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    Introduction 
 The actin cytoskeleton is composed of actin, myosin, and sev-

eral proteins that bind to them and play crucial roles in cell 

motility, cytokinesis, phagocytosis, and intracellular transport 

processes ( Cooper, 1991 ;  Matsumura, 2005 ). Coordinated 

cell movement requires protrusive forces generated by poly-

merization of actin fi laments at the leading edge and contrac-

tile forces via myosin motors at the rear of a cell. Myosin II, 

the conventional two-headed myosin, is also the primary motor 

protein required for cytokinesis in eukaryotes.  Dictyostelium 
discoideum  cells lacking  MhcA  show a plethora of defects, 

which include cytokinesis defect in suspension but undergoing 

cytokinesis when grown on a solid support by a  “ traction-

mediated ”  mechanism ( De Lozanne and Spudich, 1987 ). 

These correspond to the localization of myosin at the contrac-

tile ring (cleavage furrow) during cytokinesis.  MhcA  �    cells 

have a decreased chemotactic effi ciency caused by reduction in 

cell polarity and an inability to suppress lateral pseudopods 

and retract the uropod ( Wessels and Soll, 1990 ;  Wessels et al., 

1988 ). They also have a developmental defect, halting the 

developmental process shortly after cells have aggregated. 

The regulation of myosin II appears to differ between higher 

and lower eukaryotes. 

 In  D. discoideum  phosphorylation of myosin takes place at 

three threonine residues in the tail region by myosin II heavy chain 

kinases (MHCKs) ( Luck-Vielmetter et al., 1990 ;  Vaillancourt 

et al., 1988 ).  P hosphorylated myosin is inactive and does not as-

semble into fi laments, whereas unphosphorylated myosin II can 

spontaneously assemble into bipolar fi laments. It is only these 

fi laments that perform cellular myosin II functions ( Egelhoff 

et al., 1993 ). Signifi cant knowledge about the function of myosin 

II regulation has been derived from mutant myosin IIs: 3XALA 

myosin, where the three phosphorylatable threonines have been 

mutated to alanine, rendering it a poor substrate for MHCKs; 

and 3XASP myosin, where the three threonines were replaced 

by aspartate, mimicking the phosphorylated state. 3XALA myosin 

mutants show signifi cant myosin overassembly in cytoskeletal 

fractions and form stable myosin II fi laments, which accumulate 

 R
as guanine nucleotide exchange factor (GEF) Q, 

a nucleotide exchange factor from  Dictyostelium dis-

coideum , is a 143-kD protein containing RasGEF 

domains and a DEP domain. We show that RasGEF Q 

can bind to F-actin, has the potential to form complexes 

with myosin heavy chain kinase (MHCK) A that contain 

active RasB, and is the predominant exchange factor for 

RasB. Overexpression of the RasGEF Q GEF domain acti-

vates RasB, causes enhanced recruitment of MHCK A to 

the cortex, and leads to cytokinesis defects in suspension, 

phenocopying cells expressing constitutively active RasB, 

and myosin-null mutants. RasGEF Q  �   mutants have de-

fects in cell sorting and slug migration during later stages 

of development, in addition to cell polarity defects. 

Furthermore, RasGEF Q  �   mutants have increased levels 

of unphosphorylated myosin II, resulting in myosin II 

overassembly. Collectively, our results suggest that starva-

tion signals through RasGEF Q to activate RasB, which 

then regulates processes requiring myosin II.
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 Results 
 Domain organization, expression pattern, 
and functional dissection of RasGEF Q 
 RasGEF Q, encoded by the  gefQ  gene, is a 1298-aa protein with a 

calculated molecular mass of 143,000. Apart from the RasGEF 

domains, it contains a DEP domain (a domain conserved among 

fl y Dishevelled, worm Egl10, and mammalian Pleckstrin) separat-

ing the two RasGEF domains and a predicted coiled-coil region at 

the  N  terminus ( Fig. 1 A ). [ID]FIG1[/ID]  RasGEF Q mRNA as examined by 

RT-PCR analysis of cDNA is present throughout development with 

elevated levels during aggregation and the loose mound stage (6 – 8 h 

of starvation;  Wilkins et al., 2005 ). Monoclonal antibody K-70-

187-1 generated against the DEP domain of RasGEF Q recognized 

a protein of the expected size, which was present in vegetative cells 

and in early development till the aggregation stage (6 h) but could 

not be detected later ( Fig. 1 B ).  I nstead, a smaller and less intense 

band was seen at subsequent stages ( Fig. 1 B , asterisk). The smaller 

band could arise by translation from a downstream start (ATG) site 

at position 565. The sequence between both start sites is highly AT 

rich and could function as an alternative promoter. 

 To study the localization of RasGEF Q, we expressed 

RasGEF Q lacking the fi rst 172 aa as a GFP fusion protein 

(GFP-RasGEF Q 173 ). We observed that in fi xed vegetative 

( Fig. 1 C , bottom) and aggregation-competent cells ( Fig. 1 C , 

top), GFP-RasGEF Q 173  was localized throughout the cytosol 

but was also enriched in the cortex, colocalizing with actin 

( Fig. 1 C ). When living cells expressing GFP-RasGEF Q 173  

were observed, cells appeared more fl at and adhered to the sur-

face, having long fi lopodia-like protrusions, and the protein 

was localized throughout the cytosol (Videos 1 – 4, available 

at http://www.jcb.org/cgi/content/full/jcb.200710111/DC1). 

To analyze the functions of different domains of RasGEF Q, 

we expressed the corresponding GFP fusion proteins in AX2. 

In fi xed cells, the RasGEF domain (GFP-GEF) was present 

throughout the cytosol but was enriched at the cell cortex 

where it colocalized with F-actin ( Fig. 1 D , fi rst row, carats) 

and was also present in the nucleus ( Fig. 1 D , fi rst row, arrow-

heads). Live cell analysis showed that the protein was present 

throughout the cells. It was also observed in the nucleus, and in 

moving cells it accumulated in extending pseudopods (Video 5). 

Cells expressing GFP- � GEF-GEFQ, which corresponds to the 

N-terminal domain (aa 173 – 654), distributed throughout the 

cytoplasm with enrichment in the cortex ( Fig. 1 D , second 

row). The DEP domain was present throughout the cytoplasm 

but did not show a particular enrichment either in fi xed or in 

living cells ( Fig. 1 D , third row; and Video 6). The GFP fusion 

protein lacking the DEP domain (GFP- � -DEP-GEFQ) local-

ized throughout the cytosol with slight enrichment in the corti-

cal regions ( Fig. 1 D , fourth row). 

 RasGEF Q association with 
the actin cytoskeleton 
 Small GTPases of the Ras superfamily and their regulatory 

GEFs are known to be directly involved in the regulation of the 

cytoskeleton. To further investigate the colocalization of GFP-

GEF with F-actin in the cortex, we used latrunculin A (LatA), 

in the rear cortex. Cells expressing 3XALA myosin are drasti-

cally impaired in cell migration and chemotaxis, making frequent 

turns and extending lateral pseudopods, which is caused by the 

inability to disassemble myosin fi laments, and these cells have 

severely affected motility ( Egelhoff et al., 1996 ;  Stites et al., 

1998 ;  Heid et al., 2004 ). In contrast, 3XASP myosin does not 

assemble into bipolar fi laments, is nonfunctional in vivo, and 

fails to complement cytokinesis and developmental defects of 

myosin II – null cells ( Egelhoff et al., 1993 ). 

 Signaling pathways based on small GTPases of the Ras 

family regulate a myriad of cellular processes in eukaryotic 

cells. The  D. discoideum  genome encodes a large and varied 

family of Ras GTPases consisting of 15 Ras proteins.  D. dis-
coideum  uses its Ras proteins to regulate several pathways 

controlling cell motility and polarity, cytokinesis, phagocytosis 

and pinocytosis, and multicellular development ( Charest and 

Firtel, 2007 ). 

  D. discoideum  expresses at least 25 Ras guanine nucleo-

tide exchange factors (GEFs;  Wilkins et al., 2005 ). However, it 

does not code for conventional receptor tyrosine kinases (RTKs), 

which are the major inputs for Ras signaling in higher eukary-

otes ( Eichinger et al., 2005 ). Functions of some of the RasGEFs 

are slowly being understood through mutant analysis. The  gefA  �    
( aimless ) cells fail to aggregate upon starvation and are unable to 

synthesize and respond to cAMP ( Insall et al., 1996 ;  Kae et al., 

2007 ), showing phenotypic similarities to  rasC  �    cells, indicating 

that they may act to regulate activation of adenylyl cyclase. The 

cyclic guanosine monophosphate binding proteins GbpC and D, 

which have RasGEF domains, show altered myosin II localiza-

tion during chemotaxis ( Bosgraaf et al., 2005 ). Cyclic guanosine 

monophosphate and GbpC induce myosin II fi lament formation, 

but its corresponding Ras GTPase has not been identifi ed. GbpD 

is thought to activate Rap1 and regulate cell surface adhesion 

and motility ( Kortholt et al., 2006 ). RasG, the most abundant 

Ras in vegetative cells and the closest relative to mammalian 

Ras, is thought to regulate several actin cytoskeleton – based pro-

cesses like cell polarity and cytokinesis ( Tuxworth et al., 1997 ). 

RasGEF R appears to be required for maximal activation of 

RasG upon response to cAMP ( Kae et al., 2007 ). 

 In this paper, we have focused on RasGEF Q. Our experi-

ments identify RasB as a substrate for RasGEF Q. They further 

indicate that RasGEF Q acts upstream of RasB and regulates 

processes requiring myosin II, like cytokinesis, cell motility, and 

suppression of lateral pseudopods. Mutants lacking  RasGEF Q 

show myosin overassembly caused by high levels of unphos-

phorylated myosin II and produce many random pseudopodia. 

Cells that overexpress the GEF domain of RasGEF Q have 

constitutively activated RasB, which is normally activated dur-

ing aggregation upon a cAMP stimulus, and have defects in 

cytokinesis in suspension as do  mhcA  �    cells. Our results also 

imply an involvement of MHCK A as a downstream regulator 

of the signaling cascade. We observe that cells that overexpress 

the GEF domain have higher levels of MHCK A recruited to 

the cytoskeletal fractions, which occurs when MHCK A is 

activated in response to cAMP. Furthermore, RasGEF Q is 

involved in cell sorting and developmental patterning and 

slug motility. 
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with the actin cytoskeleton we used 10  μ M LatA, which forms 

1:1 complexes with actin monomers and inhibits actin poly-

merization, and 20  μ M cytochalasin D, a drug that binds to the 

growing or barbed end (+ end) of F-actin fi laments and prevents 

addition of G-actin at these sites. Blebbistatin (used at 100  μ M) 

is a drug that blocks the myosin heads and lowers the affi nity of 

myosin for actin ( Kovacs et al., 2004 ). We found that in control 

cells treated with DMSO (solvent for the drugs), GFP-RasGEF 

Q 173  showed a cytosolic staining and was present in cortical 

regions of the cell colocalizing with actin. Upon treatment 

with LatA, the cells rounded up, the typical cortical actin stain-

ing was lost, and a patchy pattern appeared. GFP-RasGEF Q 173  

was present in the cytosol. On treatment with cytochalasin D, 

we observed the cells rounding up and actin staining in the cor-

tex was fragmented. In this case, GFP-RasGEF Q 173  was also 

seen in the periphery of the cell together with actin. Treatment 

with  B lebbistatin did not alter the cell morphology or the actin 

staining and GFP-RasGEF Q 173  was still enriched in the cell 

periphery ( Fig. 2 D ). Thus, LatA that disrupts the cortical actin 

cytoskeleton also affects the localization of GFP-RasGEF Q 172  

at the cortex. Collectively, our results imply that RasGEF Q 

associates with F-actin in vitro and in vivo and that the 

C- terminal region containing the RasGEF domain may mediate 

this binding. 

a drug that binds to actin monomers and prevents poly-

merization. Treatment with 10  μ M LatA for 40 min led to a 

loss of cortical F-actin. In parallel, the cortical localization of 

GFP-GEF was lost, whereas its nuclear localization and the 

cytoplasmic staining were not affected ( Fig. 2 A ). [ID]FIG2[/ID]  This indi-

cates that the GEF domain is recruited to the cortical region by 

F-actin. To test whether the GEF domain directly interacts with 

actin fi laments, we performed cosedimentation assays. We 

used the GST-tagged GEF domain in these assays and found 

that it cosedimented with actin fi laments by high speed centrif-

ugation at 120,000  g , whereas the fusion protein alone stayed 

in the supernatant. The GST-GEF interaction with F-actin oc-

curred even at high salt concentrations (100 mM KCl), which 

is known to drastically reduce the binding effi ciency of several 

actin binding proteins like  � -actinin, comitin, and plastin ( Fig. 

2 B;   Jung et al., 1996 ;  Prassler et al., 1997 ). We then used cells 

overexpressing GFP-GEF and prepared cytoskeletal fractions. 

Supernatant and pellet fractions were resolved by SDS-PAGE, 

and distribution of GFP-GEF in either fraction was tested with 

a GFP monoclonal antibody. We found that GFP-GEF was pre-

sent in the cytoskeletal pellet and the supernatant fractions 

( Fig. 2 C ). 

 We treated cells expressing GFP-RasGEF Q 173  with drugs 

to disturb the actin cytoskeleton or myosin II. For interference 

 Figure 1.    Architecture and expression of RasGEF Q and localization of RasGEF Q domains.  (A)  S chematic diagram of RasGEF Q depicting its domain 
organization and constructs used in the study. (B)  A ccumulation of RasGEF Q protein during development. Total cell lysates prepared at the indicated time 
points were immunoblotted and probed using mAb K-70-187-1 raised against RasGEF Q. *, smaller form of the protein. Expression of the developmentally 
regulated cell adhesion protein csA is shown for control at the bottom. (C) Localization of GFP-RasGEF Q 173  (green) in wild-type cells. In both vegetative 
(0 h; bottom) and aggregation-competent (6 h; top) cells, GFP-RasGEF Q 173  was present throughout the cytosol and showed specifi c enrichment with corti-
cal actin (arrowheads). Actin (red) was recognized by mAb Act 1 – 7 followed by cy3-labeled anti – mouse secondary antibody. Cells were fi xed with cold 
methanol. (D) Localization of GFP-tagged RasGEF Q domains.  T he top row shows that GFP-GEF localizes to the cell cortex (carat) and nucleus (arrowhead). 
The second row shows that GFP- � -GEF-GEFQ localizes throughout the cytosol but is enriched in the cell cortex. The third row shows that the DEP domain 
is present throughout the cytoplasm. The fourth row shows that GFP- � -DEP-GEFQ localizes throughout the cytosol with slight enrichment in the cell cortex. 
F-actin was stained by TRITC-labeled phalloidin and DNA was stained with DAPI. Cells were fi xed with picric acid/formaldehyde. Bars, 10  μ m.   
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standing fi nger that falls down, becoming a migratory slug or 

pseudoplasmodium by 16 h.  D evelopment is completed by 

20 – 24 h with the formation of fruiting bodies ( Fig. 3   A , top; 

and Video 7 available at http://www.jcb.org/cgi/content/full/

jcb.200710111/DC1). [ID]FIG3 [/ID]   gefQ  �    cells initiate the developmental 

program, but in  > 50% of the mounds, multiple tips arise from 

a single mound by 13 – 14 h and, as a result, fruiting bodies 

are smaller than in AX2 ( Fig. 3 A , middle; and Video 8). 

 gefQ  �    cells formed slugs that were relatively smaller, their 

ability to move was greatly reduced, and they did not perform 

phototaxis toward a directed light source. In contrast, slugs 

from AX2 cells expressing GFP-GEF were able to move and 

perform phototaxis, but the migration was more disoriented 

compared with AX2. GFP-GEF slugs migrated at a mean an-

gle of  � 80 ° , whereas AX2 slugs migrated at a mean angle of 

25 °  toward the light.  gefQ  �    cells expressing GFP-GEF or 

GFP- � GEF-GEFQ showed slightly improved slug motility in 

phototaxis assays compared with  gefQ  �    cells. A proportion of 

 RasGEF Q – null cells have defects in 
developmental patterning and slug motility 
 To study the functions of RasGEF Q in vivo we generated 

cells lacking RasGEF Q.  gefQ  �    cells were generated by ho-

mologous recombination, screened by genomic PCR on ge-

nomic DNA, and confi rmed by Southern and Western blotting 

and immunofl uorescence analysis (Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200710111/DC1). Multicel-

lular morphogenesis can be described in its most basic form 

as a process where cells in a group undergo coordinated 

changes in cell shape and motility to form an organized struc-

ture to perform a particular function. The process of  D. dis-
coideum  development is one such example of programmed 

multicellularization ( Chisholm and Firtel, 2004 ). Involve-

ment of the cytoskeleton in such processes that require con-

tinuous cellular changes is a prerequisite. When developed on 

nutrient-deficient agar plates, AX2 cells form aggregates by 

8 h and tipped mounds by 13 h. The tip elongates to form a 

 Figure 2.    Association of the C-terminal part of RasGEF Q with F-actin.  (A) The cortical localization of GFP-GEF is sensitive to LatA treatment. Cells express-
ing GFP-GEF (green) were incubated with  L atA for 40 min, fi xed with picric acid/formaldehyde, and stained for actin using TRITC-labeled phalloidin (red). 
Images were taken using a confocal microscope. (B) GST-GEF binds to F-actin in an in vitro cosedimentation assay using  D. discoideum  actin. Pellet (P) 
and supernatant (S) were separated by high-speed centrifugation, and proteins in the fractions were resolved by SDS-PAGE and stained with Coomassie 
brilliant blue. (C) Cytoskeletal fractions were prepared from AX2 cells expressing GFP-GEF using a buffer containing 2% saponin. Total cell lysates (L), 
pellet (P), and supernatant (S) fractions were resolved on SDS-PAGE and amounts were analyzed by Western blotting using a GFP monoclonal antibody. 
Coomassie-stained gel showing the actin band is used as control. (D) Effect of drugs affecting the cytoskeleton on localization of GFP-RasGEF Q 173 . Cells 
expressing GFP-RasGEF Q 173  (green) were treated with DMSO (control; top row), 10  μ M LatA (second row), 20  μ M cytochalasin D (third row), or 100  μ M 
Blebbistatin (fourth row) for 40 min. Cells were fi xed with cold methanol. Actin (red) was recognized by mAb Act1 – 7 followed by cy3-labeled anti – mouse 
secondary antibody. Carats point to areas of colocalization. Bars, 10  μ m.   
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 Cytokinesis defect in suspension in cells 
overexpressing GFP-GEF and constitutively 
activated RasB 
 Further analysis revealed that the cells expressing GFP-GEF 

were defective in cytokinesis in suspension. When grown in 

suspension for 6 d, they attain a mean nuclei number of approx-

imately six nuclei per cell, whereas wild-type AX2 and  gefQ  �    cells 

are mostly mono- or binucleated ( Fig. 4, A and B ). [ID]FIG4[/ID]  However, 

when grown on a plastic surface, GFP-GEF cells are predomi-

nantly mono- or binucleated, probably dividing by traction-

mediated cytofi ssion as occurs in  mhcA  �    cells ( De Lozanne and 

Spudich, 1987 ;  Neujahr et al., 1997 ). 

 Our results indicate that although karyokinesis is normal 

in GFP-GEF cells, the following cytokinesis is impaired. We also 

confi rmed previous data on the localization and phenotype of cells 

expressing constitutively activated RasB (RasB  G12T  ;  Sutherland 

et al., 2001 ). Overexpression of GFP-tagged RasB  G12T   caused 

cells to become multinucleated in suspension.  T he protein was 

slightly enriched in the nucleus ( Fig. 4 C ). Because overexpres-

sors of the GEF domain and overexpressors of RasB  G12T   had 

phenotypic similarities, we hypothesized that RasGEF Q could be 

the slugs formed could migrate toward the light source, although 

migration was greatly reduced, indicating that RasGEF Q is 

important for slug motility ( Fig. 3 B ). 

  D. discoideum  serves as a model system to understand 

cell sorting. At the mound stage, an asymmetry is established 

and a fi xed proportion of cell types is generated where the ma-

jority of the cells (nearly 80%) are destined to become spore 

cells and sort to the rear of a slug and 20% occupy the anterior 

tip, becoming the stalk cells that hold the spore mass in the 

fruiting body. Involvement of a particular protein in such cell-

sorting mechanisms can be easily studied in  D. discoideum  by 

mixing strains together and allowing them to codevelop as a 

chimera. When 10% GFP-expressing AX2 cells was mixed 

with 90% unlabeled AX2 cells, GFP-labeled cells distributed 

evenly throughout the slug. However, when 10% GFP-labeled 

AX2 cells was mixed with 90% unlabeled  gefQ  �    cells, wild-

type cells localized to the anterior prestalk region and mutants 

were present in the posterior prespore region of the slug. In a 

converse experiment where 10% GFP-labeled  gefQ  �    cells was 

mixed with 90% AX2 cells, mutant cells also sorted to the 

posterior ( Fig. 3 C ). 

 Figure 3.    Developmental defects in Ras-
GEF Q – null cells ( gefQ  �   ).  (A) Development of 
 gefQ  �    cells plated on nonnutrient agar. The 
top shows wild-type tipped aggregate (13 h), 
migratory slug (16 h), and fruiting body (24 h). 
The middle shows that  gefQ  �    aggregates 
break up into smaller aggregates (13 h), 
multiple tipped structures (16 h), and fruiting 
bodies (24h). The bottom shows development 
of cells overexpressing GFP-GEF. Bars, 200  μ m. 
(B) Altered slug motility in phototaxis assays 
in  gefQ  �    and GFP-GEF – expressing cells. Wild-
type AX2, GFP-GEF expressing AX2, and  gefQ  �    
cells, as well as  gefQ  �    cells expressing GFP-
GEF or GFP- � -GEF-GEFQ, were allowed to de-
velop on phosphate agar plates placed in a 
black opaque box for 36 h with a unidirec-
tional light source from an open slit. Migratory 
pattern of slugs were determined by transfer-
ring slime trails and cellular materials onto 
nitrocellulose membrane. Membranes were 
stained with 0.1% amido black. (C) Altered 
cell-type spatial patterning in  gefQ  �    mutants. 
(a) 10% AX2 cells labeled with GFP was mixed 
with 90% unlabeled wild-type cells. (b) 10% 
labeled wild-type cells was mixed with 90% 
unlabeled  gefQ  �    cells. (c) 10% labeled  gefQ  �    
cells was mixed with 90% AX2 cells and were 
codeveloped as a chimera. Images were taken 
at the slug stage using a fl uorescent micro-
scope (Leica DMR) at 5 ×  magnifi cation. Im-
aging medium was air at 22 ° C. Images were 
acquired with a camera (DC 350 FX; Leica). 
Bar, 200 nm.   
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are unable to activate RasB at either 0 or 6 h. GFP-GEF cells at 

0 h have a high level of activated RasB, indicating that RasGEF Q 

acts as an exchange factor for RasB ( Fig. 5 C ). Expression 

of the GEF domain alone may act as a constitutively activated 

form of RasGEF Q. Our results also indicate that, although 

RasB is expressed throughout development ( Daniel et al., 1993 ), 

it is activated upon starvation, thus implying a role for cAMP in 

its activation process. Because RasB is not activated in  gefQ  �   , 
cells we can conclude that it is the only or the predominant 

exchange factor for RasB. 

 RasB is activated upon cAMP stimulation 
 To test whether RasB is activated upon response to cAMP, we 

used a GST-Byr2(RBD) to pull down activated Ras from cell 

lysates stimulated with cAMP. We observed an elevation in the 

levels of activated RasB within 10 s of stimulation with cAMP 

and decreasing by 60 s ( Fig. 5 D , top). In a similar experi-

ment using  gefQ  �    cells expressing GFP- � -GEF-GEFQ, which 

also lacks the DEP domain, we saw no activation of RasB 

upon cAMP, further indicating that RasGEF Q is required for 

RasB activation (Fig. S2, available at http://www.jcb.org/cgi/ 

content/full/jcb.200710111/DC1). We also observed that in cells 

an exchange factor for RasB, overexpression of the GEF domain 

acts as an activated form of RasGEF Q, and a regulatory mecha-

nism must exist. 

 RasGEF Q activates RasB 
 To test whether RasGEF Q interacts with and activates RasB, 

we performed several assays. In pulldown assays, GST-GEF bound 

to glutathione Sepharose beads could precipitate RasB from 

AX2 cell lysates ( Fig. 5 A ). [ID]FIG5[/ID]  When cell lysates were pretreated 

with 100  μ M GDP or 100  μ M GTP � S, we found that GST-GEF 

bound preferentially to the GDP-bound form of RasB ( Fig. 5 B ), 

which is the preferred form for a RasGEF – Ras interaction. 

To determine if RasGEF Q actually activates RasB, we used 

GST-Byr2 Ras binding domain (RBD) to pull down GTP-bound 

active RasB from AX2,  gefQ  �   , or GFP-GEF cells.  Schizosac-
charomyces pombe  Byr2 is a Ras effector (MAPK/ERK kinase 

homologue) and binds to Ras in its activated (GTP-bound) form 

( Gronwald et al., 2001 ;  Scheffzek et al., 2001 ). Cell lysates of 

AX2 and  gefQ  �    at the growth (0 h) and aggregation (6 h) stage 

and GFP-GEF at 0 h were incubated with equal amounts of GST-

Byr2(RBD) bound to glutathione Sepharose beads. We found 

that RasB is activated at 6 h in AX2 cells, whereas  gefQ  �    cells 

 Figure 4.    Cells overexpressing GFP-GEF and 
constitutively activated RasB have a cytokinesis 
defect.  (A) Cytokinesis is normal in wild-type 
AX2 and  gefQ  �    cells but is defective in GFP-
GEF cells. Images were taken using a fl uores-
cent microscope (DMR). Images were acquired 
with a camera (DC 350 FX). (B) The increase 
in the number of nuclei in GFP-GEF cells. GFP-
GEF cells were grown in suspension, fi xed at 
the indicated times, stained with DAPI, and the 
nuclei were counted. The data are the mean of 
three independent determinations  ± SD. (C) Cy-
tokinesis defect in cells overexpressing constitu-
tively activated RasB  G12T   (GFP-RasB CA ; green). 
Cells were fi xed with methanol and nuclei are 
visualized with DAPI (blue). Arrowheads indi-
cate multinucleated cells. Images were taken 
using a fl uorescent microscope (DMR). Images 
were acquired with a camera (DC 350 FX). 
Bars, 10  μ m.   

 Figure 5.    RasB activation by RasGEF Q and 
during development.  (A) Physical association 
of GST-GEF and RasB. Glutathione Sepharose 
beads coated with either GST-GEF or GST or 
uncoated with any protein were incubated with 
AX2 cell lysates and pulldown eluates were 
immunoblotted with RasB antibody. (B) GST-GEF 
binds preferentially to GDP-bound RasB. Gluta-
thione Sepharose beads coated with GST-GEF 
were incubated with AX2 cell lysates preincu-
bated with 100  μ M GTP � S or 100  μ M GDP. 
Pulldown eluates were immunoblotted with RasB 
antibody. (C) RasB is activated upon starva-
tion (6 h) and in cells overexpressing GFP-GEF 
(0 h), using beads coated with GST-Byr2(RBD). 
(D) Activation of RasB in response to cAMP. 
Aggregation-competent AX2 (top) cells were 
stimulated with 500 nM cAMP, and the amount of activated RasB bound to GST-Byr2(RBD) was determined at the indicated time points. Wild-type cells 
overexpressing GFP-DEP (bottom) showed reduced and delayed RasB activation upon cAMP stimulation. (E) Interaction between the DEP and the GEF do-
main of RasGEF Q. Glutathione Sepharose beads coated with GST-DEP and incubated with cell-free extracts from cells expressing GFP-GEF or GFP alone. 
(F) Deletion of DEP domain causes RasB activation. Vegetative cells overexpressing GFP- � -DEP-GEFQ and AX2 cells were used to pull down activated RasB 
using GST-Byr2 – coated beads. Total cell lysates and pulldown eluates were immunoblotted with RasB antibody.   
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the amounts of myosin II present in preparations of cyto-

skeletal ghosts of  gefQ  �    and A X 2 cells both from growing 

and aggregation-competent stages. In this assay, the amount 

of myosin II recovered refl ects the amount of fi lamentous 

myosin associated with the actin cytoskeleton in the living cell. 

Myosin II fi lament assembly and disassembly is an extremely 

dynamic process and, in  D. discoideum , it depends largely on 

the levels of myosin heavy chain phosphorylation. Also, the 

level of myosin II in the cytoskeletal fractions in AX2 cells is 

signifi cantly higher in aggregation-competent cells than in grow-

ing cells. In contrast,  gefQ  �    cells had a high level of myosin II 

in the cytoskeletal fractions obtained from growing cells, which 

was comparable to that in aggregating AX2 cells, and there 

was no signifi cant rise upon reaching aggregation competence 

( Fig. 7 B , top). Total myosin II levels in both AX2 and  gefQ  �    
cells were comparable in vegetative and aggregation-competent 

cells ( Fig. 7 B , bottom). 

 The cause for higher levels of fi lamentous myosin II in 

 gefQ  �    cells could be because of higher levels of unphosphory-

lated myosin II that can spontaneously form fi laments. To test 

this hypothesis, we determined the phosphorylation status of 

myosin II in vegetative AX2 and  gefQ  �    cells. We used 2D gel 

electrophoresis to examine the changes in the isoelectric point 

(pI) of phosphorylated versus unphosphorylated myosin II. We 

observed myosin II as a distinct spot in a Western blot using 

myosin II antibodies. We found that in  gefQ  �    cells, myosin II 

had a higher pI than myosin II in AX2 cells, implying that in 

 gefQ  �    cells, myosin was predominantly in the unphosphory-

lated state ( Fig. 7 C ). From these results, we conclude that the 

higher levels of unphosphorylated myosin II in  gefQ  �    cells lead 

to higher levels of fi lamentous myosin II and involve MHCKs 

in the process. 

 RasGEF Q regulates Myosin II through 
MHCK A 
 The presence of higher amounts of unphosphorylated myosin II 

in  gefQ  �    cells indicated that probably myosin phosphorylation 

is affected. MHCK A is a major kinase regulating myosin II 

phosphorylation. In GST pulldown experiments, we found that 

GST-GEF could coprecipitate myosin II and MHCK A from 

cell lysates under conditions that dissociate actin – myosin com-

plexes by the addition of 5 mM ATP. Actin was absent from the 

precipitate. When cell lysates were preincubated with LatA to 

overexpressing the DEP domain, the RasB activation was greatly 

reduced and delayed ( Fig. 5 D , bottom). As overexpression 

of the GEF domain acts as a constitutively activated form of 

RasGEF Q, the DEP domain that resides between the RasGEF 

domains might serve as a possible autoregulatory domain in 

the activation process of RasGEF Q. Further on, in a GST pull-

down experiment, GST-DEP could pull down GFP-GEF from 

cell lysates of cells overexpressing GFP-GEF, indicating that 

the two domains can physically interact ( Fig. 5 E ). To further 

test whether the DEP domain acts as an autoregulatory domain, 

we used AX2 cells expressing GFP- � -DEP-GEFQ, which is 

specifically lacking the DEP domain, and determined the 

amount of activated RasB in growing cells using GST-Byr2 –

 coated beads.  C ells overexpressing GFP- � -DEP-GEFQ have 

activated RasB even at the vegetative state, which is similar to 

cells expressing the GEF domain alone, further supporting that 

the DEP domain has autoregulatory functions in the protein 

( Fig. 5 F ). 

 Role of RasGEF Q in regulating 
myosin II function 
 Defects in Ras pathways result in chemotaxis defects ( Sasaki 

and Firtel, 2005, 2006 ;  Charest and Firtel, 2006 ). To examine 

whether RasGEF Q had any effect on chemoattractant-induced 

cell migration, we compared the migration of aggregation-

competent  gefQ  �    and parental AX2 cells. During migration toward 

an exogenous cAMP source, wild-type cells are well polarized 

and produce pseudopodia exclusively at the leading edge and 

very few lateral pseudopods. In contrast,  gefQ  �    cells produce more 

random pseudopodia (4.6 per cell per 10 min) than wild-type 

cells (1.7 per cell per 10 min;  Table I ) and have an increased 

frequency of turning ( Fig. 6, A and B ; and Videos 9 and 10, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200710111/DC1), 

showing similarities to 3 X ALA myosin mutants. [ID]TBL1[/ID]  [ID]FIG6[/ID]  Surprisingly, 

the cell motility parameters (speed, persistence, and direction 

change) were not signifi cantly altered ( Table II ). [ID]TBL2[/ID]  

 In chemotaxing cells, myosin II typically localizes to the 

posterior cortical regions of polarized cells, where it is re-

quired for retraction of the cell body and suppression of lateral 

pseudopods.  W hen we stained  gefQ  �    cells for myosin, we ob-

served an increased myosin staining in the cortex that was not 

restricted to the rear and also an elevated myosin level through-

out the cytoplasm ( Fig. 7 A ). [ID]FIG7[/ID]  To test this further, we measured 

 Table I.    Lateral pseudopod formation by cells crawling in buffer and in a spatial cAMP gradient  

Cell strain Number of 
cells

0 – 2 lateral pseudopods 
per 10 min

3 – 5 lateral pseudopods 
per 10 min

 > 5 lateral pseudopods 
per 10 min

Mean frequency of lateral pseudo-
pods per cell per 10 min

 %  %  % 

Buffer

   AX2 31 9.6 45.16 45.16 5.19

    gefQ   �  33 0 21.21 78.78 7.03

cAMP gradient

   AX2 35 82.85 17.14 0 1.71

    gefQ  �   29 6.9 65.5 27.50 4.65

Images were taken at a magnifi cation of 40 ×  every 6 s. In all cases, cells were analyzed for 10 min.  �  2  test, performed between AX2 and  gefQ  �    cells on data of the 
three categories of lateral pseudopods formed, showed highly signifi cant (P  >  0.001) difference between AX2 and  gefQ  �    cells in both buffer and a cAMP gradient.
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analyzed the amounts of MHCK A associated with cytoskeletal 

fractions, as the cytoskeleton-associated protein represents the 

active autophosphorylated form of MHCK A. We found that 

 gefQ  �    cells and AX2 cells have similar amounts of MHCK A 

associated with the cytoskeletal fractions.  I n contrast, cells 

overexpressing the GEF domain had at least twofold higher 

levels of MHCK A associated with the cytoskeletal fractions 

( Fig. 8 B ). 

 To investigate if activated Ras could transduce signals 

for regulation of myosin II, we used the GST-Byr2(RBD) to 

pull down active Ras from GFP-GEF cells at 6 h and found 

MHCK A in pulldown eluates with active RasB ( Fig. 8 C ). 

Pulldown eluates did not contain myosin II. Thus, MHCK A, 

which directly regulates myosin II phosphorylation, may ei-

ther bind directly to active Ras or associate with complexes 

containing active Ras, suggesting that it might be regulated by 

Ras upon activation. 

disrupt the cytoskeleton, the association with myosin II and 

MHCK A was totally abolished ( Fig. 8 A ). [ID]FIG8[/ID]  These results indi-

cate that an intact cytoskeleton is required for bringing a signal-

ing complex together, where RasGEF Q can bind to MHCK A 

and myosin II in an F-actin – dependent manner. 

 We then examined MHCK A in  gefQ  �    cells and in cells 

overexpressing GFP-GEF. Under normal conditions, MHCK A 

is localized throughout the cytosol. Upon chemoattractant stim-

ulation, MHCK A associates with the cytoskeleton and local-

izes to the cell cortex ( Steimle et al., 2001 ). Association with 

the actin cytoskeleton causes a drastic increase in the auto-

phosphorylation activity of MHCK A, which is then activated 

( Egelhoff et al., 2005 ). Using a monoclonal antibody that de-

tects both the phosphorylated ( � 145 kD) and unphosphorylated 

(130 kD) forms of MHCK A ( Steimle et al., 2001 ), we found 

that  gefQ  �    cells and cells overexpressing GFP-GEF have both 

unphosphorylated and autophosphorylated MHCK A. We then 

 Figure 6.    Chemotactic behavior of  gefQ  �    cells.  (A) Computer-generated cell tracks of  gefQ  �    and AX2 cells during chemotactic migration in a spatial cAMP 
gradient using DIAS. Arrowheads indicate turns initiated by formation of lateral pseudopods in  gefQ  �    cells. (B) Shape changes of aggregation-competent 
 gefQ  �    and AX2 cells during chemotactic migration were analyzed by DIAS. Images were taken every 6 s but only every third frame is shown. The green 
areas indicate new membrane protrusions, the red areas indicate retractions, and the arrows indicate the direction of migration.   
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At this point when all the signaling components are assembled, 

it is critical for RasGEF Q to be in its active state to elicit down-

stream effects. Signaling components like RasGEFs are active 

only temporarily, the activation has to be appropriately con-

trolled, and the downstream signals are amplifi ed by orders of 

magnitude. It is likely that RasGEF Q is active for a very short 

time after a cAMP stimulus only. 

 We ruled out the possibility that RasGEF Q might activate 

RasG, another Ras isoform.  C ells lacking RasG show a cyto-

kinesis defect ( Tuxworth et al., 1997 ), whereas in cells that over-

express the GEF domain of RasGEF Q resulting in constitutively 

high levels of active Ras, we see a cytokinesis defect and, thus, 

activation of RasG might be independent of RasGEF Q. We also 

provide a function for the less well understood function of the 

DEP domain in RasGEF Q, as our results point to the DEP domain 

 Discussion 
 RasGEF Q in regulation of myosin II 
functions 
 Our studies on RasGEF Q reveal that it is required for regula-

tion of myosin II – based cellular functions, like cytokinesis and 

cell shape during chemotaxis, and also affects late developmen-

tal decisions. We provide evidence for RasB being a substrate 

for RasGEF Q and propose that regulation of myosin II func-

tions by RasGEF Q occurs predominantly through RasB.  C ells 

lacking RasGEF Q show myosin II overassembly associated 

with the inability to suppress lateral pseudopods, which is simi-

lar to that observed in 3XALA myosin II mutants. We show that 

the myosin overassembly is caused by higher levels of unphos-

phorylated myosin II in these cells, so the defect in myosin 

phosphorylation might arise from an inability to activate MHCKs. 

Cells that overexpress the GEF domain of RasGEF Q have a 

cytokinesis defect in suspension, and these cells also have high 

levels of constitutively activated RasB. We identifi ed RasB as 

the substrate for RasGEF Q through in vivo and in vitro binding 

assays and found that RasB is activated upon cAMP, which indi-

cates an involvement of cAMP and cAMP receptors (seven trans-

membrane G protein – coupled receptors [GPCRs]) in the process 

of activation. 

 We note that RasGEF Q associates with F-actin. The 

C-terminal region containing the catalytic GEF domain is a possi-

ble region involved in F-actin association. The cortical 

localization of both GFP-RasGEF Q 173  and GFP-GEF are sensi-

tive to Latrunculin A, indicating that an intact cytoskeleton is 

required for localization of RasGEF Q to the cortex. We also 

note that RasGEF Q can associate with myosin II and MHCK A, 

which is also sensitive to Latrunculin A. These results indicate 

that the F-actin cytoskeleton acts as a scaffold to recruit the 

signaling complex and that when the F-actin network is disas-

sembled the signaling components do not meet. Myosin II is 

an F-actin cross-linking protein and, upon a cAMP stimulus, 

MHCK A localizes to the cell cortex with the help of F-actin. 

 Table II.    Chemotactic behavior in a spatial cAMP gradient  

AX2  gefQ  �   

Buffer

   Speed ( μ m/min) 6.04  ±  3.14 5.47  ±  1.41

   Persistence ( μ m/min-degree) 1.35  ±  0.88 1.4  ±  0.78

   Directionality 0.31  ±  0.18 0.34  ±  0.14

   Direction change (degree) 50.9  ±  12.84 50.12  ±  11.74

cAMP gradient

   Speed ( μ m/min) 10.62  ±  2.23 12.21  ±  3.01

   Persistence ( μ m/min-degree) 3.76  ±  1.06 4.47  ±  1.28

   Directionality 0.79  ±  0.12 0.79  ±  0.12

   Direction change (degree) 21.63  ±  12 18.66  ±  7.16

Images were taken at magnifi cation of 20 ×  every 30 s. In all cases, cells were 
analyzed for at least 10 min. The DIAS software was used to trace individual 
cells along the image series and calculate motility parameters. Persistence is an 
estimation of movement in the direction of the path. Directionality is calculated 
as the net path length divided by the total path length and gives a value of 1 for 
a straight path. Directional change represents the average change of angle be-
tween frames in the direction of movement. Values are mean standard deviation 
of 30 – 90 cells from at least three independent experiments. For both strains, all 
parameters varied signifi cantly between the buffer and cAMP conditions

 Figure 7.    RasGEF Q regulation of myosin II assembly.  (A) Aggregation-
competent A X 2 and  gefQ  �    cells were fi xed and stained for myosin II. 
Images were taken with a confocal microscope. Every confocal section is 
accompanied by a pseudo-3D projection, in which the z axis represents the 
intensity of myosin II staining over the scanned area. Bar, 5  μ m. (B) Myosin II 
levels in cytoskeletal ghosts from cells in vegetative and aggregation-
competent stages. The graph (below) represents a mean of four indepen-
dent experiments. The error bars indicate SD. (C) Lysates from vegetative 
wild-type AX2 and  gefQ  �    cells were subjected to 2D SDS-PAGE analysis 
for determining the phosphorylation status of myosin II.   
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the actin cytoskeleton may serve as a scaffold to recruit a signal-

ing complex at the leading edge. RasB, which is activated by 

RasGEF Q, may promote myosin II phosphorylation by regulat-

ing the activity of MHCK A ( Fig. 9 ), which leads to phosphory-

lation of myosin II followed by elimination of fi lamentous 

myosin II from the leading edge. [ID]FIG9[/ID]   I n a mutant situation where 

RasGEF Q is absent, RasB would not be active and MHCK A 

activation would be limited and would result in higher levels of 

unphosphorylated myosin and, thus, myosin II overassembly in 

the cortex in these cells. In a situation where we overexpress the 

catalytic GEF domain of RasGEF Q, we see constitutively high 

levels of activated RasB, which activates MHCK A, leading to 

higher levels of phosphorylated myosin II. Because phosphory-

lated myosin II cannot assemble into fi laments that are required 

to provide force during cytokinesis, these cells fail to divide in 

suspension. Such a system may be very useful for  D. discoideum  

and the expansion of the functional roles for Ras proteins may 

compensate for the lack of Rho GTPases or its effector mole-

cule ROCK, which regulate myosin II functions in higher eu-

karyotes ( Somlyo and Somlyo, 2000 ) 

 RasGEF Q in  D. discoideum  development 
 The process of  D. discoideum  development is an example of 

programmed multicellularization ( Chisholm and Firtel, 2004 ), 

where cells that form and organize the multicellular organism 

undergo continuous coordinated changes in shape and motility 

that require the cytoskeleton.  D. discoideum  tip formation is an 

event that can serve as a model to understand similar develop-

mental processes in other organisms. Normally, only one tip 

arises from a mound and this apical tip serves as an organizer to 

control morphogenesis of the organism by acting as a cAMP 

oscillator from which waves are initiated and propagated poste-

riorly ( Siegert and Weijer, 1992 ;  Siegert and Weijer, 1995 ). 

Mounds from  gefQ  �    cells give rise to supernumerary tips and, 

as a result, smaller fruiting bodies are formed. Besides  gefQ  �    
cells, mutations in other components of signal transduction cas-

cades lead to similar defects. A defect in Scar, a WASP-related 

protein identifi ed in a mutant screen which suppresses pheno-

types of  cAR2  �    cells, also leads to a multiple-tipped phenotype 

( Bear et al., 1998 ) as well as overexpression of an activated 

RasD  G12T   ( Reymond et al., 1986 ). Similarly, a double knockout 

acting as an autoregulatory domain of RasGEF Q. Under vege-

tative conditions when RasB is not activated, the DEP domain 

can bind to the GEF domain and RasGEF Q is in an inactive 

conformation. Upon starvation, GPCRs can induce a conforma-

tional change upon cAMP binding whereby the DEP domain 

inhibition is released and, thus, GPCRs activate RasGEF Q, which 

activates RasB. 

 We observed that myosin in  gefQ  �    cells has a higher pI, 

possibly because of higher levels of unphosphorylated myosin II. 

A higher level of unphosphorylated myosin II is the cause of my-

osin overassembly in the cortex in  gefQ  �    cells. This also implies 

a role of MHCK in the process. In  D. discoideum , the most im-

mediate regulators of myosin II are MHCKs.  D. discoideum  has 

four MHCKs (A – D), among which MHCK A has been most ex-

tensively studied. MhckA  �   cells exhibit a partial, but signifi cant, 

level of myosin II overassembly because of higher levels of 

unphosphorylated myosin II. Overexpression of MHCK A elicits 

defects comparable to those observed in myosin II – null cells, 

namely a blocked cytokinesis in suspension and arrested develop-

ment in the mound stage ( Kolman et al., 1996 ). In chemotaxing 

cells, MHCK A relocalizes to the actin rich cortex in the anterior 

of the cell, where it presumably functions to phosphorylate and 

disassemble myosin II at the leading edge ( Steimle et al., 2001 ). 

 The GEF domain of RasGEF Q has the ability to copre-

cipitate MHCK A and myosin II in an F-actin – dependent man-

ner. In accordance with the fact that RasGEF Q regulates myosin II 

functions by regulating MHCK A, we observed that cells over-

expressing the GEF domain have a twofold higher level of 

MHCK A associated with cytoskeletal fractions. This is the 

result of MHCK A activation by autophosphorylation, where-

upon it associates with the actin cytoskeleton in aggregation-

competent cells that are stimulated with cAMP ( Steimle et al., 

2001 ). Thus, overexpression of the GEF domain causes larger 

amounts of MHCK A to be activated. In contrast, MHCK A dis-

tribution in cytoskeletal fractions is normal in  gefQ  �    cells, indi-

cating that RasGEF Q plays a role in facilitating MHCK A 

recruitment to the cytoskeleton and that other (probably pas-

sive) processes are important for returning the kinase to the cyto-

sol. Furthermore, the C terminus of RasGEF Q, which harbours 

the GEF domain, has the potential to bind to F-actin directly in 

F-actin cosedimentation assays. These results also suggest that 

 Figure 8.    RasGEF Q regulates myosin II 
through MHCK A.  (A) GST-GEF can associate 
with myosin II and MHCK A in a manner that 
is sensitive to Lat A treatment. (B) Cytoskeletal 
fractions from wild-type AX2, AX2 cells over-
expressing GFP-GEF, and  gefQ  �    cells were 
prepared as described in Materials and meth-
ods. Supernatant and pellet fractions were re-
solved by SDS-PAGE and immunoblotted using 
MHCK A – specifi c monoclonal antibody. The 
graph below represents the mean of two in-
dependent experiments and shows the amount 
of MHCK A present in the pellet fractions as 
the percentage of the total MHCK A content. 
(C) Presence of MHCK A in fractions contain-
ing active RasB. Active RasB was pulled down 
from GFP-GEF (6 h) cells using GST-Byr2(RBD). 
The precipitates were tested for the presence 
of MHCK A and myosin II heavy chain.   
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( Eliott et al., 1993 ;  Springer et al., 1994 ;  Chen et al., 1998 ). Cells 

lacking myosin heavy chain can aggregate but fail to proceed 

beyond the mound stage of development. The regulatory light 

chain of myosin has also been thought to be required for direc-

tional sorting of prestalk EcmAO cells at the tip of a developing 

mound ( Clow et al., 2000 ). Although RasGEF Q transcripts are 

present throughout development, a protein of higher molecular 

mass is present in the fi rst 6 h of development and a smaller 

isoform generated by an alternative promoter is present in low 

amounts during later stages of development. This smaller form 

of the protein might have functions in regulating processes in 

late development. 

 Materials and methods 
 Cell culture and development 
  D. discoideum  cells of strain AX2 were grown either with  Klebsiella aero-
genes  on SM agar plates or axenically in liquid nutrient medium ( Claviez 
et al., 1982 ) in shaking suspension at 160 rpm at 21 ° C.  gefQ  �    cells 
were cultivated in nutrient medium containing 7  μ g/ml G418 (Invitro-
gen). To analyze development, cells were grown axenically to a density 
of 2 – 3  ×  10 6 /ml, washed twice in Soerensen phosphate buffer (17 mM 
NaK phosphate, pH 6), and 5  ×  10 7  cells were plated on phosphate 
agar plates. 

 For phototaxis assay, 10  μ l of cells at a density of 10 8  cells/ml were 
transferred to the center of a 90-mm phosphate agar plate and placed in 
a black opaque box with a slit to provide a unidirectional light source and 
cells were allowed to develop to the migratory slug stage. Slime trails and 
cellular material were transferred onto a nitrocellulose membrane. Mem-
branes were stained with staining solution (0.1% amido black in 20% iso-
propanol and 10% acetic acid) for 10 min and destained twice with 
destaining solution (20% isopropanol and 10% acetic acid) for 15 min, 
washed with water, and air dried. 

 For development in chimera,  gefQ  �    cells and wild-type cells were 
transfected with pBsr-GFP for expression of GFP to mark the different cell 
types. 90% wild-type cells was mixed with 10%  gefQ  �    cells expressing 
GFP or 90%  gefQ  �    cells was mixed with 10% GFP-expressing wild-type 
cells and allowed to codevelop. For control 10% GF P -expressing wild-type 
cells was mixed with 90% wild-type cells. Images were taken at the slug 
stage using a fl uorescent microscope (DMR; Leica). 

 Generation of  gefQ  �    cells and cells expressing RasGEF Q domains 
 For generation of the knockout vector, cDNA clone SLH890 (procured from 
the  D. discoideum  cDNA project, Tsukuba, Japan) encompassing nt 1798 –
 3987 of  gefQ  cloned in pSPORT (Invitrogen) was used. The plasmid was 
digested with BsaBI to release a 55-bp fragment and the neomycin resis-
tance cassette ( Witke et al., 1987 ) was inserted by blunt end ligation. The 
resulting replacement vector was linearized by digesting with SalI and 
transformed into AX2 by electroporation. Transformants were selected in 
nutrient medium containing 7  μ g/ml G418. Independent clones were 
screened for the disruption of the  gefQ  gene by PCR using genomic DNA, 
Southern blotting, immunofl uorescence, and Western blot analysis. For 
Southern blot analysis, a probe encompassing nt 690 – 990 of the cDNA 
was used. 

 For expression of RasGEFQ 173 , a fragment encoding the protein 
from aa 173 – 1298 was cloned into pDex79 and expressed as a GFP fu-
sion protein in AX2 cells. For expression of the N-terminal fragment  � -GEF-
GEFQ fused to GFP at its N terminus, a 1.45- kb fragment encoding aa 
residues 172 – 654 was cloned into pBsr ( Mohrs et al., 2000 ). For ex-
pression of the DEP domain as a GFP-tagged protein fused at the N termi-
nus, a 450-bp fragment encoding residues 683 – 833 was cloned into 
pMCS ( Weber et al., 1999 ). The same fragment was recloned into pGEX-
4T1 (GE Healthcare) for expression of GST-DEP in bacteria. For expression 
of the C-terminal domain containing the catalytic GEF domain as a GFP-
GEF fusion fused at the N terminus, a 1.2-kb fragment encoding residues 
910 – 1298 was cloned into pMCS. The same fragment was recloned into 
pGEX-4T1 for expression of GST-GEF in bacteria. A construct lacking the 
DEP domain (GFP- � -DEP-GEFQ) was generated by digesting pDex79/
GFP-RasGEFQ 173  with NsiI and SalI and ligating it with a PCR-amplifi ed 
fragment encoding aa 818 – 1298 preserving the NsiI site. The resulting 
plasmid, which lacks the DEP domain, was introduced into AX2 cells. 

of two isoforms of phosphatidylinositol-3-kinase (PI3K 1 � /2 �  ) 
and overexpression of the phosphotyrosine phosphatase PTP1 

also resulted in the multiple-tip phenotype ( Howard et al., 1992 ; 

 Zhou et al., 1995 ). 

 Multiple tips arising from  gefQ  �    mounds may result from 

the formation of more than one oscillator (or embryogenic orga-

nizer). It is also possible that a single embryogenic organizer 

subdivides to form multiple organizers, causing the multiple-tip 

phenotype. The tip of the slug is also critical in sensing light and 

phototactic migration of the slugs.  gefQ  �    mounds gave rise to 

slugs, but when analyzed for their ability to migrate in photo-

taxis assays they showed severe impairment. In contrast, slugs 

from cells overexpressing GFP-GEF formed migratory slugs 

but their orientation toward the light source was severely im-

paired. Several proteins in Ras signaling have been implicated 

in phototaxis, with  rasD  �    and  gefE  �    cells having totally im-

paired phototaxis ( Wilkins et al., 2000 ;  Wilkins et al., 2005 ). 

 Our data also suggests that a RasGEF Q – mediated pathway 

is required for proper spatial patterning in the slug. In chimeric 

experiments with  gefQ  �    cells and wild-type cells,  gefQ  �    cells 

are predominant in the posterior prespore region of the slug. 

Absence of RasGEF Q may cause defects in proper directional 

movement of cells within the slug necessary to maintain proper 

spatial patterning. The cell-autonomous nature of this defect in 

 gefQ   �   mutants may suggest a role of RasGEF Q in processing 

external signals. Similar patterns of mutant cell distributions in 

chimeras have been reported for cells lacking the GPCR CrlA, 

G protein G � 5, or ERK1 protein kinase, suggesting that these 

components might function in the same or related pathways 

( Gaskins et al., 1996 ;  Natarajan et al., 2000 ;  Raisley et al., 2004 ). 

The fi ndings that myosin heavy chain and myosin light chain 

are required for cell patterning during  D. discoideum  develop-

ment may also be relevant for RasGEF Q regulating myosin II 

 Figure 9.    Model for a role of RasGEF Q in regulating Myosin II functions.  
For details see Discussion.   
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lowed by 10 min at room temperature. The samples were spun at 100,000  g  
for 4 min. Supernatants were discarded and pellet fractions washed 
once with NP-40 buffer. The pellet fractions were dissolved in 2 ×  SDS-PAGE 
sample buffer ( Laemmli, 1970 ) and proteins resolved by SDS-PAGE (8% 
acrylamide) and visualized by Coomassie brilliant blue staining. Protein 
bands were scanned and changes in myosin II content in the cytoskeleton 
quantifi ed using Image J software (National Institutes of Health). For isolation 
of cytoskeletal fractions for analyzing MHCK A, 1.5  ×  10 6  cells were lysed 
in buffer containing 0.1 M MES, pH 6.8, 2.5 mM EGTA, 5 mM MgCl 2 , 
0.5 mM ATP, and0.5% Triton X-100, supplemented with protease inhibitors, 
briefl y vortexed, and then spun at 100,000  g  for 1 min. Supernatant frac-
tions were precipitated with acetone. Pellet and supernatant fractions were 
resolved by SDS-PAGE and immunoblotted using MHCK A – specifi c mono-
clonal antibody ( Steimle et al., 2001 ). The level of MHCK A in both the pel-
let and supernatant fractions was quantifi ed by densitometric analysis of the 
scanned blot using ImageJ. The percentage of MHCK A in the pellet fraction 
was determined by dividing the value obtained for the band in the pellet by 
the total from the bands in the pellet and supernatant. Preparation of cyto-
skeletal fractions using saponin was done using a buffer containing 50 mM 
Tris/HCl, pH 7.6, 100 mM NaCl, 10 mM NaF, 1 mM EDTA, 1 mM EGTA, 
2% Saponin, 10% glycerol, and 1 mM DTT, supplemented with protease in-
hibitors ( de Curtis and Malanchini, 1997 ). 

 Analysis of cell shape and migration 
 Aggregation-competent AX2 and  RasGEF Q  �    cells were plated onto glass 
coverslips and allowed to settle for 15 min in Soerensen phosphate buffer 
and chemotaxis experiments were performed with micropipettes fi lled with 
10  � 4  M cAMP attached to a micromanipulator system at 22 ° C. The micro-
pipette tip was carefully moved to touch the surface of the glass coverslip. 
Images were recorded at intervals of 6 s using an inverse microscope (40 ×  
objective; DM-IL; Leica) and a conventional charge-coupled device video 
camera using OPTIMAS 6.0 software (Optimas Corporation) and ana-
lyzed using Dynamic Image Analysis software (DIAS; Soll Technologies; 
 Wessels et al., 1998 ). 

 2D SDS-PAGE 
 2D gel electrophoresis was performed using an adaptation of previously 
described protocols ( Clemen et al., 2005 ).  D. discoideum  cells were lysed 
in lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, 2% IPG 
buffer, 2% DTT, 1 mM PMSF, and protease inhibitors (Roche) containing 
bromophenol blue at room temperature and centrifuged at 16,000  g  for 
5 min. Samples of supernatants (250  μ l) were diluted with rehydration buffer 
to a volume of 350  μ l and applied to the IEF strips (18 cm; pH 3 – 10; non-
linear) via rehydration technique for 12 h at 50 V. The strips were then 
focused on the IPGphor system (GE Healthcare) with a current limit of 50  μ A 
per strip at 20 ° C with the following program: 1 h at 200 V, 1 h at 500 V, 
1 h at 1,000 V, gradient to 8,000 V in 1 h, and a fi nal focusing step at 
8,000 V for 28 kVh. After IEF, the strips were briefl y rinsed with water and 
prepared for the second dimension by a two-step equilibration and cystine 
alkylation process. The strips were incubated two times in equilibration 
buffer (50 mM Tris/HCl, pH 8.8, 6 M urea, 30% vol/vol glycerol, and 
bromophenol blue) for 12 min, in which 1% (wt/vol) DTT (step one) or 4% 
(wt/vol) iodoacetamide were added, respectively. Subsequently, the strips 
were loaded on SDS gels (8% acrylamide) and resolved in the second di-
mension. Gels were subjected to immunoblotting using myosin II – specifi c 
monoclonal antibody mAb 56 – 396-2 ( Pagh and Gerisch, 1986 ). 

 Miscellaneous methods 
 For treatment with drugs, cells were treated with 10  μ M Lat A, 20  μ M cyto-
chalasin D, or 100  μ M blebbistatin in nutrient medium with shaking for 
40 min. Cells were fi xed with 3% PFA/picric acid and stained for F-actin 
using TRITC-labeled phalloidin (Sigma-Aldrich) or cold methanol, and actin was 
detected with mAb act1 – 7. For staining for myosin II, aggregation-competent 
cells were allowed to settle on coverslips and were fi xed using methanol 
( � 20 ° C) and stained for myosin II using mAb 56 – 396-2 ( Pagh and Gerisch, 
1986 ) and images were captured using a laser scanning confocal micro-
scope (TCS-SP; Leica). For quantitative analysis, initial scans using AX2 
cells were used to optimize scanning parameters and, subsequently,  gefQ  �    
cells were scanned. Images were acquired using the accompanying Leica 
software. This software was also used to generate pseudo-3D projections 
from 2D images, in which the  z  axis represents intensity distribution over 
the scanned area. In all cases, temperature was maintained at 22 ° C and 
cells were mounted on coverslips using gelvatol. Monoclonal antibodies 
recognizing csA ( Bertholdt et al., 1985 ), actin ( Simpson et al., 1984 ), and 
GFP ( Noegel et al., 2004 ) were used for Western blotting. 

 Generation of RasGEF Q monoclonal antibodies 
 The procedure used to generate RasGEF Q monoclonal antibodies was as 
described previously ( Schleicher et al., 1984 ).  T he DEP domain of RasGEF Q 
(residues 683 – 833) was used for immunization of four female BALB/c 
mice ( Lingnau et al., 1996 ). mAbs K-70-187-1 and K-70-102-1 were used 
in this study. They recognize a protein of 143 kD in whole cell homoge-
nates of wild-type Ax2 cells, which is absent in  gefQ  �    cells. 

 Actin binding assay 
 All purifi ed proteins used in the study were clarifi ed by centrifugation at 
120,000  g  for 60 min at 4 ° C.  D. discoideum  actin was isolated as de-
scribed previously ( Haugwitz et al., 1991 ). Actin sedimentation assays 
were performed as described previously ( Jung et al., 1996 ). In brief, 5  μ M 
G-actin was polymerized in the presence or absence of 60  μ g/ � 1  μ M 
GST-GEF or 20  μ g/ � 1  μ M GST by addition of 0.1 vol of 10 ×  polymeriza-
tion buffer (100 mM imidazol, pH 7.6, 20 mM MgCl 2 , 10 mM EGTA, 1 M 
KCl, and 5 mM ATP) for 30 min at room temperature. The fi nal reaction 
volume was 70  μ l. Binding to F-actin was determined by high-speed cen-
trifugation at 120,000  g  for 1 h at 4 ° C. Cross-linking of fi laments was ana-
lyzed by low-speed centrifugation at 12,000  g  for 1 h at 4 ° C. Equal 
amounts of pellet and supernatant were resolved by SDS-PAGE (10% acryl-
amide) and proteins were visualized by Coomassie brilliant blue staining. 

 In vitro binding assays with GST fusion protein and analysis 
of cAMP-induced activation of RasB 
 For interaction with cytoskeletal proteins, 5  ×  10 7  AX2 cells were lysed in 
lysis buffer (LB; 25 mM Tris/HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 
0.5% Triton X-100, and 1 mM DTT, supplemented with protease inhibitors 
[Sigma-Aldrich] with 5 mM ATP added) with or without a preincubation 
with 10  μ M Lat A (Sigma-Aldrich for 1 h) and incubated with equal amounts 
of GST-GEF bound to beads for 3 h at 4 ° C. Beads were washed with wash 
buffer (25 mM Tris/HCl, pH 7.5, 150 mM Na C l, and 5 mM EDTA) and the 
pulldown eluates were analyzed in Western blots. Monoclonal antibodies 
recognizing actin ( Simpson et al., 1984 ) or myosin II ( Pagh and Gerisch, 
1986 ) and a polyclonal antibody against MHCK A (provided by T. Egelhoff, 
Case Western Reserve University, Cleveland, OH;  Kolman et al., 1996 ) 
were used. 

 For interaction of GST-GEF with RasB, 5  ×  10 7  AX2 cells were lysed 
by sonication in LB without Triton X-100 and membrane and nuclear-
enriched pellet fraction separated by centrifugation at 100,000  g  for 30 min 
at 4 ° C. The pellet fraction was resuspended in LB containing 1% Triton 
X-100. The pulldown reaction was done as described for the interaction of 
GST-GEF with cytoskeletal proteins. For analysis of binding preference of 
GST-GEF for GTP- or GDP-bound RasB, cell lysates from 5  ×  10 7  AX2 cells 
were lysed in 1 ml LB. One 1-ml aliquot was pretreated with 100  μ M GDP 
and 5 mM MgCl 2  and another one with 100  μ M GTP � S and 5 mM MgCl 2  
for 1 h, and the pulldown reaction was done as described for the interac-
tion of GST-GEF with cytoskeletal proteins. Eluates were probed with RasB-
specifi c polyclonal antibodies (provided by G. Weeks, University of British 
Columbia, Vancouver, Canada;  Sutherland et al., 2001 ). 

 Activation of RasB was assayed by performing pulldown with 
beads coated with the GST-fused Ras binding domain of  S. pombe  Byr2 
(supplied by G. Praefcke, University of Cologne, Cologne, Germany; 
 Gronwald et al., 2001 ;  Scheffzek et al., 2001 ). 5  ×  10 7  AX2 and  gefQ  �    
cells were harvested at the vegetative (0 h) and aggregation-competent 
(6 h) stages and GFP-GEF – expressing cells were harvested at the vegeta-
tive stage. Cells were lysed in LB and incubated with equal amounts of 
GST-Byr2 – bound beads. Pulldown eluates were immunoblotted and 
probed with RasB antibody. 

 cAMP-induced activation of RasB in aggregation-competent AX2 
cells was done according to  Kae et al. (2004) . Cells were stimulated with 
500 nM cAMP while shaking and immediately lysed 0, 10, or 60 s after 
cAMP stimulation. Lysates were incubated with equal amounts of glutathi-
one Sepharose beads coated with GST-Byr2(RBD) to pull down active Ras 
and probed with RasB antibody. 

 Preparation of cytoskeletal ghosts 
 Cytoskeletal fractions were isolated as proteins insoluble in Nonidet P-40 
( Chung and Firtel, 1999 ) or as proteins insoluble in Triton X-100 ( Steimle 
et al., 2001 ). For isolation of cytoskeletal fractions for analyzing myosin II 
levels, 10 7  cells were harvested at either the vegetative or aggregation-
competent stage by centrifugation and lysed in NP-40 buffer (50 mM Tris/HCl, 
pH 7.6, 100 mM NaCl, 10 mM NaF, 1 mM EDTA, 1 mM EGTA, 1% NP-40, 
10% glycerol, and 1 mM DTT, supplemented with protease inhibitors 
[Sigma-Aldrich]). After vortexing, tubes were kept on ice for 10 min fol-
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