
09AE-0150

Semi-Automatic FMEA supporting complex systems with combinations and sequences
of failures

Martin Walker, Yiannis Papadopoulos, David Parker
University of Hull, UK

Henrik Lönn
Volvo Technology Corporation

Martin Törngren, DeJiu Chen

Royal Institute of Technology

Rolf Johansson
Mentor Graphics Corporation

Anders Sandberg
Mecel AB

Copyright © 2009 SAE International

ABSTRACT

Failure Modes and Effects Analysis (FMEA) is a well
established safety analysis technique used for the
assessment of safety critical engineering systems in the
automotive industry. Although FMEA has been shown to
be useful, the analysis is typically restricted to the effects
of single component failures; even partial analysis of
combinations or sequences of multiple failures is in
practice considered too complex, laborious and costly to
perform. In this paper, we describe a new technique in
which FMEAs are semi-automatically built from the
topology of a system and component-level specifications
of failure data. The proposed technique allows an
extended form of "combinatorial & sequential FMEA" in
which assessment of the effects of combinations and
sequences of failures becomes feasible and cost
effective. We show how this technique can address
difficulties encountered in classical FMEA and, drawing
from a simplified brake-by-wire example, we show how it
can improve the assessment of safety critical automotive
systems.

1 INTRODUCTION

Failure Modes and Effects Analysis (FMEA) is an
inductive technique in which analysts study a system to
identify the potential component failure modes and then
infer the effects of those failure modes on the rest of the
system. System models, such as engineering diagrams
or functional block diagrams, are typically used to assist
the analysts in understanding how component failures
can affect other parts of the system. Once complete, the

analysts can then assess the likelihood of those failures
and the severity of their effects before estimating the
potential risk they pose. The system can then be
redesigned to avoid or minimise the effects of the most
critical failures identified in the analysis and thereby
improve the safety of the system.

Although FMEA is generally seen as a useful technique,
it remains manual, laborious and expensive to apply. The
analysis typically remains incomplete, being restricted to
the assessment of the effects of single component
failures, as exhaustive assessment of combinations of
failures is very difficult to achieve in large systems. If, for
example, a system has 1000 potential component
failures, assessment of the effects of combinations of 2
such failures requires that the analysis is repeated
approximately half a million times. This combinatorial
explosion problem is further exacerbated in cases where
the effects of component failures depend on the
temporal ordering – or sequence – of those failures. This
type of temporal safety analysis is simply impossible in a
classical FMEA.

The problem of combinatorial explosion can be partially
mitigated by automating the process, and a number of
software tools have been developed to help with the
process of conducting an FMEA. Unfortunately, they
were often designed to assist solely with the clerical
aspects of the analysis and enforce consistency.
Therefore, the analysis of the system itself often remains
a manual process – a team of analysts still has to study
the system models, identify component failures, and
determine their effects on the rest of the system. With

the increasing complexity of systems, many of which
integrate different technology domains, it is becoming
more difficult to be able to perform thorough analyses
and determine the full consequences of individual failure
modes; a problem exacerbated by a trend towards
shorter design periods. Even if the FMEA is restricted to
single points of failure, as system complexity increases,
it becomes more likely that the analysis will contain either
errors or omissions.

To overcome this problem, there has been a
considerable body of work in recent years focused on
ways of automating FMEA. One such methodology
makes use of fault simulation [1-5]. Simulation of this
sort requires domain modelling which restricts its usage
to domains for which simulators and their requisite
models have been developed. For example, fault
simulation has been successfully applied to electronic
systems in [6]. However, such approaches are
computationally very expensive and do not help to
overcome the inability of FMEA to analyse combinations
or sequences of failures.

Another way to master the complexity is to take
advantage of the hierarchical description of a system. In
[14] the authors propose a method where sub-
components are analysed independently of the overall
system, and the analysis that takes place on higher
integration levels abstracts away from details that are
refined on lower component levels. Although this strategy
would improve the situation, combinatorial explosion in a
hierarchical FMEA would still cause difficulties at each
level of the analysis.

In this paper, we outline an approach to synthesis of
combinatorial FMEAs using a recently proposed but by
now well established compositional safety analysis
technique called Hierarchically Performed Hazard Origin
and Propagation Studies (HiP-HOPS) [7]. This is a semi-
automated approach to FMEA that can be applied to a
greater range of systems, be they mechanical, electrical,
hydraulic, software-based, or some combination thereof.
Because HiP-HOPS generates the FMEA via
automatically generated fault trees – which are
deductively produced, starting with the system failure
and working back to determine the root causes – it does
not suffer in the same way from combinatorial explosion
when considering multiple failure modes. Furthermore,
by making use of recent advances in temporal safety
analysis – known as Pandora [8] – HiP-HOPS enables
the analysis to incorporate the effects of different
sequences of failures as well, resulting in a new form of
'sequential' FMEA.

In section 2, we describe recent extensions to the HiP-
HOPS tool that enable semi-automatic synthesis of
combinatorial FMEAs. In section 3, we explain how the
technique is capable of producing sequential FMEAs by
introducing Pandora, and then in section 4 we present a
small case study that demonstrates the benefits of such
an approach in producing more comprehensive and
inclusive information about the safety of a system.

Finally, in section 5 we present our conclusions and state
how this new technique provides useful advances in the
field of FMEAs.

2 COMBINATORIAL FMEA IN HIP-HOPS

The HiP-HOPS tool performs its analysis on the basis of
an annotated system model that provides the tool with
the topology of the system: the components and the
connections between them. The system model can be
flat or hierarchical, with components containing
architectures of subcomponents which can in turn
contain more subcomponents. This also means that
different models can be used at different stages of the
design process; for example, a relatively simple
functional block diagram might be used early in the
design and could be refined with a schematic showing
the detailed hardware architecture of the system. Later
on in the design lifecycle, programmable components in
a hardware architecture may be further refined,
enclosing software architectures described using
functional or data flow diagrams. In the context of work
with EAST-ADL [15], it has also been shown that HiP-
HOPS studies can also be performed on layered
architectures that combine different levels abstraction,
functional, hardware and software.

The annotations in the model provide HiP-HOPS with
local failure data. This mainly takes the form of a set of
logical expressions that show how failures at the
component's outputs (known as output deviations) can
be caused by a combination of input deviations – failures
detected at the component's input (e.g. an omission of
signal) – and internal failure modes of the component
itself. Boolean operators such as AND and OR can be
used to create the expression and this enables HiP-
HOPS to analyse the effects of more than one failure
mode occurring in combination.

Input and output deviations are given a failure class. This
gives some indication of the nature of the failure and
generally falls into one of three categories: provision, e.g.
an omission or unexpected commission of a signal;
timing, e.g. late or early reception of an input; and value,
which indicates an error in input/output (e.g. high
pressure, low voltage etc). Internal failure modes do not
have a failure class but can include failures of many
different types, such as environmental influences
external to the component (e.g. EMI, temperature),
material failures of the component itself, and human
error in the control of the component.

As an example of local failure data, consider a simple
pump. It could respond to and originate failures in a
number of ways, e.g.

• Omission-outflow = Omission-power OR
mechanical_failure OR blockage OR
Omission-inflow

• Commission-outflow = Commission-power

• Low-outflow = partialBlockage OR Low-power

• High-outflow = High-power

In some cases, such as with the commission of output
flow, it effectively propagates a failure at an input to a
failure at its output; in other cases, such as with the
omission of output flow, there are many possible causes,
both internal and external to the component. The failure
class of a deviation is the first part, prior to the dash, and
the input/output ("port") of the component is the second
part of the deviation; internal failures such as "blockage"
do not have a specific port as they originate within the
component and do not represent effects on inputs or
outputs.

Similar components can reuse the same local failure
data. Because the data is mostly context independent,
identical or similar failure data could be used for all
pumps in the system, and similarly for other types of
H/W or S/W components. This makes it easier to
annotate large models by minimising the amount of
manual work required; and annotations can even be
stored as part of a component type in a library so that the
local failure data is already present when the component
is added to the model

1
.

Since the effects of component failures are rarely limited
to the components themselves, a key objective in safety
analysis is tracing the propagation of component failure
through the model up to a related hazard on system
level. HiP-HOPS achieves this by linking the output
deviations of one component to the input deviations of
another, so for example an omission of flow from a pump
could cause a hydraulic actuator to stop functioning
which in turn could have wider ramifications on the rest
of the system. HiP-HOPS even allows finer control over
this propagation by also allowing the connections
between components to be annotated with logical
expressions.

HiP-HOPS starts this process at the outputs of the
system as a whole by taking a system failure (a hazard
when doing safety analysis) and then working backwards
through the model, following the connections between
components, until it can go no further. The result of this
is a set of interconnected fault trees which show how
individual component failures in the model can combine
to cause one or more system failures.

These fault trees can then be flattened using qualitative
fault tree analysis (FTA) techniques to obtain the minimal
cut sets of the fault tree. These are the combinations
made up of the smallest numbers of failures necessary
to cause a system failure, and illustrate the direct links
between original cause and ultimate failure. It is then
possible to use these results to construct a multiple-
event FMEA, showing not only the direct effects on the
system of each failure mode, but also the further effects
that failure mode can have if it occurs in conjunction with

1
 These ideas for reuse of component failure data have
been implemented in a commercial tool called Simulation
X, which has recently been extended with an interface to
HiP-HOPS.

other failure modes (i.e. the other failure modes in the
minimal cut sets).

For example, assume that HiP-HOPS-style FTA
produced five minimal cut sets for two system failures as
follows:

• System Failure 1 = {A}, {B, C}

• System Failure 2 = {A}, {B}, {C, D}

The cause-effect relations captured by the HiP-HOPS
tool for the conditions specified above is shown in the
simplified FMEA Table 1 below

2
:

Failure Further Failure Effect

A None Sys Failure 1

Sys Failure 2

B None Sys Failure 2

C Sys Failure 1

C B Sys Failure 1

D Sys Failure 2

D C Sys Failure 2

Table 1: Combinatorial FMEA

The table illustrates several features that would not be
possible in a normal, single-failure FMEA. For example,
it shows that although B can cause System Failure 2 by
itself, it can also cause System Failure 1 in conjunction
with C. It also shows that both C and D can cause
system failures if they occur with one other event
(including each other); in an ordinary FMEA, neither C
nor D would be shown with any effects since they have
no direct effect on the system. The table also shows that
A is a common cause of two system failures – a clear
vulnerability in the design – but this is a result which an
ordinary FMEA should also produce.

Furthermore, because this table was generated from a
fault tree analysis – a deductive method, working
backwards from the system failure to determine the root
causes – it avoids much of the combinatorial explosion
that afflicts inductive techniques like FMEA, where the
analysis starts with the failure and attempts to determine
its effects. This in practice means that, once a system
model has been annotated with local failure/propagation
data, the whole process would typically take only
seconds to perform on systems that contain hundreds of
components.

For the same reason, HiP-HOPS also makes it possible
to perform a quantitative analysis on the system,
determining the probability of system failures by

2
 A typical FMEA, and indeed the FMEAs generated by
the HiP-HOPS tool, contain more columns which for
simplicity and clarity have been omitted in Table 1. Only
the important relationship between causes (component
failures A, B, C) and effects (system failures 1 and 2) is
explored here

calculating the probabilities of individual failure modes,
given that proper input failure frequencies are estimated.
There are a number of formulae available, including
simple constant failure & repair rates or more complex
Weibull failure models. This enables the analyst to see
what contribution each failure mode makes towards the
system failure it ultimately causes, and efforts to improve
the reliability of the system can be focused accordingly.
This kind of quantitative analysis is however only
applicable for the H/W sub-systems, especially when
analysing safety properties.

Finally, system failures can also be assigned severity or
criticality values to give an indication of the seriousness
of their consequences, thus generating a so-called
FMECA (Failure Mode Effect and Criticality Analysis). In
combination with the probability values, HiP-HOPS can
then calculate a risk value for each system H/W failure.
This adds extra information to the combinatorial FMEA
and makes it possible to compare unlikely but
catastrophic events with more likely but less critical
failures.

All of these values are calculated automatically from the
component annotations; the more information provided,
the more comprehensive the results. Overall, the result is
a much more powerful and expressive form of FMEA
that provides the analyst with a greater degree of
understanding of the system failure behaviour, therefore
making it easier to decide which parts of the system
need to be improved to increase reliability and safety.

3 INTRODUCING SEQUENCES TO FMEA

HiP-HOPS allows us to create FMEAs that take into
account the effect of multiple failure events occurring in
combination, but what if the sequence in which they
occur is also important? This section describes how HiP-
HOPS has been extended to be able to analyse this sort
of dynamic behaviour, which is increasingly important in
complex systems.

For example, consider the simple system in Figure 1,
consisting of two components – a primary and a standby
– and a switch that activates the standby when the
primary fails.

Fig 1: Simple system with dynamic failure behaviour

This behaviour should allow the system to continue
operating even if one component fails. If we were to
analyse this system using classical FMEA techniques,
we might produce results such as those in Table 1:

Component Failure Effect

Primary ComponentFault Causes stand-by
to activate

Switch SwitchFault Standby will not
activate

Standby ComponentFault System failure

Table 2: Simple FMEA

However, these results do not truly represent the failure
behaviour of the system. Although it indicates that a
failure of the switch will mean the standby does not
activate, it gives no indication of the sequence of events
– and in this case, the sequence of events can make a
large difference. If the switch fails after the primary has
failed, then it has no effect on the system because the
standby has already been activated; whereas if it fails
first, before the primary fails, then it will lead to a system
failure because the standby will not be activated. Thus
the results in Table 1 are incomplete or at best
pessimistic.

It would be better if we had some way of representing the
sequence of events to better model the dynamic
behaviour of the system. One approach is the Dynamic
Fault Tree methodology [9, 10]. DFTs use a set of
special logic gates such as FDEP (functional
dependency) and SEQ (sequence) to describe the
dynamic behaviour of a system. However, the DFT
methodology is designed for quantitative fault tree
analysis rather than the primarily qualitative analysis
approach used in an FMEA, which means that DFTs are
not the best solution to this problem. Another option is to
represent sequences of events as events themselves – a
kind of conditional event. For example, to represent the
situation where the switch fails first, we could define an
event such as "SwitchFailure AND PrimaryFailure AND
SwitchFailure BEFORE PrimaryFailure". This kind of
approach is used in [11] and [12], but because the
dynamic behaviour is encapsulated in a separate event
instead of being part of the logic that links the failure
events, it is hidden in the context of any logical analysis,
e.g. calculation of minimal cutsets. This, however, can be
problematic, as any two such hidden temporal relations
may share events, in which there is potential for logical
reduction or identification of conflicting temporal orders
(e.g. A BEFORE B and B BEFORE A). However,
analysis of such relations is simply impossible in this
approach.

Instead, we can use Pandora [8, 13]. Pandora is a
temporal extension to Boolean logic that allows us
represent sequences of failures as well as combinations
of failures. It does this by introducing a set of new logical

operators that indicate a sequential relationship between
failure events.

The first of these operators is the Priority-AND or PAND,
which represents a "BEFORE" relationship. X PAND Y
means that X occurs before Y occurs. It is a subset of
the AND operator and therefore both X and Y must
occur. The PAND applies only when events do not occur
at the same time; to represent a simultaneous
occurrence of events, Pandora offers the Simultaneous-
AND or SAND. The SAND is true if all of its input events
occur at the same time. Although in the general case this
might be considered a very rare occurrence, it can be
useful in modelling multiple failures with a common
cause, where the probability of simultaneous occurrence
is significant and cannot be ignored. Finally, there is also
the Priority-OR gate. This also represents a "BEFORE"
relationship, but unlike the PAND, only the first event
must occur; e.g. X POR Y means that when X occurs, Y
must not have occurred yet. A POR is true regardless of
whether the subsequent events occur or not, whereas a
PAND is true only if all of its input events occur.

A summary of the three operators is given in Table3.

 PAND SAND POR

Symbol < & |

Meaning of
X op Y

X occurs
before Y,
both occur

X occurs at
the same
time as Y

X occurs
first; Y may
or may not
occur

Table 3: Temporal operators

These "temporal operators" are only relative operators,
concerned with the relative order in which events occur
and not with the exact time of occurrence. The sequence
of events can be represented by a sequence value,
indicated by S, e.g. S(X) is the sequence in which X
occurred relative to the other events. The sequence
value is an integer; zero (0) is a special case and
indicates that the event did not occur, while any positive
number means the event occurred and the value gives
the order. So if S(X) = 1 and S(Y) = 2, then X occurred
first and Y second. Two events occurring simultaneously
will have the same sequence value. The sequence value
can be seen as a refinement of the Boolean value of an
event; a sequence value of 0 is equivalent to false and a
sequence value greater than 0 is equivalent to true.

Operators also have sequence values and can be seen
as compound events whose values, both logical and
sequential, depend on the values of their inputs. For
example, an OR gate (symbol "+") is true as long when
at least one of its input events occurs; therefore it will
have the same sequence value as the first input event to
occur, or 0 if no events occur. Similarly, an AND gate
(symbol ".") is true when all of its input events have
occurred and so has the same sequence value as the
last input event to occur.

Assigning both events and operators in this way allows
us to produce temporal truth tables or TTTs, which are
analogous to normal Boolean truth tables but extended
to use sequence values instead of just true and false.
TTTs make it easier to see the behaviour of expressions
containing temporal operators and also make it possible
to demonstrate equivalence between temporal
expressions: if two expressions have identical TTTs,
then those expressions are equivalent, just as identical
Boolean truth tables indicate equivalence.

A TTT showing the sequence values of the five operators
in Pandora is shown in Table 4:

X Y X+Y X.Y X<Y Y<X X&Y X|Y Y|X

0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1 0

1 1 1 1 0 0 1 0 0

1 2 1 2 2 0 0 1 0

2 1 1 2 0 2 0 0 1

Table 4: Temporal Truth Table for the operators

Note that the PAND and POR gates are not
commutative; X PAND Y is not the same as Y PAND X,
since the sequence of events is different in each case.
However, the SAND is commutative since all its input
events occur simultaneously.

As with normal Boolean logic, Pandora also supplies a
number of rules or laws that govern the behaviour of the
three temporal operators and describe how they relate to
the existing Boolean operators AND and OR. These laws
fall into two categories: versions of existing Boolean laws
extended to apply to the temporal operators and new
laws designed to deal with the consequence of
representing sequences.

In the first category, there are new versions of the
Absorption, Distributive, Idempotent and Associative
laws, amongst others. These do not always apply in the
same way as their original Boolean versions; for
example, PAND is not left distributive over OR, but it is
right distributive:

(Y + Z) < X = (Y < X) + (Z < X)

X < (Y + Z) = (X | Y) . (X | Z) . (Y + Z)

Conversely, the POR is not right distributive over OR but
is left distributive:

(Y + Z) | X = (Y|X) . (Z|X)

X | (Y + Z) = (X|Y) + (X|Z)

Some of the most useful laws are the Absorption Laws,
as these allow us to reduce and simplify expressions.
For example:

X . (X<Y) = X<Y Y . (X<Y) = X<Y

X . (X&Y) = X&Y Y . (X&Y) = X&Y

X . (X|Y) = X|Y Y . (X|Y) = X<Y

These Conjunctive Absorption Laws enable us to remove
repeated events from within a cut set, while the
Disjunctive Absorption Laws:

 X + (X<Y) = X Y + (X<Y) = Y

 X + (X&Y) = X Y + (X&Y) = Y

 X + (X|Y) = X Y + (X|Y) = X + Y

allow us to remove redundant cut sets.

There are also several new laws to handle the
implications of introducing sequences to the logic. One
such implication is the possibility of contradictions. For
example, the expression (X<Y).(Y<X) is a contradiction;
it is not possible for X to occur before Y AND for Y to
occur before X, so this expression will always evaluate to
false, i.e. it can never occur.

This type of scenario is detected by the Laws of Mutual
Exclusion, which state that only one temporal relation
(before, after, or simultaneous) is possible at once.
Another example is:

(X<Y) . (X&Y) = 0

Other contradictions are highlighted by the Laws of
Simultaneity, which are versions of the Idempotent law
specific to the temporal operators:

X<X = 0 X|X = 0 X&X = X

There are also the Laws of Extension, which reveal
implicit temporal relationships between events. for
example, one Law of Extension states that:

(X<Y) . (Y<Z) = (X<Y) . (Y<Z) . (X<Z)

In other words, if X is before Y, and Y is before Z, then X
is also before Z. The same applies to the other operators
too. Applying the Law of Extension is important in
particular because it can reveal hidden contradictions
that would not otherwise be detected by the Laws of
Mutual Exclusion or Simultaneity; for example, it is
possible to have circular redundancies, where a
sequence of events forms a chain:

(X < Y) . (Y < Z) . (Z < X)

This does not immediately appear to be a contradiction,
but applying the Law of Extension reveals its true nature:

(X<Y) . (Y<Z) . (Z<X) . (X<Z) . (Y<X) . (Z<Y)

This clearly violates the Law of Mutual Exclusion and so
there must be a contradiction, since we have both (X<Y)
and (Y<X).

Finally, there are the three Completion Laws. These laws
are particularly important because they link the new
temporal operators to the existing AND and OR
operators from Boolean logic, showing how Pandora
provides an extra layer of precision allowing us to
represent when, and not just if, events occur. These
relationships can best be seen from a diagram:

Fig 2: Completion Laws

This set diagram shows how the temporal gates are
subsets of the logical gates. The rectangle X represents
the situations where X occurs and the rectangle Y
represents situations where Y occurs; the shaded area
represents the overlap, i.e. X AND Y, and can be exactly
subdivided into three parts: X < Y, X &Y, and Y < X. This
is because if two events X and Y both occur, then either
X occurred before Y, Y occurred before X, or they both
occurred simultaneously, and only one of these three
possibilities can be true at once (as stated by Mutual
Exclusion). This is the Conjunctive Completion Law:

X.Y = (X<Y) + (X&Y) + (Y<X)

There is a similar relationship between OR, POR, and
SAND: the area taken up by X+Y can be exactly
subdivided into X&Y, X|Y, and Y|X, and this is the
Disjunctive Completion Law:

X + Y = (X|Y) + (X&Y) + (Y|X)

This is because X|Y covers both X<Y and the case
where X happens but Y does not, and similarly for Y|X.

Finally there is the Redundant Completion Law, which
shows how an event can be temporally redundant:

X = (Y<X) + (X&Y) + (X|Y)

In this case we can remove an event (i.e. Y in the above)
entirely because its occurrence in one of the specified
orders in relation to another event (i.e. X) has no
influence on the outcome.

It is important to note that all the laws can be proven
using TTTs. For example, the Redundant Completion

Law, with the equivalence highlighted in bold, is shown in
Table 5:

X Y Y<X X&Y X|Y (Y<X) + (X&Y) + (X|Y)

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 1 1

1 1 0 1 0 1

1 2 0 0 1 1

2 1 2 0 0 2

Table 5: Proving the Redundant Completion Law

Temporal expressions containing the Pandora operators
can be entered in place of normal Boolean expressions
in HiP-HOPS. For example, going back to the simple
standby example in Figure 1, we might define the
following HiP-HOPS expressions:

• O-System = O-Primary. O-Standby

• O-Primary = PrimaryFault

• O-Standby = O-Switch + StandbyFault

• O-Switch = SwitchFault < O-Primary + SwitchFault
& O-Primary

Here we can use a PAND and a SAND to indicate that
an omission (failure class O) of the switch signal is only
relevant if it occurs before or at the same time as an
omission from the primary component.

HiP-HOPS then joins these together to produce a set of
"temporal" fault trees – fault trees that contain temporal
gates. However, because of these temporal gates, it is
now necessary to use more complex methods to reduce
the fault trees and calculate the minimal cut sets (and
thus produce the FMEA). Whereas there are only a few
important Boolean laws to use during normal fault tree
analysis, there are many possible temporal laws that can
be employed.

The end result are the minimal cut sequences (MCSQs)
for the tree – the smallest possible sequences of events
necessary to cause the system to fail. Each one is a
conjunction of events or of sequences of two events (so
a sequence like X < Y < Z would become X<Y . Y<Z .
X<Z instead). These can then be used to produce a
temporal FMEA. This differs from a normal FMEA or
even the combinatorial FMEA mentioned earlier by the
presence of a sequence column, which indicates the
constraining sequence in which the further effects must
occur.

Staying with the example system from Fig 1, the
temporal FMEA produced by the HiP-HOPS tool would
be as shown in Table 6. This FMEA shows not only what
the effects of combinations of failures would be (e.g.
short circuits in both primary and standby components)
but also what the effects would be when the events occur
in different sequences.

Comp-

onent

Failure Further

Failures

Sequence

(if any)

Effects

Primary Primary
Fault

Standby
Fault

Any Omission
of output

Switch
Fault

SwitchFault
<
Primary
Fault

Omission
of output

Switch
Fault

SwitchFault
&
Primary
Fault

Omission
of output

Switch Switch
Fault

Primary
Fault

SwitchFault
<
Primary
Fault

Omission
of output

Primary
Fault

SwitchFault
&
Primary
Fault

Omission
of output

Standby Standby
Fault

Primary
Fault

Any Omission
of output

Table 6: Temporal FMEA

Notice that this time, if the switch fails after the primary, it
does not lead to an omission of system output. This
sequence is not included in the FMEA table, because it
has no effect in the system. If however the tool was
instructed to derive separately the effects on the two
outputs of primary and standby, only omission of primary
would have been derived as effect.

4 CASE STUDY

Figure 3 shows a simplified model of a vehicle braking
system. It consists of four brake actuators, one at each
wheel, and each with a connected rotation sensor. The
actuators are controlled via a bus, which also carries the
signals from the sensors. These signals are fed into a
pair of electronic control units that control the brakes.
The output of both ECUs must agree (as determined by
a comparator) for the braking commands to be sent to
the actuators. There is also a "vehicle dynamics"
component which is a virtual component representing the
effect the brakes have on the handling of the vehicle.
This can be thought of as the "output" of the system.

The first step is to provide local failure data for each of
the components. Since all four brake actuators are
identical, we can focus on just one of these, and for the
purposes of this case study we will consider only
permanent commission failures (represented by C for
commission), which in the context of braking can cause
the wheels of the vehicle to lock. Note that the model
and its annotations have been greatly simplified to
reduce the analysis to a manageable size and thereby
focus on the principles of representation and analysis of
failure sequences; as such, there is little propagation of

failure among components and, therefore, causes link
almost directly with the effects.

ACTUATOR

Commission failure of the actuator is caused by
communication or brake signal commission failure:

• C-Actuator = ActCom + C-brakeSignal

BUS

Commission failure of brake signal is caused by
communication or brake signal commission failure:

• C-brakeSignal = BusCom + C-brakeSignal

COMPARATOR

Commission failure of brake signal is caused by
communication or brake signal commission failure:

• C-brakeSignal = C-ECU1 . C-ECU2

ECU

Commission failure of output is caused by sensor
commission failure:

• C-output = C-sensor

SENSOR

Commission failure of sensor is caused by internal
sensor failure:

• C-sensor = SensHigh

Figure 3: Braking system model and failure data

Failure annotations show that a permanent commission
of braking pressure (leading to locked wheels) is caused
either by a failure of the actuator (commission of the
brake) or a commission of the signal to the brake. This in
turn is caused either by a bus failure (for example,
memory stuck failures that could corrupt messages and
eventually result in maximum pressure applied to all
wheels) or by a commission of the brake signal from the
comparator; for this to happen, there has to be a
commission from both ECUs. As the ECUs rely on
readings from the same sensor to control each brake, if
the sensor fails high a locked wheel can be perceived by
both ECUs as having normal rotation and both ABS
algorithms will fail to react. Although in practice there will
be plausibility checks to help prevent this scenario, we
assume that there are still circumstances in which an
undetectable sensor bias can arise, thus leading to an
incorrect response from the ECU.

These annotations can be used to synthesise a simple
fault tree for the event of permanent commission of
braking (C-Actuator), which is the same for each wheel.
This fault tree has only three minimal cutsets:

• ActCom

• BusCom

• SensHigh

At this point, we can look at the vehicle dynamics where
the effect of sequencing of failures becomes evident. For
the purposes of this case study, we examine the effect of
the left two brakes (Front-Left and Rear-Left) locking in
different sequences; the analysis could of course be
extended to take into account not only other pairs of
brakes, but also combinations of three or even four
brakes locking. The three scenarios therefore are:

1. C-FL Actuator < C-RL Actuator

2. C-FL Actuator & C-RL Actuator

3. C-RL Actuator < C-FL Actuator

Since the brakes are symmetrical, we need only look at
the first two; the MCSQs for the third will be the same as
the first, except with the order reversed.

Minimal Cut Sequences for Scenario 1

For scenario 1, the expression is as follows:

(ActComFL + BusCom + SensHighFL) < (ActComRL +
BusCom + SensHighRL)

Next we apply a Distributive law to obtain:

ActComFL < (ActComRL + BusCom + SensHighRL) +
BusCom < (ActComRL + BusCom + SensHighRL) +
SensHighFL < (ActComRL + BusCom + SensHighRL)

We can eliminate the BusCom disjunction using
Simultaneity. First we expand it using the law X<(Y+Z) =
X|Y . X|Z . (Y+Z)

BusCom |ActComRL . BusCom |BusCom . BusCom
|SensHighRL . (ActComRL + BusCom + SensHighRL)

BusCom|BusCom violates Simultaneity and is a
contradiction, since an event cannot happen before itself.
This is then equivalent to:

BusCom |ActComRL . FALSE . BusCom |SensHighRL .
(ActComRL + BusCom + SensHighRL)

And because of the Boolean law X . FALSE = FALSE,
the entire conjunction reduces to just FALSE. Then using
the Boolean law X + FALSE = X, we are left with just:

ActComFL < (ActComRL + BusCom + SensHighRL) +
SensHighFL < (ActComRL + BusCom + SensHighRL)

Next we expand this to get:

ActComFL|ActComRL . ActComFL|BusCom .
ActComFL|SensHighRL . (ActComRL + BusCom +
SensHighRL) +

SensHighFL|ActComRL . SensHighFL |BusCom .
SensHighFL |SensHighRL . (ActComRL + BusCom +
SensHighRL)

and using the Boolean distributive law, we can expand
this to six disjunctions, the first of which is:

ActComFL|ActComRL . ActComFL|BusCom .
ActComFL| SensHighRL. ActComRL

Then using a temporal Absorption law, Y . X|Y = X<Y, we
are left with six MCSQs:

• ActComFL<ActComRL . ActComFL|BusCom .
ActComFL|SensHighRL

• ActComFL|ActComRL . ActComFL<BusCom .
ActComFL|SensHighRL

• ActComFL|ActComRL . ActComFL|BusCom .
ActComFL<SensHighRL

• SensHighFL<ActComRL . SensHighFL|BusCom .
SensHighFL|SensHighRL

• SensHighFL|ActComRL . SensHighFL<BusCom .
SensHighFL|SensHighRL

• SensHighFL|ActComRL . SensHighFL|BusCom .
SensHighFL<SensHighRL

In other words, the front left brake locking before the rear
left brake is caused either by the actuators failing in that
order (FL < RL), the sensors failing in that order, the FL
sensor failing before the RL actuator, or the FL actuator
failing before the RL sensor. It is important to note that
POR gates in these results show that sequencial wheel
locking does not occur when a bus commission

(BusComm) failure happens first. This is because a bus
commission is a common cause failure and will cause
simultaneous locking of all wheels. However, the results
show that it is possible for the FL sensor or actuator to
fail first and then a bus failure occurs, leading to
sequential locking of the two wheels.

Minimal Cut Sequences for Scenario 2

For scenario 2, where both brakes fail simultaneously,
the starting expression is:

(ActFaultFL + BusFault + SensHighFL) & (ActFaultRL +
BusFault + SensHighRL)

And ultimately this reduces down to five minimal cut
sequences:

• ActComFL & SensHighRL

• ActComRL & SensHighFL

• ActComFL & ActComRL

• SensHighFL & SensHighFR

• BusCom

Since a commission failure of the bus is a common
cause failure that affects all four brakes, this will always
lead to a simultaneous failure regardless of what occurs
afterwards.

Results

With these MCSQs, we can now build a temporal FMEA,
a part of which (focusing only on the front-left wheel and
the bus) is shown in Table 7.

In this FMEA, various combinations of component
failures cause system level effects –E1 – E4 that
represent the following conditions:

• E1 – Front left brake locks. This is not critical, as
three wheels are unaffected, and supporting systems
are able to mitigate some of the deceleration and
yaw.

• E2 – Caused by Scenario 1: front left brake locks
followed by rear left brake. This is relatively critical
because it may cause the vehicle to veer sideways
into oncoming traffic (assuming vehicles drive on the
right).

• E3 – Caused by Scenario 2: both wheels lock
simultaneously. This is very critical as the driver will
be surprised by a large yaw torque and sudden
braking. Ability to automatically compensate is
limited.

• E4 – Caused by Scenario 3: front left brake locks
after the rear left brake. This has limited criticality as
stability is initially reduced but not lost as one rear
wheel still has traction.

• The system failure of the rear-left brake locking on
its own is not included in Table 7 but would also be
present in the FMEA.

Comp-

onent

Failure Further

Failures

Sequence

(if any)

Effects

FL
Actuator

Com-
mission

None

None E1

RLActuator.
Commission

FLActuator
<
RLActuator

E2

FLActuator
&
RLActuator

E3

RLActuator
<
FLActuator

E4

RLSensor.
SensHigh

FLActuator
<
RLSensor

E2

FLActuator
&
RLSensor

E3

RLSensor
<
FLActuator

E4

Bus.
Commission

FLActuator
<
Bus.Comm

E2

FL
Sensor

Sens
High

None

None E1

RLActuator.
Commission

FLSensor
<
RLActuator

E2

FLSensor
&
RLActuator

E3

RLActuator
<
FLSensor

E4

RLSensor.
SensHigh

FLSensor
<
RLSensor

E2

FLSensor
&
RLSensor

E3

RLSensor
<
FLSensor

E4

Bus.
Commission

FLSensor
<
Bus.Comm

E2

Bus Com-
mission

None None E3

Table 7: Temporal FMEA results

The ability to incorporate sequential and combinatorial
information has increased the amount of information
provided by the FMEA. The results show how the
sequence in which failure events occur can have
different effects – and different levels of criticality.

A traditional single-failure FMEA would only give results
for single brake failures and common causes like a
commission of the bus; an attempt to exhaustively
examine the effect of combinations of component
failures would have required enumeration and
assessment of all possible combinations which for
anything beyond trivial is an intractable task.

Furthermore, analysis of the effect of sequences of
component failures would have been impossible using a
classical approach, and yet it is the effects of such
sequences (in terms of the different types of multiple
brake failures) that are most interesting and critical.

Overall, temporal FMEAs such as that of Table 7 provide
a greater degree of precision in the results than classical
single failure FMEAs. Being able to analyse not only
combinations of failures but also sequences of failures
allows a deeper insight into how a system can fail, even
in simple systems like the braking system presented
here.

In this particular example, we have shown that the
information gleaned from temporal and combinatorial
analyses can reveal considerable differences in the
criticality of effects, and yet that information could be
produced from only a small set of simple logical
expressions for each component in the system.

CONCLUSION

Classical FMEA is a useful technique when determining
the reliability and safety of a system, but it is not without
its faults. Chief amongst these are its inability to analyse
combinations of failures and the lack of support for
considering the effects of sequences of events.
However, sometimes the sequence of events can make
a major difference to the criticality of a system failure or
even reveal that a system failure may not occur at all if
events occur in a certain sequence. Furthermore, as
shown by the case study, the ability to consider multiple
failures and sequences allows us to analyse more
complex outcomes involving multiple system failures,
giving us a better insight into the ways the system can
fail and what effects those failures have on the safety of
the system.

This sequential capability is provided by Pandora, which
allows analysts to represent the sequences of failures
using three temporal operators. HiP-HOPS can then
analyse temporal expressions containing those operators
automatically, by applying temporal laws to reduce them,
and therefore obtain the minimal cut sequences. These
can then be used to produce a temporal FMEA that
contains both the effects of combinations of failures and
of sequences of failures. Because the FMEA is
generated via fault tree analysis, a deductive method, it
minimises the problems of combinatorial explosion and
allows the analysis to take place automatically.

The result is a more comprehensive analysis of the
system, which provides the analyst with better
information with which to estimate the safety and
reliability of the system. Due to the automation and
speed of analysis that HiP-HOPS provides, it also makes
it possible to apply these more detailed analyses
iteratively as part of the design process, thereby
detecting design flaws earlier and helping to produce
more reliable and safer systems.

ACKNOWLEDGMENTS

This work was supported by the EU Projects SAFEDOR
(Grant IP-516278) and ATTESST-2 (Grant 224442)

REFERENCES

1. Collins M.A., Handley S., Collins R.J. Automated

Abstraction of Failure Effects Using a Formal,

Hierarchical, Hardware Specification Language. MSc

Thesis, Cranfield University, 1994.

2. Bull D.R., Burrows C.R, Edge K. A., Hawkins P. G.,

Woollons D.J. "A tool for FMEA of hydraulic

systems." IMECE '96, International Mechanical

Engineering Congress and Exposition, Atlanta,

Georgia, 1996.

3. Barnard R.F., Dohanich S.L., Heinlein P.D. "System

for failure mode and effects analysis." Computer

Integrated Manufacturing Systems 10(2):172. 1997.

4. Hawkins P.G., Atkinson R.M., Woollons D.J., Bull

D.R., Burrows R. "An approach to FMEA using

multiple models." IFMAA'96, International Functional

Modelling Application Association Conference,

Athens, 1996.

5. Hawkins P.G., Woollons D.J. "Failure modes and

effects analysis of complex engineering systems

using functional models." Artificial Intelligence in

Engineering 12: 375-397, 1998.

6. Lehtela M. "Computer-Aided FMEA of Electronic

Circuits." Microelectronics and Reliability, 30(4):761-

773, 1990.

7. Parker D., Walker M., Papadopoulos Y., Grante C.

"Component-Based, Automated FMEA of Advanced

Active Safety Systems." FISITA’06, 31st World

Automotive Congress, Yokohama, Published by

JSAE, ISBN: 4-915219-83-6, 2006.

8. Walker M.D., Bottaci L., Papadopoulos Y.

"Compositional Temporal Safety Analysis." 26th

International Conference on Computer Safety,

Reliability and Security (SAFECOMP'07), LNCS

4680:105-119, Springer, 2007.

9. Dugan J., Venkataraman B., Gulati R. "DIFtree: A

software package for the analysis of dynamic fault

tree models." Annual Reliability and Maintainability

Symposium, Philadelphia, USA. 13-16 January 1997.

10. Vesely W.E., Stamatelatos M., Dugan J.B., Fragola

J., Minarick J., Railsback J. Fault Tree Handbook

with Aerospace Applications. NASA Office of Safety

and Mission Assurance, USA, 2002.

11. Gorski J., Wardzinski A. "Deriving Real-Time

Requirements for Software from Safety Analysis."

Proceedings of the 8
th
 Euromicro Workshop on Real-

Time Systems, pp. 9-14. IEEE CS Press. 1996

12. Hansen K.M., Ravn A.P. "From Safety Analysis to

Software Requirements." IEEE Transactions on

Software Engineering, 24(7):573-584. 1998

13. Walker M.D., Papadopoulos Y.I. "PANDORA 2: The

time of Priority OR gates." DCDS’07, 1st IFAC

Workshop on Dependable Control of Discrete Event

Systems, Paris, 13-15 June 2007.

14. Domis D., Trapp M. “Integrating Safety Analyses and

Component-Based Design” 27th International

Conference on Computer Safety, Reliability and

Security (SAFECOMP'08), LNCS 5219:58-71,

Springer, 2008.

15. Chen d., Johansson R, Lönn H., Papadopoulos Y.,

Sandberg Y., Törner F., Törngren M., “Modelling

Support for Design of Safety-Critical Automotive

Embedded Systems”, 27th International Conference

on Computer Safety, Reliability and Security

(SAFECOMP'08), LNCS 5219:72-85, Springer, 2008

DEFINITIONS, ACRONYMS, ABBREVIATIONS

DFT Dynamic Fault Tree

FMEA Failure Modes & Effects Analysis

FTA Fault Tree Analysis

H/W Hardware

MCS Minimal cut set – the smallest combination of
 events necessary to cause a system failure.
 These are the results of a qualitative FTA.

MCSQ Minimal cut sequence – the smallest sequence
 of events necessary to cause a system failure.
 These are the results of a qualitative FTA in
 Pandora.

PAND Priority-AND – represents a BEFORE
 relationship between two events. Both must
 occur.

POR Priority-OR – represents a BEFORE relationship
 between two events. Only the first need occur.

SAND Simultaneous-AND – represents the situation
 where multiple events occur at the same time.

S/W Software

TTT Temporal Truth Table – a logic table used to
 show sequence values of a temporal expression.

