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The slow viscous flow through a doubly-periodic array of cylinders does not have an ana-

lytical solution. However, as a reduced model for the flow within fibrous porous media and

microfluidic arrays, this solution is important for many real-world systems. We asymptoti-

cally determine the flow around a general rectangular doubly-periodic array of infinite slen-

der cylinders, extending the existing asymptotic solution for square arrays. The flow in the

cell is represented by a collection of doubly-periodic, rapidly-convergent two-dimensional

singularity solutions, and the boundary condition on the surface of the cylinder is solved

asymptotically in powers of the cylinder radius. The asymptotic solution provides an easily

computed closed-form estimate for the flow and forces as a function of the radius and the

dimensions of the cell. The force is compared to results from lattice-Boltzmann simulations

of low-Reynolds-number flows in the same geometry, and the accuracy of the no-slip condi-

tion on the surface of the cylinder, predicted by the asymptotic theory, is assessed. Finally,

the behaviour of the flow, flux, force and effective permeability of the cell is investigated

as a function of the geometric parameters. The structure of the asymptotic permeability is

consistent with previous single-geometry predictions but provides a closed-form estimate

for how the aspect ratio of the cell changes the leading-order behaviour. These models could
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be used to help understand the flows within porous systems composed of fibres and systems

involving periodic arrays such as systems based on deterministic lateral displacement.

I. INTRODUCTION

Slow viscous flow over multiple bodies is a notoriously complicated problem with various

applications [1]. For example, flowing colloids display discontinuous shear thickening [2, 3], and

programmable self-assembling micromachines interact with each other through the flow to develop

distinct phases and shapes [4, 5]. Similarly, filter-feeding organisms use the flow over a collection

of microscopic fibres to capture food [6–8], and periodic arrays of posts in microfluidics can sort

particles in a process called deterministic lateral displacement [9–12].

These systems can be tricky to probe experimentally and are hard to model theoretically be-

cause slow viscous flows have long-ranged interactions [1]. Even the relatively simplified geome-

tries of a singularly or doubly-periodic array of infinite cylinders have no exact solutions. Yet,

such model arrays have been studied since the late 1950s [13] and have played an important role

in understanding ordered or fibrous porous media [14]. Fibrous porous media, like wool, hair, col-

lagen, and fibreglass, can exist at much lower packing fractions (below 1%) than granular porous

media (60–70%) due to the large aspect ratios of the bodies.

The lack of exact closed-form solutions means the dynamics in singularly or doubly-periodic

arrays of infinite cylinders are typically solved numerically [15–22] or argued from geometries

with known solutions [23]. Through these methods, studies have explored the behaviour around

cylinders in different periodic domains [16, 18, 23], irregular domains [20], the influence of slip

[17], cylinder porosity [18], interacting fluid domains [21, 22], and inertial effects [13, 15].

Periodic arrays have also been studied asymptotically. Such work provides a closed approxima-

tion to the solution that can be used when numerical approaches struggle, provide insight into how

the geometry influences the behaviour and can be directly applied to new problems. Singularly-

periodic arrays have been studied by Tamada and Fujikawa [13], when the periodic domain was

much greater than the cylinder radius, and Keller [24] in the lubrication limit. Barta and Weihs

[19] later used slender-body theory [25–27] to improve the accuracy and investigate the effects of

finite lengths and array size on these singularly-periodic systems.

Similarly, doubly-periodic arrays of cylinders were studied by Sangani and Acrivos [28, 29]

while considering cubic arrays of spheres. They determined the drag and permeability on each
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post in square or regular hexagonal arrays as a function of the cylinder radius. Shortly thereafter,

Drummond and Tahir estimated the permeability of square arrays, triangular arrays, hexagonal

arrays and rectangular arrays with a cell aspect ratio of 2 through the matching of the flow out-

side an infinite cylinder and a collection of singularities [30]. The results of Sangani, Acrivos,

Drummond and Tahir suggest that the permeability, k′, for an array of cylinders typically has the

form
µk′

R′2 =
1

4φ

(
− log(φ)+α −βφ

2 + γφ
)

(1)

where R′ is the radius of the cylinder, µ is the dynamic viscosity, φ is the packing fraction (the vol-

ume occupied by the cylinder divided by the total volume of the cell), and α , β and γ are constants

that depend on the geometry of the cell [14, 28, 30]. In the above, α represents the leading-order

correction for the geometry, while γ and β are the second- and third-order corrections, respec-

tively. Drummond and Tahir’s models have been found to match experimental results [14]. Wang

[16] later used the general solution to the flow in a periodic box and the solution for flow outside a

cylinder to investigate the flow in doubly-periodic arrays. They numerically enforced the boundary

conditions to the flow at discrete locations on the edge of the domain to determine the unknown

coefficients for each geometry they investigated. Consistent with Eq. (1), they showed the leading

logarithmic behaviour of the drag and the permeability for doubly-periodic arrays in the limit of

small radius, but they also observed non-inertial vortices in front of and behind the cylinder when

the radius increases. While these asymptotic results have been useful for hypothesising the struc-

ture of the permeability and force at small post radii, the specific values for each geometry have

traditionally been computed independently. These computations often require the evaluation of

slowly converging infinite series because of the long-range nature of the flow. This convergence

issue makes it hard to identify the influence of the cell geometry on the force and permeability

asymptotically and evaluate the flow around the post predicted by the asymptotic solution.

This paper determines the asymptotic flow around and the force from a general rectangular

doubly-periodic array of cylinders, with dimensions ℓ′× h′, in the limit of small cylinder radius,

R′. The solution is found by constructing a rapidly-converging complex-variable two-dimensional

singularity representation for the flow and satisfying the no-slip boundary condition on the cylinder

surface up to O(R′4/ℓ′4,R′4/H ′4). This accuracy is required to investigate the far-field transport of

particles through the array (left for future work). The expansion provides a closed-form estimate

for the flow and force in the cell in terms of the scaled radius of the cylinder and the aspect ratio

of the two sides of the domain and can be evaluated through a rapidly convergent series, thereby
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allowing the fast calculation of force on the post and asymptotic flow anywhere in the cell. The

asymptotic force is compared to the force found from lattice-Boltzmann simulations for the same

geometry at small Reynolds number, and the accuracy of the no-slip condition on the surface of

the cylinder, as predicted by the asymptotic model, is investigated. The asymptotic solution allows

us to create an analytical approximation for the mean velocity through the cell, the pressure drop

across the cell, and the permeability of the system as a function of the post radius and the aspect

ratio of the cell.

Section II introduces the doubly-periodic array geometry and the fluid problem considered.

Sec. III provides some background into the complex variable solutions of Stokes flow and intro-

duces the doubly-periodic functions used to represent flow singularities. These singularities are

then employed in Sec. IV to determine the asymptotic flow around the periodic cylinder system.

The accuracy of these results is investigated in Sec. V. Finally, the flows predicted are discussed

and the asymptotic permeability is determined in Sec. VI, before concluding the paper in Sec. VII.

II. THE RECTANGULAR DOUBLY-PERIODIC ARRAY AND FLUID PROBLEM

STATEMENT

This paper considers the slow viscous flow over an infinite slender cylinder S of radius R′ in

a rectangular doubly-periodic domain with periods ℓ′ and h′, respectively (Fig. 1). The central

cylinder is assumed to be stationary and located at the origin. The background flow will be taken

along the x′-axis and the dynamic viscosity of the fluid is µ . In this geometry, the gap between

two adjacent cylinders along the y′-axis is given by ∆h′ = h′− 2R′. We scale all lengths by ℓ′,

velocities by the maximum velocity in the x-direction, u′m, the force per unit length by µu′m, the

pressure by µu′m/ℓ
′, and the permeability by ℓ′2/µ . Scaled variables are presented without a dash.

We note that, for the two-dimensional system, only the force per unit length is defined.

The flow within the unit cell is assumed to satisfy the (dimensionless) incompressible Stokes

equations

−∇p+∇
2u = 0, (2)

∇ ·u = 0 (3)

where p is the pressure, and u is the velocity. The no-slip condition demands that the velocity

should be zero on the surface of the cylinder (u(S) = 0).
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FIG. 1. A diagram of the doubly-periodic domain considered. The period along the x′-axis is ℓ′, and the

period along the y′-axis is h′. Any point in the domain on the complex plane is represented by z′ = x′+ iy′.

The central cylinder has a radius of R′ and is centred at 0. ∆h′ = h′−2R′ is the gap between two adjacent

cylinders along the y′-axis. The flow is taken along the x′-axis without any loss of generality, because of

the linearity of Stokes flow. The surface of the central cylinder is described by S(z) = R′eiθ where θ is the

angle relative to the x′ axis.

As the geometry is two-dimensional, it is useful to solve for the flow on the complex plane

(Fig. 1). Any point in the scaled domain on the complex plane can be described by z = x+ iy,

where x ∈ [0,1) and y ∈ [0,h). On the complex plane, the surface of the central cylinder is

described by

S = Reiθ (4)

where h = h′/ℓ′ is the aspect ratio of the cell, R = R′/ℓ′ is the scaled cylinder radius, and θ

is the polar angle from the real axis defined at the centre of the cylinder. The scaled gap be-

tween adjacent cylinders along the y-axis is ∆h = ∆h′/ℓ′ = h− 2R. In the scaled coordinates,

R ∈ [0,min(1/2,h/2)) and R/h ∈ [0,min(1/(2h),1/2)). The periodicity of the domain requires

u(x,y) = u(x+1,y) and u(x,y) = u(x,y+h) everywhere.

We solve the flow problem described above asymptotically on the complex plane through the

representation by fundamental singularities. The point force solution and its derivatives are placed

within the cylinder such that all the boundary conditions are met. To help elucidate this process, the
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next section gives some background into solving two-dimensional Stokes flows using the complex

plane and the rapidly-convergent complex representation for the flow from a point force, and select

derivatives, in a generalised rectangular doubly-periodic domain.

III. BACKGROUND IN COMPLEX SOLUTIONS TO STOKES FLOW

The incompressible Stokes equations, Eqs. (2) and (3), are linear and time-independent. So-

lutions to these equations only depend on the instantaneous geometry of the system, can be con-

structed by the superposition of several flows, and are also known to be unique with appropriate

boundary conditions. Even so, exact solutions to the Stokes equations are only known in relatively

simple geometries. As such, many flows are approximated using numerical or asymptotic meth-

ods. These approaches often exploit the Green’s function solution to the flow, called the Stokeslet.

The Stokeslet represents the flow from a point force in an unbounded fluid and can be used to con-

struct solutions in two ways: the boundary integral method and the representation by fundamental

singularities. On the one hand, the boundary integral method uses the properties of the Green’s

function to convert the partial differential equations into an integral equation over the boundaries

of the domain. These equations can then be inverted numerically to determine the solution. On

the other hand, the representation by fundamental singularities places the Stokeslet and its deriva-

tives outside the flow domain such that the boundary conditions are satisfied [31]. In principle,

such a distribution must exist [1] and any suitable distribution must form the solution due to the

uniqueness of the flow [31]. The latter approach is often employed to find asymptotic solutions to

common flow problems, such as the hydrodynamics of fibres [25–27].

In two dimensions, there is no solution to the Stokes equations for a point force in an unbounded

domain [1]. This so-called Stokes paradox is caused by the flow in two dimensions growing as

log(r) with the distance r from the point force. Solutions to Stokes flow in two dimensions,

therefore, only exist in bounded domains or force-free unbounded domains. While this implies

that a point force solution exists for periodic domains, the flow can often be difficult to compute

as it involves an infinite sum of logarithmic terms [32].

In two dimensions, the flow can always be expressed in terms of a stream function, ψ , which is

related to the flow velocity through

u =
∂ψ

∂y
, v =−∂ψ

∂x
(5)
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where u = (u,v). The definition of the stream function automatically satisfies the incompressible

flow condition, Eq. (3), and transforms the Stokes equation, Eq. (2), into

∇
4
ψ = 0. (6)

The stream function is, therefore, bi-harmonic. Similarly to harmonic functions (which satisfy

the Laplace equation), two-dimensional bi-harmonic functions can be represented effectively on

the complex plane. The general solution to a bi-harmonic function can always be expressed as

ψ = ℑ[z̄ f (z)+g(z)] (7)

where ℑ[ f (z)] returns the imaginary part of f (z) and the overbar denotes the complex conjugate.

f (z) and g(z) are analytic functions in the fluid region and are referred to as Goursat functions

[33]. Hence, the definition for the stream function means that the flow can always be expressed as

u(z)− iv(z) =− f (z)+ z̄
d f
dz

+
dg
dz

. (8)

Though conformal maps do not preserve the boundary conditions for Stokes flow (like they do for

the Laplace equation), this complex representation can be useful in determining the solutions to

various problems [34–37]. However, no closed-form representation is known for the flow around

a cylinder in a doubly-periodic domain and, thus, the flow around an array of cylinders cannot

currently be solved using conformal maps.

Without a suitable conformal map, it again becomes effective to solve the Stokes equations

using the Stokeslet through either boundary integrals or the representation by fundamental singu-

larities. The complex form of the two-dimensional Stokeslet in a doubly-periodic domain was first

determined by Hasimoto [38]. Luca and Crowdy [35] later revisited this problem to determine

higher-order singularities and express it as a rapidly converging series, thereby providing a faster

method to solve for these flows. They showed that the flow from a two-dimensional point force

per unit length of strength −8πF = −8π(Fx + iFy) located at z0 = x0 + iy0 in a doubly-periodic

cell with dimensions x ∈ [0,1) and y ∈ [0,h) [35] can be written as

u(z)− iv(z) = GS(z− z0,F) =−F̄ ln |P(ζ ,ρ)|2 +ℜ[F ] ln |ζ |2 −F ln |ζ |2K(ζ ,ρ) (9)

−F ln(ρ2)ρ
∂ lnP
∂ρ

− ℜ[F ]

2lnρ
(ln |ζ |2)2

where ζ = exp[2πi(z− z0)], ρ = exp(−2πh), z = x+ iy is the location in space and Fx (Fy) rep-

resent the component F in x (y) direction. We refer the Reader to Ref. [35] for the explicit form
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of the Goursat functions f (z) and g(z) that are used to write Eq. (9). Above, P(ζ ,ρ) is the Schot-

tky–Klein prime function associated with the annulus ρ < |ζ |< 1 [35] and is given by

P(ζ ,ρ) = (1−ζ )
∞

∏
k=1

(1−ρ
k
ζ )(1−ρ

k
ζ
−1) (10)

= A(ρ)s(ζ ,ρ) (11)

where

A(ρ) =

∞

∏
n=1

(1+ρ
n)2

∞

∑
n=1

ρ
n(n−1)/2

, (12)

s(ζ ,ρ) =
∞

∑
n=−∞

(−1)n
ρ

n(n−1)/2
ζ

n. (13)

Eq. (11) is a rapidly convergent representation that is useful to compute the flow [35]. Note that

our definition of P is different to that in [35], where ζ/ζ0 is used as argument of the Schottky-

Klein function and all its derivatives are taken with respect to ζ , while we define ζ that depends

on z0. From the Schottky–Klein prime function P(ζ ,ρ) we can define

K(ζ ,ρ) = ζ
∂ lnP
∂ζ

=
ζ sζ

s
, (14)

ρ
∂ lnP
∂ρ

=
ρAρ

A
+

ρsρ

s
(15)

where the subscript denotes the derivative with respect to the given variable. Higher-order singu-

larity solutions can be constructed from the Stokeslet by taking the appropriate derivatives with

respect to the singularity location. For example, the first derivative with respect to z0 creates a

force dipole, the second derivative creates a force quadrupole, etc. Similarly, the flow from a

source dipole can also be constructed by taking the Laplacian of the Stokeslet flow [31].

The symmetries of the rectangular doubly-periodic cell mean that, for our model, only singular-

ities formed by an even number of derivatives of the Stokeslet will contribute to the flow. Sec. IV

will show that only the Stokeslet, force quadrupole, source dipole, and source octupole are needed

to solve the flow up to O(R4,(R/h)4). These additional singularities are given by

GQ(z− z0,Q) =−QL(ζ ,ρ)−2QL−Q ln |ζ |2M(ζ ,ρ)−Q ln(ρ2)ρ
∂L
∂ρ

, (16)

GD(z− z0,D) =−DL(ζ ,ρ), (17)

GO(z− z0,O) = ON(ζ ,ρ) (18)
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with ζ = exp[2πi(z−z0)], where GQ(z−z0,Q) is the flow from a force quadrupole of the complex

strength Q = Qx + iQy located at z0, GD(z− z0,D) is the flow from a source dipole of the complex

strength D=Dx+ iDy located at z0, GO(z−z0,O) is the flow from a source octupole of the complex

strength O = Ox + iOy located at z0 and

L(ζ ,ρ) = ζ
∂K
∂ζ

=
ζ [s(sζ +ζ sζ ζ )−ζ s2

ζ
]

s2 , (19)

M(ζ ,ρ) = ζ
∂L
∂ζ

=
ζ (s−ζ sζ )[s(sζ +3ζ sζ ζ )−2ζ s2

ζ
]+ζ 3s2sζ ζ ζ

s3 , (20)

N(ζ ,ρ) = ζ
∂M
∂ζ

=
ζ

(
12ζ 2s

(
sζ +ζ sζ ζ

)
s2

ζ
−ζ s2

(
3ζ 2s2

ζ ζ
+7s2

ζ
+2ζ

(
9sζ ζ +2ζ sζ ζ ζ

)
sζ

))
s4

+
ζ

(
s3 (ζ (ζ 2sζ ζ ζ ζ +6ζ sζ ζ ζ +7sζ ζ

)
+ sζ

)
−6ζ 3s4

ζ

)
s4 , (21)

ρ
∂L
∂ρ

=
ζ ρ

((
sζ ρ +ζ sζ ζ ρ

)
s2 −

(
2ζ sζ sζ ρ + sρ

(
sζ +ζ sζ ζ

))
s+2ζ sρs2

ζ

)
s3 . (22)

We have left these functions in terms of the derivatives of s because they will be useful for the

series expansion. A more compact representation for each function can be found in [35]. With

the required singularities identified, we can now asymptotically determine the flow using the rep-

resentation by fundamental singularities.

IV. THE ASYMPTOTIC FLOW AROUND SLENDER CYLINDERS

The flow around a cylinder in a doubly-periodic array can be determined in the slender limit

(R ≪ 1 and R ≪ h) using the representation by fundamental singularities. In this method, singu-

larity solutions are placed within the cylinder and their strength is chosen such that the boundary

conditions are satisfied [31]. If such a solution can be found, it must be the solution, because

of the uniqueness of Stokes flow. This method is equivalent to the expansion process used by

Sangani and Acrivos [28, 29]. We, however, extend the derivation to non-square geometries and

use the rapidly convergent complex singularity representation to provide a fast and accurate way

to determine the force and the flows within the array as a function of the aspect ratio of the cell.

Inspired by the seminal work of Chwang and Wu [31], we seek a singularity representation in

terms of a point force (Eq. (9)), source dipole (Eq. (17)), force quadrupole (Eq. (16)) and source

octupole (Eq. (18)) placed at the centre of the cylinder, 0. The complex-plane representation
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allows the flow from these singularities to be written as

u(z)− iv(z) = Λ+GS(z,F)+GD(z,R2D)+GQ(z,R4Q)+GO(z,R6O)+ . . . (23)

where Λ is an unknown coefficient, −8πF is the force per unit length on the fluid from the cylinder

(strength of the Stokeslet), R2D is the strength of the source dipole, R4Q is the strength of the force

quadrupole, and R6O is the strength of the source octupole. The R scaling in the strengths of the

singularity is chosen to simplify the analysis, and the dots represent higher order singularities we

are not considering. The proposed flow satisfies the doubly-periodic boundary conditions of the

cell, so only the no-slip condition at the surface of the cylinder remains to be satisfied.

The periodic nature of the singularities only leaves the boundary condition at the surface of

the cylinder to be satisfied. The no-slip condition requires 0 = u(Reiθ )− iv(Reiθ ), which needs

to be solved to determine the unknown strengths of each of the singularities. Although a general

solution cannot be obtained exactly, it is possible to find a solution in the limit of small scaled

radius (R ≪ 1 and R ≪ h). In the small-R limit, the singularities can be expressed as

GS(Reiθ ,F) =−F
(

G(0)
S +2R2G(1)

S

)
+Fe−2iθ

(
1+R2G(1)

S

)
+FR2e2iθ G(2)

S +O

(
R4,

R4

h4

)
, (24)

GD(Reiθ ,R2D) =−D
e−2iθ

4π2 −D
R2

12
B(ρ)+O

(
R4,

R4

h4

)
, (25)

GQ(Reiθ ,R4Q) =−Q
R2e2iθ

4π2 −Q
R2e−4iθ

2π2 +O

(
R4,

R4

h4

)
, (26)

GO(Reiθ ,R6O) =−O
3R2e−4iθ

8π4 +O

(
R4,

R4

h4

)
(27)

where

G(0)
S = 1+ ln

[
4π

2R2A2(ρ)s2
ζ
(1,ρ)

]
+2ρ lnρ

[
A′(ρ)

A(ρ)
+

sζ ρ(1,ρ)
sζ (1,ρ)

]
, (28)

G(1)
S =

π2

6

[
B(ρ)+

12
lnρ

]
, (29)

G(2)
S =

π2

6

[
3B(ρ)+

12
lnρ

+4ρ ln(ρ)
d

dρ

(
sζ ζ ζ (1,ρ)
sζ (1,ρ)

)]
, (30)

B(ρ) = 1−
sζ ζ ζ ζ (1,ρ)

sζ (1,ρ)
(31)

and we have used the properties s(1,ρ) = 0, sζ ζ (1,ρ) = 0, sζ ζ ζ ζ (1,ρ)+4sζ ζ ζ (1,ρ) = 0. These

properties are proven by separating the summations over n into even and odd terms and noticing
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that the summation of the even terms is the negative of the summation of the odd terms when

ζ = 1. The above series representation expresses the singularities in even powers of R and eiθ ,

because of the reflection symmetry of the geometry.

The series shows that, at leading order in R and R/h, the flow at the surface of the cylinder from

a point force contains a constant component and a component proportional to e−2iθ . The leading-

order flow from a source dipole is only proportional to e−2iθ . Hence, for the leading-order flow

at the surface to be constant with respect to θ , a point force and source dipole are required. The

strength of the source dipole is chosen to remove the e−2iθ dependence. The combination of point

force and source dipole is common in viscous flows [31] and is related to the Stokes equations

being bi-harmonic.

At the next order, the flow from a point force includes an additional term proportional to e2iθ

that must be accounted for by other singularities. Since the e2iθ term is related to the second

derivative of the Stokeslet with respect to R, the force quadruple, defined as the second derivative

of the Stokeslet with respect to the singularity location, should have a similar θ dependence. The

expanded flow from a force quadrupole, Eq. (26), has the expected e2iθ dependence but with an

additional e−4iθ term. Similarly to the way the source dipole corrected for the e−2iθ term in

the leading-order force, the e−4iθ term can be removed by adding a source octupole. Hence, to

satisfy the non-slip boundary condition on the surface of the cylinder to order R4 and R4/h4, we

need a combination of point force, source dipole, force quadrupole and source octupole, as used

in Eq. (23). The strength of each singularity is therefore chosen to eliminate any θ dependence

resulting in four linear simultaneous equations for F , D, Q and O. The solutions of these equations

give us

F =CFΛΛ=
3

3G(0)
S +R2

[
π2B(ρ)+6G(1)

S

]Λ+O

(
R4,

R4

h4

)
, (32)

D =CDFF= 4π
2
(

1+R2G(1)
S

)
F +O

(
R4,

R4

h4

)
, (33)

Q =CQFF= 4π
2G(2)

S F +O

(
R2,

R2

h2

)
, (34)

O =COQQ=−4π2

3
Q+O

(
R2,

R2

h2

)
(35)

where CFΛ, CDF , CQF , and COQ are the linearity coefficients that give the first subscript in terms

of the second and the values of Q and O are expanded to a lower order because of the R scaling

in the singularity strengths used in Eq. (23). The coefficient relating the Stokelet strength and the
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FIG. 2. Contour plots of (a) force per unit length, −8πF , and (b) the coefficient Λ. Dashed grey lines are

lines of constant cell aspect ratio, h.

background velocity, CFΛ, is a scaled drag coefficient for the cylinder and behaves as 1/(ln(R)+c),

where c is a constant, to leading order in R. The drag on slender rods often displays a similar

1/(ln(R)+c) structure [31, 39, 40] and is consistent with the limiting behaviour in previous studies

of cylinders in periodic arrays [16, 30].

Finally, the strength of Λ is found by setting the maximum velocity in the cell to 1. Conserva-

tion of mass dictates that the maximum velocity must lie halfway between two posts, at z = ih/2.

Therefore we require 1 = u(ih/2), giving

Λ =

{
1+
[

GS

(
ih
2
,1
)
+GD

(
ih
2
,CDF

)
+GQ

(
ih
2
,CQF

)
+GO

(
ih
2
,COQCQF

)]
CFΛ

}−1

+O

(
R4,

R4

h4

)
(36)

where we have used the fact that the singularity strengths are real. Eqs. (32), (33), (34),(35) and

(36) uniquely determine all the unknown coefficients in the proposed flow representation, Eq. (23),

to O(R4,R4/h4). Hence, they complete the asymptotic model. The asymptotic model can be used

to predict the force per unit length from the cylinder onto the fluid, −8πF (Fig. 2a), and the flow

around the cylinder, Eq. (23). We note that higher-order solutions can be constructed similarly but

require higher-order singularities to satisfy the boundary conditions.
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V. VALIDATION TESTS OF THE ASYMPTOTIC MODEL

A. Lattice Boltzmann simulations

The force per unit length on the fluid (Fig. 2a) decreases as the scaled radius, R, decreases and

the cell aspect ratio, h, increases, as expected. As the cell aspect ratio decreases (R/h increases),

the cylinders become closer together, increasing the hydrodynamic interactions between them and

the drag. Similarly, as the radius increases, the space between the cylinders decreases and the drag

increases.

The accuracy of the asymptotic force per unit length, −8πF (Eq. (32)), was quantified by

comparing to the force per unit length determined from lattice-Boltzmann (LB) simulations for the

flow past a single stationary post in a rectangular domain with periodic boundaries along both the

x- and y-axis (Fig. 3) [41]. 200 LB nodes along the x-axis were used for all simulated cases, while

the number of nodes along the y-axis varied from 26 to 400. The flow was driven by a constant

body force along the x-axis, mimicking a constant pressure gradient. The resolution varied from

20 to 80 LB nodes across the post diameter, with the stationary cylindrical boundary resolved

using a second-order accurate boundary condition [42]. We used the 9-velocity ‘compressible’ LB

equilibrium model in the limit of low Mach numbers (Ma) and Reynolds numbers (Re), with the

two-relaxation time collision operator [43]. The force on the post is computed with the momentum

exchange algorithm [44, 45]. The resulting flow is practically incompressible and in the Stokes

flow regime (since in all simulated cases, the LB Mach number Ma < 1.9×10−5 and the Reynolds

number Re < 1.7×10−2, computed with the gap length, ∆h = h−2R, and the maximum velocity

magnitude), and each simulation has been run until the maximum velocity converges below ≤

0.01% relative change per time step. We did not see that the simulation results change significantly

when both Ma and Re are varied by an order of magnitude.

The asymptotic force per unit length found in the asymptotic model, −8πF (Eq. (32)), and the

LB simulation, FLB, agree well for small scaled radii, R, and larger gaps between adjacent posts

along the y-axis, ∆h (Fig. 3a). The differences are harder to distinguish when plotted against R/h

(Fig. 3b). The relative error, E, between the two results, defined as

E =
FLB − (−8πF)

FLB
, (37)

is shown in Fig. 3c,d. Similarly to direct plots of force, the relative error, E, increases with

increasing scaled radius, R, and decreases with increasing cell aspect ratio, h. The results suggest
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FIG. 3. (a,b) Comparison of the asymptotic force per unit length, −8πF (lines), and the numerical results

of lattice-Boltzmann simulations (dots). (c,d) Relative error between the asymptotic force and the simulated

force. The relative error is defined by Eq. (37). (a) and (c) are plotted against the gap between adjacent

posts along the y-axis, ∆h. (b) and (c) are plotted against the scaled radius divided by the aspect ratio of

the cell, R/h. In all panels, R = 0.2 is purple, R = 0.1 is red, R = 0.085 is green, R = 0.07 is yellow and

R = 0.05 is blue.

that when R < 0.1 and R/h < 0.1 the asymptotic force displays a less than 5% error (Eq. (37)).

These findings are consistent with the limits expected from the asymptotic expansion. We note

that for small gap sizes, ∆h < 0.25, the relative error starts to decrease again. These small gap

sizes tend to correspond to R/h > 0.2 and a rapid increase in F , indicating that it is well outside

the region of validity for the asymptotic model. The apparent improvement is, therefore, likely to

be a coincidence.
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B. Error on the boundary conditions

The error on the asymptotic flow, Eq. (23), can be estimated through the average error on the

no-slip condition on the surface of the cylinder. The average error on the no-slip condition is

defined as

|u|θ =
1

2π

∫ 2π

0

∣∣∣u(Reiθ )− iv(Reiθ )
∣∣∣ dθ (38)

and varies with the scaled radius, R, and the cell aspect ratio, h. If the asymptotic solution was

exact, |u|θ = 0, since Stokes flows are unique. Non-zero |u|θ , therefore, indicates a difference

between the unknown exact solution and the asymptotic prediction. The size of the difference

must be proportional to |u|θ since Stokes flows are linear. Hence, small |u|θ corresponds to a

small difference between the exact and the asymptotic flows. Contour plots of the average error

on the no-slip condition are shown in Fig. 4. The average error on the no-slip condition increases

with increasing scaled cylinder radius, R, and decreasing cell aspect ratio, h. On logarithmic axes

(Fig. 4b), the increase appears to occur at a constant rate, suggesting power-law dependence on

R and R/h. Plots of error against log10(R/h) (Fig. 4c) and log10(R) (Fig. 4d) demonstrate that

this error decays approximately like R4 and (R/h)4 as expected by the asymptotic expansion. We

note that the transition from a plateau to power law for lines corresponding to larger R (R/h) in

Fig. 4c (Fig. 4d) is because, at relatively small R/h (R) values, the error is dominated by the leading

correction in R (R/h). A comparison of the relative error of the force per unit length, E (Fig. 3c,d),

and the average error on the no-slip condition suggests that, when |u|θ < 0.01, the error of the

force per unit length is less than 6%. Similarly to the force, the 1% error appears to occur around

R ∼ 0.1 and R/h ∼ 0.1. For the remainder of the paper, all phase diagrams will consider R < 0.2

and R/h < 0.2 to focus on the region of validity of the asymptotic solution.

VI. THE BEHAVIOUR OF THE ASYMPTOTIC FLOW

The asymptotic model developed in Sec. IV predicts the strengths of the singularities (Eqs. (32),

(33), (34), and (35)), the coefficient (Eq. (36)), and the flow throughout the domain. The approx-

imate flow at any point in the domain is given by Eq. (23) when the strengths of the singularities

and the background velocity are substituted into the equation. Unlike previous models, this flow

can be calculated quickly because of the rapidly converging series used to represent the Stokeslet

and its derivatives. The streamlines of the asymptotic flow are plotted in Fig. 5 for scaled radii
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FIG. 4. (a) Average error of the no-slip condition on the surface of the cylinder predicted by the asymptotic

flow, Eq. (23), as a function of the scaled radius, R, and the scaled radius divided by the cell aspect ratio,

R/h. (b) Same as (a), but shown logarithmically. Dashed grey lines in (a) and (b) are lines of constant

cell aspect ratio, h. (c) Logarithm of the mean non-slip error against the logarithm of R/h. Different lines

correspond to different values of R. (d) Logarithm of the mean non-slip error against the logarithm of R.

Different lines correspond to different values of R/h.

of R = 0.05, 0.1, and 0.2 and cell aspect ratios of h = 2, 1, and 0.5. The scaled cylinder radius

of R = 0.2 lies beyond the validity limit of the model, established in the previous section, and is

expected to show an error greater than 5%, especially when the aspect ratio is h = 0.5 (R/h = 0.4).

Near each cylinder, the flow decreases. The size of the region with reduced velocity increases with

scaled radius, R, and cell aspect ratio, h, due to the periodic interactions. The flows through cells

with large aspect ratios also display a large portion of the fluid travelling at almost the maximum-

velocity cell, while cells with smaller aspect ratios only reach the maximum velocity in a localised

region directly above the cylinder. The localisation of the maximum velocity is caused by the

conservation of mass which requires a faster velocity in the gap to squeeze the same amount of

fluid through the cell. We note that the flow along the x-axis never reverses anywhere within the
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FIG. 5. Streamlines for the flow predicted by the asymptotic solution (Sec. V) for scaled cylinder radii

R = 0.2, 0.1, and 0.05 and cell aspect ratios h = 2, 1, and 0.5. The colour of the streamlines corresponds to

the flow speed.

flow domain. Therefore, the asymptotic solution does not predict any closed vortices. Non-inertial

vortices are typically found in Stokes flow at the leading and trailing edges of cylinders with large

radius [16]. The assumption that the cylinders are slender (R ≪ 1 and R/h ≪ 1) in the expansion

prevents the appearance of these vortices in the asymptotic flow.

The mean velocity in the periodic domain can be determined from the asymptotic flow by

integrating the flow over y = [0,h) for any x. The flow incompressibility condition requires the

flux through any plane normal to the x-axis to be the same. Hence the mean fluid velocity is given
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by

⟨u⟩= 1
h

∫ h

0
u(x+ iy)dy (39)

where u(z) is defined in Eq. (23). These integrals can be evaluated exactly using the properties of

the Schottky–Klein prime function and its derivatives to find

⟨u⟩= Λ+ ⟨GS⟩F + ⟨GD⟩(R2D+R4Q)+O

(
R4,

R4

h4

)
(40)

where

h⟨GS⟩=
[ln(ρ)]2

12π
+

lnρ

2π
ln
(

P2(−√
ρ,ρ)

√
ρ

)
− ln(ρ2)

π

∞

∑
k=1

k ln

(
1+ρk−1/2

1+ρk+1/2

)
, (41)

h⟨GD⟩=
2K(−√

ρ,ρ)−1
2π

(42)

are the fluid fluxes from a unit Stokeslet and source dipole, respectively. The flux from the

source dipole is the same as the flux from a force quadrupole, while no flux is generated from

the source octupole. The fluxes from each singularity depend only on the cell aspect ratio, h,

through ρ = e−2πh. Hence, the dependence in the mean velocity on the scaled cylinder radius, R,

comes from the background flow coefficient Λ, the force on the flow from the post, F , the source

dipole strength, R2D, and the force quadrupole strength, R4Q. The background flow coefficient

Λ, and the force on the flow from the post, F , depend on the scaled radius, R, logarithmically at

leading order. Hence the mean velocity is expected to display a weak dependence on R at leading

order in the limit R ≪ 1 and R/h ≪ 1.

Although the leading mean velocity in R is dominated by ln(R), the full asymptotic form,

Eq. (40), shows a rich behaviour (Fig. 6a). For small R and R/h, the mean velocity is seen to

increase as R and R/h decrease (increasing h for constant R) because smaller R and R/h increase

the separation between adjacent points, allowing more flow to travel near the maximum velocity

of the cell. However, when R/h > 0.1 or R > 0.1 changes to the scaled radii tends to generate

small changes in the mean velocity, ⟨u⟩, as the contours become vertical lines. It is unclear what

the causes of this change are, but it may be related to issues in the asymptotic models at larger R

and R/h.

The pressure drop across the cell can also be determined from the asymptotic model (Fig. 6b).

The pressure drop in a doubly-periodic cell is given by ∆p =−4F/h where F is the strength of the

Stokeslet, Eq. (32). Similarly to the force, the pressure drop increases as the cell aspect ratio, h,

decreases and the scaled radius, R, increases. The factor of 1/h in the definition, however, changes
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FIG. 6. (a) Mean velocity in the cell, (b) pressure drop across the cell, and (c) permeability of the cell as a

function of the scaled radius, R, and the scaled radius divided by the cell aspect ratio, R/h. (d) Same as (c),

but shown logarithmically. Dashed grey lines are lines of constant cell aspect ratio, h.

the behaviour with R, for fixed R/h, because h must go to 0 to keep R/h constant if R → 0 and

so the pressure starts to diverge in this limit. The physical understanding of the behaviour of the

pressure drop is identical to that of the force.

The mean velocity in the cell and the pressure drop across the cell allow us to calculate the

scaled permeability for the doubly-periodic array, k:

k =
⟨u⟩
∆p

=−hΛ+h⟨GS⟩F +h⟨GD⟩(R2D+R4Q)

4F
+O

(
R4,

R4

h4

)
=− h

4CFΛ

− h⟨GS⟩
4

− h⟨GD⟩
4

(R2CDF +R4CQF)+O

(
R4,

R4

h4

)
=

Λ

∆p
− h⟨GS⟩

4
− h⟨GD⟩

4
(R2CDF +R4CQF)+O

(
R4,

R4

h4

)
. (43)

The asymptotic permeability of the cell, Eq. (43), is dominated by the flux from a unit Stokeslet,

which depends only on the aspect ratio h, and Λ/∆p, which depends on both the scaled radius R

and the aspect ratio h. Hence, at very small R (R ≪ 1 and R/h ≪ 1), the permeability changes
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logarithmically with the radius, but it has a stronger dependence on the aspect ratio of the cell.

Interestingly, if the permeability is written in terms of the packing fraction φ = πR2/h instead of

R, it can be expressed as

µk′

R′2 =
k

R2 =
1

4φ

(
− lnφ +α(h)+β (h)φ 2 + γ(h)φ

)
+O

(
R4,

R4

h4

)
(44)

where

α(h) =−1−⟨GS⟩− ln
[
4πhA2(ρ)s2

ζ
(1,ρ)

]
−2ρ lnρ

[
A′(ρ)

A(ρ)
+

sζ ρ(1,ρ)
sζ (1,ρ)

]
, (45)

γ(h) =−
2hG(1)

S
π

− hπ

3
(B(ρ)+12⟨GD⟩) , (46)

β (h) =−4⟨GD⟩
(

G(1)
S +G(2)

S

)
. (47)

The above form of the permeability is structurally similar to the suggested form by Drummond

and Tahir for regular arrays [30]. However, unlike Drummond and Tahir, where the values for

each geometry needed to be calculated independently, the dependence of these parameters on the

cell aspect ratio is given explicitly in Eqs. (45), (46), and (47). Note that α(h) is the leading-

order correction for the rectangular periodic-cell geometry, while γ(h) and β (h) are the first- and

second-order corrections, respectively.

The asymptotic permeability, Eq. (43), increases as the cell aspect ratio, h, increases and the

scaled radius, R, decreases (Fig. 6c,d). On a logarithmic scale, the lines of constant log10(k) are

almost straight lines (Fig. 6d), suggesting that k = cRa(R/h)b where a, b and c are constants. An

empirical fit of the data on the suggested model gives that log10(c) = −1.427(−1.435,−1.418),

a =−2.514(−2.521,−2.506) and b = 1.376(1.368,1.383). The numbers in brackets are the 95%

confidence bounds. The increase in asymptotic permeability with increasing h and decreasing R

is due to the mean velocity in the cell, Eq. (40), having a much weaker dependence on R and h

than the pressure drop across the cell, ∆p (Fig. 6b), over the region of validity for the asymptotic

model. Hence, when the pressure drop is small, the permeability becomes large.

VII. CONCLUSION

This paper asymptotically determines the slow viscous flow around a general rectangular

doubly-periodic array of cylinders in the limit that the cylinders are slender. The slender condition

means that the scaled radius, R, is much smaller than 1 and the cell aspect ratio, h. The asymptotic
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solution is constructed using the complex singularity solutions to two-dimensional Stokes flow

and the representation by fundamental singularities. Unlike previous asymptotic models in which

specific cell geometries were considered, the results provide an analytical representation for the

force per unit length as a function of the scaled radius of the cylinder, R, and the aspect ratio of the

domain, h. The complex representation also provides an effective method to determine the flow

anywhere within the cell.

The asymptotic force per unit length on the flow from the cylinder is compared to lattice-

Boltzmann simulations for the same domain, and the accuracy of the asymptotically applied no-

slip condition on the surface of the cylinder is investigated. The asymptotic results are then used to

analyse the behaviour of the flow for varying scaled cylinder radius, R, and cell aspect ratio, h, and

a closed representation of the permeability in the slender limit (R ≪ 1,h) is developed, thereby

providing insight into how the aspect ratio of the packing modifies the leading order behaviour of

ordered porous media.

In the future, our analysis could be extended beyond O(R4,R4/h4) through the addition of

higher-order singularities. The accuracy of our results also allows us to investigate the far-field

motion of particles within porous systems composed of fibres and systems involving periodic

arrays such as deterministic lateral displacement through the Faxén relationship.
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