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ABSTRACT 

Failure Modes and Effects Analysis (FMEA) is a well 
established safety analysis technique used for the 
assessment of safety critical engineering systems in the 
automotive industry. Although FMEA has been shown to 
be useful, the analysis is typically restricted to the effects 
of single component failures; even partial analysis of 
combinations or sequences of multiple failures is in 
practice considered too complex, laborious and costly to 
perform. In this paper, we describe a new technique in 
which FMEAs are semi-automatically built from the 
topology of a system and component-level specifications 
of failure data. The proposed technique allows an 
extended form of "combinatorial & sequential FMEA" in 
which assessment of the effects of combinations and 
sequences of failures becomes feasible and cost 
effective. We show how this technique can address 
difficulties encountered in classical FMEA and, drawing 
from a simplified brake-by-wire example, we show how it 
can improve the assessment of safety critical automotive 
systems. 

1 INTRODUCTION 

Failure Modes and Effects Analysis (FMEA) is an 
inductive technique in which analysts study a system to 
identify the potential component failure modes and then 
infer the effects of those failure modes on the rest of the 
system. System models, such as engineering diagrams 
or functional block diagrams, are typically used to assist 
the analysts in understanding how component failures 
can affect other parts of the system. Once complete, the 

analysts can then assess the likelihood of those failures 
and the severity of their effects before estimating the 
potential risk they pose. The system can then be 
redesigned to avoid or minimise the effects of the most 
critical failures identified in the analysis and thereby 
improve the safety of the system. 

Although FMEA is generally seen as a useful technique, 
it remains manual, laborious and expensive to apply. The 
analysis typically remains incomplete, being restricted to 
the assessment of the effects of single component 
failures, as exhaustive assessment of combinations of 
failures is very difficult to achieve in large systems. If, for 
example, a system has 1000 potential component 
failures, assessment of the effects of combinations of 2 
such failures requires that the analysis is repeated 
approximately half a million times. This combinatorial 
explosion problem is further exacerbated in cases where 
the effects of component failures depend on the 
temporal ordering – or sequence – of those failures. This 
type of temporal safety analysis is simply impossible in a 
classical FMEA. 

The problem of combinatorial explosion can be partially 
mitigated by automating the process, and a number of 
software tools have been developed to help with the 
process of conducting an FMEA. Unfortunately, they 
were often designed to assist solely with the clerical 
aspects of the analysis and enforce consistency. 
Therefore, the analysis of the system itself often remains 
a manual process – a team of analysts still has to study 
the system models, identify component failures, and 
determine their effects on the rest of the system. With 



the increasing complexity of systems, many of which 
integrate different technology domains, it is becoming 
more difficult to be able to perform thorough analyses 
and determine the full consequences of individual failure 
modes; a problem exacerbated by a trend towards 
shorter design periods. Even if the FMEA is restricted to 
single points of failure, as system complexity increases, 
it becomes more likely that the analysis will contain either 
errors or omissions.  

To overcome this problem, there has been a 
considerable body of work in recent years focused on 
ways of automating FMEA. One such methodology 
makes use of fault simulation [1-5]. Simulation of this 
sort requires domain modelling which restricts its usage 
to domains for which simulators and their requisite 
models have been developed. For example, fault 
simulation has been successfully applied to electronic 
systems in [6]. However, such approaches are 
computationally very expensive and do not help to 
overcome the inability of FMEA to analyse combinations 
or sequences of failures.  

Another way to master the complexity is to take 
advantage of the hierarchical description of a system. In 
[14] the authors propose a method where sub-
components are analysed independently of the overall 
system, and the analysis that takes place on higher 
integration levels abstracts away from details that are 
refined on lower component levels. Although this strategy 
would improve the situation, combinatorial explosion in a 
hierarchical FMEA would still cause difficulties at each 
level of the analysis. 

In this paper, we outline an approach to synthesis of 
combinatorial FMEAs using a recently proposed but by 
now well established compositional safety analysis 
technique called Hierarchically Performed Hazard Origin 
and Propagation Studies (HiP-HOPS) [7]. This is a semi-
automated approach to FMEA that can be applied to a 
greater range of systems, be they mechanical, electrical, 
hydraulic, software-based, or some combination thereof. 
Because HiP-HOPS generates the FMEA via 
automatically generated fault trees – which are 
deductively produced, starting with the system failure 
and working back to determine the root causes – it does 
not suffer in the same way from combinatorial explosion 
when considering multiple failure modes. Furthermore, 
by making use of recent advances in temporal safety 
analysis – known as Pandora [8] – HiP-HOPS enables 
the analysis to incorporate the effects of different 
sequences of failures as well, resulting in a new form of 
'sequential' FMEA. 

In section 2, we describe recent extensions to the HiP-
HOPS tool that enable semi-automatic synthesis of 
combinatorial FMEAs. In section 3, we explain how the 
technique is capable of producing sequential FMEAs by 
introducing Pandora, and then in section 4 we present a 
small case study that demonstrates the benefits of such 
an approach in producing more comprehensive and 
inclusive information about the safety of a system. 

Finally, in section 5 we present our conclusions and state 
how this new technique provides useful advances in the 
field of FMEAs. 

2 COMBINATORIAL FMEA IN HIP-HOPS 

The HiP-HOPS tool performs its analysis on the basis of 
an annotated system model that provides the tool with 
the topology of the system: the components and the 
connections between them. The system model can be 
flat or hierarchical, with components containing 
architectures of subcomponents which can in turn 
contain more subcomponents. This also means that 
different models can be used at different stages of the 
design process; for example, a relatively simple 
functional block diagram might be used early in the 
design and could be refined with a schematic showing 
the detailed hardware architecture of the system. Later 
on in the design lifecycle, programmable components in 
a hardware architecture may be further refined, 
enclosing software architectures described using 
functional or data flow diagrams. In the context of work 
with EAST-ADL [15], it has also been shown that HiP-
HOPS studies can also be performed on layered 
architectures that combine different levels abstraction, 
functional, hardware and software. 

The annotations in the model provide HiP-HOPS with 
local failure data. This mainly takes the form of a set of 
logical expressions that show how failures at the 
component's outputs (known as output deviations) can 
be caused by a combination of input deviations – failures 
detected at the component's input (e.g. an omission of 
signal) – and internal failure modes of the component 
itself. Boolean operators such as AND and OR can be 
used to create the expression and this enables HiP-
HOPS to analyse the effects of more than one failure 
mode occurring in combination. 

Input and output deviations are given a failure class. This 
gives some indication of the nature of the failure and 
generally falls into one of three categories: provision, e.g. 
an omission or unexpected commission of a signal; 
timing, e.g. late or early reception of an input; and value, 
which indicates an error in input/output (e.g. high 
pressure, low voltage etc). Internal failure modes do not 
have a failure class but can include failures of many 
different types, such as environmental influences 
external to the component (e.g. EMI, temperature), 
material failures of the component itself, and human 
error in the control of the component.  

As an example of local failure data, consider a simple 
pump. It could respond to and originate failures in a 
number of ways, e.g. 

• Omission-outflow = Omission-power OR 
mechanical_failure OR blockage OR               
Omission-inflow 

• Commission-outflow = Commission-power 

• Low-outflow = partialBlockage OR Low-power 

• High-outflow = High-power 



In some cases, such as with the commission of output 
flow, it effectively propagates a failure at an input to a 
failure at its output; in other cases, such as with the 
omission of output flow, there are many possible causes, 
both internal and external to the component. The failure 
class of a deviation is the first part, prior to the dash, and 
the input/output ("port") of the component is the second 
part of the deviation; internal failures such as "blockage" 
do not have a specific port as they originate within the 
component and do not represent effects on inputs or 
outputs. 

Similar components can reuse the same local failure 
data. Because the data is mostly context independent, 
identical or similar failure data could be used for all 
pumps in the system, and similarly for other types of 
H/W or S/W components. This makes it easier to 
annotate large models by minimising the amount of 
manual work required; and annotations can even be 
stored as part of a component type in a library so that the 
local failure data is already present when the component 
is added to the model

1
.  

Since the effects of component failures are rarely limited 
to the components themselves, a key objective in safety 
analysis is tracing the propagation of component failure 
through the model up to a related hazard on system 
level. HiP-HOPS achieves this by linking the output 
deviations of one component to the input deviations of 
another, so for example an omission of flow from a pump 
could cause a hydraulic actuator to stop functioning 
which in turn could have wider ramifications on the rest 
of the system. HiP-HOPS even allows finer control over 
this propagation by also allowing the connections 
between components to be annotated with logical 
expressions.  

HiP-HOPS starts this process at the outputs of the 
system as a whole by taking a system failure (a hazard 
when doing safety analysis) and then working backwards 
through the model, following the connections between 
components, until it can go no further. The result of this 
is a set of interconnected fault trees which show how 
individual component failures in the model can combine 
to cause one or more system failures.  

These fault trees can then be flattened using qualitative 
fault tree analysis (FTA) techniques to obtain the minimal 
cut sets of the fault tree. These are the combinations 
made up of the smallest numbers of failures necessary 
to cause a system failure, and illustrate the direct links 
between original cause and ultimate failure. It is then 
possible to use these results to construct a multiple-
event FMEA, showing not only the direct effects on the 
system of each failure mode, but also the further effects 
that failure mode can have if it occurs in conjunction with 

                                                      
1
 These ideas for reuse of component failure data have 
been implemented in a commercial tool called Simulation 
X, which has recently been extended with an interface to 
HiP-HOPS. 

other failure modes (i.e. the other failure modes in the 
minimal cut sets). 

For example, assume that HiP-HOPS-style FTA 
produced five minimal cut sets for two system failures as 
follows: 

• System Failure 1 = {A}, {B, C} 

• System Failure 2 = {A}, {B}, {C, D} 

The cause-effect relations captured by the HiP-HOPS 
tool for the conditions specified above is shown in the 
simplified FMEA Table 1 below

2
: 

Failure Further Failure Effect 

A  None Sys Failure 1 

Sys Failure 2 

B None Sys Failure 2 

C Sys Failure 1 

C B Sys Failure 1 

D Sys Failure 2 

D C Sys Failure 2 

Table 1: Combinatorial FMEA 

The table illustrates several features that would not be 
possible in a normal, single-failure FMEA. For example, 
it shows that although B can cause System Failure 2 by 
itself, it can also cause System Failure 1 in conjunction 
with C. It also shows that both C and D can cause 
system failures if they occur with one other event 
(including each other); in an ordinary FMEA, neither C 
nor D would be shown with any effects since they have 
no direct effect on the system. The table also shows that 
A is a common cause of two system failures – a clear 
vulnerability in the design – but this is a result which an 
ordinary FMEA should also produce. 

Furthermore, because this table was generated from a 
fault tree analysis – a deductive method, working 
backwards from the system failure to determine the root 
causes – it avoids much of the combinatorial explosion 
that afflicts inductive techniques like FMEA, where the 
analysis starts with the failure and attempts to determine 
its effects. This in practice means that, once a system 
model has been annotated with local failure/propagation 
data, the whole process would typically take only 
seconds to perform on systems that contain hundreds of 
components. 

For the same reason, HiP-HOPS also makes it possible 
to perform a quantitative analysis on the system, 
determining the probability of system failures by 

                                                      
2
 A typical FMEA, and indeed the FMEAs generated by 
the HiP-HOPS tool, contain more columns which for 
simplicity and clarity have been omitted in Table 1. Only 
the important relationship between causes (component 
failures A, B, C) and effects (system failures 1 and 2) is 
explored here 



calculating the probabilities of individual failure modes, 
given that proper input failure frequencies are estimated. 
There are a number of formulae available, including 
simple constant failure & repair rates or more complex 
Weibull failure models. This enables the analyst to see 
what contribution each failure mode makes towards the 
system failure it ultimately causes, and efforts to improve 
the reliability of the system can be focused accordingly. 
This kind of quantitative analysis is however only 
applicable for the H/W sub-systems, especially when 
analysing safety properties. 

Finally, system failures can also be assigned severity or 
criticality values to give an indication of the seriousness 
of their consequences, thus generating a so-called 
FMECA (Failure Mode Effect and Criticality Analysis). In 
combination with the probability values, HiP-HOPS can 
then calculate a risk value for each system H/W failure. 
This adds extra information to the combinatorial FMEA 
and makes it possible to compare unlikely but 
catastrophic events with more likely but less critical 
failures. 

All of these values are calculated automatically from the 
component annotations; the more information provided, 
the more comprehensive the results. Overall, the result is 
a much more powerful and expressive form of FMEA 
that provides the analyst with a greater degree of 
understanding of the system failure behaviour, therefore 
making it easier to decide which parts of the system 
need to be improved to increase reliability and safety.  

3 INTRODUCING SEQUENCES TO FMEA 

HiP-HOPS allows us to create FMEAs that take into 
account the effect of multiple failure events occurring in 
combination, but what if the sequence in which they 
occur is also important? This section describes how HiP-
HOPS has been extended to be able to analyse this sort 
of dynamic behaviour, which is increasingly important in 
complex systems.  

For example, consider the simple system in Figure 1, 
consisting of two components – a primary and a standby 
– and a switch that activates the standby when the 
primary fails.  

 

Fig 1: Simple system with dynamic failure behaviour 

 

This behaviour should allow the system to continue 
operating even if one component fails. If we were to 
analyse this system using classical FMEA techniques, 
we might produce results such as those in Table 1: 

Component Failure Effect 

Primary ComponentFault Causes stand-by 
to activate 

Switch SwitchFault Standby will not 
activate 

Standby ComponentFault System failure 

Table 2: Simple FMEA 

However, these results do not truly represent the failure 
behaviour of the system. Although it indicates that a 
failure of the switch will mean the standby does not 
activate, it gives no indication of the sequence of events 
– and in this case, the sequence of events can make a 
large difference. If the switch fails after the primary has 
failed, then it has no effect on the system because the 
standby has already been activated; whereas if it fails 
first, before the primary fails, then it will lead to a system 
failure because the standby will not be activated. Thus 
the results in Table 1 are incomplete or at best 
pessimistic.  

It would be better if we had some way of representing the 
sequence of events to better model the dynamic 
behaviour of the system. One approach is the Dynamic 
Fault Tree methodology [9, 10]. DFTs use a set of 
special logic gates such as FDEP (functional 
dependency) and SEQ (sequence) to describe the 
dynamic behaviour of a system. However, the DFT 
methodology is designed for quantitative fault tree 
analysis rather than the primarily qualitative analysis 
approach used in an FMEA, which means that DFTs are 
not the best solution to this problem. Another option is to 
represent sequences of events as events themselves – a 
kind of conditional event. For example, to represent the 
situation where the switch fails first, we could define an 
event such as "SwitchFailure AND PrimaryFailure AND 
SwitchFailure BEFORE PrimaryFailure". This kind of 
approach is used in [11] and [12], but because the 
dynamic behaviour is encapsulated in a separate event 
instead of being part of the logic that links the failure 
events, it is hidden in the context of any logical analysis, 
e.g. calculation of minimal cutsets. This, however, can be 
problematic, as any two such hidden temporal relations 
may share events, in which there is potential for logical 
reduction or identification of conflicting temporal orders 
(e.g. A BEFORE B and B BEFORE A). However, 
analysis of such relations is simply impossible in this 
approach. 

Instead, we can use Pandora [8, 13]. Pandora is a 
temporal extension to Boolean logic that allows us 
represent sequences of failures as well as combinations 
of failures. It does this by introducing a set of new logical 



operators that indicate a sequential relationship between 
failure events.  

The first of these operators is the Priority-AND or PAND, 
which represents a "BEFORE" relationship. X PAND Y 
means that X occurs before Y occurs. It is a subset of 
the AND operator and therefore both X and Y must 
occur. The PAND applies only when events do not occur 
at the same time; to represent a simultaneous 
occurrence of events, Pandora offers the Simultaneous-
AND or SAND. The SAND is true if all of its input events 
occur at the same time. Although in the general case this 
might be considered a very rare occurrence, it can be 
useful in modelling multiple failures with a common 
cause, where the probability of simultaneous occurrence 
is significant and cannot be ignored. Finally, there is also 
the Priority-OR gate. This also represents a "BEFORE" 
relationship, but unlike the PAND, only the first event 
must occur; e.g. X POR Y means that when X occurs, Y 
must not have occurred yet. A POR is true regardless of 
whether the subsequent events occur or not, whereas a 
PAND is true only if all of its input events occur. 

A summary of the three operators is given in Table3. 

 PAND SAND POR 

Symbol < & | 

Meaning of 
X op Y 

X occurs 
before Y, 
both occur 

X occurs at 
the same 
time as Y 

X occurs 
first; Y may 
or may not 
occur 

Table 3: Temporal operators 

These "temporal operators" are only relative operators, 
concerned with the relative order in which events occur 
and not with the exact time of occurrence. The sequence 
of events can be represented by a sequence value, 
indicated by S, e.g. S(X) is the sequence in which X 
occurred relative to the other events. The sequence 
value is an integer; zero (0) is a special case and 
indicates that the event did not occur, while any positive 
number means the event occurred and the value gives 
the order. So if S(X) = 1 and S(Y) = 2, then X occurred 
first and Y second. Two events occurring simultaneously 
will have the same sequence value. The sequence value 
can be seen as a refinement of the Boolean value of an 
event; a sequence value of 0 is equivalent to false and a 
sequence value greater than 0 is equivalent to true.  

Operators also have sequence values and can be seen 
as compound events whose values, both logical and 
sequential, depend on the values of their inputs. For 
example, an OR gate (symbol "+") is true as long when 
at least one of its input events occurs; therefore it will 
have the same sequence value as the first input event to 
occur, or 0 if no events occur. Similarly, an AND gate 
(symbol ".") is true when all of its input events have 
occurred and so has the same sequence value as the 
last input event to occur. 

Assigning both events and operators in this way allows 
us to produce temporal truth tables or TTTs, which are 
analogous to normal Boolean truth tables but extended 
to use sequence values instead of just true and false. 
TTTs make it easier to see the behaviour of expressions 
containing temporal operators and also make it possible 
to demonstrate equivalence between temporal 
expressions: if two expressions have identical TTTs, 
then those expressions are equivalent, just as identical 
Boolean truth tables indicate equivalence.  

A TTT showing the sequence values of the five operators 
in Pandora is shown in Table 4:  

X Y X+Y X.Y X<Y Y<X X&Y X|Y Y|X 

0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 1 

1 0 1 0 0 0 0 1 0 

1 1 1 1 0 0 1 0 0 

1 2 1 2 2 0 0 1 0 

2 1 1 2 0 2 0 0 1 

Table 4: Temporal Truth Table for the operators 

Note that the PAND and POR gates are not 
commutative; X PAND Y is not the same as Y PAND X, 
since the sequence of events is different in each case. 
However, the SAND is commutative since all its input 
events occur simultaneously.  

As with normal Boolean logic, Pandora also supplies a 
number of rules or laws that govern the behaviour of the 
three temporal operators and describe how they relate to 
the existing Boolean operators AND and OR. These laws 
fall into two categories: versions of existing Boolean laws 
extended to apply to the temporal operators and new 
laws designed to deal with the consequence of 
representing sequences. 

In the first category, there are new versions of the 
Absorption, Distributive, Idempotent and Associative 
laws, amongst others. These do not always apply in the 
same way as their original Boolean versions; for 
example, PAND is not left distributive over OR, but it is 
right distributive: 

(Y + Z) < X = (Y < X) + (Z < X) 

X < (Y + Z) = (X | Y) . (X | Z) . (Y + Z) 

Conversely, the POR is not right distributive over OR but 
is left distributive: 

(Y + Z) | X = (Y|X) . (Z|X) 

X | (Y + Z) = (X|Y) + (X|Z) 

Some of the most useful laws are the Absorption Laws, 
as these allow us to reduce and simplify expressions. 
For example: 



X . (X<Y) = X<Y  Y . (X<Y) = X<Y 

X . (X&Y) = X&Y Y . (X&Y) = X&Y 

X . (X|Y) = X|Y  Y . (X|Y) = X<Y 

These Conjunctive Absorption Laws enable us to remove 
repeated events from within a cut set, while the 
Disjunctive Absorption Laws: 

 X + (X<Y) = X  Y + (X<Y) = Y 

 X + (X&Y) = X  Y + (X&Y) = Y 

 X + (X|Y) = X  Y + (X|Y) = X + Y 

allow us to remove redundant cut sets.  

There are also several new laws to handle the 
implications of introducing sequences to the logic. One 
such implication is the possibility of contradictions. For 
example, the expression (X<Y).(Y<X) is a contradiction; 
it is not possible for X to occur before Y AND for Y to 
occur before X, so this expression will always evaluate to 
false, i.e. it can never occur. 

This type of scenario is detected by the Laws of Mutual 
Exclusion, which state that only one temporal relation 
(before, after, or simultaneous) is possible at once. 
Another example is: 

(X<Y) . (X&Y) = 0 

Other contradictions are highlighted by the Laws of 
Simultaneity, which are versions of the Idempotent law 
specific to the temporal operators: 

X<X = 0     X|X = 0              X&X = X 

There are also the Laws of Extension, which reveal 
implicit temporal relationships between events. for 
example, one Law of Extension states that: 

(X<Y) . (Y<Z) = (X<Y) . (Y<Z) . (X<Z) 

In other words, if X is before Y, and Y is before Z, then X 
is also before Z. The same applies to the other operators 
too. Applying the Law of Extension is important in 
particular because it can reveal hidden contradictions 
that would not otherwise be detected by the Laws of 
Mutual Exclusion or Simultaneity; for example, it is 
possible to have circular redundancies, where a 
sequence of events forms a chain: 

(X < Y) . (Y < Z) . (Z < X) 

This does not immediately appear to be a contradiction, 
but applying the Law of Extension reveals its true nature: 

(X<Y) . (Y<Z) . (Z<X) . (X<Z) . (Y<X) . (Z<Y) 

This clearly violates the Law of Mutual Exclusion and so 
there must be a contradiction, since we have both (X<Y) 
and (Y<X). 

Finally, there are the three Completion Laws. These laws 
are particularly important because they link the new 
temporal operators to the existing AND and OR 
operators from Boolean logic, showing how Pandora 
provides an extra layer of precision allowing us to 
represent when, and not just if, events occur. These 
relationships can best be seen from a diagram: 

 

Fig 2: Completion Laws 

This set diagram shows how the temporal gates are 
subsets of the logical gates. The rectangle X represents 
the situations where X occurs and the rectangle Y 
represents situations where Y occurs; the shaded area 
represents the overlap, i.e. X AND Y, and can be exactly 
subdivided into three parts: X < Y, X &Y, and Y < X. This 
is because if two events X and Y both occur, then either 
X occurred before Y, Y occurred before X, or they both 
occurred simultaneously, and only one of these three 
possibilities can be true at once (as stated by Mutual 
Exclusion). This is the Conjunctive Completion Law: 

X.Y = (X<Y) + (X&Y) + (Y<X) 

There is a similar relationship between OR, POR, and 
SAND: the area taken up by X+Y can be exactly 
subdivided into X&Y, X|Y, and Y|X, and this is the 
Disjunctive Completion Law: 

X + Y = (X|Y) + (X&Y) + (Y|X) 

This is because X|Y covers both X<Y and the case 
where X happens but Y does not, and similarly for Y|X.  

Finally there is the Redundant Completion Law, which 
shows how an event can be temporally redundant: 

X = (Y<X) + (X&Y) + (X|Y) 

In this case we can remove an event (i.e. Y in the above) 
entirely because its occurrence in one of the specified 
orders in relation to another event (i.e. X) has no 
influence on the outcome. 

It is important to note that all the laws can be proven 
using TTTs. For example, the Redundant Completion 



Law, with the equivalence highlighted in bold, is shown in 
Table 5: 

X Y Y<X X&Y X|Y (Y<X) + (X&Y) + (X|Y) 

0 0 0 0 0 0 

0 1 0 0 0 0 

1 0 0 0 1 1 

1 1 0 1 0 1 

1 2 0 0 1 1 

2 1 2 0 0 2 

Table 5: Proving the Redundant Completion Law  

Temporal expressions containing the Pandora operators 
can be entered in place of normal Boolean expressions 
in HiP-HOPS. For example, going back to the simple 
standby example in Figure 1, we might define the 
following HiP-HOPS expressions: 

• O-System = O-Primary. O-Standby 

• O-Primary = PrimaryFault 

• O-Standby = O-Switch + StandbyFault 

• O-Switch = SwitchFault < O-Primary + SwitchFault 
& O-Primary 

 

Here we can use a PAND and a SAND to indicate that 
an omission (failure class O) of the switch signal is only 
relevant if it occurs before or at the same time as an 
omission from the primary component. 

HiP-HOPS then joins these together to produce a set of 
"temporal" fault trees – fault trees that contain temporal 
gates. However, because of these temporal gates, it is 
now necessary to use more complex methods to reduce 
the fault trees and calculate the minimal cut sets (and 
thus produce the FMEA). Whereas there are only a few 
important Boolean laws to use during normal fault tree 
analysis, there are many possible temporal laws that can 
be employed. 

The end result are the minimal cut sequences (MCSQs) 
for the tree – the smallest possible sequences of events 
necessary to cause the system to fail. Each one is a 
conjunction of events or of sequences of two events (so 
a sequence like X < Y < Z would become X<Y . Y<Z . 
X<Z instead). These can then be used to produce a 
temporal FMEA. This differs from a normal FMEA or 
even the combinatorial FMEA mentioned earlier by the 
presence of a sequence column, which indicates the 
constraining sequence in which the further effects must 
occur.  

Staying with the example system from Fig 1, the 
temporal FMEA produced by the HiP-HOPS tool would 
be as shown in Table 6. This FMEA shows not only what 
the effects of combinations of failures would be (e.g. 
short circuits in both primary and standby components) 
but also what the effects would be when the events occur 
in different sequences. 

Comp-

onent 

Failure Further 

Failures 

Sequence 

(if any) 

Effects 

Primary Primary
Fault 
 

Standby
Fault 
 

Any Omission 
of output 

Switch 
Fault 

SwitchFault  
<  
Primary 
Fault 
 

Omission 
of output 

Switch 
Fault 

SwitchFault  
& 
Primary 
Fault 

Omission 
of output 

Switch Switch 
Fault 

Primary
Fault 
 

SwitchFault  
< 
Primary 
Fault 

Omission 
of output 

Primary
Fault 
 

SwitchFault  
& 
Primary 
Fault 

Omission 
of output 

Standby Standby
Fault 
 

Primary
Fault 
 

Any Omission 
of output 

Table 6: Temporal FMEA 

Notice that this time, if the switch fails after the primary, it 
does not lead to an omission of system output. This 
sequence is not included in the FMEA table, because it 
has no effect in the system. If however the tool was 
instructed to derive separately the effects on the two 
outputs of primary and standby, only omission of primary 
would have been derived as effect. 

4 CASE STUDY 

Figure 3 shows a simplified model of a vehicle braking 
system. It consists of four brake actuators, one at each 
wheel, and each with a connected rotation sensor. The 
actuators are controlled via a bus, which also carries the 
signals from the sensors. These signals are fed into a 
pair of electronic control units that control the brakes. 
The output of both ECUs must agree (as determined by 
a comparator) for the braking commands to be sent to 
the actuators. There is also a "vehicle dynamics" 
component which is a virtual component representing the 
effect the brakes have on the handling of the vehicle. 
This can be thought of as the "output" of the system.  

The first step is to provide local failure data for each of 
the components. Since all four brake actuators are 
identical, we can focus on just one of these, and for the 
purposes of this case study we will consider only 
permanent commission failures (represented by C for 
commission), which in the context of braking can cause 
the wheels of the vehicle to lock. Note that the model 
and its annotations have been greatly simplified to 
reduce the analysis to a manageable size and thereby 
focus on the principles of representation and analysis of 
failure sequences; as such, there is little propagation of 



failure among components and, therefore, causes link 
almost directly with the effects. 

 

ACTUATOR 

Commission failure of the actuator is caused by 
communication or brake signal commission failure: 

• C-Actuator = ActCom + C-brakeSignal 

BUS 

Commission failure of brake signal is caused by 
communication or brake signal commission failure: 

• C-brakeSignal  = BusCom + C-brakeSignal 

COMPARATOR 

Commission failure of brake signal is caused by 
communication or brake signal commission failure: 

• C-brakeSignal = C-ECU1 . C-ECU2 

ECU 

Commission failure of output is caused by sensor 
commission failure: 

• C-output = C-sensor 

SENSOR 

Commission failure of sensor is caused by internal 
sensor failure: 

• C-sensor = SensHigh 

Figure 3: Braking system model and failure data  

 

Failure annotations show that a permanent commission 
of braking pressure (leading to locked wheels) is caused 
either by a failure of the actuator (commission of the 
brake) or a commission of the signal to the brake. This in 
turn is caused either by a bus failure (for example, 
memory stuck failures that could corrupt messages and 
eventually result in maximum pressure applied to all 
wheels) or by a commission of the brake signal from the 
comparator; for this to happen, there has to be a 
commission from both ECUs. As the ECUs rely on 
readings from the same sensor to control each brake, if 
the sensor fails high a locked wheel can be perceived by 
both ECUs as having normal rotation and both ABS 
algorithms will fail to react. Although in practice there will 
be plausibility checks to help prevent this scenario, we 
assume that there are still circumstances in which an 
undetectable sensor bias can arise, thus leading to an 
incorrect response from the ECU. 

These annotations can be used to synthesise a simple 
fault tree for the event of permanent commission of 
braking (C-Actuator), which is the same for each wheel. 
This fault tree has only three minimal cutsets: 

• ActCom 

• BusCom 

• SensHigh 
 

At this point, we can look at the vehicle dynamics where 
the effect of sequencing of failures becomes evident. For 
the purposes of this case study, we examine the effect of 
the left two brakes (Front-Left and Rear-Left) locking in 
different sequences; the analysis could of course be 
extended to take into account not only other pairs of 
brakes, but also combinations of three or even four 
brakes locking. The three scenarios therefore are: 

1. C-FL Actuator < C-RL Actuator 

2. C-FL Actuator & C-RL Actuator 

3. C-RL Actuator < C-FL Actuator 

 
Since the brakes are symmetrical, we need only look at 
the first two;  the MCSQs for the third will be the same as 
the first, except with the order reversed. 

Minimal Cut Sequences for Scenario 1 

For scenario 1, the expression is as follows: 

(ActComFL + BusCom + SensHighFL) < (ActComRL + 
BusCom + SensHighRL) 

Next we apply a Distributive law to obtain: 

ActComFL < (ActComRL + BusCom + SensHighRL) + 
BusCom < (ActComRL + BusCom + SensHighRL) + 
SensHighFL < (ActComRL + BusCom + SensHighRL) 



We can eliminate the BusCom disjunction using 
Simultaneity. First we expand it using the law X<(Y+Z) = 
X|Y . X|Z . (Y+Z) 

BusCom |ActComRL . BusCom |BusCom . BusCom 
|SensHighRL . (ActComRL + BusCom + SensHighRL) 

BusCom|BusCom violates Simultaneity and is a 
contradiction, since an event cannot happen before itself. 
This is then equivalent to: 

BusCom |ActComRL . FALSE . BusCom |SensHighRL . 
(ActComRL + BusCom + SensHighRL) 

And because of the Boolean law X . FALSE = FALSE, 
the entire conjunction reduces to just FALSE. Then using 
the Boolean law X + FALSE = X, we are left with just: 

ActComFL < (ActComRL + BusCom + SensHighRL) + 
SensHighFL < (ActComRL + BusCom + SensHighRL) 

Next we expand this to get: 

ActComFL|ActComRL  . ActComFL|BusCom . 
ActComFL|SensHighRL . (ActComRL + BusCom + 
SensHighRL) + 

SensHighFL|ActComRL  . SensHighFL |BusCom . 
SensHighFL |SensHighRL . (ActComRL + BusCom + 
SensHighRL) 

and using the Boolean distributive law, we can expand 
this to six disjunctions, the first of which is: 

ActComFL|ActComRL  . ActComFL|BusCom . 
ActComFL| SensHighRL. ActComRL 

Then using a temporal Absorption law, Y . X|Y = X<Y, we 
are left with six MCSQs: 

• ActComFL<ActComRL . ActComFL|BusCom . 
ActComFL|SensHighRL 

• ActComFL|ActComRL . ActComFL<BusCom . 
ActComFL|SensHighRL 

• ActComFL|ActComRL . ActComFL|BusCom . 
ActComFL<SensHighRL 

• SensHighFL<ActComRL . SensHighFL|BusCom . 
SensHighFL|SensHighRL 

• SensHighFL|ActComRL . SensHighFL<BusCom . 
SensHighFL|SensHighRL 

• SensHighFL|ActComRL . SensHighFL|BusCom . 
SensHighFL<SensHighRL 

 

In other words, the front left brake locking before the rear 
left brake is caused either by the actuators failing in that 
order (FL < RL), the sensors failing in that order, the FL 
sensor failing before the RL actuator, or the FL actuator 
failing before the RL sensor. It is important to note that 
POR gates in these results show that sequencial wheel 
locking does not occur when a bus commission 

(BusComm) failure happens first. This is because a bus 
commission is a common cause failure and will cause 
simultaneous locking of all wheels. However, the results 
show that it is possible for the FL sensor or actuator to 
fail first and then a bus failure occurs, leading to 
sequential locking of the two wheels.  

Minimal Cut Sequences for Scenario 2 

For scenario 2, where both brakes fail simultaneously, 
the starting expression is: 

(ActFaultFL + BusFault + SensHighFL) & (ActFaultRL + 
BusFault + SensHighRL) 

And ultimately this reduces down to five minimal cut 
sequences: 

• ActComFL & SensHighRL 

• ActComRL & SensHighFL 

• ActComFL & ActComRL 

• SensHighFL & SensHighFR 

• BusCom 
 

Since a commission failure of the bus is a common 
cause failure that affects all four brakes, this will always 
lead to a simultaneous failure regardless of what occurs 
afterwards. 

Results 

With these MCSQs, we can now build a temporal FMEA, 
a part of which (focusing only on the front-left wheel and 
the bus) is shown in Table 7.  

In this FMEA, various combinations of component 
failures cause system level effects –E1 – E4 that 
represent the following conditions: 

• E1 – Front left brake locks. This is not critical, as 
three wheels are unaffected, and supporting systems 
are able to mitigate some of the deceleration and 
yaw. 

• E2 – Caused by Scenario 1: front left brake locks 
followed by rear left brake. This is relatively critical 
because it may cause the vehicle to veer sideways 
into oncoming traffic (assuming vehicles drive on the 
right). 

• E3 – Caused by Scenario 2: both wheels lock 
simultaneously. This is very critical as the driver will 
be surprised by a large yaw torque and sudden 
braking. Ability to automatically compensate is 
limited. 

• E4 – Caused by Scenario 3: front left brake locks 
after the rear left brake. This has limited criticality as 
stability is initially reduced but not lost as one rear 
wheel still has traction. 

• The system failure of the rear-left brake locking on 
its own is not included in Table 7 but would also be 
present in the FMEA. 



 
Comp-

onent 

Failure Further 

Failures 

Sequence 

(if any) 

Effects 

FL 
Actuator 

Com-
mission 

None 
 

None E1 

RLActuator. 
Commission 

FLActuator 
< 
RLActuator 

E2 

FLActuator 
& 
RLActuator 

E3 

RLActuator 
< 
FLActuator 

E4 

RLSensor. 
SensHigh 

FLActuator 
< 
RLSensor 

E2 

FLActuator 
& 
RLSensor 

E3 

RLSensor 
< 
FLActuator 

E4 

Bus. 
Commission 

FLActuator 
<  
Bus.Comm 

E2 

FL 
Sensor 

Sens 
High 

None 
 

None E1 

RLActuator. 
Commission 

FLSensor 
< 
RLActuator 

E2 

FLSensor 
& 
RLActuator 

E3 

RLActuator 
< 
FLSensor 

E4 

RLSensor. 
SensHigh 

FLSensor 
< 
RLSensor 

E2 

FLSensor 
& 
RLSensor 

E3 

RLSensor 
< 
FLSensor 

E4 

Bus. 
Commission 

FLSensor 
<  
Bus.Comm 

E2 

Bus Com-
mission 

None None E3 

Table 7: Temporal FMEA results 

The ability to incorporate sequential and combinatorial 
information has increased the amount of information 
provided by the FMEA. The results show how the 
sequence in which failure events occur can have 
different effects – and different levels of criticality.  

A traditional single-failure FMEA would only give results 
for single brake failures and common causes like a 
commission of the bus; an attempt to exhaustively 
examine the effect of combinations of component 
failures would have required enumeration and 
assessment of all possible combinations which for 
anything beyond trivial is an intractable task. 

Furthermore, analysis of the effect of sequences of 
component failures would have been impossible using a 
classical approach, and yet it is the effects of such 
sequences (in terms of the different types of multiple 
brake failures) that are most interesting and critical.  

Overall, temporal FMEAs such as that of Table 7 provide 
a greater degree of precision in the results than classical 
single failure FMEAs. Being able to analyse not only 
combinations of failures but also sequences of failures 
allows a deeper insight into how a system can fail, even 
in simple systems like the braking system presented 
here. 

In this particular example, we have shown that the 
information gleaned from temporal and combinatorial 
analyses can reveal considerable differences in the 
criticality of effects, and yet that information could be 
produced from only a small set of simple logical 
expressions for each component in the system. 

CONCLUSION 

Classical FMEA is a useful technique when determining 
the reliability and safety of a system, but it is not without 
its faults. Chief amongst these are its inability to analyse 
combinations of failures and the lack of support for 
considering the effects of sequences of events. 
However, sometimes the sequence of events can make 
a major difference to the criticality of a system failure or 
even reveal that a system failure may not occur at all if 
events occur in a certain sequence. Furthermore, as 
shown by the case study, the ability to consider multiple 
failures and sequences allows us to analyse more 
complex outcomes involving multiple system failures, 
giving us a better insight into the ways the system can 
fail and what effects those failures have on the safety of 
the system. 

This sequential capability is provided by Pandora, which 
allows analysts to represent the sequences of failures 
using three temporal operators. HiP-HOPS can then 
analyse temporal expressions containing those operators 
automatically, by applying temporal laws to reduce them, 
and therefore obtain the minimal cut sequences. These 
can then be used to produce a temporal FMEA that 
contains both the effects of combinations of failures and 
of sequences of failures. Because the FMEA is 
generated via fault tree analysis, a deductive method, it 
minimises the problems of combinatorial explosion and 
allows the analysis to take place automatically. 

The result is a more comprehensive analysis of the 
system, which provides the analyst with better 
information with which to estimate the safety and 
reliability of the system. Due to the automation and 
speed of analysis that HiP-HOPS provides, it also makes 
it possible to apply these more detailed analyses 
iteratively as part of the design process, thereby 
detecting design flaws earlier and helping to produce 
more reliable and safer systems. 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

DFT Dynamic Fault Tree 

FMEA Failure Modes & Effects Analysis 

FTA Fault Tree Analysis 

H/W Hardware 

MCS Minimal cut set – the smallest combination of 
 events necessary to cause a system failure. 
 These are the results of a qualitative FTA. 

MCSQ Minimal cut sequence – the smallest sequence 
 of events necessary to cause a system failure. 
 These are the results of a qualitative FTA in 
 Pandora. 

PAND Priority-AND – represents a BEFORE 
 relationship between two events. Both must 
 occur. 

POR Priority-OR – represents a BEFORE relationship 
 between two events. Only the first need occur. 

SAND Simultaneous-AND – represents the situation 
 where multiple events occur at the same time. 

S/W Software 

TTT Temporal Truth Table – a logic table used to 
 show sequence values of a temporal expression. 


