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ABSTRACT
Dependability analysis of a dynamic system which is embed-
ded with several complex interrelated components raises two
main problems. First, it is difficult to represent in a single
coherent and complete picture how the system and its con-
stituent parts behave in conditions of failure. Second, the
analysis can be unmanageable due to a considerable num-
ber of failure events, which increases with the number of
components involved. To remedy this problem, in this pa-
per we outline an analysis approach that converts failure
behavioural models (state machines) to temporal fault trees
(TFTs), which can then be analysed using Pandora — a re-
cent technique for introducing temporal logic to fault trees.
The approach is compositional and potentially more scal-
able, as it relies on the synthesis of large system TFTs from
smaller component TFTs. We show, by using a Generic
Triple Redundant (GTR) system, how the approach enables
a more accurate and full analysis of an increasingly complex
system.

Keywords
Dependability Analysis, State Machines, Temporal Fault
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1. INTRODUCTION AND BACKGROUND
Dependability analysis of dynamic systems, where the or-

der in which events occur can affect the overall outcome (e.g.
total failure), remains highly challenging. One central issue
in modern safety-critical systems is that they are becoming
increasingly dynamic and, correspondingly, more complex
to analyse. Thus it becomes ever more important to find
scalable approaches that allow for rapid analysis while still
being able to take into account the dynamics of such sys-
tems.

Finite state transition models (e.g. SMs) have become a
prevalent paradigm for the description of dynamic systems,
thanks to their flexibility and ease of use; such models help
designers and analysts to better understand how these sys-
tems can fail. SMs are used in several approaches, e.g., an
extension to Hierarchically Performed Hazard Origin and
Propagation Studies (HiP-HOPS) described in [1], Altarica
[2], FSAP/NuSMV-SA [3] and, most recently, AADL [4].

There have been several attempts to assess systems mod-
elled with SMs for the purposes of dependability analysis.
One approach consists of converting SM models to Gener-
alised Stochastic Petri Nets (GSPNs), which are then anal-
ysed for dependability. This is one of the approaches that

can be applied to AADL system models, as described in [5]
— AADL error models are effectively state automata show-
ing transitions from normal to degraded and failed states [4].
Yet in this approach, it can be problematic to perform quali-
tative analysis, i.e., establishment of full causal relationships
between causes and effects of failure, as in traditional analy-
sis methods like Failure Mode and Effects Analysis (FMEA).
Qualitative analysis is particularly important when proba-
bilistic data are not available, e.g. at early stages of de-
sign; it is useful to be able to identify and solve potential
design problems early, rather than in later iterations when
the design is more concrete and changes are more expen-
sive. Decisions made at these early stages can be critical
for determining the future shape of the system, and so it is
important that safety can be taken into account at all stages
of the design process.

An alternative approach involves conversion of SMs to
fault trees. Fault trees are logical networks of events that
show how combinations of failures can cause a given system
failure and are ideally suited for qualitative analysis. How-
ever, there are difficulties with this type of conversion; in
particular, the temporal semantics of SMs (which are dy-
namic models) are lost in the translation to combinatorial
fault trees (which are static models), and this can poten-
tially cause serious errors/inaccuracies in the analysis (e.g.
when the sequencing of faults affects the outcome). There
have been some efforts made to work around this issue; for
example, in [2], NOT gates were incorporated into the con-
version to fault trees to indicate that some events did not
occur. Although this prevents a conjunction of two mu-
tually exclusive SM paths occurring as an analysis result,
it still cannot distinguish between paths that differ only in
sequence - e.g. two faults which lead the system into two
mutually exclusive states depending on which fault occurred
first.

The conversion of SMs to fault trees has been applied to
both AADL models [6] and to Altarica descriptions of sys-
tems [2], but in neither approach are the temporal semantics
retained during transformation. AADL is gaining growing
acceptance in the aerospace community and Altarica’s mod-
elling and analysis platform — a tool which uses computer-
performed generation of fault trees — was qualified as a
validation tool in several aerospace projects, including Air-
bus civil aircraft programs [7], so solving this problem of
losing the temporal semantics of SMs could potentially have
a positive impact in such areas.

To remedy the problem of converting dynamic models to
static fault trees, an approach which consists of generating



temporal fault trees (TFTs — which are dynamic, rather
than static) from SMs has been described in [8]. The tech-
nique mainly uses a Priority-OR (POR) gate to differentiate
sequences of faults. The gate can represent situations where
one event takes priority over others and must occur first, but
without specifying that the other events must also occur -
e.g. A POR B is true if A occurs and B does not, or if A
occurs and B occurs but A occurs first.

In this paper, we extend this technique to enable a full
compositional synthesis of TFTs for Pandora analysis. The
fault trees are generated from the SMs of the components
of a system, and the approach works backwards, starting
with the TFTs of the system failures (i.e., total failures as
top events). For each TFT event that is an input deviation
(i.e., a fault or failure propagated to the input of a compo-
nent, typically represented by the top event of another fault
tree in another component), the synthesis method joins the
TFTs together to form a single, full fault tree for each sys-
tem failure. These can then be analysed to determine the
root causes of the failures without sacrificing any informa-
tion about the dynamic behaviour of the system. In princi-
ple, the method can also be combined with a compositional
analysis technique like HiP-HOPS, which would enable auto-
matic synthesis and analysis of TFTs from complex models
of systems in which the error behaviour is described with
state automata.

Section 2 of this paper provides more information about
temporal fault tree analysis and Pandora, while section 3 is
devoted to describing the algorithm for the automatic gener-
ation of TFTs from SM models of systems. In section 4, we
present our approach for compositional synthesis of TFTs.
We demonstrate the synthesis method by using a generic
triple redundant (GTR) example system and show how the
resultant TFTs can be analysed with Pandora. Finally, in
section 5 we present our conclusions and thoughts on future
work.

2. TEMPORAL FAULT TREE ANALYSIS

2.1 Context
A fault tree is a combinatorial model based on Boolean

logic, showing the relationships between combinations of ba-
sic events (typically component failures) and the system-
level failures they cause. Events are combined via logical
gates, such as AND gates (represented in this paper by ‘.’)
and OR gates (represented by ‘+’). Synthesis of a fault tree
is a deductive process, beginning with the top event — the
system failure being analysed — and investigating its in-
termediate causes at each step until the root causes — the
basic events — are reached. Once constructed, a fault tree
can be qualitatively analysed by manipulating its Boolean
structure to obtain the minimal cut sets — the smallest sets
of necessary and sufficient events that cause the top event.

Fault trees are a very effective analysis technique in many
situations, but they are ill-suited for modelling dynamic sys-
tems. In particular, they cannot model the effects of two (or
more) different sequences of the same events, a situation fre-
quently exhibited by dynamic systems.

The requirement for an extension to fault tree analysis to
enable the modelling and analysis of dynamic systems is not
a new one. The Priority-AND (PAND) gate — probably the
earliest attempt at solving this problem — dates back to at
least 1976 [9]. The PAND gate is true only if all of its events

occur and if they occur in a specific order (usually left to
right).

More modern approaches tend to fall into one of two cat-
egories: one set of solutions focuses on increasing the num-
ber and expressiveness of the fault tree gates by adding new
‘temporal’ operators, while the other set instead focus on
adding additional information or constraints to the events
of the fault trees. The most prominent example of the for-
mer category is the Dynamic Fault Tree (DFT) approach
[10]. DFTs are intended to analyse dynamic systems featur-
ing functional dependencies, sequences of events, and spare
components. DFTs are primarily intended for quantitative
analysis, and this is achieved by means of a conversion of the
fault tree — or at least those parts of it featuring dynamic
gates [11] — into a Markov model, which can then be eval-
uated. While effective in many cases, Markov models can
be subject to combinatorial explosion, and so other methods
have been proposed for the quantification of DFTs, includ-
ing numerical integration [12] and Monte Carlo techniques
[13]. However, there has been less focus on qualitative anal-
ysis of DFTs, which often restricts their usage to situations
where probabilistic data is available, although progress is
being made in this area, e.g. the algebraic approach devel-
oped in [14], which allows both quantitative and qualitative
analysis of DFTs.

As an example of the second category of approaches, Gorski
& Wardzinski [15, 16] introduce the idea of an enabling con-
dition to fault trees, which is an additional intermediate
event that describes a temporal constraint. A formal spec-
ification known as the Common Safety Description Model,
or CSDM, is used to formulate the enabling conditions. In
this approach, events are not treated as instantaneous oc-
currences (as they are in traditional fault tree semantics);
instead, they are defined to be “distinguished states of a sys-
tem which can last for some time.” Whereas DFTs sought to
enable quantitative analysis of dynamic systems, the CSDM
(and similar approaches) is intended primarily to allow fault
trees — with more rigorous semantics and definitions — to
be used as part of a formal specification of a system. Al-
though qualitative and quantitative analysis is possible, the
fault tree is analysed using classical methods, and it is only
once the minimal cut sets have been obtained that the tem-
poral constraints are considered. These can then be used in
addition to the cut sets to produce a Timed Petri Net to
determine reachability of the top event given the temporal
constraints described by the enabling conditions. Therefore
the fault tree analysis is not the goal in itself but merely a
preliminary step in the overall process.

2.2 Pandora
One of the more recent attempts to extend fault trees with

dynamic or temporal information for the purposes of quali-
tative analysis is Pandora [17]. Pandora is a gate-based ap-
proach and introduces three new “temporal gates” to over-
come the limitations of fault trees regarding the sequenc-
ing of events: the Priority-AND (PAND) gate (symbol ‘<’),
which represents a sequence of events; the Simultaneous-
AND (SAND, ‘&’) gate, which represents simultaneous oc-
currence of events, e.g. as a result of a common trigger; and
the Priority-OR (POR, symbol ‘|’), which as described ear-
lier models a priority situation where one event must occur
first and other events may or may not occur subsequently.

Pandora is designed for temporal qualitative analysis in



the same way that static fault trees can be analysed qual-
itatively through the use of Boolean logic. Therefore, just
as Boolean logic has logical laws, Pandora has “temporal
laws”. Some of Pandora’s temporal laws are derived from
Boolean laws, whilst others are new. Temporal laws can be
proved by means of Temporal Truth Tables (TTTs), which
are temporal analogues of Boolean truth tables and which
show equivalence between two or more logical expressions.

Temporal expressions are generally complex, particularly
when compared with Boolean ones; hence the temporal laws
are very useful in enabling the minimisation of the expres-
sions and thereby reducing the complexity involved. They
also make it possible to perform qualitative analysis by iden-
tifying and removing redundant sequences of events.

Pandora allows more than one form of reduction. As well
as removal of redundancies, e.g. A<B + A|B⇔ A|B (where
A and B are fault tree events), Pandora also allows reduc-
tion via the recognition and removal of contradictions and
by means of ‘completion’ — conversion of temporal expres-
sions into static Boolean expressions. Contradictions are
identified by specific laws, e.g. the Laws of Mutual Exclu-
sion indicate that only one temporal ordering can apply to
a pair of events at any time, thus A<B . B<A results in a
contradiction. Similarly, an expression such as A<A.B + C
also contains a contradiction (since A cannot occur before
itself); this reduces to 0.B + C and ultimately to just C.

The concept of ‘completion’ expresses equivalence between
temporal and non-temporal expressions and is accomplished
by means of the Completion Laws — a set of temporal laws
in Pandora that relate non-temporal gates to temporal ones.
These laws can be used to reduce complex temporal expres-
sions into much simpler Boolean expressions where possible.
The three Completion Laws are:

• Conjunctive: A<B + A&B + B<A ⇔ A.B
• Disjunctive: A|B + A&B + B|A ⇔ A+B
• Reductive: A<B + A&B + B|A ⇔ B or A.B + B|A
⇔ B

For full details about Pandora’s temporal laws we refer
the reader to [18], but four laws in particular will be useful
in this paper:

• (A|B).B ⇔ A<B
• A . A|B ⇔ A|B
• (A|B) . (A|C) ⇔ A|B|C
• A|(B+C) ⇔ A|B|C

These laws all express equivalence, e.g. in the first law,
between the POR gate with an additional conjunction (A
must occur first, but B must also occur) and the PAND
gate (A occurs before B, both events have to occur). Thus
they can be used to remove redundant events or parentheses
from an expression in order to simplify it.

Different algorithms can be used to minimise temporal ex-
pressions, ranging from logical manipulation to hierarchical
checking [18], but they all allow Pandora to be used to de-
termine the “minimal cut sequences” (MCSQs) of the fault
tree: analogous to Minimal Cut Sets (MCSs), these repre-
sent the smallest sequences of events necessary to cause the
top event of the fault tree to occur. These results therefore
retain the temporal information represented in the fault tree
by the PAND, POR, and SAND gates and thus are more
accurate and informative than the results of a comparable
static FTA.

Figure 1: Primary Standby system

3. COMPILATION OF SMS INTO PANDORA
EXPRESSIONS

3.1 Motivation
The use of state machines is an expressive, high-level method

of modelling the behaviour of systems (or components). SMs
readily express the different effects of events on a system in
different states, making them well-suited to modelling the
effects of failures and fault events on a system.

As mentioned previously, SMs can be converted into fault
trees. To transform a SM to a purely combinatorial fault
tree, each of the SM final failure states becomes the head of
its own fault tree. All paths through the SM to the given
final state become a disjunction of possible causes of the top
event, and each cause is represented as a conjunction of all
failure events in that path which have caused the system, or
the component, to enter the final state. Each conjunction
represents one cut set of the fault tree, and if it contains no
redundancies, then it is a minimal cut set (MCS).

For example, consider Figure 1 (used in [8]) which rep-
resents a simple Primary Standby (PS) system with three
components: ‘A’ represents the primary component, while
sensor ‘S’ monitors the output from ‘A’ and is meant to ac-
tivate the backup ‘B’ if it detects an omission of output.
Supply must be received from either A or B for proper func-
tioning of the whole system.

For the SM of S in Figure 2, the initial state is ‘Monitor-
ing’, which means that the sensor is ready and standing by
to activate B. If a fault occurs in the output from A (e.g.
an output omission represented as ‘O-A’ in the SM) and is
detected, then the state of S alters to ‘Omission Detected’
(i.e. it needs to activate B). However, the system can con-
tinue to function if S fails after waking B up (because B
takes over A’s function), thus that sequence of failures —
O-A occurs first then S fails second — will lead the sensor
to a ‘Safely Failed’ state. By contrast, if S fails first (enter-
ing the ‘Prematurely Failed’ state), then it will be unable
to detect a subsequent omission of output from A, and thus
this second sequence will lead to a ‘Severely Failed’ state
(since B will not be activated, which means a total failure of
the system). This latter state represents an output omission
from S (‘O-S’) i.e., an error propagation through the system
(which leads to a complete failure in this particular case).

Therefore, as can be seen from the situation in Figure 2,
we have two different sequences of the same two failures
each leading to different failure states of the sensor. One
sequence can cause system failure, whereas the other will
give it a chance to continue to function with the backup.
However, transforming this SM to a purely combinatorial
fault tree would give a conjunction of the same failures as a



Figure 2: State machine of S

common cause for both ‘Safely Failed’ and ‘Severely Failed’
states: Safely Failed = O-A.(S fails) and Severely Failed =
(S fails).O-A. Since O-A.(S fails) ⇔ (S fails).O-A according
to the commutative law of Boolean logic, these two conjunc-
tions are logically equivalent. Hence subsequent fault tree
analysis would suggest that the same two failures can lead
to two different sensor failures — at best a non-deterministic
result and at worst a logical impossibility — and any conse-
quent quantitative analysis would also be incorrect. Thus,
this kind of transformation can lead to serious errors in the
analysis: the results are not an accurate representation of
the behaviour shown in the SM. We therefore need some way
of representing event sequences within fault trees, and then
it would be possible to convert SMs into fault trees without
sacrificing the relevant event sequencing, which affects the
outcome.

3.2 Representing SMs using Pandora logic
Consider again the two sequences in the example state

machine in Figure 2. With Pandora, we can represent these
sequences explicitly using the PAND gate: Safely Failed =
O-A<(S fails) and Severely Failed = (S fails)<O-A. The
PAND gate is not commutative, i.e., O-A<(S fails) < (S
fails)<O-A, and thus the importance of the ordering of the
events is preserved, each one leading to a different system
failure.

However, not all state machines require the use of tempo-
ral gates when transformed to fault trees. In many cases,
standard Boolean logic is adequate to represent the behaviour
and perform a correct analysis; for example, a SM where
two events A then B lead to a ‘Degraded’ state, and two
other different events C then D lead to a ‘Failed’ state. In
this case, we are concerned with separate combinations of
events, i.e., the two branches have no events in common and
each event contributes only to a single end state (and ulti-
mately, contributes to only one top event). Here, a change
in the sequence of the events (e.g. D before C instead of
C before D) will not lead to a different failure. In the case
that D happens first, the system simply stays in the ini-
tial state and when C occurs it performs two instantaneous
transitions to reach the final failed state; thus the failure
behaviour is not sequence-dependent as in the case of the
SM in Figure 2. Therefore, in this scenario, Boolean logic is
sufficient to model the situation unambiguously (Degraded
= A.B and Failed = C.D) and thus the simpler transforma-
tion of SMs into fault trees described in [6] is sufficient to
obtain an accurate analysis.

The choice between these two approaches is dependent
on whether or not the SM has at least one event appearing
in more than one path. Typically, if there is at least one
event that contributes to the occurrence of more than one

system failure, then conversion to temporal fault trees may
be needed. It may also be true even if there is an event
that is a contributory factor to the occurrence of only one
system failure, but as a result of more than one sequence of
events. In such cases, an accurate analysis depends upon the
correct preservation of the temporal semantics, as different
sequences of those shared events — or other events relative
to those shared events — may lead to different final states
(and thus different system failures). It is also possible for
both approaches to be applied in different parts of the sys-
tem, allowing complex dynamic analysis to be applied only
when necessary.

3.3 Automatic generation of Pandora formu-
lae

Informally, normalised graphical notations, e.g. Figure 2
(and Figures 4 to 8), describe SMs of systems, subsystems
or components. States are represented by ellipses or circles
and events are represented by arrows that join states. Each
ellipse or circle contains a textual description of its corre-
sponding state. Similarly, arrows are labelled with textual
descriptions of the corresponding events.

A state machine has a finite number of states. It may
change state when an event occurs, but at each instant it
is in only one state. Definition 1 formally describes a state
machine.

Definition 1: State Machine (SM)
A state machine is a quadruple (S, Σ, δ, s0) where:

• S is a finite set of states.
• Σ is a finite set of events, such that S ∩ Σ = ∅.
• δ is a partial function: S × Σ −→ S s.t. for (u, u’)∈S2

and e∈Σ, u’ = δ(u, e) iff e is incident from u to u’,

and we write it as: u
e→u’.

• s0 is the initial state.

For example, consider again Figure 2. The SM that for-
mally describes the sensor is defined as follows:

• S = {Severely Failed, Prematurely Failed, Safely Failed,
Omission Detected, Monitoring}.
• Σ = {O-A, S fails}. O-S (in the same SM) represents

an error propagation — entering the state Severely
Failed. It is an event (input deviation) in another SM
description.
• δ is defined as shown in the SM figure.
• s0 = Monitoring.

For the purpose of this study, we assume a state machine
to be acyclic. A cyclic SM may imply that failures are re-
pairable or repeatable, which is incompatible with the se-
mantics of Pandora. There is, therefore, a finite set of pos-
sible paths in the state machine. If π is a path from u to u’
(u, u’)∈S2, we write it as u

π
;u’.

Definition 2: Paths set
Let P be the set of all paths in the SM,
P = {π| u π

;u’, (u, u’)∈S2}

We write u;u’ iff ∃π∈P s.t. u
π
;u’. In such a case, state

u’ is said to be reachable from state u. However, if there
exists a one-event path from u to u’, then u’ is said to be
immediately reachable from u and we write it as u→u’ (i.e.,



u→u’ iff ∃e∈Σ s.t. u
e→u’).

We assume that from s0 we can reach any other state,
i.e., ∀t6=s0∈S s0;t. Also, ∀π∈P ∃(u, u’)∈S2 s.t. u

π
;u’ and

Seqπ=〈u0, u1, . . . , un〉 is the sequence of the states of the
path π, where n = length(π) is the number of events that
label π and the sequence is ordered for backward traversal,
i.e., u0=u’ and un=u.

A state machine path can be traversed forwards or back-
wards. The Pandora formula which corresponds to a final
state is generated by performing backward traversals of all
paths starting from that final state to the initial state. For-
ward traversals are performed starting from every ‘join’ state
(i.e., with an out-degree strictly greater than 1) to, at worst,
all reachable final states, or until the condition for imposing
a temporal constraint is satisfied.

Definition 3: Forward and backward incidence sets
For any state u∈S, let ΣuI (resp. ΣuJ) be the set of events
incident from u (resp. incident to u),

ΣuI = {e∈Σ| ∃u’∈S s.t. u
e→u’}

ΣuJ = {(e, u’)∈Σ×S| u’
e→u}

The choice of an event in ΣuI uniquely determines the state
that the event is incident to. As for ΣuJ, an event incident
to u needs to be distinguished from every possible identical
event also incident to u, but from a different state. This is
done by associating each event with the state from which it
is incident, and hence the definition 3 above.

All final states are permanent states — there are no events
that lead from a final state to any other state.

Definition 4: Set of final states
Let F be the set of the final states,
F = {f∈S| ΣfI=∅}

There is a corresponding Pandora formula for each final
state. Let φs s∈F be the formula for a final state s. φs
is the disjunction over the paths π (from the initial state s0

to s) of the conjunction of events that label π. Moreover,
any one of the events e that label π, which is incident from a
state u with an out-degree of two or more (a state at which
paths diverge), is the input event, which must occur first or
alone, of a POR gate that associates it with the disjunction
of other events e’ incident from u to the states u’ if, and
only if, the subpath of π from u to s shares an event with
the paths from u through u’ to any state.

Algorithm 1 generates a set Φ of Pandora formulae: Φ =
{φs| s∈F}— one formula φs for each final state s. These ex-
pressions can then be analysed by Pandora. For each join
state sij during a path traversal (line 11 of the Algorithm),
and for each event e’6=eij

∈ΣsijI
(line 13), a temporal con-

straint is imposed (line 16) if, and only if, the two subsets
Ω and Σ’ (defined thereafter) of Σ share an event (Σ’ ∩ Ω
6= ∅). The subsets are such that Ω = {eij , ei(j−1)

, . . . , ei1}
and Σ’ being initially {e’} (e’ as specified in lines 13 and
14), but possibly further populated as shown in Algorithm
2 — PopulateAt(t = δ(sij , e’)). This additional population
of Σ’ can happen only if the state that e’ is incident to is
not a final state — t∈S = δ(sij , e’) is such that ΣtI 6= ∅.
In such a case, the paths from t are traversed forwards as
long as Σ’ and Ω remain disjoint sets (line 5 and line 8 of

Algorithm 1 Φ — ( SM = (S, Σ, δ, s0) )

1: get P from the state machine
2: get F from S
3: let Φ = ∅
4: for each s∈F do
5: get Ps from P where Ps = {π∈P| s0

π
; s}

6: let n = |Ps|
7: let πi∈Ps 1≤i≤n /∗ s0

πi
; s ∗/

8: let leni=length(πi) 1≤i≤n /∗ the number of events of
πi ∗/

9: let Seqπi=〈si0 , si1 , . . . , sileni 〉 sij∈S eij∈Σ 1≤i≤n

1≤j≤leni s.t. sij
eij→si(j−1)

where Seqπi is ordered from

si0=s to sileni
=s0 /∗ Seqπi 1≤i≤n is the sequence of

states of πi ordered for backward traversal∗/
10: let φs =

∨
1≤i≤n(

∧
1≤j≤leni

eij )/∗φs is the disjunct

over paths π of the conjunct of events of π∗/
11: for each sij in Seqπi 1≤i≤n 1≤j≤leni s.t. |ΣsijI

|>1

do
12: let e = eij /∗ ΣsijI

is the set of events incident

from sij ∗/
13: for each e’6=eij in ΣsijI

do

14: let t∈S s.t. sij
e’→t

15: if ((e’∈{ei(j−1)
, ei(j−2)

, . . . , ei1}) or (∃(y∈Σ,

π′∈P, f∈S, v∈S in Seqπ′ , w∈S in Seqπ′) s.t. t
π′
;f,

v
y→w and y∈{eij , ei(j−1)

, . . . , ei1})) then

16: let e = e|e’ /∗ e’ is one of the events that label

subpath h of πi s.t. sij
h
;s, or h and π′ share

an event ∗/
17: end if
18: end for
19: replace eij with e in φs
20: end for
21: let Φ = Φ ∪ {φs}
22: end for

Algorithm 2).
The conversion algorithm is biased towards increasingly

dynamic systems. The best-case complexity of checking the
necessity of a temporal order is O(n) and the worst case is
O(n2), n being the number of paths from the initial state
to the final states in the SM. The best case is a SM where
for every divergent path, there exists a sharable event1 that
is incident to the immediately reachable state from the join
state at which the path diverges. In such a situation, the
price to pay for each join state j is an O(m2) operation of
temporal order enforcement, and where m is the out-degree
of j.

The worst case is a SM where for every divergent path,
either there are no sharable events or there exists only one
sharable event — immediately before the last reachable final
state. A SM where there are no sharable events at all (e.g.
SM of a static system) is also a worst-case scenario.

To show the quadratic growth of the conversion algorithm
with the number of full paths, we define a marking function
that marks every state with the number of paths to the final
states (these latter states are special cases which are marked

1 An event which causes the condition for imposing a tem-
poral constraint to be satisfied.



Algorithm 2 PopulateAt(S: t)

1: let e∈ΣtI
2: let Σ’ = Σ’ ∪ {e}
3: let t’∈S = δ(t, e)
4: let ΣtI = ΣtI \ {e}
5: if ((Σ’ ∩ Ω = ∅) and (Σt′I 6= ∅)) then
6: PopulateAt(t’)
7: end if
8: if ((Σ’ ∩ Ω = ∅) and (ΣtI 6= ∅)) then
9: PopulateAt(t)

10: end if

with 1). Let M : S → N+ be that marking function. The
number of paths from a state u to the final states is the sum,
for all events incident from u to its successors (i.e., the im-
mediately reachable states from u), of the number of paths
from these successors to the final states (i.e., their corre-
sponding markings), and hence:

M (u) =


1 if u is a final state

∑
e∈ΣuI

M(δ(u, e)) otherwise

This algorithm will add the marking of each successor v
as many times as there are events that are incident from
u to v. Apart from the final states, every state u will be
marked such that M (u) = |Pu|, where Pu = {π∈P| u π

;f,
f∈F}. For example, marking the states of the SM of D (Fig-
ure 7) gives M (ON) = M (δ(ON, O-C)) + M (δ(ON, O-B
Severe)) + M (δ(ON, D fails)), totaling 3 full paths from the
initial state ‘ON’. This marking conforms to the backward
traversals that are performed from each of the final states
(line 9 of Algorithm 1).

Let N be the total number of paths (from the initial state
to the final states). During each backward traversal starting
from a final state s, at every visited state u that is a join state
(i.e., line 11 of Algorithm 1), at worst, all remaining paths
to all possible final states will be exhaustively traversed for-
wards by Algorithm 2. This results in a total number M (u)
of traversed paths. This number is preserved along the back-
ward traversal at every state that is not a join state until
another join state gets visited, ultimately the initial state s0

with M (s0) equals to N. This will be repeated Ns times for
the final state s, where Ns is the total number of paths from
s0 to s. Thus, for all final states we have a total number
of traversed paths which is equal to N ×

∑
s∈F

Ns, i.e., N2.

Note that to determine each Ns s ∈ F, we can use another
version of the marking function M, which marks the initial
state with 1. Thereafter, the number of paths reaching a
state u is the sum, for all elements in ΣuJ, of the number of
paths that reach each predecessor u’ (u’→u).

4. COMPOSITIONAL SYNTHESIS OF TFTS

AND TEMPORAL ANALYSIS

4.1 The approach
Assuming a system with several components, each mod-

elled by its own SM, it is helpful to be able to construct the
TFTs for the analysis in a compositional manner, producing

TFTs for each component at a time and combining them to
produce the final, system-wide TFT (or set of TFTs). This
helps to minimise the expense of the transformations and
also simplifies the task of the system designer, allowing them
to focus on modelling local failures in each component.

The first step in the compositional approach is to generate
a small TFT (in the form of a Pandora expression) for each
final state of each component SM, using the algorithm pre-
sented earlier. If distinct final states of a component’s SM
represent the same output deviation — such as an omission
of output from that particular component — then the ap-
proach merges their TFTs into a disjunction (since either
tree can lead to this failure). The resulting TFT expres-
sions can contain both symbols which represent basic events
(e.g. internal failures of the component) as well as non-
atomic events (i.e., faults caused by failures in some other
components). These non-atomic events are input deviations
of the component for which the TFT has been generated
and typically correspond to output deviations of connected
source components. The newly generated TFTs for each
component can then be minimised if appropriate to obtain
a simplified intermediate form; this helps to remove any re-
dundancies or complexities as early in the process as possi-
ble.

The next step is to synthesise system fault trees from the
smaller component fault trees by combining them, joining
the inputs of one component fault tree to the outputs of
the next and so forth. This is done by working backwards,
starting with the Pandora expressions of the system failures.
When it finds an input deviation, it looks for the correspond-
ing local TFT expression for the matching output deviation
in the source component(s) and merges them into a bigger
fault tree expression by replacing the input deviation event
with the output deviation expression. At each stage, the
fault tree expression is minimised wherever possible to re-
move any new redundancies or contradictions etc. When
no more non-atomic events remain, the expression cannot
be expanded any further as all possible substitutions have
taken place, and the complete fault tree has been synthe-
sised for that particular system failure. At this point, a final
analysis takes place to obtain the minimal cut sequences (or
minimal cut sets, if it contains no temporal logic) and thus
determines the sequences or combinations of failures that
lead to that system failure.

4.2 Case study - Introduction
To better illustrate how our compositional approach works,

we use a Generic Triple-module Redundant (GTR) system,
as shown in Figure 3. Components A, B and C are abstract
representations of any kind of input, control or actuating de-
vice, arranged in a redundant series, with A as the primary
component, B as the secondary, and C as tertiary. Two
monitoring sensors, S1 and S2, detect omission of output
from A and B respectively and activate the next backup in
the series. D is simply an abstraction of the output of the
GTR and ‘I’ represents the input to the system.

Performing standard FTA on the system will result in the
list of MCS below [18]:

1. Omission of input at I.
2. All of A, B, and C fail.
3. Both A and S1 fail (B will not be activated).
4. All of A, B, and S2 fail (C is not activated).
5. Failure of D.



Figure 3: GTR system

At first glance, all appear to be correct. If there is no in-
put to the system, then it cannot operate; similarly, if the
output component of the system fails, then the system can-
not function. If all three main components (A, B, and C)
fail, then the system will likewise fail as well. #3 and #4
are more complex, but detail situations where the monitor-
ing sensors themselves fail, and are thus unable to detect a
failure of the monitored component and activate the next
backup, leading to premature system failure.

However, like the system of Figure 1, the GTR system
exhibits dynamic behaviour: its true failure behaviour de-
pends on the chronology of events. The system can function
in any of three modes — with A active, B active, or C ac-
tive — and the transition between those modes is triggered
by omission failures detected by the monitors S1 and S2.
Different sequences of failure events can lead to the system
failing in different ways, and not all of them are correctly
represented by the results.

For example, assume that B fails first, then A fails second;
in this case, sensor S1 will not be able to activate B when
it detects omission of output from A, and sensor S2 will
not activate C because B was never activated — it can only
detect an omission of output once its monitored component
is activated. Thus the sequence “B fails before A fails” will
cause the system to fail regardless of the status of C and S2.
This means that MCS #2 and #4 are unduly optimistic —
in certain cases, the system will fail without all of the events
in those MCS having to occur.

Similarly, S1 failing before A means that component B
will not be activated upon omission of output from A, since
the monitor is not operational and thus unable to detect the
omission. Again, this means that the system can fail irre-
spective of the state of S2 and C. However, if S1 fails after
A, then it has no effect on the system: it has already served
its purpose and activated B, so unless there are further fail-
ures elsewhere, the system will continue to operate. Thus
MCS #3 can be unnecessarily pessimistic in this case. The
same is also true of the relationship between B and S2.

Clearly, standard combinatorial fault trees do not always
produce accurate results for even simple dynamic systems
like this one. In this example, we have seen that although
FTA suggests a failure of all of A, B, and C is necessary
to cause system failure, a failure of B before A is sufficient,
giving a false sense of security; this information, had it been
known, may have resulted in a different system design, e.g. a
triple voter or some other different redundancy architecture.

To remedy this problem, we show how we can generate the
TFTs from the SMs of the individual components. There-
after, we demonstrate our approach by building the system

Figure 4: SM of S2

Figure 5: SM of B

TFT (in this case there is only one – an omission of output
from D, i.e., O-D) and then performing a temporal qualita-
tive analysis on it.

4.3 Case study - Modelling of component SMs
First we model the failure behaviour of each component

using SMs. Sensors S1 and S2 have similar jobs (which is to
activate the next backup if omission of output is detected
from the monitored component). There is therefore poten-
tial for reuse of the sensor SM from Figure 2, with ‘O-A’
replaced by an input failure from A or B and ‘S fails’ be-
coming ‘S1’ or ‘S2 fails’ as appropriate. The state machine
for S2 is shown in Figure 4; the SM for S1 is identical to
Figure 2 except that ‘S1 fails’ and ‘O-S1’ replace ‘S fails’
and ‘O-S’.

However, for the SM of S2 (shown in Figure 4), we need
to distinguish between two types of omission of output from
B. ‘O-B Not Severe’ is a detectable omission of output from
B and occurs when B has been activated by S1 upon failure
of A and then subsequently fails; it is the effect of entering
state ‘Safely Failed’ in the SM of B (see Figure 5) and allows
S2 to activate C, assuming S2 itself has not yet failed. The
other kind of omission is ‘O-B Severe’, an undetectable omis-
sion of B caused either by B failing dormant or S1 failing
prematurely; either case means that S1 is unable to activate
B upon failure of A. This omission is the effect of B entering
the ‘Permanently OFF’ or ‘Severely Failed’ states, as seen
in Figure 5.

As can be seen from Figure 7, ‘O-B Severe’ will lead the
system to a total failure and an omission of output from
D (O-D). This in turn alters the state of the GTR system
to ‘Failed’ (i.e., complete failure of the system) as shown
in Figure 8. The SM of D also shows an additional cause
for O-D: the basic event ‘D fails’. This is a single point of
failure for the system.

The only other single point of failure is omission of input
to the system (O-I), which affects the whole GTR; this is
represented at the system level rather than repeated in each



component, as can be seen in Figure 8. Thus, the SM of
component A (not shown, due to its triviality) has simply
one path from ‘ON’ to ‘Failed’, with the effect of omission of
output from A (O-A). The state transition of A is assumed
to be triggered only by a basic event of the component (e.g.
an internal failure ‘A fails’), since a lack of input is repre-
sented by O-I at the system level.

For component C (SM of Figure 6), there are two final
states, both with omission of output from C (O-C) as com-
mon effect. The state ‘Permanently OFF’ means that C will
never be activated and is caused by O-S2 (i.e. S2 has pre-
maturely failed and both A and B have failed in sequence).
The other final state is a state where A and B have failed in
sequence and where C has also failed (caused by the event
‘C fails’). Omission from C is the third cause of failure for
output component D, leading to O-D and system failure.

Note that A and D are each initially in state ‘ON’ —
i.e. the GTR system is initially working with its primary
component, and the output is being delivered by the system.
Backup components have their initial states set to ‘OFF’ and
sensors are initially set to ‘Monitoring’.

4.4 Case study - Synthesis and analysis of TFTs
At this stage, we are ready to generate, for each compo-

nent, a set of fault trees — one TFT per final state. There-
after, we merge the fault trees that correspond to the same
output deviation into one single fault tree. For the sake
of clarity, any component symbol (e.g. A) abbreviates the
failure (e.g. ‘A fails’) of the corresponding component.

The TFT of component A is the simplest: O-A = A (i.e.,
omission of A is caused by failure of A). The SM of compo-
nent B, however, has three final states; entering two of these
states (‘Permanently OFF’ and ‘Severely Failed’) will cause
the same output deviation (O-B Severe), and thus the TFT
for O-B Severe is a disjunction of the generated TFTs for
those two states. If we apply the algorithm on the SM of B
we get:

Permanently OFF = O-S1
Severely Failed = O-A.(B|O-A) (equivalent to B<O-A)
Safely Failed = B.(O-A|B) (equivalent to O-A<B)

Therefore, O-B Severe = O-S1 + O-A.B|O-A, and O-B Not
Severe = B.O-A|B.

We can perform some initial minimisation at this stage by
applying the temporal law (A|B).B ⇔ A<B; this results in
the following:

O-B Severe = O-S1 + B<O-A
O-B Not Severe = O-A<B

For S1 and S2, we will get O-S1 = Severely Failed (of
S1) = O-A.S1|O-A and O-S2 = Severely Failed (of S2) =
(O-B Not Severe).S2|(O-B Not Severe). The other failure
states (labelled ‘Safely Failed’) have their own fault trees,
but they will not be synthesised since they do not corre-
spond to output omissions (these are still considered as safe
states). Again we can apply the law (A|B).B ⇔ A<B to
obtain:

O-S1 = S1<O-A
O-S2 = S2<O-B Not Severe

Figure 6: SM of C

Figure 7: SM of D

If we apply the algorithm on the SM of component C, we
will get the below result:

Permanently OFF = O-S2
Failed = C.(O-B Not Severe)

and thus O-C = O-S2 + C.(O-B Not Severe).

At this stage, no reduction is possible here.
For component D, we have:

O-D = D + O-C + O-B Severe

since all final states trigger the same omission of output.
Finally, the the failure state of the whole GTR system is

represented as follows:

Failed = O-I + O-D

The final step of the synthesis process is to join these
expressions together, linking input deviations to output de-
viations. For example, O-A has only one cause (A), so any
instance of O-A can be replaced by A, e.g. in O-S1, which
becomes S1<A; similarly, we can now replace O-S1 with
this expression, e.g. O-B Severe = S1<A + B<A. The full
expression representing the failure of the GTR system is
therefore as follows:

Failed = D + S2<(A<B) + C.(A<B) + S1<A + B<A
+ O-I

Now that we have the full expression, final minimisation
can take place. In this example, most of the possible reduc-
tion has already taken place, but we can expand the paren-
theses in the expression S2<(A<B); when we have nested
PAND gates like this, the brackets can be removed by con-
sidering all the possible sequences it represents. Here, be-
cause there is no order specified between S2 and A, there



Figure 8: SM of the GTR

are two new sequences: S2<A<B and A<S2<B. This gives
us the list of seven final Minimal Cut Sequences (MCSQs),
which more concisely describe how the system can fail:

1. Failure of output block D.

2. S2 failing before A, and A failing before B.

3. A failing before S2, and S2 failing before B.

4. All three main components A, B and C fail, with A
failing before B.

5. S1 failing dormant before it detects failure of A.

6. B failing dormant before A fails, so C never activates.

7. Omission of system input.

These are more meaningful and subtle than the original
five minimal cut sets provided by standard combinatorial
FTA. In particular, the effects of dormant failures — like
B failing before A, or a sensor failing before activating its
backup — can now be taken into account.

4.5 Comparison to direct Pandora analysis of
the TFT

The minimisation of the cut sequences — which is typ-
ically the most expensive part of the analysis process —
is simplified considerably by the manner in which the ex-
pressions are synthesised from component SMs instead of
modelling the system entirely using temporal logic. If the
system was originally modelled as a TFT instead of using
component SMs, we may have arrived at a fault tree expres-
sion such as this:

Failed = D + S1<(A+O-I) + (B + O-I)<(A+O-I)
+ (O-I + (S2<((A + O-I)<B + (A + O-I)<O-I)) +
C . ((A + O-I)<B + (A + O-I)<O-I))

This has many more nested expressions and takes consid-
erably more time and effort to minimise. For example, sub-
expression (B + O-I)<(A + O-I) must be split into two new
expressions: B<(A + O-I) and O-I<(A + O-I). The former
can be reduced to obtain B<A|O-I and B<O-I|A, while the
latter contains contradictions that would have been elimi-
nated much earlier during compositional process. Instead,
they must be eliminated now:

1. O-I<(A+O-I)

2. (O-I|A).(O-I|O-I).(A+O-I)

3. (O-I|A).0.(A+O-I)

4. 0

(S2<((A + O-I)<B + (A + O-I)<O-I) is the most compli-
cated sub-expression and correspondingly the most difficult
to reduce. Again, with a compositional approach, much of
this complexity would have been simplified during earlier
stages; instead, because it is only minimised at the end,

this complex expression eventually yields 21 further cut se-
quences:

O-I<S2<A<B + S2<O-I<A<B + S2<A<O-I<B + S2<
A<B|O-I + O-I<A<S2<B + A<S2<O-I<B + A<S2<B|O-
I + A<S2<O-I<B + S2<A<O-I<B + S2<O-I<A<B +
S2<O-I<B|A + O-I<A<S2<B + O-I<S2<A<B + O-I<S2
<B|A + B<S2<A<O-I + S2<B<A<O-I + S2<A <B<O-
I + S2<A<O-I|B + B<A<S2<O-I + A<S2<B<O-I +
A<S2<O-I|B

The first stage of the analysis ultimately results in a set
of 30 cut sequences, but not all of these are minimal. Thus
far, all reduction has taken place within the cut sequences,
i.e. within a single conjunction or temporal sequence. The
next step is to minimise cut sequences against each other.
For example, the rule A|B+B ⇔ A+B can be applied to
several cut sequences (e.g. B<A|O-I becomes B<A) and the
absorption laws A<B + A ⇔ A and A<B + B ⇔ B can be
applied to many others (e.g. B<O-I|A can be eliminated, as
can e.g. O-I<S2<A<B etc). This gives us a much reduced
final list of minimal cut sequences:

1. D

2. S1< A

3. B< A

4. O-I

5. S2<A<B

6. A<S2<B

7. C.A<B

These seven MSCQs are the same as before, but the steps
needed to reach them are much more complex, requiring far
more time and effort. The compositional approach, building
and analysing TFTs from component SMs, is simpler to un-
derstand from both a modelling and analysis perspective and
considerably more scalable than using TFTs directly. Fur-
thermore, the scaling benefits of using compositional SMs
for the initial dynamic modelling when compared to using
temporal FTA directly — in terms of both understandability
and ease of analysis — increase with the size of the system
being studied.

5. CONCLUSION
Dynamic systems pose significant challenges for traditional

safety analysis techniques like FTA, which are typically static
in nature and cannot easily represent the dynamic failure
behaviour exhibited by such systems. Temporal FTA ap-
proaches exist that can help solve these issues, but suffer
from a number of drawbacks: some, such as Dynamic Fault
Trees and CSDM, are not primarily designed for qualita-
tive analysis, which limits the situations in which they can
be applied; others, like Pandora, are suitable for qualitative
analysis but are generally more expensive and less scalable
than normal FTA. In all cases, the FTA techniques require
that the system be modelled using fault trees, which can
often be less intuitive and understandable for dynamic sys-
tems than for purely static systems.

To better model the dynamic failure behaviour, state ma-
chines are often used, but these typically require conversion
to some other format (like Petri nets or fault trees) before
they can be analysed. Both conversions have their problems:
Petri nets are less suitable for qualitative analysis, which is



important during early stages of the design if problems are
to be identified and remedied cheaply, while existing SM-to-
FT methods focus on converting them to standard combi-
natorial fault trees, which can result in errors in situations
where different sequences of the same events have different
outcomes. Instead, a method of converting SMs to a format
suitable for dynamic qualitative analysis is required.

In this paper, we solve this problem by presenting a differ-
ent approach which converts compositional state machines
into Pandora temporal fault trees. This has the dual bene-
fits of allowing more detailed analysis of different sequences
of events, thus better capturing the dynamic behaviour rep-
resented by the original state machines, and also helping to
reduce the cost of performing temporal FTA by producing
smaller, more manageable temporal fault tree expressions
via the compositionality, resulting in a more scalable ap-
proach overall.

We demonstrated this technique on a simple generic re-
dundant system and showed how the SMs can be converted
into temporal expressions and subsequently analysed to pro-
duce useful qualitative information about the dynamic fail-
ure behaviour of the system. By using compositionality, the
scalability is improved further, since each individual SM is
relatively small. As demonstrated by the case study, this
offers significant benefits over using TFTs alone. We hope
that this approach can be developed further and become au-
tomated as part of the HiP-HOPS safety analysis tool frame-
work. We also aim to extend it further and potentially make
it compatible with other SM-based modelling approaches,
such as interfacing with OSATE2 (an Open Source AADL
Tool Environment), allowing Pandora TFTs to be generated
from AADL state machines.

In summary, performing meaningful qualitative safety anal-
ysis on dynamic systems means using both dynamic mod-
elling and dynamic analysis approaches; by converting SMs
to temporal FTs, it becomes possible to do both and thus it
is hoped that this technique can contribute to an improve-
ment in the overall safety of increasingly complex modern
safety-critical systems.
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