons, S., 2023. Implementation of a human-aware robot
navigation module for cooperative soft-fruit harvesting operations. J. Field Robotics
1–31. http://dx.doi.org/10.1002/rob.22227.

Guevara, L., Rocha, R.P., Cheein, F.A., 2021. Improving the manual harvesting opera-
tion efficiency by coordinating a fleet of N-trailer vehicles. Comput. Electron. Agric.
(ISSN: 0168-1699) 185, 106103. http://dx.doi.org/10.1016/j.compag.2021.106103.

Guha, S., Nag, A., Karmakar, R., 2021. Formal verification of safety-critical systems: A
case-study in airbag system design. In: Intelligent Systems Design and Applications.
Springer International Publishing, Cham, ISBN: 978-3-030-71187-0, pp. 107–116.

Hall, A.M., Jin, X., 2017. Integrated control of strawberry powdery mildew. Acta Hortic.
1156, 771–776.

Herrera, D., Monllor, M., Santiago, D., Roberti, F., Carelli, R., 2017. Null-space based
control for human following and social field avoidance. In: 2017 XVII Workshop
on Information Processing and Control. RPIC, pp. 1–6. http://dx.doi.org/10.23919/
RPIC.2017.8214358.

Hou, Y.C., Mohamed Sahari, K.S., Weng, L.Y., Foo, H.K., Abd Rahman, N.A.,
Atikah, N.A., Homod, R.Z., 2020. Development of collision avoidance system
for multiple autonomous mobile robots. Int. J. Adv. Robot. Syst. 17 (4),
1729881420923967.

Huck, T.P., Münch, N., Hornung, L., Ledermann, C., Wurll, C., 2021. Risk assessment
tools for industrial human-robot collaboration: Novel approaches and practical
needs. Saf. Sci. (ISSN: 0925-7535) 141, 105288. http://dx.doi.org/10.1016/j.ssci.
2021.105288.

International Organization for Standardization, 2015. ISO-13489 Safety of Machinery -
Safety-related parts of control systems - Part 1: General principles of design.

International Organization for Standardization, 2018a. ISO-10218 Robots and Robotic
Devices - Safety requirements for industrial robots - Part 1: Robots.

International Organization for Standardization, 2018b. ISO-18497 Agricultural machin-
ery and tractors - Safety of highly automated agricultural machines - Principles for
design.

Islam, M.J., Hong, J., Sattar, J., 2019. Person-following by autonomous robots: A
categorical overview. Int. J. Robot. Res. 38 (14), 1581–1618.

Kirk, R., Cielniak, G., Mangan, M., 2020. L*a*b*Fruits: A rapid and robust outdoor
fruit detection system combining bio-inspired features with one-stage deep learning
networks. Sensors (ISSN: 1424-8220) 20 (1), http://dx.doi.org/10.3390/s20010275.

Kwiatkowska, M., Norman, G., Parker, D., 2011. PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (Eds.), Proc. 23rd International
Conference on Computer Aided Verification. CAV’11, In: LNCS, Vol. 6806, Springer,
pp. 585–591.

Kwiatkowska, M., Norman, G., Parker, D., Santos, G., 2020. PRISM-games 3.0:
Stochastic game verification with concurrency, equilibria and time. In: International
Conference on Computer Aided Verification. Springer, pp. 475–487.

Lacerda, B., Faruq, F., Parker, D., Hawes, N., 2019. Probabilistic planning with formal
performance guarantees for mobile service robots. Int. J. Robot. Res. 38 (9),
1098–1123. http://dx.doi.org/10.1177/0278364919856695.

Liang, Q., Yang, Y., Zhang, H., Peng, C., Lu, J., 2022. Analysis of simplification in
Markov state-based models for reliability assessment of complex safety systems.
Reliab. Eng. Syst. Saf. (ISSN: 0951-8320) 221, 108373. http://dx.doi.org/10.1016/
j.ress.2022.108373.

Liu, M., Zhou, L., Sun, Y., Liu, J., 2019. Robot comfort following based on extended
social force model in dynamic environment. In: 2019 IEEE 9th Annual International
Conference on CYBER Technology in Automation, Control, and Intelligent Systems.
CYBER, pp. 30–35. http://dx.doi.org/10.1109/CYBER46603.2019.9066624.

Lu, Y., Peng, Z., Miller, A.A., Zhao, T., Johnson, C.W., 2015. How reliable is
satellite navigation for aviation? Checking availability properties with probabilistic
verification. Reliab. Eng. Syst. Saf. (ISSN: 0951-8320) 144, 95–116. http://dx.doi.
org/10.1016/j.ress.2015.07.020.

Lucas, R., Yazar, S., Young, A., Norval, M., De Gruijl, F., Takizawa, Y., Rhodes, L.,
Sinclair, C., Neale, R., 2019. Human health in relation to exposure to solar
ultraviolet radiation under changing stratospheric ozone and climate. Photochem.
Photobiol. Sci. 18 (3), 641–680.

Mayoral, J.C., From, P.J., Cielniak, G., 2023. Towards safe robotic agricultural ap-
plications: Safe navigation system design for a robotic grass-mowing application
through the risk management method. Robotics (ISSN: 2218-6581) 12 (3), http://
dx.doi.org/10.3390/robotics12030063, URL: https://www.mdpi.com/2218-6581/
12/3/63.

Mayoral, J.C., Grimstad, L., From, P.a.J., Cielniak, G., 2021. Integration of a human-
aware risk-based braking system into an open-field mobile robot. In: 2021 IEEE
International Conference on Robotics and Automation. ICRA, pp. 2435–2442. http:
//dx.doi.org/10.1109/ICRA48506.2021.9561522.
24
Mazzeo, G., Coppolino, L., D’Antonio, S., Mazzariello, C., Romano, L., 2018. SIL2
assessment of an active/standby COTS-based safety-related system. Reliab. Eng.
Syst. Saf. (ISSN: 0951-8320) 176, 125–134. http://dx.doi.org/10.1016/j.ress.2018.
04.009.

Ozkan, M., Demirci, Z., Aslan, Ö., Yazı cı, A., 2023. Safety verification of multiple
industrial robot manipulators with path conflicts using model checking. Machines
(ISSN: 2075-1702) 11 (2), http://dx.doi.org/10.3390/machines11020282, URL:
https://www.mdpi.com/2075-1702/11/2/282.

Parsa, S., Debnath, B., Khan, M.A., E., A.G., 2023. Modular autonomous strawberry
picking robotic system. J. Field Robotics http://dx.doi.org/10.1002/rob.22229.

Peng, C., Vougioukas, S.G., 2020. Deterministic predictive dynamic scheduling for
crop-transport co-robots acting as harvesting aids. Comput. Electron. Agric. (ISSN:
0168-1699) 178, 105702. http://dx.doi.org/10.1016/j.compag.2020.105702.

Ravikanna, R., Heselden, J., Khan, M.A., Perrett, A., Zhu, Z., Das, G., Hanheide, M.,
2023. Smart parking system using heuristic optimization for autonomous trans-
portation robots in agriculture. In: Towards Autonomous Robotic Systems. Springer
Nature Switzerland, ISBN: 978-3-031-43360-3, pp. 38–50. http://dx.doi.org/10.
1007/978-3-031-43360-3_4.

Robla-Gómez, S., Becerra, V.M., Llata, J.R., González-Sarabia, E., Torre-Ferrero, C.,
Pérez-Oria, J., 2017. Working together: A review on safe human-robot collaboration
in industrial environments. IEEE Access 5, 26754–26773. http://dx.doi.org/10.
1109/ACCESS.2017.2773127.

Sun, L., Li, Y.-F., Zio, E., 2021. Comparison of the HAZOP, FMEA, FRAM, and STPA
methods for the hazard analysis of automatic emergency brake systems. ASCE-ASME
J. Risk Uncertain. Eng. Syst. B: Mech. Eng. 8 (3), 031104.

The Daily Mail, 2021. Britain’s far-flung army of fruit-pickers: How 16,000 workers flew
in for 2021 season from 37 countries including Barbados, Nepal, Tajikistan and
Kenya. URL: https://www.dailymail.co.uk/news/article-9982957/UKs-far-flung-
army-fruit-pickers-16-000-workers-flew-2021-season-37-countries.html. (Accessed
23 April 2022).

Unhelkar, V.V., Lasota, P.A., Tyroller, Q., Buhai, R.-D., Marceau, L., Deml, B.,
Shah, J.A., 2018. Human-aware robotic assistant for collaborative assembly: In-
tegrating human motion prediction with planning in time. IEEE Robot. Autom.
Lett. 3 (3), 2394–2401.

Vasconez, J., Admoni, H., Auat Cheein, F., 2021. A methodology for semantic action
recognition based on pose and human-object interaction in avocado harvesting
processes. Comput. Electron. Agric. (ISSN: 0168-1699) 184, 106057. http://dx.doi.
org/10.1016/j.compag.2021.106057.

Vásconez, J.P., Auat Cheein, F.A., 2022. Workload and production assessment in the
avocado harvesting process using human-robot collaborative strategies. Biosyst.
Eng. (ISSN: 1537-5110) 223, 56–77. http://dx.doi.org/10.1016/j.biosystemseng.
2022.08.010.

Vasconez, J.P., Guevara, L., Cheein, F.A., 2019. Social robot navigation based on HRI
non-verbal communication: A case study on Avocado Harvesting. In: Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing. SAC ’19, Association for
Computing Machinery, New York, NY, USA, ISBN: 9781450359337, pp. 957–960.
http://dx.doi.org/10.1145/3297280.3297569.

Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D., 2020. Safety assessment of
collaborative robotics through automated formal verification. IEEE Trans. Robot.
36 (1), 42–61. http://dx.doi.org/10.1109/TRO.2019.2937471.

Wang, X.V., Wang, L., 2021. Safety strategy and framework for human–robot col-
laboration. In: Wang, L., Wang, X.V., Váncza, J., Kemény, Z. (Eds.), Advanced
Human-Robot Collaboration in Manufacturing. Springer International Publishing,
Cham, ISBN: 978-3-030-69178-3, pp. 69–87. http://dx.doi.org/10.1007/978-3-030-
69178-3_3.

Xin, X., Keoh, S.L., Sevegnani, M., Saerbeck, M., 2022. Run-time probabilistic model
checking for failure prediction: A smart lift case study. In: 2022 IEEE 8th World
Forum on Internet of Things (WF-IoT). IEEE, pp. 1–7.

Zacharaki, A., Kostavelis, I., Dokas, I., 2021. Decision making with STPA through
Markov decision process, a theoretic framework for safe human-robot collaboration.
Appl. Sci. (ISSN: 2076-3417) 11 (11), http://dx.doi.org/10.3390/app11115212,
URL: https://www.mdpi.com/2076-3417/11/11/5212.

Zhao, X., Robu, V., Flynn, D., Dinmohammadi, F., Fisher, M., Webster, M., 2019. Proba-
bilistic model checking of robots deployed in extreme environments. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 8066–8074.

Zhou, H., Wang, X., Au, W., Kang, H., Chen, C., 2022. Intelligent robots for fruit
harvesting: Recent developments and future challenges. Precis. Agric. 23 (5),
1856–1907. http://dx.doi.org/10.1007/s11119-022-09913-3.

http://dx.doi.org/10.1002/rob.22227
http://dx.doi.org/10.1016/j.compag.2021.106103
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb20
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb20
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb20
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb20
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb20
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb21
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb21
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb21
http://dx.doi.org/10.23919/RPIC.2017.8214358
http://dx.doi.org/10.23919/RPIC.2017.8214358
http://dx.doi.org/10.23919/RPIC.2017.8214358
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb23
http://dx.doi.org/10.1016/j.ssci.2021.105288
http://dx.doi.org/10.1016/j.ssci.2021.105288
http://dx.doi.org/10.1016/j.ssci.2021.105288
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb25
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb25
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb25
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb26
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb26
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb26
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb27
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb27
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb27
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb27
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb27
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb28
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb28
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb28
http://dx.doi.org/10.3390/s20010275
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb30
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb31
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb31
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb31
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb31
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb31
http://dx.doi.org/10.1177/0278364919856695
http://dx.doi.org/10.1016/j.ress.2022.108373
http://dx.doi.org/10.1016/j.ress.2022.108373
http://dx.doi.org/10.1016/j.ress.2022.108373
http://dx.doi.org/10.1109/CYBER46603.2019.9066624
http://dx.doi.org/10.1016/j.ress.2015.07.020
http://dx.doi.org/10.1016/j.ress.2015.07.020
http://dx.doi.org/10.1016/j.ress.2015.07.020
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb36
http://dx.doi.org/10.3390/robotics12030063
http://dx.doi.org/10.3390/robotics12030063
http://dx.doi.org/10.3390/robotics12030063
https://www.mdpi.com/2218-6581/12/3/63
https://www.mdpi.com/2218-6581/12/3/63
https://www.mdpi.com/2218-6581/12/3/63
http://dx.doi.org/10.1109/ICRA48506.2021.9561522
http://dx.doi.org/10.1109/ICRA48506.2021.9561522
http://dx.doi.org/10.1109/ICRA48506.2021.9561522
http://dx.doi.org/10.1016/j.ress.2018.04.009
http://dx.doi.org/10.1016/j.ress.2018.04.009
http://dx.doi.org/10.1016/j.ress.2018.04.009
http://dx.doi.org/10.3390/machines11020282
https://www.mdpi.com/2075-1702/11/2/282
http://dx.doi.org/10.1002/rob.22229
http://dx.doi.org/10.1016/j.compag.2020.105702
http://dx.doi.org/10.1007/978-3-031-43360-3_4
http://dx.doi.org/10.1007/978-3-031-43360-3_4
http://dx.doi.org/10.1007/978-3-031-43360-3_4
http://dx.doi.org/10.1109/ACCESS.2017.2773127
http://dx.doi.org/10.1109/ACCESS.2017.2773127
http://dx.doi.org/10.1109/ACCESS.2017.2773127
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb45
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb45
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb45
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb45
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb45
https://www.dailymail.co.uk/news/article-9982957/UKs-far-flung-army-fruit-pickers-16-000-workers-flew-2021-season-37-countries.html
https://www.dailymail.co.uk/news/article-9982957/UKs-far-flung-army-fruit-pickers-16-000-workers-flew-2021-season-37-countries.html
https://www.dailymail.co.uk/news/article-9982957/UKs-far-flung-army-fruit-pickers-16-000-workers-flew-2021-season-37-countries.html
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb47
http://dx.doi.org/10.1016/j.compag.2021.106057
http://dx.doi.org/10.1016/j.compag.2021.106057
http://dx.doi.org/10.1016/j.compag.2021.106057
http://dx.doi.org/10.1016/j.biosystemseng.2022.08.010
http://dx.doi.org/10.1016/j.biosystemseng.2022.08.010
http://dx.doi.org/10.1016/j.biosystemseng.2022.08.010
http://dx.doi.org/10.1145/3297280.3297569
http://dx.doi.org/10.1109/TRO.2019.2937471
http://dx.doi.org/10.1007/978-3-030-69178-3_3
http://dx.doi.org/10.1007/978-3-030-69178-3_3
http://dx.doi.org/10.1007/978-3-030-69178-3_3
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb53
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb53
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb53
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb53
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb53
http://dx.doi.org/10.3390/app11115212
https://www.mdpi.com/2076-3417/11/11/5212
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb55
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb55
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb55
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb55
http://refhub.elsevier.com/S0168-1699(24)00378-8/sb55
http://dx.doi.org/10.1007/s11119-022-09913-3

	Probabilistic model-checking of collaborative robots: A human injury assessment in agricultural applications
	Introduction
	Background
	Agricultural Scenarios
	Logistics
	Picking
	UV-C treatment
	Scouting

	Safe human–robot interaction
	Safety System Requirements and Policies
	Model-checking for safety analysis 

	Modeling
	Modeling assumptions
	Defining the robot agricultural tasks as sequence of steps
	Robot operation modes
	Human decision-making
	Hazard situations

	The PRISM language
	Modeling the agricultural tasks
	Modeling the robot operations
	Modeling the safety system components
	Modeling human behavior
	Modeling the hazard situations
	PRISM implementation: UV-C treatment case study
	Commands to model the agricultural task
	Commands to model the robot operation
	Commands to model the safety system
	Commands to model the human behavior
	Synchronization


	Results
	Assessment of human injuries due to unplanned physical contact
	Human injuries due to robot failing to detect physical contact (F-1) 
	Human injuries due to robot failing to detect the human further away than 3.6 m (F-2) 
	Human injuries due to robot failing to interpret a body gesture performed by the human (F-3)
	Human injuries due to human unable to interpret the audiovisual alerts (F-4) 
	Human injuries due to robot detecting the humans only when they are too close (F-5) 
	Human injuries due to robot failing to track the human position (F-6) 

	Assessment of potential human injuries due to UV-C light side effects
	Human injuries due to human unable to interpret the audiovisual alerts (F-4) 
	Human injuries due to robot failing to detect the human on time (F-5, F-7 and F-8) 

	Summary of results for all cases
	UV-C treatment
	Logistics and Picking


	Discussion
	Performance of the safety system under failure modes 
	Interpretation of resultant human injury probability 
	Granularity of the Model 
	Scalability and Versatility of the Model 
	Comparison with related work 

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	References


