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User Engagement Triggers in Social Media Discourse on Biodiversity
Conservation
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HERIBERTO CUAYÁHUITL, University of Lincoln, United Kingdom

Studies in digital conservation have increasingly used social media in recent years as a source of data to understand the interactions

between humans and nature, model and monitor biodiversity, and analyse online discourse about the conservation of species. Current

approaches to digital conservation are for the most part purely frequentist, i.e. focused on easily trackable and quantifiable features, or

purely qualitative, which allows a deeper level of interpretation, but is less scalable. Our approach aims to evaluate the applicability of

recent advances in deep learning in combination with semi-automatic analysis. We present a multimodal neural learning framework

that experiments with different combinations of linguistic and visual features and metadata of tweets to predict user engagement

from a function of likes and retweets. Experimental results show that text is the single most effective modality for prediction when a

large amount of training data is available. For smaller datasets, drawing information from multiple modalities can boost performance.

Notably, we find a negative effect of large pre-trained language models when dealing with substantially unbalanced datasets. A

qualitative analysis into the triggers of user engagement with tweets reveals that it emerges from a combination of online discourse

topic and sentiment, and is often amplified by user activity, e.g. when content originates from an influencer account. We find clear

evidence of existing sub-communities around specific topics, including animal photography and sightings, illegal wildlife trade and

trophy hunting, deforestation and destruction of nature and climate change and action in a broader sense.

CCS Concepts: • Computing methodologies → Artificial Intelligence; Machine learning; • Applied Computing → Document

management and text processing; • Social and professional topics→ User characteristics.

Additional Key Words and Phrases: social media analysis, user engagement, multimodal learning, biodiversity conservation, neural

networks, large language models
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1 INTRODUCTION

Social media has served as a rich source of data for studies in conservation science in recent years. Research includes

the analysis of images from social media platforms such as Flickr, Instagram and others as well as textual content, e.g.

from Twitter, to identify places in nature that humans travel to, species they observe and issues in conservation that are

raised in online discussion. Toivonen et al. [82] provide a recent and insightful overview of the use of social media data

in conservation science. They categorise existing research into three broad categories: (1) studies on people in nature

that aim to understand the interactions between humans and nature, including places that humans visit, value and

why; (2) studies in biodiversity monitoring which often focus on data collection, such as sightings and geo-tagging of

particular species, and (3) online discussion, which is a broad term encompassing any form of online conversation or
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discourse about conservation, animals or nature, without the in-situ element of the former two. This article aims to

contribute to research in the latter of these categories, the analysis of online discussion of conservation-related topics

on Twitter.

Specifically, we draw a comparison between data-driven approaches that analyse social media content based on

automatically observable features, such as keywords, geo-tags or the presence of images, and qualitative methodologies,

such as deep linguistic analysis, or social network models. We see our contribution in bridging the gap between these

contrasting methodologies, in generating a deeper understanding of domain discourse dynamics than is possible using

data-driven approaches alone, yet developing models that are transferable across datasets without extensive annotation

or modelling, and therefore lend themselves to real-time social media analysis. The latter is an important requirement

for monitoring in digital conservation, or any social dynamics online. We hope to make a cross-disciplinary contribution

to studies in social computing, digital conservation and computational linguistics.

Recent social science research [94] has revealed a 25% threshold to social tipping points, i.e. points of social transfor-

mation where change occurs rapidly and suddenly and individual members of society adopt views and/or behaviours

that were previously dominated by margin groups. Such social tipping points can relate to technology and energy

systems, political, financial or economic trends, or to the general discourse on climate change. This article aims to

investigate, from an AI and data-driven perspective, how social media, specifically Twitter, is used by members of the

online community to influence the discourse on conservation through textual and visual content. Twitter (known as X

since July 2023) was chosen as a data source due to its wide user base, combination of text and image-based content, its

adoption in previous studies for comparability [7, 10, 12, 61, 63, 71, 81, 82], and API access for research purposes. We

will continue to refer to the platform as Twitter in this article, as it was known during our data collection and research.

It is clear from previous studies has conservation-relevant discourse is increasingly taking place on Twitter, in the form

of positively-natured activism, as well as malicious wildlife trade, making it a relevant platform for data collection and

analysis. Understanding how users react to Twitter-based content can help direct and support conservation action and

campaigns. We are especially interested in the multimodal features that characterise such online discourse, including

linguistic and visual features of posted content, as well as metadata associated with the user and tweet. In essence,

we aim to discover important drivers of user engagement (in the form of likes and retweets) in online conservation

discourse. We attempt to generalise from these features and develop a deep learning framework that can accurately

predict user engagement for a given tweet from its multimodal profile. The following research questions form the basis

of this article:

(1) What are the defining and recurring topics in social media discourse around the conservation of species?

(2) Who are the sub-communities that participate in such discourse and what are their identifiable characteristics?

(3) What are identifiable (linguistic, visual or meta) characteristics of tweets that function as triggers of online user

engagement?

(4) To what extent can recent advances in deep learning for text and image analysis form an effective basis for user

engagement prediction?

We present a multimodal deep learning framework that aims to predict user engagement from a combination of text,

image, and metadata features. We utilise the most recent architectures in natural language and image processing, and also

compare the use of large pre-trained resources, such as language models or image weights. Our experiments demonstrate

that text alone is the most effective modality for prediction and outperforms other modalities and combinations by as

much as 25% in terms of balanced accuracy. This only holds when sufficient training data is available though. With
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limited data, combining multiple modalities can help boost performance, where a model that jointly learns from all three

modalities achieves second-best performance at 66%, which is 4% better than the next model. Large pre-trained models

for language or image processing were found to be less effective, with the language models particularly struggling to

learn from unbalanced data.

While overall, we are able to demonstrate some success with recent neural network models for natural language

processing, particularly transformer networks, our experiments confirm the findings in other studies that the most

relevant insights can be drawn from hybrid methods, i.e. that combine purely AI-driven methods with an element of

qualitative analysis. A set of manual annotations on a subset of our dataset were able to uncover deeper patterns of

user engagement, that were not apparent from frequency-based methods alone. Our qualitative findings are in line with

earlier research that has shown the importance of sentiments for user engagement classification, but not valence, i.e.

the strength of the sentiment. Overall, our experiments reveal that user engagement emerges from a combination of

user activity on Twitter and the sentiment and topic of the discourse. We find clear evidence of sub-communities of

users that engage with specific content, e.g. wildlife crime, deforestation or animal sightings, often driven by influencer

behaviour. Quantity-only metrics, such as the number of hashtags, URLs or emojis used in a tweet, were not found to

carry much predictive weight, and neither were purely image-based features.

This article is structured as follows. Section 2 discusses related work on digital conservation and analysing the

popularity of social media contributions. Section 3 presents details on data collection and labelling and shows basic

statistics of the dataset that will be used for analysis. We present our methodology in Section 4, and discuss experiments

and results in Section 5. This will involve a quantitative evaluation of our deep learning models, as well as a qualitative

analysis of the driving features in digital conservation discourse. We offer a discussion of the findings and drawbacks of

our research in Section 7 and finally present conclusions and future work in Section 8.

2 RELATEDWORK

In this section we aim to provide a methodological comparison of work in digital conservation studies (Section 2.1)

as well as highlight existing findings on what drives popularity of social media contributions in general and across

different domains (Section 2.2). We highlight pathways towards significant progress in the automatic and real-time

analysis of social media content for conservation science by drawing more heavily on recent advances in deep learning

and natural language processing to aid rapid progress.

2.1 Social media analysis for digital conservation

Social media data has been a rich source of insights in studies in digital conservation. Predominant approaches mostly

opt for frequency-based analysis of textual or visual content, purely qualitative analysis, or sometimes a hybrid approach

that combines these two.

2.1.1 Frequency-based analysis of social media data for digital conservation. A common application of social media

analysis in conservation science has been the quantification of visits to particular places, often in nature, as well as the

value that humans attribute to them, e.g. as a source of well-being and mental health, or as a venue for leisure activities.

In this line of research, it has been common to infer the value of a place in terms of the frequency of visits and social

media posts made either about it or from it (based on geolocation). Wood et al. [95] and Gliozzo et al. [26] are relevant

studies that attempt to establish a link between human well-being in nature (inferred from post frequency) and wildlife

conservation. In a more recent study, Väisäanen et al. [86] also demonstrate the use of various image analysis methods

3
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to extract semantic patterns and content from geotagged photographs, with the aim of understanding human activities

and interactions with nature.

Apart from analysing post frequencies in relation to geographical location, multiple studies have also explored

counting images posted from certain locations, often using an element of geo-tagging [26, 30, 88], or alternative means

of determining the location of an image [34]. Some authors have also used keyword search as a data collection tool

[7, 57], and identified trends on location popularity by tracking the frequency of keywords on social media. As an

example of frequency-based analysis, van Zanten et al. [88] count the number of images posted on photo sharing

platforms Panoramio, Flickr and Instagram across Europe and find that, across countries, the frequency of posts seem

guided by the accessibility of a landscape, population density, the degree of mountainous terrain and proximity to

water, amongst others. Frequency-based methods have been considered as an alternative to traditional high-precision

visitor surveys, e.g. by van Zanten et al. [88], as well as Tenkanen et al. [81], who also discuss potential sources of

deviation between automatic estimates and surveys. In contrast to these optimistic studies, Levin et al. [45] warn that

crowdsourced data can be an unreliable measure for areas that are not generally used for human leisure activities.

Social media analysis has also been used increasingly in recent years as a tool to identify and investigate wildlife

crime. This can include the trade of animals (or animal parts) and plants as food, pets, medicines, clothing or trophies.

As an example, Eid et al. [21] analyse Facebook posts to identify illegal hunting activities in Jordan. Di Minin et al. [57]

use keyword search across a range of platforms in multiple languages to uncover trading-related content. The latter of

these studies again demonstrates the significance of frequency-based methods. The authors predefined search terms

around specific animal names or animal-based “products", e.g. scales, horns, furs, to identify and track occurrences on

social media and flag potentially problematic content. Xu et al. [97] followed a similar path of research and discovered a

wider set of keywords (or codewords) in multiple languages that are commonly used in wildlife trade activities online.

Fink et al. [25] demonstrate how wildlife trade, in their case of Indonesian songbirds, can be tracked online using web

scraping, and can potentially offer opportunities to influence the trade towards more sustainable practices. Apart from

using language, recent studies have demonstrated the potential of image analysis methods to identify and monitor

illegal wildlife trade. For example, Kulkarni and Di Minin [41] apply deep image analysis to identify exotic animals on

sale. Interestingly, the authors show that a key feature for the learning models is to recognise when animals are placed

outside their natural environment. In a related study, Cardoso et al. [13] show that state-of-the-art convolutional neural

networks can also identify traded pangolins (or their parts) with reasonable accuracy.

Frequency-based methods do not normally analyse the actual contents of posts, such as images or text, and rely

only on the occurrence of data points for analysis. This has the advantage of generating basic insights fast, but can

compromise the quality of data at the same time, both in terms of noisy data (i.e. including data that is not actually

thematically related), as well as missing data (e.g. from lexically or semantically similar keywords that were omitted

from the search). For example, somebody posting on Twitter may be commenting on a news headline and be in the area

by coincidence without necessarily reflecting an appreciation of the specific geographical spot they are tweeting from.

Similarly, keyword search will often find posts that are unrelated to an intended topic - “hedgehog” refers frequently

to video game character “Sonic”, “jaguar” is often a discussion about cars, and public interest in “reindeer” tends to

peek around Christmas. Similarly, references to wildlife crime will mostly lead to general discussion threads of people

condemning such activities, and can outweigh the much smaller number of posts that actually offer the sale of illegally

poached animal products.
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2.1.2 Automatic processing with open access knowledge resources . To increase the reliability of insights that can be

drawn from social media data, some studies have combined pure frequency analysis with other data sources, e.g.

information about the presence of night lights to identify urban areas [44], or open-source GIS data to better model the

geographical context of posts [45]. Again other studies have integrated the use of sentiment analysis to gain a deeper

understanding of positive or negative values associated with places and potential triggers of such sentiments. In a study

on the Great Barrier Reef, Becken et al. [7] retrieve geo-tagged Twitter posts containing any of a set of predefined

keywords relating to reef monitoring or reef-related activities, such as the state of coral and water, sightings of marine

life or leisure activities. Using a lexicon-based sentiment analysis approach, the authors find that little information is

given that could be used for reef monitoring. Tweets seemed overall positive, which the authors speculate is at least

partially due to a bias towards touristic visitors tweeting about their experiences. The overall positive stance that

humans take towards certain forms of wildlife and conservation activities online is confirmed in a recent study by van

Houten et al. [33] in the area of scientific publishing. The authors show based on the automatic reading of scientific

journal abstracts on the reintroduction of species that sentiments have become increasingly positive over the last 40

years, potentially indicating the growing success of conservation programs.

Hybrid methods that combine an automatic element of processing, e.g. frequency analysis, with a knowledge-based

component, i.e. mostly a hand-curated resource, generally aim to filter or in some way structure the information they

may obtain from a purely statistical approach. This can be successful but is dependent on the quality of the resource. As

an example, sentiment analysis lexicons, which have been used in a number of conservation studies, have often been

curated carefully over long periods of time and are therefore of high quality. They still struggle though with ambiguity

(e.g. negative words that are used in a positive context “wicked”, “insane”), with negation (“not good”), with unknown

words, paraphrases, or humorous, ironic or sarcastic contents, which are notoriously difficult to spot computationally.

Recent advances in statistical language models [56, 65], especially those that can model the context of linguistic content

[18, 67] can circumvent some of these problems. Also, Kulkarni and Di Minin [40] demonstrate success using recent

natural language processing techniques to identify news articles and social media content that are relevant to specific

topics of interest in biodiversity monitoring, which can be valuable for data collection.

2.1.3 Qualitative analysis and interpretability . Purely qualitative approaches lie somewhat at the opposite end of the

automation spectrum in comparison to the approaches discussed so far. While data collection is still done through an

API, analysis is human-guided and manual. Qualitative analysis often delivers meaningful findings but faces constraints

on the amount of data that can be incorporated. Representative examples that apply this form of analysis to research on

digital conservation include e.g. Willemen et al. [92], who analyse online photographs of IUCN Red List endangered

species to infer their popularity. Hausmann et al. [30] analyse labelled images of animals to compare social media

observation surveys against traditional surveys. The authors discuss particularly the risks of bias of an online vs an

in-situ community of wildlife observers. Barry [6] analyses people’s reaction to images of grazing cows and other

livestock. A case in point for this type of research is a study by Macdonald et al. [53] that seeks to understand behaviour

triggers via social media analysis on the sudden and world-wide attention to the killing of a lion in a National Park by a

trophy hunter. The authors point to idiosyncratic features in the narrative as likely sources, such as the lion’s English

nickname “Cecil”, the identifiability of the killer as a Western trophy hunter or the circumstances of the lion being lured

into his death. Understanding such triggers can be of vital importance for conservation efforts as they shine a light on

exactly what causes a willingness in humans to condemn wildlife crime or take action against it. Identifying such broad

5



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Lead author et al.

factors and generalising them into a systematic framework for the understanding of wildlife crime and public reaction

can play an important role in designing campaigns deliberately and gaining public support for conservation projects.

Specifically in the field of social media analysis, a complementary strand of research focuses on social network

analysis, as commonly carried out in social science research [91]. Social network analysis typically aims to represent user

networks based on metadata and engagement, e.g. likes, retweets, followers, conversational threads, etc. which allows

researchers to reconstruct various network dynamics. For example, in the domain of climate change and biodiversity

conservation, previous research has shown a strong relationship between social media users’ individual features, such

as their political orientation [46, 87], socioeconomic status [19], willingness to form risky beliefs [38], and certain views

on climate change and biodiversity, i.e. specifically whether they support action or not. In the context of interaction

patterns, it has also been shown that a majority of online forums are “internally coherent”, i.e. supporters and sceptics

of climate change action both have a preference to interact within their own group [93], a phenomenon which previous

studies have referred to as echo chambers. Anderson and Huntington [1] show that sentiment in open/mixed opinion

forums is often more negative [23] than in echo chambers, while more recent research by Tyagi et al. [85] reveals a

trend for activists to increasingly interact outside their group. Related to the topic of content and sentiment analysis,

there is an active strand of research that looks at framing in climate change discourse, i.e. the concepts that social

groups draw on when discussing or posting about climate change and conservation, see e.g. a study by Hopke and

Hestres [32] on framing of global warming in terms of crisis discourse.

In summary, qualitative research can generate invaluable insights, e.g. in the case of social network analysis on

the relationships between individual attributes and observable behaviour on social media. However, qualitative data

analysis is expensive, time-consuming and resource-intensive to conduct, and therefore applicable in practice only to

limited and specific research questions and datasets. This is particularly relevant for studies in framing, which rely

on high-quality manual expert annotation, and do not transfer well across domains or datasets due to the specialised

nature of online discourse forums.

2.2 Popularity prediction of social media contributions

This section will review existing research on predicting the popularity, or user engagement, with different social media

content, and the underlying factors that seem to drive such engagement. Overall, it appears that different domains

of online discourse operate with different patterns of engagement and participation, though some general rules are

also discovered. As an example from the domain of digital conservation, Papworth et al. [63] present findings on

what drives social media uptake of new pieces of conservation research, when they appear. While they find that the

scientific journal has the highest influence, there is a small trend for mammals and “charismatic” animals to be featured

over other species. This observation is confirmed in research by Roberge [71] who discovered a bias towards larger

animals, often mammals. Findings by Di Minin et al. [59] are more balanced. The authors discover that preferences

for particular species differ between different groups of users, with some travelling to see the “Big Five” while others

are more interested in a broader range of species. This is confirmed by Hausmann et al. (2017) [30] who found that

factors including the socio-economic condition of countries, geographical characteristics, accessibility and proximity

to civilisation were more important indicators of touristic visits (as estimated from Instagram) than the presence of

charismatic species such as the “Big Five”. Fink et al. [24] use sentiment analysis to show a correlation between social

media and news coverage of conservation events, and observe particularly strong sentiments in tragic outlier events,

such as the extinction of a species. Other studies have analysed user engagement, or post popularity, in a broader range

of domains beyond digital conservation.
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In recent related work, Mahdikhani [54] uses linguistic features to predict the popularity of a tweet, defined in

terms of its retweets. The author presents a model for a dataset of 1.25M tweets during the Covid-19 pandemic and

compares the use of topic modelling (LDA [8]), TF-IDF word vectors [78], word embeddings [56], bag-of-word models

[29], and combinations of the above as input features to a voting ensemble of classifiers. The topic modelling phase

is used particularly to induce content features of tweets, such as the emotion in a tweet (fear, anger, job, sadness)

paired with its valence score for intensity. It is shown that highly emotional tweets attract higher popularity than

more information-based tweets. Mahdikhani’s research is in line with earlier work that has shown that content-based

features tend to have higher predictive power than e.g. the number of followers of a tweeting account on its own [42].

In an early study on Twitter, Naveed et al. [61] find that hashtags, URLs and usernames increase the likelihood of a

tweet being retweeted. The authors also confirm the importance of emotional features, where negative emotions tend

to increase retweets, as well as positive tweets with high arousal or dominance (i.e. indicating exciting or intense news).

Emojis were found to intensify these trends, the use of rude words de-intensifies them. Question marks were found

to be a further indicator of retweets. The engagement with tweets has also been found to be contextually dependend.

In the political domain, Rivadeneira et al. [70] find that sentiment can help predict engagement with tweets, but the

polarity (positive / negative) depends on a user’s political views.

The importance of URLs and emojis were also shown in a recent study by Chung et al. [16]. The authors investigate

the engagement with tweets particularly targeted at women by analysing tweets from the Women Can Code theme.

The study reveals that information-based tweets receive more engagement than action or community tweets. This

finding seems contrary to work by Mahdikhani [54] above, who found a negative tendency for engagement with

information-based tweets, though did not consider the additional dimensions of action or community, and focused on

emotion intensity instead. Chung et al. further observe a positive effect from emojis and URLs, and a negative effect for

engagement with hashtags and videos. Using images or photos had no demonstrated effect in this study.

Other studies in this area have focused on other particular domains and use cases, particularly the effectiveness

of marketing and branding on social media. For example, Guidry et al. [28] present a focused study in the area of

social marketing, specifically investigating which type of tweets from non-profit organisations tend to attract the

most stakeholder engagement. The purpose was to create a model that can help non-profit organisations engage

with the public effectively. In this context, the authors found that public information tweets were likely to receive

more engagement than marketing tweets, and that call-to-action tweets were more popular than fundraising or event

promotion.

Also focused on marketing, Zadeh and Sharda [99] present a mathematical framework to model the popularity of

tweets in the context of branding. The authors model popularity through variables likes, retweets and replies. They

observe state-of-the-art performance against comparable frameworks and prefer a model that predicts good user

engagement soon after a post was made. While the model achieved good prediction accuracy, the authors do not provide

an analysis of content features beyond temporal relationships. Zadeh and Sharda’s study can be seen as part of a cluster

of approaches that focus on surface features such as temporal connections between tweets and reactions, and the

number of followers, tweets, account age, etc. to model cause-and-effect relationships without the use of additional

content features. Other approaches in this cluster include work by Zaman et al. [100], who use a Bayesian approach to

model retweets and show that it is possible to an extent to model the effects of a tweet from the number of followers

and time of tweet. Lymperopoulos [52] also models tweet engagement from temporal and follower features based on a

novel model inspired by an RC-Circuit.
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While the above studies focus on analysing linguistic features in combination with metadata from tweets, Joseph

et al. [37] offer an analysis of visual content on social media. The authors investigate the specific sub-topic of using

images in tweets and the effects that this can create. They find that historical features (likes, statuses, historical likes)

and transactional variables (creation time of post, age of profile, tweet length) have higher predictive power than any

specific image properties. These features seem to indicate a certain set of acquired skills by experienced tweeters, who

may learn to post in such a way as to maximise their effects over time. While we cannot verify this from the features in

Joseph et al.’s study, it seems to be supported by work by Tavazoee et al. [80], who studied the evolution of tweets in

the 2016 US presidential election.

2.3 Summary and research gaps

Purely data-driven and qualitative approaches both have distinct advantages. While the former offer automated analyses

that can easily scale to large amounts of data with the potential for live or real-time analysis, e.g. monitoring, or

identification of recent events, the level of insight is often shallow. For example, patterns or trends may be discovered

without that their drivers and context are fully understood. At the same time, qualitative approaches, including

traditional linguistic or social network analyses, can generate deep understanding and create new knowledge, but are

very expensive to carry out, and do not transfer well across research domains, datasets, and do not lend themselves to

real-time analysis. An important research gap therefore lies in developing hybrid approaches that combine the benefits

of both paradigms of analysis. Also, many existing studies rely on a single modality, e.g. focusing exclusively on text, on

images, or on social network features, opening up a further research gap on approaches that attempt to model multiple

modalities congruently [9, 11, 62, 76, 83, 90]. Finally, much of the existing literature on user engagement with social

media content relies on getting to know its users, e.g. modelling user networks, recognising interests, sometimes users’

socio-economic features, and identifying influencers [27, 35, 72], etc. Other studies have attempted to model engagement

based on surface features alone, such as the use of hashtags, emojis, etc. A research gap exists in methodologies that

create a deep understanding of the social dynamics of a domain, in a way that is scalable and transferable to new

domains and topics with relative computational ease.

3 DATA COLLECTION AND PREPARATION

3.1 Data collection and keywords

We used the Twitter API to collect a set of 1,003,059 tweets over a time span of six months, between November 2020

and May 2021. Keywords for the Twitter search were drawn from two sources:

• We obtained the names of all animals that were listed as vulnerable or endangered on the IUCN Red List
1
as a

download in November 2020. This list was filtered to include only palearctic mammals, to reduce the number

of search terms from about 19,000 down to 5,561. As the list uses the scientific names of animals, e.g. “ursus

maritimus" instead of polar bear, we used a script to automatically convert scientific names to common names

using Wikipedia. The intuition was that the latter would be much more commonly found on Twitter than the

former Latin names. We found in our data collection that some animals were never tweeted about, leaving us

with a remaining set of 4,305 that had at least one tweet over the time frame of our search (see list of all hashtags

used on Github
2
) . The resulting distribution of keywords used as Twitter search terms is shown in Figure 1. Our

1
https://www.iucnredlist.org/

2
URL anonymised as per author instructions.
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Fig. 1. Frequency distribution of animal names used as keywords for data collection.

initial search led to 3,571,350 tweets. After removing retweets and duplicates, this part of our search led to a

dataset of 477,228 tweets.

• As a second step, we collected tweets from a set of other conservation-related search terms. This was based

on our initial analysis showing that animal-keyword tweets are receiving predominantly positive attention (in

line with earlier research [33, 92]), and we were aiming to have a more balanced dataset between positive and

negative topics. We therefore chose the 100 most frequent conservation-related hashtags from our initial data

collection as a set of further search terms. The distribution of these hashtags is shown in Figure 2. Adding tweets

with specific hashtags, we obtained another 5,081,008 tweets, of which 525,831 remained after duplicates were

removed.

Combining the two steps above, we are left with a dataset of 1,003,059 tweets for analysis.
3
While it is impossible

to fully rule out collecting bot-generated tweets, we used Indiana University’s Botometer
4
tool (which identifies user

accounts that are likely bots) [98] in both data collection steps above to minimise the chance of collecting non-human-

generated content. This led to a collection of tweets from 640,541 unique users, with an average of 1.78 tweets per user

(± 8.27), a minimum of 1 and a maximum of 1,994. Table 1 shows statistics of users and tweet behaviour.

Table 2 shows the features available for each tweet, including metadata provided by the API, as well as additional

labels described below.

3
In line with the Twitter API’s Terms & Conditions we are not able to share the collected dataset of tweets with the community. However, we make a list

of tweet IDs available to support replicability of our results, see [anonymised Github URL].

4
https://botometer.osome.iu.edu/
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Fig. 2. Frequency distribution of conservation-related hashtags used for data collection.

Feature Min Max Mean Std 25% 50% 75%

User following 0.0 109,496,900 22,866.06 519,275.4 100 442 1,768

User followers 0.0 1,619,266 1,683.122 7,811.361 155 147 1,276

Tweets per user 0.0 6,329,018 32,859.21 120,846.5 1,419 6,648 24,673

Table 1. Basic statistics on user tweets, followers and following.

3.2 Data labelling and annotation

Besides metadata provided by the Twitter API, we added a set of additional annotation features on the image content,

sentiment and valence and user reactions to tweets, described below.

Image processing. From the 1,003,059 tweets we collected, 186,461 had image content attached to them, and 160,196

were downloadable for analysis (other files were deleted, empty or corrupted). As an initial step, we used OpenCV to

automatically detect human faces in the images and blur them with Gaussian noise to protect the individuals’ privacy

during analysis. Next, our aim was to annotate the data further in terms of whether or not an image included an

animal. To this end, we manually sorted 150 images of animals and 150 without animals into separate folders (binary

classification) - a small dataset seemed sufficient given the relative ease of this task. We trained a Convolutional Neural

Network (CNN) (see specifications in Section 4.2) over 10 epochs using pre-trained ImageNet embeddings with another

10 epochs of fine-tuning, and a train-test split of 80%-20% with 5-fold cross-validation. This yielded an overall accuracy

of 93% on the held-out test data. To compare with a standard benchmark, we also experimented with a YOLO image

detector [69]. YOLO achieved a positive classification rate of 91% for images containing animals and a misclassification

10
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rt-please sign #petition 
#ebaykleinanzeigen  : stop trading in live animals 

animal trophies fur https://tco/oxoravb6eq 
#adoptdontshop #pets #cats #dogs #rabbits 

#guineapigs #furfree #endwildlifetrade  
#banhunting #covid19 #welpenhandel 

#banhunting #puppymills #bantrophyhunting 
https://tco/88rpumrnhg

Tweet image (left) with attention map (right)

Tweet text (with attention-focused 
words highlighted)

Meta information (user and tweet)

Followers: 1,404  — Following: 318 — Tweets by user: 29,746

Tweet likes: 1 — Retweets: 0 

Fig. 3. Example tweet including image information, text and metadata. Attention maps were generated from the 12-head transformer
network described in Section 4.1 for text, and the CNN in Section 4.2 for the image attention map.

Metadata from tweets tweet id, text, user name (anonymised), user description, user location, user

following, user followers, tweets by user, date when user account was created,

date of tweet, number of retweets, number of likes, hashtags, links to any media

(images or video), search term used to identify tweet.

Image label Image contains an animal: binary

Sentiment label Binary (discrete) sentiment estimated with DistilBERT

Valence DistilBERT sentiment valence (float -1 to 1), continuous strength of sentiment.

Reaction label High or low reaction to a tweet based user engagement with a tweet, i.e. number

of “retweets" + “likes".

Table 2. Tweet attributes collected or labelled for analysis.

rate of 16%, yielding an overall accuracy of 84% in comparison to our bespoke model. It is noteworthy that YOLO only

contains a subset of 11 animals of the ones we considered.

Using our bespoke trained classifier, we annotated the remainder of the dataset with the relevant binary label set. A

qualitative analysis of a sample of classified images was conducted. Images that were mis-classified were mostly those

that contained animals in the background, or in a secondary illustration, drawing, or other non-clear cut representation.

Animals in the foreground or in close-up were generally recognised.
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Fig. 4. Plot showing binned numbers of likes against average number of retweets in the group. We define 35 as a threshold between
low and high engagement with tweets.

Sentiment and valence analysis. We added sentiment labels to each tweet based on its text, using HuggingFace’s

pre-trained DistilBERT module. DistilBERT
5
[75] is a smaller, more efficient variant of BERT [18] that assigns a valence

score to a text segment between -1 (negative) and +1 (positive), which can be discretised into a binary sentiment label.

On manual inspection of the resulting multimodal and sentiment-labelled dataset, we observed that a majority of

animal photos receive positive sentiment. This includes close-up images of animals, frequently in the wild, but also in

zoos or images of pets, or in gardens (e.g. birds). Some memes that are made to look like realistic animals (or use images

of some) are also in this positive category, as are realistic drawings of animals or costumes. Negative images can in

some cases be very similar (e.g. close-ups of animals), but contain more images of cages, some dead or injured animals,

images of traps, e.g. snarls, plastic, deforestation, and trophy hunters. Images are also of objects, e.g. weapons, bones,

tusks, skulls. A sizeable number of negative images of animals are with humans (e.g. a hunter posing) or animals on

stretchers, though some of them have a positive dimension (e.g. animals being helped). Images of dishes and body parts

are also generally negative.

Engagement labels. Finally, we categorise tweets according to how much user engagement, they receive, measured in

terms of their number of likes and retweets. The average number of likes in our dataset is 27.43 with a standard deviation

of 168.64, a median of 3, a maximum of 6,630 and minimum value of 0. The average number of retweets is lower at

7.79 with a standard deviation of 49.68, a median of 1 and maximum value of 2,708. We add the number of retweets

+ likes and consider a high reaction score > 35, and low otherwise. This is based on an analysis illustrated in Figure

4. The figure shows the binned number of likes that a tweet receives mapped against the average number of retweets

received by the bin. For example, we can see that 130 tweets receive between 40 and 50 likes, and the average number of

retweets of this group is 10. Based on this analysis, we postulated 35 as a threshold to distinguish a tweet that receives

high engagement from other that receive low engagement. In the remainder of the article, we are mostly interested

in identifying the factors that lead to a tweet receiving a high reaction score. We acknowledge that our measure of

engagement is does not incorporate valuable information on specific users, their tweet behaviour and wider social

networks, which have been shown to be relevant prediction features in previous work [4, 14, 19, 38, 39, 46, 87].

5
https://huggingface.co/docs/transformers/model_doc/distilbert
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Text 
(max_len)

Image 
(160,160,3)

Meta information 
(13 features)

Embeddings 
(positional, BERT,  
DistilBERT, GloVe, 

RoBERTa)

Pre-trained image 
features (ResNet, 

InceptionNet, 
MobileNet, VGG)

Numeric feature 
representation

Concatenated joint representation

Binary classification: high/low user engagement 

Fully-connected softmax layer

Tweet

CNN 
Base model (weights) 

100 layers
Convolution + ReLU

Ave Pooling
Flatten

Fully-connected (FC)

Neural Net 

Input (13 in, 20 units)

FC + ReLU + dropout

FC + ReLU

FC + ReLU + dropout

Transformer 
Positional 

embeddings 
(maxlen, vocab_size, 

emb_dim)

Multi-head attention

Ave pooling
Position-wise FC

Fig. 5. Learning architecture of our neural network for multimodal user engagement classification. Learning models for text analysis
(transformer network on the left), image analysis (CNN in the centre), and metadata (feedforward neural network on the right), are
compiled, and then their final layer representations are concatenated.

4 METHODOLOGY

Our methodology is based on a deep learning model that combines information from three disparate sources drawn

from the tweets: textual data analysis (Section 4.1), image data analysis (Section 4.2) and metadata (Section 4.3). Given

that all three sources of data seem to contain valuable information that may determine user engagement with specific

tweets, we want to explore to what extent treating all three data streams jointly can lead to better performance than

the individual models alone.

4.1 Text analysis

We pre-process our text data by removing special characters ([\/:*’?¿";!< >-,]) and converting all text to lowercase. We

use a sequence length of 35 words which we found covers the majority of tweets in our dataset as tweets are limited to

280 characters.

Our text analysis module is based on a transformer network [89] architecture with positional embeddings that

represent the input to our learning model as XTEXT ∈ Rn×d . If we assume that XTEXT is based on a d-dimensional

embedding representation for n tokens (words) in a sequence, we can compute positional embeddings for XTEXT as

13
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XTEXT + P, where P is a positional embedding matrix P ∈ Rn×d . The elements of the ith row and the (2j)th or the

(2j + 1)th column is then given as:

pi,2j = sin

(
i

10000
2j/d

)
,pi,2j+1 = cos

(
i

10000
2j/d

)
. (1)

The resulting embedding matrix P represents positions in a sequence as rows and different positional encoding

dimensions as columns. Therefore, XTEXT + P can be represented as a matrix of n rows (one per token) of d columns

(dimensions). This representation serves as an input to our transformer model for text analysis and is illustrated in Figure

5 (pink stream on the left). The transformer is implemented as a stack of layers, including a multi-head self-attention

layer wit global average pooling, followed by a position-wise feedforward neural network [22].

The intuition behind self-attention is that each input token can pay attention to any other token during processing,

which is computationally efficient due to parallelisation, and allows a wider linguistic context to be taken into account

for prediction making [48, 64]. The inputs XTEXT + P described above are mapped to matrices q (query), k (keys) and v
(values) with learnable weight matricesW(q)

i ∈ Rpq×dq ,W(k)
i ∈ Rpk×dk andW(v)

i ∈ Rpv×dv . This helps to find how

the inputs interact together, and to determine the attention between input tokens (self-attention):

hi = so f tmax(
QK⊤√
dk

)V, (2)

where Q = qW(q)
i , K = kW(k )

i , and V = vW(v)
i . Multi-head attention applies multiple self-attention computations in

parallel and later concatenates them, so that each “head" hi can pay attention to different tokens during prediction

making, thus gathering more relevant information towards the overall prediction. The position-wise feedforward neural

network that follows the self-attention layer is a multi-layer perceptron with two hidden layers that work from the

sequence of positions in our input text.

A transformer network as described in this section represents our baseline implementation for text analysis. Our

experiments in Section 5 compare this model against large pre-trained language models, BERT [89] using bidirectional

self-attention, DistilBERT [75] using knowledge distillation, and RoBERTa [49] using a robustly optimised BERT, to

assess the benefits of pre-trained vs domain-specific embeddings.

4.2 Image analysis

We apply basic data augmentation to all images in our dataset, including horizontally flipping the images and applying

a 20% degree random rotation to enhance the diversity of individual images. Data augmentation is applied to images in

the training set only, and led to an additional 19,809 image-label pairs. This augmented dataset serves as input XIMG to

our learning model, where each image ximд,i ∈ XIMG is a 160x160 3-dimensional RGB pixel matrix. For image analysis,

we use a Convolutional Neural Network (CNN) [43] with pre-trained ImageNet weights and fine-tuning. The specific

pre-trained model is varied across experiments (see Section 5), though MobileNet V2 [74] is light-weight and gives us

consistent results. We inherit the layers of the pre-trained base model and feed pre-processed augmented data XIMG

into this base model. We then stack a two-dimensional convolutional layer with ReLU activation on top of the base

model, and an average global pooling layer, followed by a fully-connected prediction layer. We use an Adam optimiser

and a sparse categorical cross-entropy loss function with a learning rate of 0.0001. The resulting model is then trained

with an initial set of epochs during which layers on the pre-trained base model remain frozen. After the initial training
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phase we unfreeze these layers and fine-tune the model. The image analysis phase is shown in the blue (middle) stream

in Figure 5 with the relevant layers used in the image analysis CNN.

4.3 Metadata

We also include metadata from tweets into our multimodal analysis, consisting of features: user location (discrete),

presence of animals in image (binary), DistilBERT sentiment (binary), DistilBERT valence (float), presence of emojis

(discrete), search term (discrete), number of user followers (int), number of accounts that user follows (int), and tweets

made by user (int). We refer to the input from the metadata stream as XMETA. Given the tabular form of the data, this

information is modelled by a standard feedforward neural network that computes an increasingly abstract hidden

representation of XMETA captured in the hidden state g, which is computed through updates to a non-linear activation

function f (xMETA,t , gt−1) at timestep t . We apply two fully-connected layers, with 10 and 5 hidden units each, with a

dropout rate of 0.2 on each layer and a ReLU activation function. The architecture is illustrated in Figure 5 alongside

the text and image models. We use Adam optimisation and a categorical cross-entropy loss function to minimise the

loss expected and generated outputs. This classifier is used to predict user engagement from metadata only in Table 3

below, and is also used in the joint setting with other modalities.

4.4 Multimodal

As illustrated in Figure 5, the final multimodal learning model concatenates the last layers of each of the imageOUTIMG,

text OUTTEXT and metadata OUTMETA models into a single layer representation. We stack a prediction layer on top

and train the model over ten epochs with a batch size of 32, Adam optimisation and sparse categorical cross-entropy

loss. Different dual combinations of modalities reported in Section 6 omit one of the layers, but otherwise follow the

same principle.

5 EXPERIMENTS AND RESULTS

We describe our experimental setup in this section followed by a quantitative evaluation of our learning models. We

then present an evaluation that explores qualitative aspects of tweets and different modalities in more detail.

5.1 Experimental setup

We compare five different experimental setups: two models using text only, one using images only, one using only

metadata, and one multimodal setup that combines different modalities. All learning models use the same train-test

split which is 80% to 20% for the joint subset of data, i.e. all tweets that have both text and images associated to them.

Our test dataset for all experiments contains 1,650 tweets. This leaves 1,001,409 tweets containing text for training, and

a much smaller training dataset of 6,603 tweets that contains text and images for joint training. The metadata (only)

results are computed from the full 1,001,409 data points.

Text-only baselines.

• Transformer networks as described in Section 4.1 with 2, 8 or 12 heads. Embedding representations in these

models are learnt from the domain data without pre-trained language models. Our implementation uses one

hidden layer (512 units) with layer normalisation (ϵ=1e-6) [3] and dropout (0.1). We use a batch size of 32 for

these experiments and Adam optimisation. We use an embedding dimension of 128, maximum sequence length

of 35 words and a vocabulary size of 16,33,395.
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• BiGRUwithGlove uses GloVe [65] embeddingswith its pre-trained Twitter word embeddings glove.twitter.27B.100d.

The learning model is a Gated Recurrent Unit (GRU) [17] with two bidirectional layers (512, 256 units) and 0.2 of

dropout. We use an embedding vector length of 100, and a maximum sequence length of 35. Other parameters

are shared with the transformer networks.

• BERT [18] is applied for comparison as a large pre-trained language model. We use bert-base-uncased embeddings

with a sequence length of 35. Our model stacks an additional fully-connected layer (512 units and ReLU activation)

on top of the BERT embeddings, as well as a softmax prediction layer. Both layers use a 0.01 L2 kernel regulariser.

• We also compare with a DistilBERT [75] model using distilbert-base-uncased embeddings, which is considered

a lighter-weight model based on BERT with 40% less parameters. Training parameters are shared with the BERT

model above. Both use Adam optimisation.

• Finally we use a RoBERTa [49] model with roberta-base embeddings, which is also based on BERT but uses

dynamic masking and hence more training data. Model and training parameters were the same as for the other

BERT and DistilBERT above.

We also compare our text-only classifiers in two conditions: using the full textual data set available (full data), and

using only the subset of data samples that also contain an image (joint subset). The latter is necessarily the only data

that is available for joint learning.

Image-only baselines. To establish prediction performance for an image analysis only task, we use a CNN learning

model as introduced in Section 4.2. Our experiments focus on varying the pre-trained image weights, while keeping the

remainder of the model setup and parameters constant. We compareMobileNetV2 [74],VGG19 [77], InceptionNetV3
[79] and ResNet50V2 [31]. As a baseline comparison to image classifiers with pre-trained weights, we also report

results with a Standard CNN (3 convolutional layers with 16 filters and 3 kernels, max pooling and ReLU activation)

that learns domain weights from scratch. All models are trained for 10 epochs initially and then fine-tuned for another

10 epochs before generating predictions.

Metadata-only baselines. We also experiment with a set of baselines to predict user engagement with tweets from

metadata of those tweets alone. Our Neural Net baseline (multi-layer perceptron) uses two fully-connected layers with

a dropout rate of 0.2 and a sigmoid activation function. We use Adam optimisation and a binary cross-entropy loss

function. The neural network model is compared with a set of non-neural standard machine learning baselines, which

can generally be expected to show decent performance given the tabular nature of the data: a Naive Bayes classifier, a
decision tree, random forest, and an XGBoost classifier.

6 RESULTS

Table 3 shows quantitative results for all models according to test accuracy, balanced accuracy, precision, recall, F1

score and the model parameters. The test set is unbalanced with a majority baseline of 86%, which makes test accuracy

a slightly less interesting metric to consider in the table below.

6.1 Learning results

Inspecting initially the balanced accuracy score of our results, we can see that the images only category fails to learn

a balanced prediction model for both output classes high and low user engagement. Overall, our MobileNet model

appears to be the most successful of the pre-trained image weight models, and is also the most efficient to train given
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Model Test Balanced Precision Recall F1 Model

Accuracy Accuracy parameters

Images only
Standard CNN 0.87 0.50 0.76 0.87 0.81 3,301,028

CNN+MobileNetV2+FT 0.87 0.50 0.83 0.87 0.81 2,260,546

CNN+VGG19+FT 0.86 0.50 0.78 0.86 0.81 10,586,178

CNN+InceptionV3+FT 0.84 0.50 0.78 0.83 0.80 21,806,882

CNN+ResNet50V2+FT 0.84 0.51 0.78 0.84 0.81 23,568,898

Text only (joint subset)
Transformer (2 heads) 0.85 0.58 0.79 0.77 0.78 1,455,774

Transformer (8 heads) 0.86 0.57 0.78 0.77 0.77 1,480,926

Transformer (12 heads) 0.86 0.55 0.80 0.84 0.81 1,497,694

BiGRU with GloVe 0.87 0.50 0.73 0.86 0.79 165,073,334

BERT 0.86 0.51 0.83 0.86 0.81 109,876,994

DistilBERT 0.87 0.60 0.82 0.79 0.80 66,757,634

RoBERTa 0.87 0.50 0.76 0.87 0.81 125,040,386

Text only (full data)
Transformer (2 heads) 0.95 0.84 0.95 0.95 0.95 52,281,182

Transformer (8 heads) 0.95 0.87 0.96 0.96 0.96 52,306,334

Transformer (12 heads) 0.95 0.91 0.95 0.95 0.95 52,323,102

BiGRU with GloVe 0.94 0.50 0.73 0.86 0.79 165,073,334

BERT 0.97 0.50 0.93 0.97 0.95 109,876,994

DistilBERT 0.97 0.50 0.93 0.97 0.95 66,757,634

RoBERTa 0.97 0.50 0.93 0.97 0.95 125,040,386

Metadata only
Naive Bayes 0.84 0.54 0.79 0.84 0.80 -

Decision Tree 0.83 0.66 0.83 0.83 0.83 -

Random Forest 0.86 0.50 0.73 0.86 0.79 -

XGBoost 0.87 0.57 0.88 0.87 0.83 -

Neural Net (MLP) 0.85 0.50 0.73 0.86 0.86 -

Multimodal models
Joint encoder text-images 0.86 0.59 0.81 0.86 0.82 18,554,338

Joint encoder text-meta 0.86 0.62 0.80 0.77 0.78 1,552,004

Joint encoder images-meta 0.86 0.50 0.73 0.86 0.79 17,017,636

Joint encoder all 0.87 0.57 0.81 0.84 0.82 18,561,988

Table 3. Results for predicting reactions for tweets in terms of images, text or metadata only andmodels that use a joint representation.

the smallest number of parameters. While recall numbers are better, the results overall seem to confirm earlier research

that has shown that predicting user engagement from visual features is difficult [12, 15, 20, 37, 51], lending motivation

to the exploration of multimodal features.

For text only models, we see a similar pattern for the models trained from the smaller joint subset of tweets.

The DistilBERT, RoBERTa and BiGRU with GloVe models achieve the joint best test accuracy, followed by the

transformer networks, but overall performance is low. This improves when the larger full data set of text samples is

taken into account, which train from our full set of 1,001,409 text-based tweets. We can see that the pre-trained language

models BERT, DistilBERT and RoBERTa all achieve high test accuracy and precision, recall and F1 scores. However,

their performance drops sharply when looking at balanced accuracy. This drop is not observed for the transformers
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27

Fig. 6. Example tweets from the domain of bird photography. Confidence level of classifier is shown as a probability.

that are trained from in-domain data without pre-trained embeddings. A larger amount of training data clearly has a

substantial effect on the performance of user engagement prediction models, and linguistic features carry substantial

predictive value towards this task.

Looking finally at themetadata models, we see learning success for the XGBoost model and the Decision Tree
classifier with a maximum balanced accuracy of 0.66. These results are noticeably better than images alone, but are far

from the 90+% text-based models trained from full data.

Based on these results, we combined a 12-head transformer network, CNN+MobileNetV2+FT and the Neural
Network for metadata into a single model to compute the multimodal joint results at the bottom of Table 3. The

transformer was chosen because it has overall the best performance of the text models. While the BERT variants score

slightly higher in some metrics, this is not consistent, and the vanilla transformer has only 2.4% of the parameters of the

smallest BERT model (DistilBERT). For predictions from metadata, the neural network did not show high performance

across metrics, but allows the extraction of learnt weights into a joint multimodal model, and was therefore chosen

based on architectural considerations. We can see that the best recall and F1 results in this section are achieved by a

model that combines all three modalities (joint encoder all). However, the best balanced accuracy results are from a

model that combines text and metadata only (joint encoder text-meta). None of the multimodal model combinations

perform nearly as highly as the text only model trained from full data. This is presumably due to a small amount of

image data in comparison with the amount of text and metadata.

As a further layer of analysis, Table 4 shows confidence levels for the best performing models per category, alongside

statistical significance (based on aWilcoxon Signed Rank test) and effect size r . We can see earlier results confirmed with

the text-only models showing the highest confidence in their predictions and the lowest Brier score (which measures

the accuracy of probabilistic predictions) overall, followed by the set of joint models.

Figures 6 and 7 illustrate example tweets alongside their text, image and metadata, and can provide a more intuitive

illustration of the prediction models. Specifically, the two tweets in Figure 6 are both examples of bird photography. The
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29

Fig. 7. Example tweets with negative topics, deforestation and illegal wildlife trade. Confidence level of classifier is shown as a
probability.

tweet on the left was made by an account with a smaller amount of followers and accounts they follow, with a smaller

amount of tweets. In general this does not seem to be a high profile Twitter account. The specific tweet however, which

features a close-up of a bird, in a relatively informal position, received 52 likes and 4 retweets, which according to our

categorisation in Section 3.2 is classed as high user engagement. In contrast, the tweet on the right was made by a

much more high profile account and looks professionally taken (as also indicated by the photographer’s signature in

the lower right-hand corner). Yet the actual tweet received low engagement. We can see from the visual attention maps

that the bird in the left-hand image is recognised, but not the group of birds on the right-hand side. Nonetheless our

image classifier predicts high engagement for both, though with different confidence levels (0.53 for the single bird and

0.96 for the group). The text classifier on the other hand predicts correctly based on a set of keywords and hashtags.

In contrast to the positive-natured bird tweets, tweets in Figure 7 deal with more negative topics: deforestation (left)

and wildlife trade (right). Again we can see that the left-hand post was made with a moderately active user account.

The image classifier recognises the correct region of interest in the image (patch of missing trees), however does not

make a correct engagement prediction. The text classifier is correct again based on a small set of keywords. The tweet

on the right-hand side was made from a more active account. The text-based prediction and image-based predictions

are both incorrect this time, with the image attention map roughly focusing on the correct region of the image, but

with low confidence.

Overall while attention maps from text and image classifiers can help us understand the predictions that are generated

for individual tweet instances, they are not helpful for the discovery of broader and more general patterns of user

engagement with conservation-related social media content.

6.2 Qualitative analysis

This section presents an annotation scheme for a subset of our data in an attempt to uncover more of the general

features and patterns that are at work in our dataset. We know from earlier research (see Section 2) that people prefer
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Model Probabilistic Confidence of Predictions Brier Effect

(overall) (correct) (incorrect) score size r

Joint modality models
Joint encoder text-images

∗∗
0.936 ± 0.086 0.941 ± 0.078 0.903 ± 0.119 0.121 0.81

Joint encoder text-meta
∗∗

0.851 ± 0.089 0.857 ± 0.083 0.812 ± 0.114 0.116 0.93

Joint encoder images-meta
∗∗

0.821 ± 0.029 0.822 ± 0.030 0.814 ± 0.024 0.123 0.99

Joint encoder all∗∗ 0.871 ± 0.129 0.883 ± 0.120 0.799 ± 0.158 0.121 NA

Text only
Transformer (12 heads), full data

∗∗ 0.970 ± 0.081 0.981 ± 0.060 0.792 ± 0.158 0.039 0.58

Distilbert (full data)
∗∗

0.963 ± 0.0705 0.966 ± 0.064 0.865 ± 0.142 0.031 0.50

Distilbert (joint data subset)
∗∗

0.927 ± 0.0441 0.929 ± 0.043 0.908 ± 0.045 0.115 0.94

Images only
CNN+MobileNetV2+FT

∗∗
0.896 ± 0.072 0.896 ± 0.066 0.893 ± 0.095 0.155 0.99

Metadata only
Decision Tree

∗∗ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.147 0.49

Table 4. Analysis of the confidence (and standard deviation ±) of different models in their output predictions. Statistical significance
at p < 0.0001 is shown as ∗∗ and is computed against the fully joint model Joint encoder all.

Attribute Description Max Min Std Mean Median

Emojis Emojis in tweet 10 0 1.6 0.55 0

Urls URLs in tweet 3 0 0.54 1.34 1

Hashtags Hashtags in tweet 27 0 4.13 3.2 2

Usernames Usernames in tweet 12 0 3.33 1.05 0

Place names Geographical place names in

tweet

4 0 0.87 0.55 0

Names Names in tweet 5 0 0.53 0/19 0

Table 5. Context annotation categories and attributes. Numbers are given for an annotated sub-set of 1,650 tweets. Each category
refers to the total raw count occurring in a tweet and is represented by an integer.

Image content Categories of image content (all binary ) true false

Weapons, guns Visible in image. 34 1616

Animal and people Both visible in image. 86 1564

People in image Visible in image. 270 1380

Graphics Graph, plot or other illustration. 94 1556

Text imposed Text imposed over visual content. 552 1098

Public figure Recognisable person in the image. 25 1625

Beautiful nature Image of (often pristine) nature. 128 1522

Destruction of nature Deforestation, drilling, fires, etc. 148 1502

Animal in distress Visible in image. 88 1562

Animal in image Visible in image. 851 799

Animal in focus Visible in image. 618 1032

Table 6. Image content annotation categories and attributes. Numbers are given for an annotated sub-set of 1,650 tweets.

to engage with media content on “charismatic" animals over other less prominent species [30, 58, 63, 71], and that

negative emotions, high valence [54] the use of emojis [16], hashtags, usernames [61], and URLs [16] lead to positive

engagement of users with social media content in some contexts. This is also the case for information-based tweets,
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Content / Speech Act Discrete category tweet of speech act Frequency

Call for Action (CFA) A call for action, e.g. to react, to participate, to change behaviour, etc. 136

CFA + Event A call for action to attend an event 2

CFA + Advert A call for action to support a commercial organisation or make a pur-

chase.

38

Community A tweet that is relevant to a specific community 713

e.g. bird watchers and is mostly relevant to them.

Community + Advert An advert that appeals to a sub-community 39

Community + CFA A call for action directed at a specific sub-community, e.g. to act react,

sign a petition, etc.

64

Information Factual tweet that conveys information 232

Information + Advert An advert that is based on a factual situation 35

Information + CFA A call for action motivated by factual information 121

Information + Commu-
nity

Information relevant only to a sub-community 113

Information + Commu-
nity + CFA

A sub-community is called to act based on information mostly relevant

only to them.

8

Advert A tweet advertising a product, company, etc. 146

Fundraising A fundraising tweet, e.g. a call to donate 2

Table 7. Tweet semantic / speech act content annotation categories and attributes. Numbers are given for an annotated sub-set of
1,650 tweets.

according to some studies [16]. In contrast to some of those findings, other studies have found a negative influence of

hashtags [16] or information-based tweets on user engagement [54], as well as marking tweets [28, 99] or those that

call for action, e.g. prompting users to respond, react, donate, share, or similar [16]. To the best of our knowledge, there

are no studies so far that have found a demonstrable influence of image-based content on user engagement, either

positive or negative [16, 37].

6.2.1 Content annotations. To capture known features of user engagement, we manually annotated a small portion

of our dataset, i.e. 20% (or 1,650 tweets) of the multimodal joint data corresponding to our test set above. Table 5

shows annotation categories for textual content in individual tweets alongside basic statistics. These features are

mostly objective and can be extracted from tweets semi-automatically, e.g. via the @ or # symbols. Table 6 focuses on

image-based content, where categories are binary. The table shows class distributions for each attribute, e.g. if animals

were visible in the image, or people, destruction of nature, or other relevant categories. The specific categories were

chosen based on empirical inspection and prominent visual categories in our dataset. While image-based features

are also objective in their nature, they are less easy to extract reliably via automatic processing, and were therefore

hand-annotated by the authors. Finally, Table 7 lists speech acts that individual tweets can represent. These categories

are based on earlier research presented above, and combinations of base categories. The table shows the frequency of

different speech acts in our dataset. Speech acts were based on the presumed intent behind a tweet and its linguistic

features. For example, information-based tweets were not fact-checked, so information may or may not be fact-based

and genuine, but tweets were annotated as such based on their linguistic presentation.

6.2.2 Content analysis. Figure 8 shows a correlation matrix for metadata associated with tweets. These features were

extracted automatically and were introduced in Section 3.2 above. We can make the following observations:

21



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Lead author et al.

us
er

_f
ol

lo
w

in
g

us
er

_f
ol

lo
w

er
s

tw
ee

ts
_b

y_
us

er

lo
ca

tio
n

se
ar

ch
_t

er
m

1 
em

oj
i

2 
em

oj
is

3 
em

oj
is

4 
em

oj
is

5 
em

oj
is

an
im

al
 in

 im
ag

e

en
ga

ge
m

en
t

va
le

nc
e

se
nt

im
en

t

user_following

user_followers

tweets_by_user

location

search_term

1 emoji

2 emojis

3 emojis

4 emojis

5 emojis

animal in image

engagement

valence

sentiment
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. Correlationmatrix for metadata, including tweet-related information, sentiment, reaction and valence. Features were introduced
in Section 3.2.

(1) Emojis tend not to occur in isolation, but in clusters. In other words, if a tweet uses emojis, it is likely to use

more than one.

(2) Images of animals tend to occur with specific search terms (e.g. animal names), and tend to carry positive

sentiment, albeit slightly.

(3) Users with a more active social media network, i.e. who follow other users and have a fair amount of followers

themselves, tend to receive more engagement with their posts/tweets.

Figure 9 shows correlations for the content-based features annotated and shown in Tables 5-7 above. We observe the

following:

(1) Humans and animals that are visible in images (Animal and people) often correlate with weapons and guns

also being present (strong correlation at 0.55), and often represent a distress situation for the animal (Animal in

distress).

(2) The number of hashtags in a tweet correlates moderately with images of animals (Animal in focus) at 0.20, and

animals in focus correlate weakly with the amount of engagement that the tweet receives (0.15).

(3) Given results from previous research, it is worth noting that we did not observe any correlation effects from the

speech act used in a tweet.
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Fig. 9. Correlation matrix for textual and visual content features, annotated on 1,650 sample tweets from the test set, paired with
sentiment and engagement labels.

While the correlation analyses give us some insight into the drivers of user engagement, it is still difficult to formulate

concrete patterns or heuristics to predict user engagement for individual tweets. As a next analysis step, we therefore

applied clustering to our annotated data to see what further insights could be gained. Figure 10 shows the results of a

KMeans++ cluster analysis of the set of all merged content and metadata features. We experimented with the number

of clusters K empirically and using the Elbow method, and found six clusters to yield a good representation.

As a next step to clustering, we wanted to find out which features are prominent in each of the clusters to create an

understanding of the groupings and interactions of content and metadata features in our data. We approached this by

measuring the distance between individual features across two clusters at a time. The distance function is based on the

mean value of a category inside a cluster, e.g. the mean value of images that show “destruction of nature" (binary), or

the users following a tweeting account (int), the numbers of hashtags in a tweet (int), or in fact the engagement (binary)

that tweets in a cluster receive. As a second step, we aimed to identify those features that were highly indicative of

a data point’s membership of a particular cluster. Specifically, for each feature a, we compute the mean value of the

feature in a cluster c and subtract it from the value of another cluster:
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Fig. 10. KMeans++ cluster analysis using the joint set of metadata and content features, where K = 6. We see five clear clusters
appear, with data points in the last cluster being more dispersed.

distance =mc1
a −mc2

a , (3)

where a is a feature under consideration from our context and metadata features, and c1 and c2 are two clusters

under comparison. The purpose of this comparison is to determine those features that have high relevance for specific

clusters. For example, if all members of a cluster are entirely positive in sentiment, their mean value will be 1.0. In

contrast, a fully negative cluster will have a mean of 0.0. We compared distance functions based on mean, standard

deviation and variance, and found that mean distance is a good measure to discern individual clusters. Based on this

analysis, we were able to identify the following clusters:

• Cluster 1: This cluster mostly features animal photography, with animals in image (0.88) and in focus (0.75),

high engagement (1.0) and high valence in some cases (0.30). Sentiment is reasonably high in this cluster (0.82).

Some images can have text imposed on them (0.65), which e.g. refers to additional information, or represents

the signature of the photographer. This cluster includes users with an active network of followers (0.65) and

accounts that they follow (0.66). We call this cluster Animal photography by influencers.
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• Cluster 2: This cluster also focuses on animal photography, it always contains animals (1.0), usually in focus

(0.80), with high sentiment (0.85), but low engagement (0.0). The cluster has a moderate amount of followers

(0.40) and accounts they follow (0.44). We call this cluster Animal photography by non-influencers.

• Cluster 3: This cluster shows animals and people together (1.0), where animals are often in distress (0.65) and in

focus (0.53), at times weapons and guns are also visible (0.34). There is comparatively high sentiment (0.71) in this

cluster, though valence is lower (0.18) and a reasonable amount of engagement (0.30), with a good amount of

followers (0.51) and users followed (0.46). We call this the Animal cruelty and illegal wildlife trade cluster.

• Cluster 4: This cluster features images of nature, either pristine “beautiful” nature (0.42) or the destruction of

nature (0.16) with high sentiment (0.93) and valence (0.40), but no engagement (0.0). Accounts followed are high

in this cluster (0.64) and so are followers (0.76). We call this our nature cluster.

• Cluster 5: This cluster features mixed content with some people in images (0.25), some graphics (0.14) and text

(0.20), some destruction of nature (0.26) with overall lower engagement (0.13), sentiment (0.32) and valence (0.08).

The cluster has a generous amount of followers (0.53) and accounts they are following (0.50). We call this cluster

Negative mixed cluster.

• Cluster 6: This cluster focuses on information, e.g. infographics or facts, represented as text imposed on an

image (1.0). People can be present (0.25), but no animals in this cluster (0.0), with high sentiment (0.86) and low

engagement (0.05). This cluster has a moderate level of followers (0.40) and accounts they follow (0.38). We this

call this our information cluster.

These clusters reveal a number of concrete patterns and feature interactions that can help determine the user

engagement that a tweet will receive. The level of activity, measured by followers and accounts followed, is a clear

indicator of engagement. Other topical and semantic properties also play a role, e.g. tweets about wildlife trade, poaching,

animal photography or the preservation of nature receive a fair amount of engagement, but mostly so in combination

with active user accounts. The clusters were able give insight into a number of different sub-communities that are

active on Twitter and that share, and engage with, specific thematic content.

It seems clear from our two different types of analyses that both unsupervised clustering and classification complement

each other in trying to construct an understanding of this domain. Classification is able to address large amounts of

input data as features are mostly automatically obtained from raw Twitter data, and could therefore inform a “real time"

use case, if need be. At the same time, a clustering analysis was able to generate deeper insights into the interactions

between user engagement and the semantic features of tweets, but was based on time-consuming manual annotation,

so comes at a much higher cost for a small amount of data.

7 DISCUSSION OF LIMITATIONS

The use of social media data for the analysis of social, behavioural, geographical and other phenomena can have distinct

advantages, including for digital conservation, as illustrated by earlier research presented in Section 2, as well as our

own research in this article. Social media can overcome problems of sample size, temporal and spatial constraints and

allows easy and fast data access. Lopez et al. [50] also argue for the value of social media as an observation tool of actual

behaviour – as social media posts are largely unsolicited, they can give insights into perspectives and preferences that

may not have been discovered in a more structured form of data collection that may prompt certain types of responses.

In that sense social media is also an ideal tool for explorative research. Consequently, we were able in this article to

consider data from a much larger, and potentially more diverse and geographically dispersed, set of social media users,
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than we may have reached with more traditional forms of crowdsourcing or questionnaire-based data collection. At

the same time, Lopez et al. warn of the risk of mis-interpretation of social media posts, especially as the context of a

tweet is not always provided when scraping via an API: posts are presented as individual artefacts when in reality they

occurred as part of a thread or conversation in the context of which they should be interpreted.

One important issue when using social media as a tool for behaviour analysis is a significant population bias [73].

It is known that younger users are overrepresented on social media with different demographics favouring different

platforms (see e.g. Mislove et al. [60]; or Mellon and Prosser [55]). This has been confirmed in the context of digital

conservation studies, e.g. in a comparison of platform preferences of different types of users discussed above [30].

In our research, we can see a clear bias in the geographical reach of our study. A majority of our tweets originate

from English-speaking countries, many in the Northern hemisphere. While only a minority of tweets are linked to a

geolocation (about 1%), 54.51% of them originated from the US or the UK (28% US, 26% UK), followed by 7.74% from

India, 4.5% from Canada, followed by decreasing percentages from Australia (3.24%), South Africa (2.52%), New Zealand

(2.16%), Germany (1.98%), Kenya (1.80%), Belgium (1.53%), Ireland (1.35%), France (1.08%), Pakistan (1.08%), Finland

(0.99%), Nigeria (0.90%), and other individual countries (14.68%). This can lead to bias in the view points represented in

individual studies and often results in an Anglo-centric focus [96].

Issues around representativeness and bias are exacerbated by a lack of replicability of social media research and

systematic evaluation, see Arts et al. [2] for a conservation-perspective. Such issues arise largely because T&Cs of

social media platforms nearly always forbid the sharing or further distribution of any collected data to protect user

privacy and commercial interests. This issue has become more pertinent by the change of Twitter’s / X’s data access

policy. While the platform was one of the last to offer an open API for research purposes until mid-2023, this data

source is now largely lost to the community, which will affect research on digital conservation in future. Comparable

platforms such as Mastodon still allow data access, yet have a much smaller user population and less established online

communities. The general inaccessibility of social media for research prevents common benchmarks to be established

as is typical in other fields of machine learning and artificial intelligence, such as computer vision and natural language

processing, amongst others. These communities share a set of core datasets for benchmarking, run competitions and

increasingly release code, allowing for comparability of approaches and replicability of research. We attempt to support

the replicability of our research by providing the list of tweet IDs that were used in our experiments.

8 CONCLUSION AND FUTUREWORK

We presented a multimodal neural learning architecture and experimented with different combinations of text, image

and metadata of tweets to predict user engagement with Twitter content. Engagement was based on a function of

the number likes and retweets that a tweet receives. We find that a transformer network trained with a large amount

of text from the target domain performs best, outperforming models that consider other modalities, such as images,

or tabular metadata. Importantly, we observed a negative effect of large pre-trained language models when working

with a domain-specific unbalanced dataset. While models such as BERT and variants, e.g. DistilBERT and RoBERTa,

outperform other models on test accuracy and recall, this is not confirmed for metrics that take the unbalanced nature

of the data into account, such as balanced accuracy. At the same time we find that in the absence of a generous text

dataset, improved prediction performance can be achieved through a combination of multiple modalities, e.g. taking

information from tweet properties and user account into consideration. In accordance with previous research, we find a

negligible effect of image features on user engagement. A Chi-Squared test reveals a highly significant effect of the

presence of an image on user engagement: X 2(1,N = 1, 138, 093),p = .00001, however we were not able to identify
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clear visual patterns or themes that guide this engagement. Rather it seems that images serve to get a user’s initial

attention, while other modalities have a higher impact on whether the user ultimately engages with a tweet or not.

On a more qualitative level, we were interested in the specifically defining topics in the social media discourse on

conservation. We find clear recurrent threads on wildlife photography and animal sightings, the protection of vulnerable

species and illegal wildlife trade and trophy hunting, rainforests and deforestation, as well as climate change and climate

action in a more general sense. All of these topics prompt interest and user engagement in principle, and this was

found to be amplified when content originates from active user accounts, i.e. Twitter users with a high number of

followers and accounts they follow. We also found evidence of sub-communities around these topics that share and

engage with similar thematic content. Sentiment is a clear predictor of engagement, and can be positive or negative,

depending on the sub-community and content. With regards to our research question on identifiable linguistic, visual or

metadata features that are predictive of user engagement, we discovered six distinct topical clusters that help structure

the discourse in our dataset. Based on these clusters, we show that engagement emerges from a combination of topic,

user activity and sentiment, rather than a single set of distinctly identifiable features.

Reviewing our original research questions, we make the following findings in this article.

(1) What are the defining and recurring topics in social media discourse around the conservation of species?

• Domain topics emerge from a combination of text and image content, and include animals, weapons and guns,

animals and people, beautiful nature, descruction of nature, information and infographics (Table 6 and Sec. 6.2).

• Speech-act related topics such as call for action, fundraising, community, events and adverts, were found to

have no observable effect in our data (Table 7 and Sec. 6.2).

(2) Who are the sub-communities that participate in such discourse and what are their identifiable characteristics?

• Social media discourse on conservation topics is dominated by sub-communities of users that already care

about certain topics, such as wildlife photography, protection of nature or vulnerable species, or climate change

information, and are likely to engage with new content on the same topic as they have before (Sec. 6.2).

(3) What are identifiable (linguistic, visual or meta) characteristics of tweets that function as triggers of online user

engagement?

• Text is the most effective modality to predict user engagement from tweets, in comparison with visual features

or metadata, but this only holds when sufficient amounts of training data is available (Sec. 6.1).

• With limited amounts of training data, combinations of modalities, such as text with metadata, can boost

performance over single-modality models (Sec. 6.1). Metadata related to a user’s social network, such as their

followers or number of tweets, seems particularly informative (Sec. 6.2).

(4) To what extent can recent advances in deep learning for text and image analysis form an effective basis for user

engagement prediction?

• User engagement emerges from a combination of user activity, online conversation topic and sentiment, where

both positive and negative tweets receive engagement for different topics (Sec. 6.2). We were able to model

this relationship effectively using state-of-the-art transformer networks (Sec. 6.1).

• In contrast, large pre-trained language models can have a negative effect on prediction performance when

dealing with a substantially unbalanced dataset (Sec. 6.1).

Future work can drill down further into the specific linguistic features that drive user engagement with individual

tweets. While our method of analysis did not lend itself to discovering broad trends in linguistic features, e.g. word

categories, rhetorical structure or stylistic devices, beyond individual attention maps, some patterns are clearly present
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given the success of transformer-based engagement prediction. A deeper-level discourse analysis can likely reveal

some of them. Similarly, a social network analysis can be applied to explore how a better understanding of individual

users, e.g. their location, interests, social network membership and topical interests, can further support engagement

modelling for conservation-related content. There is also the possibility to apply data enhancingmethods, e.g. paraphrase

generation, to address the unbalanced nature of the dataset. Similarly, recent dual learning approaches, such as CLIP

[66], VisualBERT [47], MulT [84], Zorro [68] or ALIGN [36], amongst others, may be used to augment our larger

text-only dataset, and create a richer set of examples for multimodal analysis [5]. In the same vein, it can be explored if

dual learning methods can create richer representations of the modality allocation of social media content than our

simpler feature concatenation approach. This may lead to additional insights on the contribution of multimodality in

engaging users.
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