Engineering Failure Analysis & Design Optimisation with HiP-HOPS

Yiannis Papadopould¥, Martin Walker? David Parkef, Erich Ride’, Rainer HamanR Andreas
Uhlig ¢, Uwe GratZ, Rune Lierf

*Corresponding author: Y.l.Papadopoulos@hull.act4ld (0)1482 465981

@University of Hull, Cottingham Road, Hull, HU6 7RXInited Kingdom
Germanischer Lloyd AG, Brooktorkai 18, 20457 Hanth@ermany

‘ITI GmbH, Webergasse 1, D-01067 Dresden. Germany

dAgito SA, Postbox 792, N-3606 Kongsberg, Norway

Abstract

The scale and complexity of computer-based safitigal systems, like those used in the transpod a
manufacturing industries, pose significant chalenfpr failure analysis. Over the last decade amese
has focused on automating this task. In one appropoedictive models of system failure are
constructed from the topology of the system andll@omponent failure models using a process of
composition. An alternative approach employs matheicking of state automata to study the effects
of failure and verify system safety properties.

In this paper, we discuss these two approacheailird analysis. We then focus on Hierarchically
Performed Hazard Origin and Propagation StudiesP{HOPS) - one of the more advanced
compositional approaches - and discuss its capabilifor automatic synthesis of fault trees,
combinatorial Failure Modes and Effects Analysewl eeliability versus cost optimisation of systems
via application of automatic model transformations.

We summarise these contributions and demonstratagplication of HiP-HOPS on a simplified fuel
oil system for a ship engine. In light of this exdey we discuss strengths and limitations of the
method in relation to other state-of-the-art teghes. In particular, because HiP-HOPS is dedudative
nature, relating system failures back to their eap# is less prone to combinatorial explosion ezid
more readily be iterated. For this reason, it emleixhaustive assessment of combinations of failure
and design optimisation using computationally gyeméta-heuristics.

1 Introduction

Increasing complexity in the design of modern eegiing systems challenges the applicability of-rule

based design and classical safety and reliabiliglyasis techniques. As new technologies introduce
complex failure modes, classical manual analysisystems becomes increasingly difficult and error
prone.

To address these difficulties, we have developedcaaputerised tool called 'HiP-HOPS'
(Hierarchically Performed Hazard Origin & Propagati Studies) that simplifies aspects of the
engineering and analysis process. The central déapais this tool is the automatic synthesis ofulia
Trees and Failure Modes and Effects Analyses (FMB#sinterpreting reusable specifications of
component failure in the context of a system moidlbe analysis is largely automated, requiring only
the initial component failure data to be providé¢hikrefore reducing the manual effort required to
examine safety; at the same time, the underlyiggrahms can scale up to analyse complex systems
relatively quickly, enabling the analysis of sysgethat would otherwise require partial or fragmente
manual analyses.

More recently, we have extended the above concegblve a design optimisation problem: reliability
versus cost optimisation via selection and repbcatof components and alternative subsystem
architectures. HiP-HOPS employs genetic algorithongvolve initial non-optimal designs into new
designs that better achieve reliability requireraanith minimal cost. By selecting different compaohe
implementations with different reliability and cadtaracteristics, or substituting alternative sghmy
architectures with more robust patterns of failbedaviour, many solutions from a large design space
can be explored and evaluated quickly.

Our hope is that these capabilities, used in carjon with computer-aided design and modelling
tools, allow HiP-HOPS to facilitate the useful igitation of a largely automated and simplified fasfn
safety and reliability analysis in the context ofimproved design process. This in turn will, webp

address the broader issue of how to make safetgra oontrolled facet of the design so as to enable
early detection of potential hazards and to ditleetdesign of preventative measures. The utilinabio

the approach and tools has been shown to be behéficases studies on engineering systems in the
shipping [1] and offshore industries [2].

This paper outlines these safety analysis andbitiaoptimisation technologies and their applioat

in an advanced and largely automated engineeriogegs. In section 2 we discuss the context behind
these technologies and discuss some related apy®da section 3, we describe how automatic safety
analysis can be performed using HiP-HOPS, and thesection 4 we relate the new optimisation
capabilities of HIiP-HOPS. We apply these capaebditio a simplified marine fuel oil system in seatio

5, and highlight the benefits of using automateastn this way. Finally in section 6 we discusesé
recent developments in HIP-HOPS and locate thetineirtontext of other contemporary research in the
area, and then in section 7 we present our comnclssi

The paper makes two contributions: firstly, it giva summary of the current state of HiP-HOPS,
focusing on recent work on optimisation, and relatieis approach to the present state of the art;
secondly, it presents a case study on optimisatfasystem architecture using genetic algorithms and
shows how this technique can automate, rationaliskesimplify the classical cost benefit analysat th
drives decisions about system optimisation. Tharg{e provides an opportunity to discuss strengths
and limitations of HiP-HOPS in relation to otheatstof-the-art techniques. We show that HiP-HOPS
is less prone to combinatorial explosion and carefore be used for design optimisation using
computationally greedy meta-heuristics.

2 Safety Analysis & Reliability Optimisation

2. 1 Classical Safety Analysis Techniques: FTA & FMEA

Fault Tree Analysis (FTA) [3] and FMEA [4] are wd#thown and widely used system analysis
techniques used in reliability engineering. Boté kmng established — FMEA was formally introduced
in the late 1940s, and FTA has been around sineel®%0s — and both have been employed in a
number of different areas, including the aerospaaelear power, and automotive industries. They are
methods that we can use to identify potential faut a system, so that we can then use that
information to correct or prevent those faults.

Fault Tree Analysis (FTA) is a flexible techniguerjually applicable to quantitative and qualitative
analyses, and easy to use and understand. Fadtttremselves are graphical representations afdbgi
combinations of failures, and show the relationdiépveen a failure or fault and the events thaseau
them. A fault tree normally consists ofap eventwhich is typically a system failure, connectedte

or morebasic eventvia a system of logical gates, such as AND and B&sic events are usually
either component failures or events expected tpéa@s part of the normal operation of the system.
Analysis of the fault tree consists of two partgialitative (logical) analysis, andjuantitative
(probabilistic) analysis. Qualitative analysis i®rformed by reducing the logical expression
represented by the fault tree into a semnafimal cut setswhich are the smallest possible combinations
of failures required to cause the top event. Qtetite analysis is performed by calculating the
probability of the top event given the probabilifiyeach of the basic events occurring.

In an FMEA, the basic process consists of compilistg of possible componefdilure modegall the
ways in which an entity may fail), gathered fromscigptions of each part of the system, and then
trying to infer the effects of those failures oe tiest of the system. Usually, these effects aatuated
according to a number of criteria, such as seveptpbability, and detectability, and often these
criteria are then combined into an overall estinmdtask. All of this data is then presented in fbem

of a table which allows the analyst to quickly sdet the effects of each failure mode are.

There are obvious differences between the two fgaks, but one of the most fundamental is the
direction of the analysis. FTA is a deductive taghe, which means it works from thep down—
assuming the system has failed, and then tryinggdrk out why it failed. This is done by working
backwards to determine what possible combinatidressents might have caused it; the system failure
then becomes the top event of the fault tree amdiritlividual component failures form the basic
events, and they are all combined using a netwbligical gates. FMEA, by contrast, is an inductive
technique, and works from thmttom up- assuming a component failure has occurred, lesm trying

to work out what its effects would be. It involvpsoposing a certain event or condition, and then
trying to assess the effects of that initial eventthe rest of the system. The end result is atabl

failures and their effects on the system, whichvjgte the analyst with an overview of the possible
faults.

Both techniques are useful and provide a lot ofialle information about systems, and each can be
used to complement the other, but both suffer ftbensame flaw: they are primarily manual methods.
The process of performing these analyses can lwidais, especially for larger and more complex
systems. Whilst this provides the analyst with mdépth knowledge of the system being studied, it
also makes application of these techniques errangyrand the results (once obtained) are often too
numerous to interpret efficiently. As a consequeilitces not uncommon for FTA and FMEA to take
place only once or twice in the life cycle of thestem. This is unfortunate, because systems asalysi
techniques like FTA and FMEA can be of great bendfiring an iterative design process. By
estimating the reliability and gaining a more thagb understanding of the failure behaviour of the
system in each iteration, it is possible to see Hwmvchanges in design impact upon the overalkygafe
of the system. It also enables the analysts tatifgesnd remedy potential flaws much earlier, thsre
saving both time and effort and producing a molialske product.

However, before FTA or FMEA can be incorporated itite design cycle in this way, it is necessary to
overcome the difficulties inherent in such manwathniques. Experience from the aerospace and
process industries suggests that the applicati@hassical safety analysis is hindered by the exireg
complexity of systems. For relatively simple sys$ethis is a manageable process, although faels tre
and FMEAs can rapidly become very elaborate. In plerm systems, however, manual analysis is
laborious and error prone, and a thorough assessarah interpretation of the results becomes
increasingly difficult to achieve within the corastits of most projects. Furthermore, the resultthef
analyses are divorced from the design being andlyseaning that the effects of any changes in the
system design may only become apparent after anlotig and costly analysis.

While guidance is available on how technical jusafion for alternative designs and arrangements ca
be provided in the form of engineering and safetgiyses, such as FTA and FMEA, there is a need for
specific supporting measures and tools to assishénapplication of such techniques. One obvious
approach would be to automate at least part optheess. This would mean that the analyses could be
carried out more quickly and efficiently, leavingra time for the results to be studied and allowing
more useful conclusions to be drawn.

2.2 Modern Safety Analysis Techniques & Tools

The deficiencies in manual safety analysis techesqlike FTA and FMEA have not gone
unrecognised, and over the years a number of diffeiools and techniques have been established to
try to automate the process. Although pure analysits have a long history, e.g. FTA tools range
from modern examples like Fault Tree + [5] to meemerable tools like SETS [6], these typically
require the fault tree (or FMEA etc) to be built nmally. Recently, however, tools have begun to
integrate more closely with the design processwatlg the synthesis of the fault models (i.e. fault
trees, FMEA) to be achieved automatically. Thisbéem designers and safety analysts to better take
advantage of ever-increasing computer processimgep@nd also helps to facilitate the reuse of
information as part of a more iterative design psscin which safety becomes a driving factor.

Many of these tools and techniques have tendealltimfo one of two categories [7]. The first caieg
consists of the compositional safety analysis apgites: the development of formal and semi-formal
languages to enable specification, composition, amalysis of system failure behaviour based on
safety information about the components that cosepthe system. Although most are not fully
automated, in that they depend on the manual exfttlye initial component failure data, they can be
usefully applied in the analysis of both hardwand aoftware architectures in the context of a model
based design process. The second category centragaptations of formal verification techniques to
support safety analysis. These tend to involve migarous modelling to enable model-checking and
related processes to take place, analysing theteffef failures by simulating them and verifying
whether or not the system meets its safety godlseipresence of those failures.

2.2.1 Compositional Safety Analysis Techniques

Perhaps the earliest compositional safety analggiknique, and one that has influenced those that
followed, is the Failure Propagation and TransfdiomaNotation (FPTN), which emerged in the 1990s
[8]. It is a graphical description of the failureHhaviour of the system, based around the idea of
component modules which describe the generation @opg@agation of component failures in the

system. These component modules are connectechpigisi and outputs to other modules, allowing
combination and propagation of failures from onedaie to another, and they can be composed into
subsystems that can be used to build a systemrtiigrtaFPTN was designed to provide a bridge
between the deductive FTA and inductive FMEA prsess allowing both cause and effect to be
studied. However, FPTN's component module approzdns building an error model that is separate
from the system model, which is then prone to baéngrdesynchronised from the original system it
represents as the design evolves [9]. As suchptiggnal FPTN remained primarily a notation for
describing specifications of failure. Unlike HiP-IRS, it was never extended with capabilities for
system analysis or design optimisation.

The concepts introduced in FPTN were taken furthethe Fault Propagation and Transformation
Calculus (FPTC) [9], which was an attempt to overeahe deficiencies in FPTN. The main way in
which this was achieved was to link the failure mlodo the architectural model so that all
dependencies are identified and maintained. FPTiQiededifferent failure classes (like omission,
commission, value errors etc) and these are spdadifi annotations directly in the components of the
system model. The inputs and outputs of those coemis are then used to transmit failure
information to the rest of the system by using & afeexpressions that detail how failures are
transformed and propagated from input to outpuprBsenting mitigation of failure is possible by
transforming a failure into normal behaviour. Théure propagation defined by these expressions and
the original model structure can then be evaluated token-passing network, determining the effects
of each component failure on the system as a widP.C has also been extended [10] to permit
guantitative (probabilistic) analysis by includipgobability values in each expression. The major
advantage of FPTC over FPTN is that it uses theahetrchitectural model of the system, meaning that
any localised changes to the model do not requirevafailure model to be built; instead, only a setb

of the failure expressions need updating. Howewdrereas FPTN was designed to support both
inductive and deductive analysis, FPTC is primainiguctive in nature, since it relies upon injegtin
one failure or combination of failures into the teys at a time and repeating the analysis. As dtresu
the type of information given by an FTA is morefidiflt to achieve with FPTC and its inductive
nature makes it prone to combinatorial explosi@mtipularly for systems with large numbers of fedlu
modes.

Other approaches build upon the foundations laid=BY¥N in other ways. Two such examples are
State-Event Fault Trees (SEFTs) [11, 12] and Compbfault Trees (CFTs) [13, 14]. In the CFT
approach, the failure logic of components is defias a graph of interconnected fault trees using a
specification similar to that used in FPTN and HIPPS. The CFTs themselves can be composed to
produce larger CFTs for subsystems to build théesysierarchy. Because CFTs are based on fault
trees, they are less prone to the problems withbauaorial explosion that afflicts FPTC. SEFTs are
development of CFTs designed to overcome the diagic inherent in FTA and FMEA and enable
analysis of dynamic systems that feature trangtidretween different states. Whereas most
FTA/FMEA-based approaches feature only basic faikwvents, SEFTs distinguish between a system
being in a certain state (which is a condition ikdtue over a period of time) and an event thiggers

a state transition (which is an instantaneous oeoge); this makes SEFTSs better suited to analysing
software systems or hardware systems with more ngynamic behaviour. As with FPTC, failure
behaviour is modelled at the component level, hatdimple Boolean logic of FPTC is extended to
enable the representation of sequences and histofrievents, as well as the concept of negatien (i.
an event that has not happened yet) using the N@8. glowever, this more complex logic means that
analysis of SEFTSs is not possible using traditidfigd algorithms and instead relies upon a conversio
to Deterministic Stochastic Petri Nets (DSPNs) [TB]jese DSPNs can then be quantitatively analysed
using Petri Net tools like TimeNET [16]. The disadiage of modelling different states is that the
state-space can grow exponentially in larger modettucing the scalability of the SEFT approach.

Finally, HiP-HOPS also falls into this categoryncg it is based upon the synthesis and analysis of
fault trees using compositional component failusgad However, it will be described in detail in
section 3 and its capabilities will be discussed eempared with other approaches in section 6.

2.2.2 Extensions of for mal verification techniquesfor safety analysis

Another category of modern safety analysis techasgavolves the use of formal modelling engines to
simulate the normal functioning of the system desigd then inject faults to determine their effests
the system. The benefit of this type of approackhé it does not typically require any additional
annotation (e.g. to describe the propagation déifes and component failure logic) as all required

information can be automatically extracted from thedel, although this is only possible where
simulation data for the domain in question is alz@ in the first place.

There are a number of different tools and techrsdbet fall into this category. Two of the best \umo
are FSAP-NuSMV [17] and Altarica [18]. Formal Sgfeinalysis Platform (FSAP) is a graphical
interface for the NuSMV-SA model checking & safatyalysis engine; together they provide a single
environment for model design and safety analysigs tapable of both injected fault simulation and
normal model checking processes like property ioatibn and counter-example generation. FSAP-
NuSMV can be used to generate fault trees, althdhgbe fault trees essentially consist only of top
events and basic events and therefore link dirdotiyn effects to combinations of causes, although
they can also include NOT gates. Its main drawbatkgommon with the other model-checking
approaches, is its susceptibility to combinatoesgpblosion as the number of potential failure modes
increases.

Altarica is a formal modelling language that casatibe complex hierarchical models [19]; it carpals
model states and events and is therefore capalilepoésenting the behaviour of dynamic or state-
based systems. As with SEFTs described above,i@ddtaan be used to generate Petri Nets as well as
static fault trees for non-dynamic systems. In lmatbes, the failure model is then analysed by eater
tools. One issue with Altarica, as identified byeBér in [18], is that it can be subject to loopganiit
propagation logic in the model, particularly wheditectional signals or flows are involved. In thes
cases, the SMV-based approach is usually emplastead [20].

There are other examples of this category, for gtariviodel-based Deviation Analysis (MDA) [21]
and Deductive Cause Consequence Analysis (DCCA) MPA differs from the others in that it is
less concerned with system faults and instead pteeto model the effects of deviations of system
input data. It is an extension of the earlier SafivDeviation Analysis [23] that seeks to relate
deviations of input data to deviations of outpuDMuses quantifiable limits and ranges that can be
formulated in temporal logic and then simulatechgsh model checker. By comparing simulations of
nominal data and error data, critical deviatiorsfrthe normal can be detected and their causes
identified. One downside of MDA, however, is itgjurement for two datasets (nominal and error),
although it is possible in some cases for thedeetoombined in the same model or environment.

DCCA is similar to the other model-checking apple and uses mathematical proofs to verify
whether a component failure will lead to systentufai. The behaviour of the system is defined using
finite automata and temporal logic; the systemtta@m be simulated with regard to a set of component
faults and system hazards to determine whetheetbosponent faults will cause one or more of the
system hazards being investigated. The goal issterchine the minimal critical set, i.e. the smadilles
combination of failure modes capable of causingzahd. Other model checkers like SMV can also be
used to verify the proofs. DCCA offers some othdwamtages: it has been modified to work with an
industrial design tool, SCADE [24], and althoughaiso suffers to a degree from combinatorial and
state-space explosion, this can be minimised byimgagrior use of more informal techniques like
classical FTA to determine failures of interesirteestigate further. DCCA also features an extemsio
named DFOA (Deductive Failure Order Analysis) thatbles analysis of dynamic systems using
temporal fault trees generated automatically frbengystem model [25].

2.2.3 Implications

Although both kinds of approach have advantagesdisatlvantages [26], e.g. in terms of the level of
automation, amount of detail provided, scalabiiiyhandle multiple failures in combination, or élgil

to analyse dynamic systems with multiple statdspfathem offer a distinct advantage over classical
manual techniques in that they can utilise toolpsupand therefore offer a much faster, more dedail
analysis. This makes it more practical to use trssfety analysis techniques as part of the design
process, and in some cases multiple techniquebecased to complement each other.

However, if some portion of the design evolutiomide iterated automatically by using a model-tdase
optimisation algorithm, then the compositional saf@nalysis approach offers one significant
advantage over the formal approaches: performalitieough the compositional approaches require
the prior annotation of the model with failure logiwhich can be time consuming, subsequent
synthesis and analysis of fault trees etc is tyfyiaeery fast, since it normally operates in a detilte
manner and is less prone to combinatorial explosi&yn contrast, although formal fault simulation
techniques like Altarica etc do not require thigiah step, since the required information can be

automatically extracted from domain libraries ofmgmnents with failure properties, the actual
simulation and analysis is typically inductive anbderefore slower and more vulnerable to
combinatorial explosion. As a result, it is usuathpractical to consider the effects of combinasiaf
failures, or at least more than two failures injoontion.

Automatic design optimisation, e.g. with metahdigss such as genetic algorithms, is an iterative
process that may require a model to be evaluatastmds or even millions of times. As a result, the
performance and therefore scalability of the ev#dunatechnique is a critical factor. Furthermoriece

the evaluation is being used primarily to diffefate different potential design candidates, thell@f
detail that can be provided by fault simulation m@ghes is often unnecessary. Therefore, the
compositional approaches tend to be better suitelis process; they can of course be complemented
by an analysis of certain promising design candglaising a fault simulation technique once the
optimisation has finished.

3 Automatic Optimisation of System Reliability

3.1 Need for automatic optimisation

As described above, modern safety analysis techrigarmit a wealth of information about the safety
and reliability of a system to be gathered much enquickly and easily than ever before. This
information permits designers to use safety andb#ity as a major factor in the decisions theykma
during the evolution of a system design: by evahgathe effects of one or more potential design
choices, e.g. increased reliability at the expesfsgreater cost or increased weight etc, desigasrs
able to make informed choices.

However, just as classical manual safety analysssict the rate that information can be obtained
about a system, manually evaluating different desifoices is time-consuming and restricts the
number of design candidates that can be investig#itéhis process could be automated, it would be
possible to examine hundreds or thousands of patefgsign candidates — a much greater portion of
the total design space — and thus hopefully proadeetter foundation for the next iteration of the
system design.

Unfortunately, even automation using modern conmgutechnology is insufficient to examine the

total design space even for a relatively simpletesyswith a limited number of substitutable

components. It is therefore not possible to evalaaerydesign candidate except in the most trivial of
cases. This is particularly the case if multipletoels of variability are taken into account, e.g.
swapping one subsystem architecture for anothereisas just substituting one component for another
with an alternative implementation.

Furthermore, an additional issue is that systemabiity is seldom the only concern of the designer
the major constraint on any design is likely toitsecost, and as most characteristics of a system
increase, cost typically increases too. These whinf) goals — e.g. to increase reliability while
reducing cost — result in any design having to memcareful balance between different objectivess A
automated optimisation process must therefore tat@ account not just a single objective, but
multiple — and often contradictory — objectives.

3.2 Comparison of different optimisation approaches

There are a number of different optimisation algionis available, most revolving around the use of
meta-heuristics intended to explore the designcheapace as extensively and as effectively as
possible; the aim is to find the optimal soluti@sssoon as possible but without getting trappezhi
local area of the search space (known as a ‘lgtatham’).

One such algorithm is known #&sbu search27, 28]. Tabu search explores the design spacten
basis of evaluation functions, e.g. if one soluti@ms better characteristics, it uses that oneebdhis
for its next iteration. Multiple objectives can bealuated by multiple functions in multiple iterats,
e.g. objective #1 in the first iteration, objecti#® in the second, and so forth. Furthermore, sdauch
remembers the solutions it has explored, preverttirgalgorithm from looping or getting stuck in a
local optimum; these are known as the taboo or tutions and force the algorithm to focus on
unexplored areas of the search space. The ligtpisdly finite, however, and eventually the oldest
members of the list are removed. After a set nunalbéerations, the best solution(s) found so far a
presented as the results.

A different approach is thant colonyapproach, which is based on the behaviour of aluns in
nature [29, 30]. Ants use pheromone trails to distatand navigate efficient routes between food
sources and their nest; poor routes disappear tovieras less ants use them, while good routes are
reinforced by more and more ants using them. Atldrgooptimisation works in the same way: in each
iteration, one solution is used as the base andéighbouring solutions are explored by the ‘ants'.
Good solutions are reinforced and in the next ftena the best solution found is used as the nageb

or 'nest'.

Simulated annealings another technique, this time based on metatlat@nnealing (i.e. controlling
the rate of cooling in metal to encourage the atamthe metal to form stronger shapes) [31]. In
simulated annealing, the current solution is chdrigesome random way to obtain a different solution
whether or not that new solution is accepted depenmdthe global temperature: a hot temperature
allows more radical changes, a cool temperaturmipgionly minor changes. At each stage, the most
optimal solution is chosen from those allowed, #meh the temperature is lowered and the process
continues.

Another approach is to uggenetic algorithmg32]. Genetic algorithms are designed to mimic the
evolution of biological life in nature: a populatiof different candidates are evaluated according t
their fithess and the best are chosen to reprodunck form the basis of the next generation of
candidates. Each candidate is represented usgematic' encoding, which describes its charactesist
when two candidates are chosen to produce a neigndeandidate, their encodings are subjected to
crossoveri.e. the encoding of the new design is a mixhef éncodings of its ancestor candidates. This
promotes convergence on optimal solutions by engusurvival of the fittest'. In addition, random
mutation is included to allow a greater portiortted search space to be explored and to try to timeit
likelihood of becoming stuck in a local optimum.

There are different versions of genetic algorithai®red towards different goals. One form of gémet
algorithm is the penalty-based approach; in thisnfothe multiple objectives are combined into a
single function. One objective (e.g. reliabilitg)optimised, but constraints on the other objest{eg.
cost, weight etc) are imposed and any infringenwnthose constraints incurs a penalty which is
subtracted from the fithess score for the candid@teis if two potential solutions have the same
reliability, but one violates the constraints, dtranked lower than the one that does not violage t
constraints. The penalty incurred can be tweakethabthe design space is not too confined, e.g. by
having smaller penalties at the start of the optation and steadily increasing them as time goes on
which can result in better solutions [33].

Another form of genetic algorithm is the Non-Dontied Sorting Genetic Algorithm (NSGA-II) [34],
which is a true multi-objective approach (as oppgosethe penalty-based approach, which combines
multiple objectives into one). Full multi-objectiapproaches tend to be better at exploring thegdesi
space more widely, albeit typically with a perfomoa penalty, since more evaluation is taking place.
NSGA-II works by constructing a multi-dimensionatagh plotting the current solutions in the
population, as in the example of Figure 1.

Figure 1: Dominated & non-dominated solutions

For a given solution B, if there is another solntidthat is better in at least one objective andvoose

in any others, then solution B is said todmminatedby A. The set of all non-dominated solutions is
known as thePareto front and is the set of currently identified optimalutions. These represent
different trade-offs between the multiple objective.g. one might have the best reliability fori\aeg
high cost, whereas another might have the lowestt foo a lower reliability value; at one extreme th

Pareto front would contain the cheapest solutiom anthe other extreme it would contain the most
reliable. The nature of the Pareto front means ithit not possible to move from one solution to

another without sacrificing at least one objectiggy. one could not choose a more reliable solution
from the Pareto front without also increasing qastsome other objective). The Pareto front can be
managed using different techniques to ensure a gasd population for the next generation, e.g. by
pruning out clusters of similar solutions (so therd?o solutions remain more widely spread out over
the search space).

3.3 Choosing an optimisation algorithm

Although there are many different optimisation t@igoes — and many variations of individual
techniques — for the purposes of design optimisatite most suitable techniques are those thawallo
multiple objectives to be considered, since sagetgl/or reliability are rarely the only factors bgin
considered. In particular, cost is typically aicat factor, and depending on the nature of theéesys
other objectives like weight, volume, or timinge(iperformance of software) may form elements ef th
optimisation as well.

For our purposes in HiP-HOPS, we developed a nuaditin of the NSGA-II variant of the genetic
algorithm approach. Genetic algorithms offer one tbé best balances between design space
exploration and convergence on optimal solutionsabse of the combination of the crossover and
mutation operators. They are also readily adaptableultiple objectives. Although different multi-
objective genetic algorithms exist, e.g. PESA-IHa&®PEA2, NSGA-II is regarded as efficient and
well-tested [35] and it is more open to modificatitian some of the others. The optimisation process
used in HiP-HOPS is described in more detail irisaat.

4 Safety Analysisusing HiP-HOPS

HiP-HOPS is a compositional safety analysis toel ttakes a set of local component failure data,
which describes how output failures of those conepts are generated from combinations of internal
failure modes and deviations received at the comptsinputs, and then synthesises fault trees that
reflect the propagation of failures throughout #iele system. From those fault trees, it can geaera
both qualitative and quantitative results as weldanultiple failure mode FMEA [36].

A HiP-HOPS study of a system design typically as¢ main phases:

* Modelling Phase: system modelling & failure anniotat
» Synthesis Phase: fault tree synthesis
» Analysis Phase: fault tree analysis & FMEA synthesi

Although the first phase remains primarily manumahature, the other phases are fully automated. The
general process in HiP-HOPS is illustrated in Fégibelow:

Modeling package (e.q. Simulstions)

i | | U for annctation g:l’D
| i T
|

| of components
J| with failure data

}%{N'—P —_—
Annotated Fault Tree Syrthesis

systermn mode| LB B | l
o [s e

i — A
4 éé&&éé&&éé

Fault Tree Analysis

FMEA generation

!

Display of FMEA
in el browser

Figure 2: Overview of the HiP-HOPS Process

The first phase — system modelling & failure antiota— consists of developing a model of the system
(including hydraulic, electrical or electronic, nmanical systems, as well as conceptual block atal da
flow diagrams) and then annotating the componemtthat model with failure data. This phase is
carried out using an external modelling tool orkzae compatible with HiP-HOPS. HiP-HOPS has
interfaces to a number of different modelling toatxluding Matlab Simulink, Eclipse-based UML
tools, and particularly SimulationX. The lattefais engineering modelling & simulation tool develdpe
by ITI GmbH [37] with a fully integrated interfade HiP-HOPS. This has the advantage that existing
system models, or at least models that would haem leveloped anyway in the course of the design
process, can also be reused for safety analysjgopes rather than having to develop a new model
specific to safety.

The second phase is the fault tree synthesis @oteshis phase, HiP-HOPS automatically traces the
paths of failure propagation through the model lbynbining the local failure data for individual
components and subsystems. The result is a netwbrinterconnected fault trees defining the
relationships between failures of system outputsthair root causes in the failure modes of indeid
components. It is a deductive process, working wac#s from the system outputs to determine which
components caused those failures and in what Ibgicabinations.

The final phase involves the analysis of thosetftrees and the generation of an FMEA. The fault
trees are first minimised to obtain thenimal cut sets- the smallest possible combinations of failures
capable of causing any given system failure — aedd are then used as the basis of both quarditativ
analysis (to determine the probability of a systiiture) and the FMEA, which directly relates
individual component failures to their effects dwe rest of the system. The FMEA takes the form of a
table indicating which system failures are causgddrh component failure.

The various phases of a HiP-HOPS safety analysdisoiv be described in more detail.

4.1 Modelling Phase

HiP-HOP studies can be performed on any model efsiem that identifies components and the
material, energy or data transactions among thosganents. Typically these models will have been
produced in a modelling tool such as Matlab Sintutin SimulationX. In addition, the models can be
defined hierarchically, using a composition of caments and subsystems, to help manage
complexity. Failures can therefore propagate ‘wallyi' through the hierarchy as well as horizontall
through the system.

Once a model has been obtained, it is necessamnotate it with failure data. At its core, HiP-H®P
operates on the idea that an output failure ofrapmment is caused by a logical combination of input
failures and internal faults and that the outpilufa will then propagate along structural conneasi

in the model to another component to be receivea @msw input failure. Thus for the purposes of the
safety analysis, each component in the model neetie annotated with its own local failure data,
describing how that component can fail and howeponds to failures propagated from other
components in the system.

The local failure data takes the form of a setailufe expressions relating failures at a compdsent
outputs (known asutput deviationsto a logical combination of internal failure madasic evenis
andinput deviationgi.e. failures received at the component's inpuis) the specification of input and
output deviations, a generic and abstract syntaxdeaeloped, consisting of two parts; the first gr
the failure class an identifier that describes the type of failuaad the second is the input or output
port at which the failure is received or propagatecer&rare different ways of classifying failures,.e.g
by relating them to the function of the componentby classifying according to the degree of falur
complete, partial, intermittent etc [38]. In gerledaowever, the failure of a component will have
adverse local effects on the outputs of the compoméich, in turn, may cause further effects
travelling though the system on material, energgata exchanged with other components. Therefore
in HiIiP-HOPS, we generally classify the effects imioe of three main failure classes, all equally
applicable to material, energy or data outpatsissionsi.e. the failure to provide the input or output;
commissionsi.e. a condition in which the input or outputpvided inadvertently and in the wrong
context of operation; and finallgnalfunctions a general condition in which the input or outjmit
provided but in a form which deviates from the dasintention, e.g. with a value that exceeds

thresholds or is transmitted at the wrong time c8ithis classification adopts a functional viewpoin
which is independent of technology, it could pra&vid common basis for describing component
failures and their local effects. However, HiP-HO®&h work with any classification of failures as
long as it is used consistently from one compoteitie next, and indeed it allows users to defirsrt
own failure classes.

In HiP-HOPS, failure classes are often abbreviagegl, O = Omission, C = Commission, V = Value
etc, and combined with the name of the port at lvkiiey occur, thus "O-inputl" might be an omission
of input at port "inputl". Sometimes it is usefal parameterise the failure class as well, e.g. @F f
omission of flow or HP for high pressure etc. HiPHPIS also makes use of the standard Boolean logic
operators AND and OR to combine input deviationd hasic events and then relate these to a given
output deviation, e.g. "O-outl = O-in1 OR interral&re" is an expression that describes how an
omission of output is caused by a correspondingssiom of input or some internal failure of the
component itself. Internal failure modes typicalgpend on the domain, e.g. a blockage for a hyidraul
system or a short circuit in an electrical system Hote that failure classes can also be transfdrm
from input to output; for example, if a particulksmponent was designed to fail silent in response t
input errors, it may transform value input failuieto an omission of output: "O-out = V-in OR C-in"
etc. In this way, mitigation of failures can alsefepresented.

The set of failure expressions for a componeniefioee describes all possible deviations of all atgp
for that component in terms of its possible intéfiadlure modes and any relevant deviations at its
inputs (which are in turn propagated from outputiaigons of other components). In addition to the
logical information, it is possible to add numetickata for the failure modes of the component,
detailing the probability of the occurrence eaclilufa. HiP-HOPS allows multiple different
probabilistic models to be used, e.g. constantfai& repair rates, MTTF & MTTR values, Binomial
and Poisson distributions, dormant failures, andbdlevariable failure rates etc. This providesraas
deal of flexibility when modelling the quantitativaspects of component failure (assuming the
probability data for the failure modes are ava#gbIThis data is later used to arrive at an esénoét
the unavailability for each system failure.

The local failure data — both the logical expressiand the probabilistic data — can also be stiored
component library, allowing it to be reused in otlsgstem models and thereby reducing the time
needed for failure annotations of future systenmesthe failure data is local to each componématet
are no dependencies on other components that wouiglicate their reuse.

As an example of local component failure data iIR4HIOPS, Figure 3 below shows an analysis of a
computer controlled valve. The figure shows these@als it might be illustrated in a plant diagrand an
records the results of the local safety analysithefcomponent in two tables that define the irgkrn
failure modes of the valve and its output deviatiogspectively.

control

in ot
INTEEMALFAILURE LIODES
Failure RKode Description Failure Repair
Rate Rate
blocked e.g by debris le-a le-4
pattiallyBlocked | e.g by debris Se-5 le-4
stuckClosed Mechanically stuck 1. 5e-8 le-4
stuckOpen Mechanically stuck 1. 5e-5 le-4
OUTPUT DEVIATIONS
Quiput Deviation Description Logical Causes
s sion-out Oission of flow blocked OR
from output stuckClosed OR
Omizsion-in OF
Low-control
Commission-out Unexpected flow stuckOpen OR
from output Commission-in OR
High-control
LowF low- ot Lowr flowr rate at pattiallyBlocked OR
ontgat Low-it

Figure 3: Local failure data for a valve

In normal operation, the valve is normally closed apens only when the computer control signal has
a continuously maintained value of a logical onalvé¢ malfunctions include mechanical failures such
as the valve being stuckOpen or stuckClosed, aadkabes caused by debris such as blocked and
partiallyBlocked. For each malfunction, the anaysicords estimated failure and repair rates whéde
effects of those malfunctions on the output of \thlve can be seen in a second table that listsubutp
deviations.

This specification of failure modes is generic e tsense that it does not contain references to the
context within which the valve operates. Failurepressions make references only to internal
malfunctions and input/output ports of the companérhe failure behaviour described in these
expressions has been derived assuming a simplédonbat we expect the component to perform in
every application (valve is normally closed unldss value of control signal is 1). For these reason
the specification of the valve in the figure abg@vevides a template that could be re-used in differ
models and contexts of operation, perhaps with sowdifications, e.g. on failure rates, to reflect a
different environment.

4.2 Synthesis Phase

As explained above, the local failure data for eaomponent relates deviations of its outputs to
combinations of input deviations and internal comgrt malfunctions — effectively a set of small faul
trees describing the failures of the component. Wlve examine a component out of system context,
input and output deviations represent only potéotaditions of failure. However, when we place the
component in a model of a system, the input deviatispecified in the analysis can actually be
triggered by other components further upstreanhérhodel and the specified output deviations can
similarly cause more failures further downstream.

Thus by linking the output failures of a certaiasd from one component to the input failures of tha
same failure class at another component, via ttigtactural connections and interactions storeithén
model, it is possible to map out the global propiageof failures through the system as a wholehin t
form of a series of interconnected fault trees. sTthe causes of a significant hazard or failurthat

output of the system can be traced back throughptapagation by simply analysing the fault trees
and determining the minimal cut sets.

This process of synthesising fault trees from thmponent failure data (which are effectively mini
fault trees) is automated by HiP-HOPS. The faultedr are constructed incrementally, working
backwards from the outputs of the system (e.gtmleechanical actuators) towards the system inputs
(e.g. material/energy resources, operators, ara sktsors etc) and joining causes of failures & on
component to their effects in another. At eachestdige mini fault trees representing the localufail
data of a component are added to the tree beingraggeal; note that HiP-HOPS will allow branches of
the fault tree to be shared if they are traversederthan once, rather than duplicating them. Figure
below illustrates this process, showing how thaldailure data is connected together to form gdar

system fault tree.

Internal Failure at
failure D— - =yatem
mode oLt

O@b Output Devistion
Logic

Figure 4: Connecting local failure data togethesyothesise fault trees

Input Devistion

In this way, an overall view of the global propagatof failure in the system can be automatically
captured by traversing the model and by followimg tausal links specified in the local safety asedy

of the components. Note that the mechanically ®gisied fault trees produced record the propagation
of failure in a very strict and methodical way, rétey from an output failure and following
dependencies between components in the model tensgtcally record other component failures that
progressively contribute to this event. The logistlucture of the tree is determined only by
interconnections between the components and the Botalyses of those components. This logical
structure is straightforward and can be easily wstded, unlike the structure of many manually
constructed fault trees, which is often definedrbglicit assumptions made by analysts.

To manage complex hierarchical models effectivaéhge synthesis algorithm in HiP-HOPS will
perform traversals both across the vertical andzbotal axis of the design hierarchy, allowing the
annotation of the system hierarchy at all levelthefdesign. If, for example, a subsystem as a avisol
susceptible to a failure mode, then the effecthaf tondition can be directly specified with a diad
annotation at subsystem level. This annotation, égample, could define that all outputs of the
subsystem are omitted in the event of a globaludisince, e.g. in the case of electromagnetic
interference. Such annotations would typically cempent other annotations made at the level of the
enclosed components to describe aspects of fdilehaviour at this level (e.g. the mechanical and
electrical failure modes of each component). Inegalh when examining the causes of a failure at an
output of a subsystem, the fault tree synthesisrilgn creates a disjunction between any failugédo
specified at subsystem level and logic arising ftbenenclosed lower levels.

HiP-HOPS is also designed to recognise and haadfgslin the model that create circular referenges t
the same failure logic (e.g. conditions such asnéw is caused by event B which in turn is causgd
event A). When such circles are encountered, tlieréalogic contained in the circle is only
incorporated once in the fault trees. At the same,ta warning note is generated in order to eragmir
the analyst to investigate whether or not the tarclogic in the system was valid or the resultaof
modelling error. In general it is normally possiiilethe steady state to determine what the finflogf
on the system will be of an initiating failure fnetr upstream.

4.3 Analysis Phase

In the final phase, the synthesised system fagdistiare analysed, both qualitatively and quantébti

and from these results a multiple failure mode FMEAgenerated. Firstly, the fault trees undergo
gualitative analysis to obtain their minimal cutssevhich reduces them in size and complexity. This
achieved using various logical reduction technigquesapplying logical rules to reduce the comjiiex

of the expressions and remove any redundanciese @ecminimal cut sets have been obtained, they
are analysed quantitatively, which produces unatdity values for the top events of each fauletre

The last step is to combine all of the data produoéo an FMEA, which is a table that concisely
illustrates the results. The FMEA shows the diredationships between component failures and
system failures, and so it is possible to see hoth a failure for a given component affects evangh
else in the system and also how likely that failigréA classical FMEA only shows thtrect effectof
single failure modes on the system, but becausbeofvay this FMEA is generated from a series of
fault trees, HiP-HOPS is not restricted in the savag, and the FMEAs produced also show what the
further effectsof a failure mode are; these are the effects tmatfailure has on the system when it
occurs in conjunction with other failure modes.¥ig5 below shows this concept:

METWORK OF INTERCOMMNECTED FALULT TREES MULTIPLE FAILURE MODE FMEA
Componert Direct Effects Effects cauzed in
= = Failure on System conjunction with
[other everts)
]] . -

2 F1

c3 F1 (C4)

[(1
> c4 F1 (C3)
FVEA cs F1,F2
Synthesis CE F1,F2 (C7)
c7 F1,F2 (C8)
ca F2
'S 3 co F2
o v G4 G Lor A v |

8

Figure 5: Converting networks fault trees into dtiple failure mode FMEA

In the figure, F1 and F2 are system failures, ahd-@9 are component failures. For C3, C4, C6 and
C7, there are no direct effects on the system tighaf only one of these components fail, nothing

happens. However, they do have further effectsefample, C3 and C4 both occurring in conjunction
will cause F1 to occur. The FMEAs produced thusashd of the effects on the system, either singly

or in combination, of a particular component faglunode. This is especially useful because it allows
the designer to identify failure modes that contf#bto multiple system failures (e.g. C5 in the

example). These common cause failures represeatiafip vulnerable points in the system, and are
prime candidates for redundancy or substitutiomwibre reliable components.

4.4 Tool support

Although HiP-HOPS has interfaces with a number iffedent modelling tools, the most advanced,
fully-featured interface is with the SimulationX dalling & simulation tool from ITI GmbH. A
commercial version of HiP-HOPS is also availablénw@imulationX.

Simulation X provides a Graphical User InterfacéJ({5that enables annotation of components in the
model with the failure modes and failure expressimquired for the fault tree and FMEA synthesis.
The data becomes part of the model and is autoatigtisaved and retrieved by SimulationX. Failure
annotations are stored together with the compoimenbmponent libraries and can be re-used either
directly or following modifications within the sanmodel or across different models with the obvious
benefit of simplifying the manual part of the arsady When an analysis takes place, SimulationX
generates an output file that is parsed by HiP-HG#8ch then reconstructs the enclosed annotated
models for the purposes of fault tree synthesisaaradysis. After HIiP-HOPS analyses the fault trées,
generates output files containing the fault treéle, cut sets and unavailability (if available), ahe
direct and further effects FMEA tables. The direffects table is a single failure mode FMEA which
shows, for each failure mode of each componentersystem, the direct effects on the system. Furthe
effects caused by conjunctions of component failnogles are shown in a second table which presents
a lengthier and more detailed multiple failure méd&EA analysis. The output is created by a HTML
generator, which produces web pages containingables of data. The advantages of this medium

include easy distribution and display and the ghithrough hyperlinks, to navigate different agpec
of the information. The various interfaces of theltare shown below in Figure 6:

B (11 Simulation Prolessional Ediion - Dperate a 80P Exompio2_GL3 ism

Qatei Pearbeten frsicht [Drfigen Femente Smustion Agshyss Egres Ferster Hife |

AT =y el s | e = [T 2] 2
N 8 T - xr g b
IModel1 (Operate s BOP Example?_GL 3asm) |

(W ot |
foiporecs

5sa;aallelnud y ? |

[Sulisea Valve of BOF - E’ - ki ;

| .=
.
! 1 H ‘ | Mj':l‘:! :I']“""';:”j - ‘Gl‘l for snnetation of components

— . with failure daia with failure data

SimulationX Model | j) exported in text file I

.
ectunrokiing
| | & |
] | | -
Sk | [o teon | [e we | |
i *— >
- - =
Pkt Contel Valve _l__
EIE]

Orlicksn Sis 1, um Hife 2u erhak

i Fault Tree: Top Events | FMEA
Tap Events | FMEA R erconart T

Tap Evart (Effect) C;
System Unavailabiity[o 16507
L

Descrgtan m Accumulator:braakage(E2)
Humber Of Cut Sets [T6

accumulator laccumulator:leakage(E1) /A

[16 s Cut Sets of Ordelg 1 onavalat
[l Top Events fccumutator:leak age(EL) 0.00409161 |Compdnent Failure Mode
5L welHead1: CF -wellHead. wellBorfl G395) checkValveSpring checkvalveSpring:blockage(E3)
=) Sub-Expressian(G119)
S} welHead)
AT

[sccumuiator;breakagsie2) [0.00409161

-weliHeadl, ctr1(G120) heckvalvespring:blockage 000359353
- actuator] close(G88) (E2) Component Failure Mode Description
sel.porta(GLE6) pilotControfvalve blockage [0.0496263 surfaceHPU surfaceHPU:spuriousDeliverP{ES) M/
£\ closaMose2 perta(5403) i
B closeTube.portB{G404)

surfaceHPU: failTaDeliverP(E4) &

jpilotControfvalve extieakage |0 00079868
S closaTube:LP-close Tube.portA(G246) (E6)

S{A pilorcontrofvaive:Lp-pilotControlvaive toace(G47) |[Saraors biooage(Es) O Oe96253 Moot Failure Mode Description]Direct Effect

[actuators;leakage(Es) Doooragse [subseaControlModulelfsubseaControlModulel:blockage(E6) [N/a

ceTube. portB{G410)

be portA{G270)

kage(E1) actuator2:biockage(E10) 0.04596263 subseaControiModule 1:extleakage [M/a
) Accumulator: breakage(E2) (ES)

actuztorzsleakagslEll) 000079568

Figure 6: SimulationX & HiP-HOPS tool interfaces

5 Design Optimisation using HiP-HOPS

HiP-HOPS analysis may show that safety, reliabiibd cost requirements have been met, in which
case the proposed system design can be realisgdadtice, though, this analysis will often indiat
that certain requirements cannot be met by theentidesign, in which case the design will needeto b
revised. This is a problem commonly encounterethindesign of reliable or safety critical systems.
Designers of such systems usually have to achiestain levels of safety and reliability while womnkj
within cost constraints. Design is a creative eiser¢hat relies on the technical skills of the dgasi
team and also on experience and lessons learnt Sumeessful earlier projects, and thus the bulk of
design work is creative. However, we believe thiathfer automation can assist the process of iteyati
the design by aiding in the selection of alterrmttomponents or subsystem architectures as well as
the replication of components in the model, alldfich may be required to ensure that the system
ultimately meets its safety and reliability requients with minimal cost.

A higher degree of reliability and safety can oftenachieved by using a more reliable and expensive
component, an alternative subsystem design (e.@rirary/standby architecture), or by using
replicated components or subsystems to achievendeahey and therefore ensure that functions ate stil
provided when components or subsystems fail. Ipp&cal system design, however, there are many
options for substitution and replication at differeplaces in the system and different levels of the
design hierarchy. It may be possible, for exampeachieve the same reliability by substituting two
sensors in one place and three actuators in anathdsy replicating a single controller or control
subsystem etc. Different solutions will, howeverad to different costs, and the goal is not only to
meet the safety goals and cost constraints buttalsio so optimally, i.e. find designs with maximum
possible reliability for the minimum possible cof2ecause the options for replication and/or
substitution in a non-trivial design are typicalgo many to consider manually, it is virtually
impossible for designers to address this problestesyatically; as a result, they must rely on imbuit

or on evaluation of a few different design optiofisis means that many other options — some of which

are potentially superior — are neglected. Autonmatibthis process could therefore be highly useful
evaluating a lot more potential design alternativegh faster than a designer could do so manually.

Recent extensions to HiP-HOPS have made this gedsyballowing design optimisation to take place
automatically [39]. HiP-HOPS is now capable of eoyilg genetic algorithms in order to
progressively "evolve" an initial design model tlimtes not meet requirements into a design where
components and subsystem architectures have blseteseand where redundancy has been allocated
in a way that minimizes cost while achieving givedety and reliability requirements. In the couwe
the evolutionary process, the genetic algorithmichlty generates populations of candidate designs
which employ user-defined alternative implementagidor components and subsystems as well as
standard replication strategies. These strategéebased on widely used fault tolerant schemes asich
hot or cold standbys and n-modular redundancy mlfority voting.

For the algorithm to progress towards an optimaltem, a selection process is applied in which the
fittest designs survive and their genetic makeupaissed to the next generation of candidate designs
The fitness of each design relies on cost andhiétia To calculate fitness, therefore, we need/svn
which to automatically calculate those two eleme®ts indication of the cost of a system can be
calculated as the sum of the costs of its compan@fthough for more accurate calculations, lifeley
costs should also be taken into account, e.g. ptamhy assembly and maintenance costs) [40].
However, while calculation of cost is relativelysgao automate, the automation of the evaluation of
safety or reliability is more difficult as convemtial methods rely on manual construction of the
reliability model (e.g. the fault tree, reliabiliblock diagram or the FMEA). HiP-HOPS, by contrast,
already automates the development and calculafitimeareliability model, and therefore facilitatide
evaluation of fitness as a function of reliabilfgr safety). This in turn enables a selection psece
through which the genetic algorithm can progresgatds an optimal solution which can achieve the
required safety and reliability at minimal cost.

One issue with genetic algorithms is that it hashéopossible to represent the individuals in the
population — in this case, the design candidatas genetic encodings in order to facilitate crossov
and mutation. Typically this is done by assignintggers to different alternatives in specific posi

in the encoding string, e.g. a system consistindp@fe components may be represented by an encoding
string of three digits, the value of each of whigpresents one possible implementation for those
components. However, although this is sufficientné model has a fixed, flat topology, it is rather
inflexible and cannot easily handle systems witlbsystems, replaceable sub-architectures, and
replication of components, since this would alsguiee changing the number of digits in the encoding
string.

The solution used in HiP-HOPS is to employee encodingwhich is a hierarchical rather than linear
encoding that can more accurately represent theargldcal structure of the system model. Each
element of the encoding string is not simply justumber with a fixed set of different values, inca
also represent another tree encoding itself. Figuisbows these different possibilities: we may wish
allow component A to be replaced with either a lowgt, low reliability implementation (represented
as 1), a high cost, high reliability implementatig®), or an entirely new subsystem with a
primary/standby configuration (3). If the third ilementation is selected, then a new sub-encoding is
used, which may contain further values for the congmts that make up the new subsystem, i.e. the
primary and the standby:

Three possikle
implementations

Primary/Standhy
Subsystem

Figure 7: Three different implementations of a comgnt

Thus encoding "1" means that the first implemeatativas chosen, encoding "2" means the second
was chosen, "3(11)" means that the third was ch@$ensubsystem) and furthermore that the two
subcomponents both use implementation 1, while I8(Zor example means that the primary
component in the subsystem uses implementations®&ad. Although the tree encoding is more
complex, it is also much more flexible and allow$aa greater range of configuration options to be
used during the optimisation process.

HiP-HOPS uses a variant of the NSGA-II algorithm dptimisation. The original NSGA-II algorithm
allows for both undominated and dominated solutitmnexist in the population (i.e. the current skt o
design candidates). To help decide which solutfass on their characteristics to the next genearatio
they are ranked according to the number of othdutisos they dominate. The more dominant
solutions are more likely to be used than the d¢ksrinant solutions. HiP-HOPS is also able to didcar
all but the dominant solutions. This is known gsuge-elitist algorithm (since all but the best $iolns
are discarded) and also helps to improve performanc

To further enhance the quality of solutions andgpeed with which they can be found, a number of
other modifications were made. One improvement twa®aintain a solution archive similar to those
maintained by tabu search and ant colony optingeatthis has the benefit of ensuring that good
solutions are not accidentally lost during subsetgenerations. Another improvement was to allow
constraints to be taken into account during thengdpéation process, similar to the way the penalty-
based optimisation functions: the algorithm is emaged to maintain solutions within the constraints
and solutions outside, while permitted, are peadli® a varying degree. In addition, younger sohsi

— i.e. ones more recently created — are preferved @nes that have been maintained in the populatio
for a longer period; again, this helps to ensubecader search of the design space by encouraging n
solutions to be created rather than reusing exjsiires.

6 Example: Optimisation of a marinefuel oil system

To demonstrate the application of design optimisatin practice, we applied the optimisation
capabilities of HiP-HOPS to a simplified fuel o#érsice system for a cargo ship. When the fuel oil
system fails, there is a loss of engine propulsiiat can lead to the ship becoming grounded asudtre
of drifting. The base design — with no componemication or substitution — is shown in Figure 8
below:

mainEngine
servigTank
indicatorFilter
= | |
| AN viscosimeterC\D
O i
N () N il
:'/ \"j _/} _/ | .
boosterPump A 4 flowmeter mixingtank circulationPump heater

automaticFilter

Figure 8: Fuel Qil system — basic design

This system was annotated with failure data and eufsrmation in the SimulationX interface,
allowing a standard HiP-HOPS analysis to take pléc@as also further augmented with information
to define the design search space, by specifyinghwdomponents could be replicated (all but thenrmai
engine). For our preliminary experiments, we regtd the potential optimisations types to simple
replication to achieve a maximum of triple redundafi.e. 0, 1, or 2 replicants); as a result, oaly
single set of cost & failure data was needed (s&ah replication is a simple duplication). Thisadia
displayed in the table below.

Table 1: Cost & Failure data for the Fuel Oil syste
| Components | Cost | Failure Rate |

Indicator filter 1500 5.0E-7
Viscosimeter 2500 2.5E-6
Pre-heater 2000 6.7E-6
Circulation pump 6000 3.2E-5
Mixing tank 2000 1.6E-5
Flow meter 2000 1.0E-5
Automatic filter 2000 1.0E-5
Booster pump 5000 3.2E-5
Service tank 1500 1.6E-5

At first a manual attempt at optimisation was mdie the designer. Even with the scope for
optimisation being restricted to only replicatiohammponents, the search space still contains 19683
possible solutions; only 12 were actually considedarring the manual analysis. HiP-HOPS then
performed a normal reliability and cost analysis eath of these solutions, and then the designer
carried out a cost-benefit analysis by weighingtttal system cost of each solution against thé abs

a grounding occurring due to failure of the fuel system (this is the product of the system
unavailability and the physical cost of losing #igp). The system with the best cost-benefit ratis
selected as the reference solution, shown beldviguare 9:

=Tank2

mainEnginel
mixingtank2 indicatorFilter1
: Y I I
serviceTank1 1 J
automaticFilterlt flowmeterl
boosterPumpl <\\ F 7 circulationPumpl v
A =) viscosimeterl

‘H/ \ /
A 4

PS ol Llod La

boosterPump2 & & flowmeter2 L circulationPump2 heater2

2

automaticFilter2
mixingtankl

Figure 9: Fuel Qil system — manually optimised desi

This system has a cost of 45000 and an unavatialoifi 3x10°. This then established a baseline to
compare with the results of the automatic optinsat

Unlike the manual optimisation, HiP-HOPS was nddtnieted to investigating a small number of
candidates. 50 generations of optimisation tookcepladiscovering 46 non-dominated (Pareto)
solutions. These 46 solutions are plotted in algiapFigure 10 below (as crosses), alongside the 12
manually investigated solutions (circles).

0.00014 -
+ Optimised Pareto Front
®
0.00012 - + ©® Manual Analysis Solutions
+

0.0001 - 'f%.
z !
o 0.00008 - +
3]
= +
>
@ 0.00006 - +i® .
£ +Jro<:I Reference solution

0.00004 -+ o

_l.._l_
0.00002 - +#
-
0 T T | | .—-l“'H—f—H—H.HIHH HrHH 1
0 10000 20000 30000 40000 50000 60000 70000 80000
Cost

Figure 10: Plotting the Pareto Front

As can be seen, most of the manually investigatdgtisns are dominated by the Pareto solutions
discovered by the automatic optimisation processthAer cost-benefit analysis was then carried out
on these solutions to determine which offered bakte for money.

40000 - _ . L
=== Design modification cost
== Cost of accident r
30000 - == Net benefit ¥ X
20000 - ¥
et 05’
3@ 10000 -
O T T Y B T T
3 ;: < 9 11 13
-10000 - 3 Optimum solution
.. : = —— ']]
-20000 -
-log(Py)

Figure 11: Cost-benefit analysis of the automapitimisation solutions

The optimal solution (offering the lowest cost)highlighted. It has a slightly higher unavailalilit
(9.7x10° but the cost is only 43000 as opposed to 4500@. difference is that only one heater is
used, rather than the two found in the referenagtisa shown in Figure 11.

Next we lifted the restrictions on the optimisatigmmocess, allowing 3 different alternative
implementations of each of the components to becssd, each with different costs and failure rates.
This increased the search space to 20,661,046jif84edt possible solutions. Clearly, the percertag
of these solutions that could be investigated minisaextremely small.

Automatic optimisation using HiP-HOPS discovere® 8®n-dominated solutions in 4000 generations,
plotted in Figure 12 below:

0.00012 - .
I
0.0001 - ¥
¥
*
0.00008 - %

0.00006 - i

Unavailability

0.00004

I
+++ﬂ"H#M

0.00002

0 20000 40000 60000 80000 100000 120000

Cost

Figure 12: Plotting the larger Pareto Front

As before, a cost benefit analysis was carriedoouthe Pareto solutions. The results of that amalys
are shown in Figure 13 below; the chart has beemed in to show detail around the optimum area.

f == Design modification cost
10000 - .
=== Cost of accident
—t—Net benefit
5000 - =
b 0 - . 'Il T T l
(=]
© 4 5 55 6
-5000 - .,i
-10000 \
Optimum solution
-15000 - ot
-log(Py)

Figure 13: New cost-benefit analysis

Being able to consider alternative components frheof the subsystems allows a new optimum
configuration. This is shown in Figure 14 below,emh the automatic filter and the flow meter have a
single component, alternative version 3 and 2 sy, in place of a redundant configuration.

=Tank2

—Iservig

mainEnginel
mixingtank?2 OOOO indicatorFilter1
| < o []
serviceTankl J] I
boosterPumpl o/ drculationPumpl

C\Dviscosimeterl

autgrgaficl! r._:ersmn_B

boosterPump2

LTS A

-3

circulationPump2

o ‘e

e U [Z1
. ;)"\ F : =

’.:\/ ﬂowmgt!r_\fersion_z heaterl

1

mixingtankl

Figure 14: Fuel Oil system — optimal design

The system’s unavailability of 1.17x¥0is worse than the previous two best solutions, thet
component cost is only 41529.

Although the above is only a relatively small ande example, the search space for even thismsyste
is still prohibitively large; it would not be pob# to explore more than a tiny fraction of it ugia
manual optimisation process, and thus it is unjikbht the designer would have been able to identif
any truly optimal solutions. By contrast, automatftimisation enabled the designer to explore many
more solutions and resulted in a set of optimaleraffs between reliability and cost, as shown a&bov
It is important to note that while only 12 solutiorwere considered manually, the automatic
optimisation returned 366 optimal solutions, whicturn is only a small fraction of the total numbe
of solutions evaluated. By performing a cost-banafialysis on these results, it is possible for the
designer to determine which is likely to be the trestable design; in both the restricted and non-
restricted optimisation, HiP-HOPS discovered adregblution than any found by the manual analysis.
The solution shown above offers a 17% improvememieit benefit over the manual reference solution.

7 Comparison with state of the art

7.1 Safety Analysis

As described in section 2, HiP-HOPS is a compasiticsafety analysis technique. It is closely
analogous to the CFT and FPTC approaches, althamjjke FPTC, HiP-HOPS is a deductive
technique and is thus less prone to combinatoxplosion. It currently lacks the ability to analyse
systems with states and state transitions as inT§BRough there have been recent developments in
adding temporal logic capabilities to HiP-HOPS, iu$ capable of dealing with NOT gates and non-
coherent fault trees [41]. However, unlike SEFT$P-HOPS can make use of well-tested, high
performance FTA algorithms since it does not neethke into account the complexities of dynamic
state transitions in the system. Like most of thetser approaches (but not FPTN), HiP-HOPS also
benefits from making use of the architectural desigpdel rather than having to build a separatererro
model for the purposes of safety analysis. Ond@fmbajor advantages of HiP-HOPS, however, is the
type of output it produces; HiP-HOPS does not oglyexternal tools or other representations likeiPet
Nets to perform the analysis, and instead prodbo#s fault trees and FMEASs directly. The fault tree
analysis results include both the fault trees tldwes as well as their cut sets and unavailability
estimates for the system failures, while the FMEAults include not only the direct effects of fedls,

but also the further effects they may have in cociion with other failures.

Compared to the formal model checking & fault siatidn approaches like Altarica and FSAP-
NuSMV etc, HiP-HOPS requires a manual annotaticasplbefore analysis & synthesis can take place;
however, the benefit of this is that more sophééd failure logic can be modelled and the system
designer can ensure that the failure behaviounhénntodel is a more accurate reflection of the aesig
intentions. In addition, because the fault simolatmodel is the same as the nominal system model,
both are typically specified in a custom modelllagguage which is not always compatible with other
design languages and tools. Since HiP-HOPS focoslson failure modelling, it can more easily
complement other design languages and tools tleasfprimarily on nominal behaviour. It is because
of this that HiP-HOPS can easily be integrated sithulation tools like SimulationX.

The other advantage of HiP-HOPS over the simulatdpproaches is related to its optimisation
capabilities. During optimisation, tens and evendreds of thousands of different solutions neeleto
evaluated quickly, meaning that tool performanceriscal. Fault simulation techniques are primaril
inductive in nature, looking at the effects on eystbehaviour caused by the injection of singlet&ul
this is typically slower than deductive methodslidiP-HOPS that work backwards from system
failures to determine their causes, particularly lErger systems where combinatorial explosion is
more of an issue. Although fault tree analysis stilh be time consuming, HiP-HOPS can usually
analyse even complex models with thousands ofreaitnodes in a few seconds, which is critical for
use in optimisation where execution times are nfaghia thousand-fold due to the number of
iterations involved.

Nevertheless, this does not mean that other teabaithave no place. For example, HiP-HOPS could
first be used to identify potential design candidatising deductive safety analysis techniques and
automatic optimisation, and then a selection of dp&mal solutions could be subjected to a more
rigorous simulation to better understand their n@ahand failure behaviour.

7.2 Optimisation

In addition to its safety analysis features, HiPR8 has recently been extended with automatic
architectural optimisation capabilities, allowingseem designs to be evolved with respect to rditgbi
and cost. It has so far been tested on both esitalolibenchmark problems [42] and smaller case
studies like the fuel oil system presented aboutholigh it is too premature to comment on overall
performance, as its scalability to larger, realdd@mystems is still being investigated, the sudtgss
results so far indicate that combining automatioletonary algorithms for design optimisation with
modern safety analysis techniques may offer sicgnifi benefits for safety-driven design of critical
systems.

By contrast to the integrated safety analysis &mjsation capabilities found in HiP-HOPS, other
approaches to architectural optimisation [42-44pidglly calculate reliability from manually
constructed Reliability Block Diagrams (RBDs), irhish systems are represented as series-parallel
configurations of components that possess a sfaglee mode and thus either function or fail. This
both an additional time-consuming modelling stem arffers only limited expressive power to
represent the real failure behaviour of the systemguestion. In HiP-HOPS, the optimisation can

manipulate the actual system topology, within Igrdefined by the failure and optimisation paranseter
defined for each component, meaning that the arcthite itself can change to make use of established
design patterns like voters and redundant compenéntprimary/standby configurations etc, in
addition to the simple replication and substitutiound in other approaches. This also means tleat th
models are not limited to simple series-parallatfigurations but can use more complex connection
topologies and hierarchically nested subsystemgh&umore, the safety analysis capabilities of HiP-
HOPS are not limited to single failure modes athovafor a more sophisticated failure logic includin
many different classes of failure modes, includargissions, commissions, value errors and timing
errors, that may be combined and transformed duhieiy propagation through the system. These more
realistic failure assumptions, we believe, willfhnéd improve the quality of the solutions reachgd b
this type of analysis.

8 Conclusion

Given the increasing scale and complexity of modengineering systems, together with more
stringent safety constraints and increasing presson design lifetimes and budgets, tool automation
can offer significant benefits. Safety analysisltocan be a valuable aid in ensuring that system
designs meet their safety goals, helping to identitential flaws and weaknesses in early design
iterations where corrective measures can moreyeasidl more cheaply be carried out. The safety
analysis features of HiP-HOPS make use of fastud@as analysis techniques like FTA to
automatically produce comprehensive informationualtbe failure behaviour of a system. In addition,
this analysis takes place on the actual architattamodel of the system, although some additional
annotation is required to detail the local faildaa for the components in the system. This mdaats t
no separate error model is required and the faitlata, once annotated, can be stored in normal
component libraries and reused in different modeld contexts with at most minor modifications,
resulting in important savings in time and effort.

However, even though safety analysis tools like-H{PPS can help to ensure that safety is included as
a driving factor in each iteration of the desigme titerations themselves remain a manual process,
relying on the intuition and experience of the deers to evolve the system in a productive way.
Design optimisation tools offer a way of accelargtthis process by automatically investigating many
more design possibilities than would be possiblesvaluate manually; by adding some additional
information to the system model to define the deaspace, modern evolutionary optimisation
techniques like genetic algorithms can quickly afficiently explore that search space to identify
optimal solutions that feature improved trade-offfstween conflicting objectives like cost and
reliability. These solutions can then be investdatore closely by the designers and used as #ig ba
for the next iteration of the system design.

The recent optimisation extensions to HiP-HOPSawea unique capability: by combining fast safety
analysis abilities with state-of-the-art optimisatitechnology, it becomes possible to evaluate and
optimise system models with regard to multiple obijees like cost and reliability within the sameito
resulting in a more integrated process with begterformance. Although the technology is still
experimental and only preliminary results have beletained, they suggest that this type of combined
analysis & optimisation automation potentially effegreat advantages to designers of modern safety-
critical systems. We hope to conduct further redeao refine and enhance these optimisation
capabilities to allow them to be scaled up to lagrg@ore complex systems and to ensure they produce
useful results for real-world engineering systemshsas those found in the marine and automotive
transport industries.

Acknowledgements
This work was supported by the EU Projects SAFEDGRant 516278), ATESST2 (Grant 224442),
and MAENAD (Grant 260057)

References

[1] Uhlig A., Kurzbach G., Hamann R., PapadopoufosWalker M., Lihmann B., (2007) Simulation
Model Based Risk and Reliability Analysis, Tagureciinische Zuverlassigkeit, Stuttgart, 22-23.April,
Proceedings on CD, ISBN: 978-3-18-091984-3

[2] Hamann R., Uhlig A., Papadopoulos Y., Rude Gratz U., Walker M., Lien R. (2008) Semi-
automatic Failure Analysis Based on Simulation Msd@aper No. OMAE2008-57256, Proceeding
OMAE 2008, Estoril, Portugal.

[3] Vesely W.E., Stamatelatos M., Dugan J., FragblaMinarick J., Railsback J. (2002) Fault Tree
Handbook with Aerospace Applications. NASA OffideSafety and Mission Assurance.

[4] U.S. Military (1949). Procedure for performiagfailure mode effect and criticality analysis. té«i
States Military Procedure MIL-P-1629.

[5] Isograph Software (2002). Fault Tree + v11. t®afe tool (http://www.isograph-
software.com/index.htm)

[6] Worrell R.B., Stack D.W. (1978). A SETS User Mzl for the Fault Tree Analyst. NUREG CR-
04651, US Nuclear Regulatory Commission.

[7] Lisagor O., McDermid J.A., and Pumfrey D.J. @B) Towards a practicable process for automated
safety analysis, in Proceedings of thé"lternational Ship and Offshore Structures Comfeee
(ISSC'06).

[8] Fenelon P, McDermid J.A. (1993) An integratemlset for software safety analysi®urnal of
Systems and Softwai2l(3), pp.279-290.

[9] Wallace, M. (2005) Modular architectural repratation and analysis of fault propagation.
Electronic Notes in Theoretical Computer Scierigd(3), pp.53-71.

[10] Ge X., Paige R.F., McDermid J.A. (2009) Prdisile Failure Propagation and Transformation
Analysis.Computer Safety, Reliability, and Secury75, pp.215-228.

[11] Grunske L., Kaiser B., Papadopoulos Y.l. (200&0del-driven Safety Evaluation with State-
event-based Component Failure Annotatidns.8th International Symposium on Component-based
Software Engineeringpp.33-48.

[12] Kaiser B., Gramlich C., Forster M. (2007) &fatvent fault trees - A safety analysis model for
software-controlled systemReliability Engineering and System Safég; pp.1521-1537.

[13] Grunske L., Kaiser B. (2005) An Automated Degability Analysis Method for COTS-Based
SystemsLecture Notes in Computer Sciengap.178-190.

[14] Grunske L., Neumann R. (2002) Quality improwsby integrating non-functional properties in
software architecture specificatiom: EASY'02 Second Workshop on Evaluating and Architect
System Dependabilitgan Jose, California, USA, pp.23-32.

[15] Ciardo G., Lindermann C. (1993) Analysis oftefeninistic and stochastic Petri nets:
Proceedings of the 5th International Workshop ornriPeets and Performance models PNPM'93
Toulouse, France.

[16] Zimmermann A., German R., Freiheit J., HomiBel(1999) TimeNET 3.0 Tool Descriptiom:
International Conference on Petri Nets and perfoncetmodelsZaragoza, Spain.

[17] Bozzano M., Villafiorita A. (2006) The FSAP/ISMV-SA Safety Analysis Platformin: ECAI
2006 Riva del Garda, Italy.

[18] Bieber P., Bougnol C., Castel C., Heckmann,JKehren C., Metge S., Seguin C. (2004) Safety
assessment with AltaRich: IFIP Congress Topical Sessionpp.505-510.

[19] Griffault A., Arnold A., Point G., Rauzy A. @B9) The Altarica formalism for Describing
Concurrent System&undamenta Informatica&4.

[20] McMillan K.L. (1990)Symbolic model checkingluwer Academic Publishers.

[21] Heimdahl M.P., Choi Y., Whalen M.W. (2002) Dation analysis though model checking:
Proceedings of the 17th IEEE International Confeenon Automated Software Engineering
Edinburgh, UK.

[22] Ortmeier F., Reif W., Schellhorn G. (2005) Metlve cause-consequence Analysis (DCOA).
The 16th IFAC World Congress

[23] Reer F., Reif W. (2007) Using deductive causasequence analysis (DCCA) with SCADE:.
26th International Conference in Computer SafeslidBility and Security pp.465-478.

[25] Gudemann M., Ortmeier F., Reif W. (2008) Coripg ordered minimal critical setdn:
Proceedings of Formal Methods for Automation anféfyan Railway and Automotive Systems

[26] Lisagor O., McDermid J.A. (2006) Towards a gifeable process for automated safety analysis.
In: 24th International System Safety Conference

[27] Kulturel-Konak S., Smith A.E., Coit D.W. (20pEfficiently solving the redundancy allocation
problem using tabu seardhE Transactions35, pp.515-526.

[28] Kulturel-Konak S., Smith A.E., Norman B.A. (@6) Multi-objective tabu search using a
multinomial probability mass functiokEuropean Journal of Operational Researth9, pp.918-931.

[29] Liang Y.C, Smith A.E. (2004) An ant colony aptsation algorithm for the redundancy allocation
problem (RAP)IEEE Transactions on Reliabilit$3(3), pp.417-423.

[30] Zhao J., Liu Z., Dao M. (2007) Reliability amisation using multiobjective ant colony system
approachesReliability Engineering and System Safég; pp.109-120.

[31] Kim H., Bae C., Park S. (2004) Simulated aringaalgorithm for redundancy optimization with
multiple component choicesn: Advanced Reliability Modelling, Proceedings of th@04 Asian
Internationals WorkshapNorld Scientific, pp.237-244.

[32] Goldberg, D.E. (1989) Genetic Algorithms inaseh, Optimization, and Machine Learning.
Addison-Wesley Professional, USA.

[33] Coit D.W., Smith A.E. (1996). Penalty guidedngtic search for reliability design optimisation.
Computers and Industrial Engineeringd(4), pp.895-904.

[34] Deb K., Pratap A., Agarwal S, Meyarivan T. (20 A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computatié(2), pp.182-197.

[35] Konak A., Coit D.W., Smith A.E. (2006) Multibpective optimisation using genetic algorithms: A
tutorial. Reliability Engineering and System Saféty, pp.992-1007.

[36] Papadopoulos Y.l., McDermid J.A. (1999) Hietscally performed hazard origin and
propagation studiedn: 18th International Conference in Computer Safetglidility and Security
Toulouse, France, pp.139-152.

[37] ITI Gmbh. (2010) SimulationX 3 (www.simulatigrcom)

[38] Rausand M, Oien K. (1996) The basic concefftéaibure analysis. Reliability Engineering &
System Safety, 53 (1996): 73-83.

[39] Parker D. & Y. Papadopoulos (2007), EffectMelticriteria Redundancy Allocation Via Model-
Based Safety Analysis, IFAC Workshop on Intelliggfanufacturing Systems, 23-25 May, Alicante,
Spain.

[40] Grante C. and J. Andersson (2003) OptimisatidnDesign Specifications for Mechatronic
Systems, Research in Engineering Design 14(4):3%-2

[41] Sharvia S., Papadopoulos Y.I. (2008) Non-cehemodelling in compositional safety analysis.
In: IFAC 17th World Congres$eoul, South Korea.

[42] Coit D. W. & A.E. (1996), Reliability optimisemn of series-parallel systems using a genetic
algorithm, IEEE Transactions on Reliability R-45¢54-260.

[43] Deb, K. (1999) Evolutionary Algorithms for MisCriterion Optimisation in Engineering Design,
Evolutionary Algorithms in Engineering and Compuseience, 135-161. John Wiley & Sons.

[44] Grunske, L. (2006) Identifying "good” architecal design alternatives with multi-objective
optimisation strategies, 28th International Confierzon Software Engineering (ICSE 2006), May 20-
28, Shanghai, China.

