
European Journal of Scientific Research
ISSN 1450-216X Vol.44 No.2 (2010), pp.314-336
© EuroJournals Publishing, Inc. 2010
http://www.eurojournals.com/ejsr.htm

XML Document Design via GN-DTD

Zurinahni Zainol
Department of Computer Science, University of Hull, HU6 7RX, UK

School of Computer Science, Universiti Sains Malaysia, 11800, Malaysia
E-mail: zuri@cs.usm.my; or z.zainol@2007.hull.ac.uk

Bing Wang

Department of Computer Science, University of Hull, HU6 7RX, UK
E-mail: b.wang@hull.ac.uk

Abstract

Designing a well-structured XML document is important for the sake of readability
and maintainability. More importantly, this will avoid data redundancies and update
anomalies when maintaining a large quantity of XML based documents. In this paper, we
propose a method to improve XML structural design by adopting graphical notations for
Document Type Definitions (GN-DTD), which is used to describe the structure of an XML
document at the schema level. Multiples levels of normal forms for GN-DTD are proposed
on the basis of conceptual model approaches and theories of normalization. The
normalization rules are applied to transform a poorly designed XML document into a well-
designed based on normalized GN-DTD, which is illustrated through examples.

Keywords: XML model and design, graphical notations, DTD, XML Normal Forms

1. Introduction
With the wide exploitation of the web and the accessibility of a huge amount of electronic data, XML
(extensible Markup Language) has been used as a standard means of information representation and
exchange over the web. Additionally, XML is currently used for many different types of applications
which can be classified into two main categories [21, 22]. The first application is called document
centric XML and the other is called data centric XML. The document centric XML is used as a
markup language for semi-structured text documents with mixed-content elements and comments.
Furthermore, the order of sibling elements is significant, for instance, in user's manual, webpage, etc.
The data centric XML consists of regular structure data for automated processing and there are little or
no element with mixed content, comments, and processing instruction for instance, geography, e-
commerce, and scientific data [8, 23]. In this work, we focus on data centric applications.

In data centric applications, data redundancy and update anomalies are the most significant
problems. As stated by Kolahi [11], when data centric document applications are presented in XML, it
is unavoidable that data redundancy and update anomalies will appear. Data redundancy and update
anomalies occur in XML documents if their type structures, such as DTDs, are not well-formed. These
problems are similar to those in relational databases [1, 6, 23]. To better understand this problem in
XML applications specifically, let us consider a university database which describes departments,
courses, students, lecturers and their relationships as shown in the following figures (Figure 1 and
Figure 2).

XML Document Design via GN-DTD 315

The DTD shown in Figure 1 has the following information:

• Each department offers many courses indicated by the notation *.
• Every course is described by the attribute course no (cno), title and numbers of students taking

the course.
• Each student has a student number (sno), first name or last name as optional and an assigned

lecturer.
• Each lecturer has his/her number (tno), and name (tname).

Figure 1: DTD

<!DOCTYPE department[
 <!ELEMENT department(course*)>
<!ELEMENT course(title, student*)>
 <!ATTLIST course cno ID #REQUIRED>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT student(fname|lname?,lecturer)>
 <!ATTLIST student Sno ID #REQUIRED
 <!ELEMENT fname(#PCDATA) >
 <!ELEMENT lname(#PCDATA) >
 <!ELEMENT lecturer (tname)>
 <!ATTLIST lecturer tno ID #REQUIRED>
 <!ELEMENT tname (#PCDATA)>
]>

Figure 2: XML document conforms to DTD in Figure 1

<!DOCTYPE Department [
 <course>
 <course cno = “csc101”>
 < title > XML database </title>
 < student >
 <student sno = “112344”>
 <fname> David</fname>
 <lname> Grey </lname>
 <lecturer>
 <lecturer tno = “123”>
 <tname>Bing </tname>
 </lecturer>
 </student>
 < student >
 <student sno = “112345”>
 <fname>Helen</ftname>
 <lecturer>
 <lecturer tno = “123”>
 <tname> Bing </tname>
 </lecturer>
 </student>
</course>

<course>
 <course cno = “csc102”>
 < title > Z formal methods </title>
 < student >
 <student sno = “112344”>
 <fname> David</fname>
 <lname>Grey </lname>
 <lecturer>
 <lecturer tno = “123”>
 <tname> Bottaci </tname>
 </lecturer>
 </student>
 < student >
 <student sno = “112345”>
 <fname>Helen </fname>
 <lecturer>
 <lecturer tno = “123”>
 <tname> Bottaci </tname>
 </lecturer>
 </student>
</course>

</Department>]

316 Zurinahni Zainol and Bing Wang

Any XML document that satisfies and conforms to this DTD is likely to contain data
redundancies which may lead to update anomalies. For example, as shown in Figure 2, the lecturer
named Bing who teaches the same course number (cno) csc101 is stored twice, which will lead to the
problems described above. To avoid such problems, a set of rules should be provided when designing a
DTD for XML documents.

In relational database design, normalization rules are used to help designers to design a good
relational database [5]. By having these rules in mind, designers can follow either of two
methodologies to design a relational database: the conceptual approach [4] or the normalization theory
approach [5]. These similar approaches with some modification have been applied to XML schema
design by XML database researchers. However, the nature of XML documents is different from
relational database. The task of designing XML documents is becoming more challenging than
designing relational databases since an XML document is hierarchical, irregular, and often associated
with Document Type Definition (DTD) [1, 21].

The objective of this work is to provide a methodology which simplifies the process of
designing a non redundancy XML document. To achieve this, a conceptual model called GN-DTD is
proposed. GN-DTD is a graphical modelling approach for describing both DTD and XML documents.
For GN-DTD itself, we define a complete set of syntax and structure which incorporates attributes,
simple data type, complex data type, and types of relationship among them. Furthermore, semantic
constraints are also precisely defined in order to capture semantic meaning among those defined
objects.

In this work, we present normal forms for GN-DTD based on both Arenas and Libkin's rules
[1] and Ling et al’s rules [15] in a simpler form to allow users/designers to find an 'optimal' structure of
XML elements/attributes. This will produce a correct, complete and consistent representation of the
real world XML data which may benefit the users. We ensure that DTD mapped from GN-DTD are
similar to XNF [1]. Finally, we propose normalization and mapping rules to transform from normalised
GN-DTD back to its new DTD.

Figure 3: XML document design process

 "Bad"

XML Document

Normalization
of GN-DTD

 "Good" XML
Document

D
T
D

D
T
D

 Transformation DTD to GN -DTD

Transformation normalized GN -
DTD to DTD

Step 1

Step 2

Step 3

Step 4

Step 5

The proposed design process of XML documents via GN-DTD is illustrated in Figure 3. This
process, roughly, takes DTD as input and converts it to GN-DTD. Normalization is carried out
automatically based on the number of data dependencies provided by the user at the conceptual model.
Finally, the XML document is generated on the basis of normalized GN-DTD.

XML Document Design via GN-DTD 317

The rest of the paper is organized as follows. Section 2 provides information on related works
of conceptual models and normalization theory. Section 3 discusses the notation of GN-DTD. Section
4 presents a normal form of GN-DTD. Section 5 provides illustrative examples to convert from an un-
normalized GN-DTD to a normalized one using a normalization algorithm. Section 6 shows how GN-
DTD can also be transformed back to a new DTD structure. We conclude the paper with conclusions
and suggestion for future work in Section 7.

2. Related Work
Two main approaches have been applied by XML database researchers to design non- redundant XML
documents which is a conceptual data modeling approach [7, 12, 15, 17, 24] and normalization theory
[1, 11,16, 21, 22, 23]. Both of these approaches are based on relational database design theory [4, 5].
Conceptual approach involves a two-phase process: conceptualization, in which XML data is first
displayed in terms of a conceptual model suitable for the of domain experts to understand, then the
model is restructured to eliminate redundancy by using normalization rules and finally mapping the
model into an XML schema. On the other hand, the normalization theory approach ignores
conceptualization, instead of representing the XML document directly using DTD with a set of data
dependencies. Generally data dependency such as functional dependency is used to detect data
redundancy in the XML document during the schema design process [1, 11, 22, 23]. Due to this, many
notions XML functional dependencies have been proposed to be used in schema normalization [1, 12,
22, 23]

2.1. Conceptual Data Modeling Approach

Many contributions have been made to develop a conceptual model for XML documents. As XML has
a close similarity to semi structured models [3, 6], the trend in the literature is to apply data models
developed for semi structured to XML. Most XML data models currently use directed edge labeled
graphs to represent XML documents and their schemas. These models consist of nodes and directed
edges which respectively represent XML elements in a document and relationships among the
elements. In this work, we focus on the data models defined for data management which capture the
constraints explicitly. Data models such as S3-graph [13], CM Hypergraph [7], ORA-SS[6] and
Semantic Network [8] have been used for XML design. In this work, we focus on ORA-SS as it is
most related to our work.

Dobbie et al [6] defined a semi-structured data model, Object Relational Attribute-Semi-
Structured (ORA-SS) to represent data conceptually. ORA-SS distinguishes between object,
relationships and attributes and reference object. Object is like the entity type in a traditional ER
diagram [4] and a relationship between object is expressed through a directed arrow labelled with a
degree of n-ary relationship (n>2). Objects are represented as labelled rectangles, attributes as labelled
circles and primary key attributes are denoted as filled circles. Attributes represent the properties of the
object while a reference is denoted by a dashed edge between a reference object. The ORA-SS notation
is similar to the ER model but with a hierarchical representation. The advantage of this approach is that
the major attribute dependencies between attribute keys (unique identifier) are captured in the
modelling process.

Ling et al [15] proposed a methodology to design semi structured databases using ORA-SS
schema diagrams. Given semi structured data, like an XML document, the ORA-SS schema is
extracted from the XML document using extraction rules [15]. Then, the ORA-SS schema is converted
into normal form ORA-SS. Figure 4 illustrates an ORA-SS schema extracted from XML document in
Figure 2 using extraction rules [15]. However, in the ORA-SS schema diagram, root element in the
XML document is not extracted as an object class. ORA-SS shown in Figure 4 is not in a normal form
because it violates some of the features of ORA-SS normal form.

318 Zurinahni Zainol and Bing Wang

The concept of normal form ORA-SS depends on the twin concepts of an object class normal
form (O-NF) and a relationship type normal form (R-NF) which is an extension to the NF-NR for
nested relation [13]. The ORS-SS normal form reduces data redundancies using semantic relationship
between the objects based on 3NF and 4NF. This approach differs from Arenas and Libkin's approach,
because they take constraints from the conceptual model rather than from specified XML functional
dependency (XFD). The nature of the definition for the normal form ORA-SS depends on a number of
conditions. First, none of the attributes of the object class have multi-value or transitive dependency on
the key of object class and relationship type. Second, every nested object class and relationship within
the parent object class must non redundant.

Figure 4: ORA-SS schema diagram

(2,1:n,1:n)

course

 student

lecturer

(3,1:1,1:n)

sno

title

sno

fname
 lname

tno tname

Ling et al [15] have proposed an algorithm to convert the ORA-SS schema diagram to a normal
form ORA-SS schema diagram. Using their normalization algorithm [15] a normal form ORA-SS as
shown in Figure 5 is derived.

Figure 5: A normal form ORA-SS

tno

(3,1:1,1:n)

sno

fname lname

tno tname

(2,1:n,1:1)

course

student lecturer

sno

 sno

Student-ref

Lecturer-ref

XML Document Design via GN-DTD 319

Another data model similar to ORA-SS is Semi-Structured Schema Graph (S3-Graph) defined
by Lee et al. [12]. Unlike ORA-SS, S3-Graph is unable to model the semantic relationship needed for
recognizing redundancies in a semi-structured database. Lee et al. [12] also defined a normal form for
S3-Graph, S3-NF. Embley and Mok [7] proposed a normal form for an XML document called XNF
(XML normal form) based on the conceptual schema CM-Hyper graph.

There also exists XML models that are based on the traditional conceptual models, for example,
Extended Entity Relational (EER) models [17]. They extend the ER model to model the structure of
XML data. On the other hand, Bird [2] used an ORM to model XML Schema. However nesting was
not considered in their work. We observed that ORM is an attribute free model; thus it is not suitable to
represent DTD structure as in our work attribute must be displayed explicitly. In addition to that,
Conrad et al. anticipated a unified modeling language (UML) to model XML schema. The mapping
between the static part of the UML specification and XML DTD was developed. The disadvantage of
UML notation is, that it does not have the graphical notation necessary to indentify that the attribute is
unique and inclusive-or constraint [10].

2.2. Normalization Theory

The normalization approach was proposed by Codd [5] identifie data dependencies such as functional
dependency that cause data redundancy in a relational database. Functional dependency helps the
relational database designer to understand the redundancies that are present in a design. In principle,
normalization theory for XML has been proposed similar manner to relational normalization [1, 11, 22,
23]. Even though there are some fundamental differences between relational models and XML models,
similar techniques have been used. Many normal forms have been proposed based on XML functional
dependency (XFD) definition [1, 11, 22, 23] and multivalued dependency definition [21]. However, the
most fundamental and accepted XML normal form is proposed by Arenas and Libkin [1]. They
propose a formal notion of XML functional dependency (XFD) using tree tuple based on ideas from
relational schema [5] and nested relational schema [18]. Moreover, Arenas presented a formal model
for an XML document as an XML labelled tree and DTD. The XML tree and DTD are defined
precisely in a textual representation. For instance, Arenas and Libkin[1] define DTD as follows:

DTD, D = (E,A,P,R,r) where;
1. E is a set of element sets
2. A is a set of attributes using and illustrated as symbol @ and PCDATA as S
3. P is a mapping from a set of elements to the children of the element set, indicating the semantic

constraint of children (* ,?, +)
4. R is a mapping from a set of elements to a set of attributes
5. r is a root element set.

To demonstrate their idea, consider the DTD in Figure 1. The set E contains all element sets
such as department, courses, title, fname, lname, lecturer and tname. The set A contains all attribute
sets such as @sno, @cno, @tno. P maps from the element set to the children of the element set such
as P(department) is course*, P(course) is student*, P(student) is { fname, lname, lecturer}, and
P(fname) is S. R maps each element set to its attribute such as R(course) is sno, R(student) is cno and
R(lecturer) is tno. The root element r is mapped to department.

Many constraints are captured in functional dependencies definition based on this formal model
XML tree and DTD. XML functional dependency (XFD) is defined by considering a relational
representation of an XML document. For example, the XFD (constraint) that two lecturer elements
with same lecturer number (tno) value must have the same name is expressed as follows:

department.course.student.lecturer@tno→department.course.student.lecturer.tname.S (1)
where, department.course.student.lecturer.tno is a Left Hand Side(LHS) paths and
 department.course.student.lecturer.tname.S is a Right Hand Side(RHS) path

Arenas & Libkin [1] defined that DTD is in a normal form (XNF) if every XML functional
dependency defined over DTD is in XNF. The XFD is XNF if every (LHS) path can determine a

320 Zurinahni Zainol and Bing Wang

unique value of (RHS) path. This means that for every attribute value given; only one value of element
set can be available in the XML document.

Based on this definition, XFD in (1) is not in XNF since the value for the element lecturer name
is not unique for the attribute given, as lecturer name Bing appears twice in the XML document as
shown in Figure 2. Because of this XFD, DTD is not in XNF. To eliminate this type of XFD, Arenas &
Libkin [1] proposed an XNF decomposition algorithm by transforming a DTD and set of XFDs into
new DTD that is in XNF. The input of this algorithm is a DTD and XFD and the output of this
algorithm is a new DTD that is in XNF which contains the same information. This algorithm consists
of two rules: create new element types and moving an attribute. Using this algorithm, the following
new DTD will be derived after eliminating XFD in (1). The algorithm will be repeatedly applies until
the DTD is in XNF.

Figure 6: New DTD after elimating XFD (1)

<!DOCTYPE department[
<!ELEMENT department(course*, tinfo*)>
 <!ELEMENT course(title, student*)>
 <!ATTLIST course cno ID #REQUIRED>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT student(fname|lname?,lecturer)>
 <!ATTLIST student Sno ID #REQUIRED>
 <!ELEMENT fname(#PCDATA) >
 <!ELEMENT lname(#PCDATA) >
 <!ELEMENT lecturer(EMPTY)
 <!ATTLIST lecturer tno ID #REQUIRED>
 <!ELEMENT tinfo (tname)>
 <!ATTLIST lecturer tno ID #REQUIRED>
 <!ELEMENT tname (#PCDATA)>
]>

2.3. Discussion

Both approaches have a remarkable impact on XML document design. Each of them is
complemented by the other in XML design research. Arenas and Libkin[1] have defined XFDs and
XML normal forms (XNF) entirely within the context of the XML document. XFD is formally defined
based on the concept of ‘tree tuple'. Arenas and Libkin[1] proved that their XNF can avoid
redundancies and update anomalies using information theory measure [1] at the schema and instance
levels. They also showed that XNF is generalised from BCNF if the XML schema is converted into a
relational presentation. However, the problem with this approach is that the way they express the
semantic constraint (functional dependency) which is very complicated due to the textual presentation
of a schema. As we know, functional dependency is already the area where designers have the most
problem specifying in relational models, so making them more complicated and unfamiliar to designers
make XML document design more difficult. Moreover, a common problem with this approach is that
the whole schema has to be redesigned when requirements change and information is added or
withdrawn. In addition, the functional dependencies defined by Arenas and Libkin [1] are dependent
on the XML labelled tree (a model for XML documents) where paths are defined through the tree.
Therefore when paths change, the functional dependency is adjusted as well. For this reason XNF can
never be dependency preserving [11]. Another shortcoming is that both DTD and XML tree are
represented in textual representation, and so as a result it is difficult to visualise the data and their
relationship.

In contrast, an ORA-SS data model is proposed to assist in XML document design [6] at the
conceptual level. The hierarchical structure of the object class is clearly shown in ORA-SS model. In
Dobbie et al’s work, it was assumed that the starting point for the design of an XML document is at a

XML Document Design via GN-DTD 321

conceptual model ORA-SS. Using the algorithm, then an XML document is derived from a normal
form ORA-SS [15]. This approach followed from the ER normal form [15]. Embley and Ling[3] and
Ling [15] have proved that this approach is guaranteed to produce a redundancy-free and compact
relational database. In traditional database design, practitioners routinely use an ER model and convert
the ER diagram to a relational model. Another advantage of this approach is that it is easier and
simpler for designers compared to normalization theory [15,9]. However, the normal form ORA-SS
relies upon definition of NF-NR [13]. In order to use and understand the normal ORA-SS the user must
understand normal form for nested relations first.

The major difference between the above work and our work is that we address several issues
that were not considered in Ling et al [15] and Arenas & Libkin [1]. Firstly, we propose and add some
new notations to our model GN-DTD to express explicitly more semantics of the XML document.
Secondly, in contrast with Ling et al’s approach, we assume the XML document must be associated
with DTD; hence extraction of the schema from the XML document is not required. Thirdly, we
propose multilevel normal form for GN-DTD by considering different types of data dependency such
as relationship dependency, partial dependency, transitive dependency and global dependency. These
data dependencies are presented in a simpler way in order to describe the semantics of real data. To
form this normal form we adopt some rules in Arenas and Libkin[1] and Ling et al [15]. Finally, an
algorithm is developed for converting an un-normalized GN-DTD to a normalized one by avoiding
reference relationships and preserving the data dependency as well. This is important because other
than no redundancy, data preservation is a fundamental criterion in determining the quality of DTD as
it preserves the structural and semantic information of the XML document entirely.

3. The GN-DTD
Some of the notations of GN-DTD have been adopted and improved from the current data model
ORA-SS [6] notations and conventional ER model [4]. The significant difference between GN-DTD
and the other models is complex element, simple element, and attribute nodes are explicitly
distinguished. This is because such distinction is crucial for clarifying the semantics of the data. More
importantly, GN-DTD provides an explicit semantic relationships definition to allow the user to define
semantic relationship between nodes. The GN-DTD allows users to define the structure of nodes in a
hierarchical way. We have made the ordering of sub-elements significant by treating them as a set,
sequence (list) or disjunction. The GN-DTD model is briefly discussed in the following section. The
details of the GN-DTD specification can be found in [25].

3.1. Syntax and Semantics of GN-DTD

Graphical Notation for Data Type Definition (GN-DTD) graphical modeling [25] consists of six basic
components:

• Complex element nodes. A complex element node is used to represent a set of elements which
have another sub element and attribute. The complex element node is illustrated as labeled
rectangle box. This notation is adopted from the ER model [4] which is similar to entity. The
label is written in the rectangle box as a tuple <name,level>, where name represents the name of
the node and level represent the depth of the node in GN-DTD. The name is mandatory.

• Simple element nodes. A simple element node is used to represent an element associated with
#PCDATA or #CDATA. It is illustrated as a labeled rounded rectangle box with the form
<name,level,type> where name is the name of the simple element, level is the depth of the node
in the GN-DTD and type represents PCDATA or CDATA or string 'S' . All simple element
nodes are assumed to be mandatory and single valued, unless the node contains the symbol ?
which signifies it is single value and optional, or + which signifies that it is multi-valued and
required, or an * which shows that it is optional and multi-valued. This notation is similar to

322 Zurinahni Zainol and Bing Wang

ORA-SS [4]. The symbol is written in front of the tuple <name,level,type > to differentiate
among them accordingly.

• Attribute nodes. Attribute nodes are used to represent attributes defined in ATTLIST, which
describe the properties of a complex element node. An attribute node is an identifier for a
complex element node. It is represented as ID which is unique and mandatory among the
instances of complex element. Attributes can be classified as single attributes and composite
attributes. A single identifier attribute has an atomic value and composite attributes have more
than one identifier attributes. A single identifier attribute is represented as an oval and a
composite attribute as a double oval.

• Set relationship type. Two types of link exist in GN-DTD: Inheritance link and Part- of Link
(i) The inheritance link is a relationship between a complex element node and another complex

element node. This link shows inheritance between parent nodes to child nodes or ancestor node to
descendant node. For inheritance relationships, a semantic meaning, which is indicated by the
connectivity between complex element occurrences is important. The connectivity of a relationship
specifies the mapping of the associated complex element occurrence in a relationship. Basic constructs
for connectivity are: one to one (unary or binary relationship), one to many (unary or binary
relationship), and many to one, many-to-many (unary or binary relationship). All these type of
relationships are indicated by directional arrows. To differentiate among them, both cardinality
constraint and degree are attached to the arrow. The notation as presented as (name, d, cp,cc) where
name represents the name of the relationship, d is the degree of relationship, cp and cc are cardinality
constraints for parent and child respectively. This notation is similar to ORA-SS [15].

(a) Degree of Relationship
Degree of relationship is the number of complex elements associated with the relationship. An n-ary
relationship is of degree n. Unary, binary and ternary relationships are special cases in which the
degree is 1, 2, and 3, respectively.

(b) Cardinality Constraint for Complex Element
To reveal more semantics in their relationship, the cardinality constraint is associated with the
inheritance link. The same rule applies for cardinality constraints for both parent node (cp) and child
node (cc). Here cardinality of complex elements in a relationship is represented as a 2 tuple (min:max).
The constraint (0:N), (0:1)and (1:N) is represent as the operators *, ? and + respectively except cardinality
constraint (1:1) is presented as 1. This relationship cardinality constraint is indicated using a directional
arrow: For instance, the diagram in Figure 8 illustrates a binary inheritance relationship between
complex element student and complex element courses where a student can take zero or many courses
while many courses can be taken by zero or many students.

Figure 8: Many-to-many Binary Relationship

(SC,2,*,*)

student,1

courses,2

(ii) Part-of Link
Part-of link is divided into two types: Part-of link attribute is a relationship between a complex element
node and attribute node. This is a mandatory relationship. It is illustrated as a bold double arrow. Part-

XML Document Design via GN-DTD 323

of link simple element is a relationship between a complex element node and a simple element node.
This link can be optional. It is illustrated as a single double arrow. For instance, attribute identifier for
a complex element is linked as a one-to-one relationship.
• Semantic constraint between set relationships. There are two types of set relationships: First,

sequence between a set of child elements nodes. We emphasise in our notation that the attribute
node(s) must be located in the first position in the sequence. For instance, the notation sequence
is used to capture the list of the first author and the second author of a book. To express such
ordering in a GN-DTD, we draw a directed upwardly curving arrow labelled with {sequence}
across all the set of relationships involved. Second, disjunction between the set of sibling nodes.
To illustrate this, we draw a line labelled with {XOR} across all the set of relationships involved.

• A root node. Root node notation is similar to complex element notation where it is a special case
of a complex element node and its level is always zero.

• A last node. A last node notation is similar to attribute and simple elements notation where their level
is at n-1.

All notations for GN-DTD decsribed above are shown in Figure 9.

Figure 9: GN-DTD's notation for syntax and semantics

Optional simple element, single
value, CDATA

 <name,level>

?<name,level,S >

+<name,level,S >

< name,level,S>

*<name,level,S >

Complex element

Mandatory simple element, single
value, CDATA

Required simple element, multi
value, CDATA

Optional simple element, multi value,
CDATA

Disjunction between set of
relationship

Part- of link simple element(complex
element and simple element)

Part-of link attribute (Complex
element and attribute)

n-ary one-to-many inheritance
relationship

n-ary many-to-many inheritance
relationship

n-ary many-to-one inheritance
relationship

Required Attribute

(Name, n, 1, *)

(Name, n, *, *)

(Name, n, *, 1)

Notation Meaning Notation Meaning

XOR

Sequence between set of relationshipReference Attribute

Composite Attribute

Figure 10 shows GN-DTD describing the structure of XML document corresponding to DTD in
Figure 10 shows GN-DTD describing the structure of an XML document corresponding to DTD in
Figure 1. Root node Department has a binary inheritance relationship with the complex element node
course. The semantic relationship between them reveals that the Department can have one-to-many
courses at one time. The complex element course has a sequence of attribute cno, simple element node
title and complex element node student. The part-of link attribute is a mandatory relationship where
the attribute node cno is required and unique for every course in the XML document. The simple
element node title is part-of the complex element courses. One course can be taken by many students
while the complex element student consists of a sequence of attribute node sno, simple elements
fname, lname and complex element lecturer. Attribute node sno is required for the complex element
student. Complex element node student requires only one of its subelements either fname or lname to
appear in the XML document while the simple element lname is optional. The semantic relationship
between course, student and lecturer is indicated as a ternary relationship since each student is assigned
to a lecturer who is teaching the course. Attribute tno is required while simple element tname is

324 Zurinahni Zainol and Bing Wang

mandatory and string S denotes a node is a type PCDTA. Attribute key tno and simple element tname
are the last node in GN-DTD. The level of each node is indicated explicitly in the model.

Figure 10: GN-DTD

(CS,2,*,*)

cno,2,ID

Department,0

(DC,2,1,*)

title,2,S

fname,3,S
?lname, 3,S

tname,4,S

course,1

student,2

lecturer,3

tno,4,ID

sno,3,ID

(CST,3,1,*)

3.2. Data Dependencies of GN-DTD

Data dependencies are part of the real world semantics [14, 1]. They represent the semantic
information in the form of relationships between different attributes in the XML documents. In Ling
[14], it is stated that “data dependencies should be modelled precisely early in the design stage for a
correct and complete database representation of semantic.” In a database context, data dependency
can be categorized into functional dependency and key dependency.

3.2.1. Key Attribute
We define a key attribute as a unique attribute that can determine uniquely other simple element in the
whole XML document. For instance course number (cno), student number (sno) and lecturer number
(tno) are unique and mandatory, because they are represented as one-to-one relationships between
complex element and attribute node. We define this in GN-DTD as a key attribute similar to [3].

3.2.2. Functional Dependency
Functional dependency models real world constraints, showing that some of the complex elements or
simple elements/attributes depend on other complex elements or attributes/simple elements. Based on
the GN-DTD model, we define four types of functional dependencies: relationship dependency, global
dependency, transitive dependency and partial dependency

3.2.2.1. Relationship Dependency
The relationship dependencies are presented clearly in the GN-DTD diagram using a directed arrow.
Our XML relationship dependency is defined in terms of a uniqueness constraint in the relationship
between complex element nodes GN-DTD. These types of relationships could cause data redundancy
and should be eliminated from GN-DTD. The categories are:
• one-to-many binary inheritance relationship dependency
• many-to-many binary inheritance relationship dependency
• many-to-one binary or ternary inheritance relationship dependency
• many-to-many ternary inheritance relationship dependency

XML Document Design via GN-DTD 325

For instance, the XML document illustrated in Figure 3 shows that student name “David Grey”
and both lecturer name “Bing” and “Bottaci” have appeared twice in the document. This is because
one-to-many ternary inheritance relationship between course, student and lecturer exist in GN-DTD as
shown in Figure 10. Therefore to achieve a redundancy-free XML document, we need to avoid these
types of relationship dependencies in GN-DTD.

3.2.2.2. Global Functional Dependency
Global functional dependency occurs based on a few reasonable constraints (dependency) that a
database designer may specify for his/her application. Global functional dependency holds in GN-DTD
if there exists a dependency between the attribute and simple element of the corresponding complex
element under a binary or n-ary many-to-many inheritance relationship at the last node of GN-DTD.
We adopted this definition from [1, 15] with some modification to suit the hierarchical structure of
XML documents.

Definition 1:

Let CE be a set of complex elements under binary or n-ary one to many/many-to-many
inheritance relationship, Let ATT be an identifier attribute of CE and SE is a simple element of CE.
The global functional dependency of GN-DTD is defined as follows:

(1) For each part-of-link simple element <SE,ln-1> of <CE,ln-2>, where SE and ATT are last
nodes in GN-DTD

<ATT,ln-1>→<SE,ln-1> is a global dependency in GN-DTD. SE can be a set of simple element,
list of simple elements or single value of a simple element.

(2) For each last node attribute ATT1 of CE which is not the attribute identifier of CE,
ATT→ATT1 and ATT1→ATT is also a global dependency.

For instance, in Figure 10, the possible global dependency (GFD) of the complex element
lecturer is as follows:

tno→ tname (2)
This above GFD (2) represents the constraint, whenever two nodes agree on the value of all

attributes tno, they also agree on the value of all attributes in tname. This GFD can be viewed as a
function from one set of attributes/simple elements to another set of attributes/simple elements. This
GFD is similar to XFD defined by Arenas and Libkin[1] but we put it in a different way without using
the path notation.

3.2.2.3. Functional Transitive Dependency
We adopted the definition of transitive dependence from the relation model [5] and nested relation
[14]. Transitive functional dependencies between complex elements occur if theirs attribute or simple
element node has dependency with another simple element node from a different level.

Definition 2:

Case 1: Let ATT be a key identifier for complex element(CE) and {SEa, SEb} are simple
elements for CE

If there exist two constraints <ATT,li> →<SEa,li> and <SEa,li →<SEb,li>, then we say that
attribute <SEb,li> is transitively dependent on <ATT,li>

Case 2: Let ATTa be a key identifier for CEa , ATTb is a key identifier to CEb and SE is a simple
element for CEc and they are located in different levels.

If there exist two constraints <ATTa,li> →<ATTb,li+1> and <ATTb,li+1>→ <SE, li+1>, then we
say that <SE, li+1> is transitively dependent on <ATT,li>

3.2.2.4. Functional Partial Dependency
We adopted the definition of functional partial dependency (PFD) from [17].

326 Zurinahni Zainol and Bing Wang

Definition 3:
Let ATTa,ATTb, ATTm be a key identifier for CEa,CEb and CEm respectively. These CE have a

binary or tenary relationship with each other and are located in different levels.
If there exist two constraints PFD1: {<ATTa,li>, <ATTb,li+1>,<ATTm,li+2>} → <ATTn,li+3>
 PFD2 : <ATTa,li>→ <ATTn,l i+3>
then constraint PFD2 is called functional partial dependency because it is a subset of PFD1

where attribute <ATTa,li> alone can be used to determine <ATTn,li+3>
Functional partial dependencies involve composite attribute keys. The composite key attribute

could be from the same level or from a different level. The subset of composite key attribute can
functionally determine the simple element node.

4. Normal Form for GN-DTD
We next define multilevel normal forms for GN-DTD based on the notion of data dependencies and
relationship dependencies of GN-DTD.

4.1. First Normal form GN-DTD (1XNF GN-DTD)

The first normal form for GN-DTD is about finding unique identifier attributes for the complex
elements set, and checking that no node (complex element, simple element or attribute) actually
represents multiple values. To be in first normal form, each attribute, complex element or simple
element is not NULL and has a single label. More importantly, the primary key (unique identifier) for
the complex element must be defined. To be precise, we propose the following rules.

GN-DTD is in first normal if and only if:
a) Only one value for each simple element node or attribute node of GN-DTD can be stored. If

there is more than one value, we must add some new element nodes or attribute nodes to store
them. For instance, consider Figure 10. If the complex element course has two titles, we need
two title simple elements node for each courses to store the two title names. This is equivalent
to being 'no repeating group' in relational schema [5].

b) The root element of a GN-DTD model should be located at level 0 and the cardinality of the
root element node must be one.

c) Each set of complex element node in the GN-DTD has at least one key attribute node.

4.2. Second Normal form GN-DTD (2XNF GN-DTD)

Some nodes need to be restructured. However they can then still be in a single GN-DTD. This is
possible in XML because XML supports hierarchies in a single document, while relational databases
do not support hierarchies in a single row. This is different from the relational second normal form
(2NF), which requires one-to-many relationships to be in separate tables.

The GN-DTD is in second normal form if and only if:
a) GN - DTD is in 1XNF.
b) There is no nested binary inheritance relationship or ternary inheritance relationship under

many-to-many or one -to-much inheritance relationships with the following condition:
For each nested set of complex element<CE,l+1> of <CE,l>, and any key attribute (ATT) of

<CE,l>, the key attribute and simple element of <CE,l+1> is not partial dependent on ATT of complex
element<CE,l>

4.3. Third Normal form GN-DTD (3XNF GN-DTD)

In the third normal form of GN-DTD, making a change to one unique complex element node set would
not affect the integrity of another complex element node set. If needed, a complex element node set
would be divided into two separate complex element node sets. This is similar to the relational 3NF.

XML Document Design via GN-DTD 327

GN- DTD is in third normal form if and only if:
b) GN-DTD is in 2XNF.
c) There exists no nested inheritance relationship type of n-ary many-to-one or many-to-many

under a one-to-many inheritance relationship set in GN-DTD and the following conditions are
satisfied:
(i) For each nested set of complex elements<CEb,l+1> of set of complex element<CEa,l>, any

key attribute and simple element of <CEb,l+1> is not transitively dependent on ATT of
complex element<CEa,l>

(ii) Any key attribute node of any complex element node located in a different level are disjoint
(ATT<CE,l> ∩ ATT<CE,l+1>∩ ATT<CE,n> =0)

4.4. Normal form GN-DTD (NF GN-DTD)

GN- DTD is in Normal Form if and only if:
a) GN-DTD is in 3NF.
b) There are no global dependencies between attribute and simple element of complex element

nodes under nested one-to-many or many-to-many inheritance relationships

5. Transformation from Un-normal Form GN-DTD to the Normal Form GN-DTD
The common feature of normalization procedure is to convert an initial schema into one in a normal
form to reduce anomalies and redundancies in the XML document. In this section, we propose rules to
transform the un-normal form GN-DTD into a normal form one. These rules are used to remove
redundancy in XML documents caused by relationship dependency, global functional dependency,
partial functional and transitive functional dependency. Generally, in these rules, we first restructure
the GN-DTD by creating a new complex element node, moving up node and moving sub-tree node.
We subsequently adjust the semantic relationship between simple element nodes or attribute nodes in
GN-DTD. We next define the normalization rules.

5.1. Normalization Rules

The following notations will be used in the following rules.
r represents root element
ATT represents attribute
SE represents simple element
CE represents set of complex elements
→R represents relationship
l represents level of node where (0 ≤ l ≤ n-1) , n is a finite positive number

Rule 1: Eliminate Redundancy though Global Functional Dependencies
Let ATT→{SE} for Complex element CE

1.1 Create a new set of complex element name <CE _new,l>
1.2 Locate node <CE_new,l> at level one (l=1) at the rightmost position of GN-DTD
1.3 Create new relationship type of binary one-to-many binary inheritance link between root

and new set complex element name <CE_new,l>
1.4 Replicate attribute node ATT and simple node SE

1.4.1 Make them as a children to node <CE_new,l>
1.4.2 Let new attribute node (ATT) of <CE_new, l> be a key node

1.5 Create a new relationship type of part-of link between attribute node ATT and simple
element node SE with <CE-new, l>

1.6 Delete simple element node {SE} from original location and its relationship

328 Zurinahni Zainol and Bing Wang

1.7. Eliminate global dependency (1) from set of data dependency

Rule 2: Eliminate n-ary many-to-many or one-or-many inheritance relationship with partial
transitive
To eliminate n-ary many-to-many or one-or-many relationship we must avoid multi – hierarchy. For
each, n-ary relationship R (n>2), many-to-many or one-to-many relationship type

(<CEa, , l > →R<CEb, l+1>)
4.1 Create a new set complex element name <CEb _new,l>
4.2 Locate node <CEb_new,l> at with the same level of level <CEa, , l > at the rightmost

position of GN-DTD
4.3 Create a new relationship type of binary one-to-many binary inheritance link between

parent of <CEa, , l > and new set complex element name <CEb_new,l>
4.4 If partial dependency exists in the <CEb, l+1> then replicate all children of <CEb, l+1> to

be children of the set complex element <CEb_new,l>
4.5 Delete all children of <CEb, l+1> except the attribute key node

Rule 3: Eliminate binary many-to-many/many-to-one/one-to-many Inheritance Relationship with
Transitive Dependency
For each, binary many-to-one relationship type

(<CEa, ,l > →R<CEb, l+1>)
If exist, <CEa,l> with attribute ATTa and <CEb,l+1> with attribute ATTb, with and simple

element SEb
Where ATTa → ATTb

ATTb → SEb
ATTa → SEb is transitive dependency

3.1 Move up the set complex element <CEb, l+1> along with its children to the same level
<CEa, ,l >

3.2 If parent of <CEa, ,l > is a root node
then create a new relationship type of one-to-many inheritance link between parent of <CEa,,l>

with set complex element node < CEb,l+1 >
else create new relationship type of many-to-many inheritance link between parent of <CEa, ,l >
3.3 Eliminate transitive dependency ATTa → SEb from set of complex element <CEa, ,l > and
<CEb, l+1>

5.2. Normalization Algorithm

Normalization is a process that analyses and restructures the schema of an XML document to minimize
redundancies with the help of data dependencies in the data. The normalization algorithm takes GN-
DTD and set of data dependencies specified by the user as an input, and returns the normal form GN-
DTD as output. These algorithms apply to normalization rules presented in the previous section. We
propose three algorithms to transform a GN-DTD into 2XNF, 3XNF and XNF, respectively.

XML Document Design via GN-DTD 329

5.2.1. Algorithm 2XNF GN-DTD
Input: The GN-DTD D in 1NF-DTD and set of specified dependencies constraint.
Output: The GN- DTD in 2NF-DTD

Let D be GN-DTD
If D is 2NF GN-DTD, then output D
Search all inheritance relationships in GN-DTD from root to last node
If there exist n-ary many-to-many inheritance relationship or one-to-many inheritance
relationship under
many-to-many inheritance relationship
Then take the last inheritance relationship in the GN-DTD
Restructure D by applying rule 2
Repeat until no more partial functional dependency
Output D

5.2.2. Algorithm 3XNF GN-DTD
Input: A GN-DTD D in 2NF GN-DTD and given set of data dependencies.
Output: A GN-DTD in 3NF GN-DTD

Let D be DTD
If D is 3NF GN-DTD, then output D
else
If there exist many-to-many or many-to-one or one-to-many inheritance relationship with
transitive functional dependency
then restructure D by applying rule 3
Repeat until no more transitive functional dependency
Output D

5.2.3. Algorithm XNF GN-DTD
Input: A GN-DTD D in 3NF GN-DTD and given set of data dependencies.
Output: A GN-DTD in NF GN-DTD

Let D be GN-DTD
If D is XNF GN-DTD, then output D
Get all the dependency constraint
If there exist constraint with global functional dependency
then apply rule 1
Repeat until no more global functional dependency
Output D

5.3. Examples

In this section, we present examples to illustrate how the GN-DTD is restructured according to 1XNF,
2XNF, 3XNF and XNF respectively. We assume a set of functional dependencies presented in the
following section with the GN-DTD in Figure 10 are used as input.

5.3.1. Example of INF GN-DTD
The following constraints are given based on database designer's requirements:

Constraint 1: Each set course, student and lecturer has unique identifier.
Constraint 2: student number (sno) → {fname, lname}
Constraint 3: course number (cno)and student number(sno) → lecturer number (tno)
Constraint 4: course number(cno) → lecturer number(tno)
Constraint 5: course number(cno) and lecturer number (tno) → lecturer name(tname).
Constraint 6: lecturer number(tno) → lecturer name(tname)

330 Zurinahni Zainol and Bing Wang

The GN-DTD illustrated in Figure 10 shows that it is in first normal form (1 XNF) because
each set of complex element nodes course, student and lecturer has cno, sno and tno as a unique key
identifier respectively, while all simple element nodes and attribute nodes have one unique label. The
department node is a root element since it is located at level 0. Moreover, the XML documents shown
in Figure 2 satisfy and conform to GN-DTD in Figure 10.

5.3.2. Example of 2XNF GN-DTD
GN- DTD of Figure 10 is not in 2XNF because

• There exists a ternary inheritance relationship type nested with many-to-many inheritance
relationship type. This dependency relationship involves course, student and lecturer nodes.
As a consequence information about lecturer is stored redundantly in the XML document and
can cause update anomaly. If the information about the lecturer is changed, then it must be
updated in all subtree students who are taking the same course.

• There exists a partial dependency between complex elements course, student and lecturer. This
partial dependency is caused by constraint 3 and constraint 4.
To be in 2XNF GN-DTD, the new set complex element lecturernew along with its children is

created at the same level as complex element student node. A many-to-many inheritance link between
course and lecturernew node is created. All children from the original complex element lecturer are
deleted except key attribute node tno. In this way, the original semantic relationship is preserved in
GN-DTD. Figure 11 presents 2XNF GN-DTD. Having this structure, partial dependency is eliminated
in complex element lecturer as well, but still preserved in lecturernew.

5.3.3. Example of 3NF GN-DTD
GN- DTD of Figure 11 is not in 3XNF because

• There exists many-to-many inheritance relationships between element lecturernew and course
node under one-to-many inheritance relationship.

• There exists transitive dependency between complex element course and complex element
lecturernew with cno→tname. This transitive dependency is derived from constraint 4 and
constraint 6.
To be in 3NF GN-DTD, the inheritance link between the set of complex element node course

and complex element lecturernew node needs to be restructured and transitive dependency eliminated
within course node and complex element lecturernew. The set of complex element node lecturernew
along with its children is moved up and linked with department node. Because department is root, a
binary one-to-many hierarchical link is created. Figure 12 presents a new structure of 3XNF GN-DTD
after eliminating the above constraints.

5.3.4. Example of XNF GN-DTD
GN- DTD of Figure 12 is not in XNF because

(i) There exists global dependency sno →{fname,lname} for set complex element student node and
course node under many-to-many relationship. If the information about the fname and lname is
changed, then it must be updated in the whole document.

To remove redundancies caused by global dependencies, a new set of complex element node
studentnew is created at level one. A new binary one-to-many inheritance relationship between
studentnew and department node is created. The attribute node sno and simple element node fname
and lname are replicated and they become children of set complex element studentnew. The part of
link is created between them accordingly. Both of simple element node fname and lname are deleted
from student node but key attribute node sno is remained as a child for complex element student node.
Figure 13 illustrates new structure of XNF GN-DTD with free redundancy. The result shown in Figure

XML Document Design via GN-DTD 331

13 is similar to the XNF defined by Arenas and Libkin[1]. As part of the design process shown
in Figure 3, finally, XNF GN-DTD will be mapped back to the new DTD by applying transformation
rules. We present these transformation rules next.

Figure 11: GNT-DTD in second normal form

(2,*,*)

(3,1,*)

student,2

(2,1,*)

course,1

cno,2,ID

sno,3,ID

tno,4,ID

lecturer,3

title,2,S

?Iname,3,Sfname,3,S

Department,0

(2,*,*)

tname,3,S

lecturernew,2

tno,3,ID

Figure 12: GN-DTD in third normal form

(2,1,*)

(3,1,*)

course,1

cno,2,ID

(2,*,*)

sno,3,ID

tno,4,ID

lecturer,3

title,2,S

?Iname,3,Sfname,3,S

student,2

Department,0

(2,1,*)

tname,3,S

lecturernew,1

tno,3,ID

332 Zurinahni Zainol and Bing Wang

Figure 13: GN-DTD in normal form

(2,1,*)

(2,*,*)

(3,*,1)

student,3

sno,4,ID

(2,1,*)

studentnew,1
Department,0

sno,2,ID

fname,4,S
?Iname,4,s

(2,1,*)

Department,0

course,1
 Department,0

cno,2,ID

title,2,S

lecturer,2

tno,3,ID

lecturernew,1
Department,0

tno,2,ID

tname,2,S

6. Transformation Rules
Given the GN-DTD, the syntax and structure of DTD can be derived easily. This can be achieved by
traversing all the nodes from one level to another level starting from the root node up to the leaves
nodes.
Step 1 Level 0, a root node is represented by <!DOCTYPE root node name [element type definition]

>
Step 2 Level 1, identify the subtree of GN-DTD, check the number of nodes, type of nodes and

relationship type
Step 3 If there is more than one node at level 1 and the relationship type between root and child

node(s) is a binary one-to-many inheritance relationship then generate
<!ELEMENT root node name (Ni))>
Where Ni is the list of subelements/child nodes
3.1 Certify the relationship set between parent nodes and child nodes,

3.1.1 If {XOR} means the relationship between node is a disjunction and will be
represented using symbol ‘|'

Else
3.1.2 If {sequence} means the relationship is sequence and will be represented using

symbol ‘,'
3.2 Verify the semantic constraint between complex element nodes (parent) and complex

element nodes (child) in each of relationship set and map to the following operator:
3.2.1 if (m,1,*) or (m,*,*) or (m,*,1) map to operator *
3.2.2 if (m,0,*) map to operator +
3.2.3 if (m,0,1) map to operator ?
Where m is n-ary relationship and n > 1

Step 4 If the list of subelements (Ni) is not empty, using depth first traversal, for each node in list
subelement Ni

4.1 generate <! ELEMENT Ni (subelement Nj)>
4.2 repeat step 3.1 and 3.2
4.3 for each complex element (Ni), if the relationship between them is part-of link attribute

(one-to-one) then generate
<! ATTLIST Ni attribute name ID # REQUIRED>

XML Document Design via GN-DTD 333

4.4 For subelement Nj
4.4.1 If Nj is a simple element has part of link simple element (many-to-one or one-to-

many relationship) with Ni then generate
<! ELEMENT simple element name #PCDATA>
(Repeat for all simple element nodes)
4.4.2 If Nj is a complex element node has inheritance link with complex element Ni
Repeat step 4
4.4.3 If Nj is a complex element node has part of link then generate
<! ELEMENT Nj (EMPTY) >

Step 5 Go to next subtree GN-DTD and repeat step 4
Using transformation rules, GN-DTD in Figure 13 is mapped to a new DTD and finally initial

XML documents is restructured to conform to this new DTD as shown in Figure 14 and 15
respectively.

Figure 14: New DTD

<!DOCTYPE department[
 <!ELEMENT department(course* , lecturernew*, studentnew*)>
 <!ELEMENT course(title, student*)>
 <!ATTLIST course cno ID #REQUIRED>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT student (lecturer)*>
 <!ATTLIST student Sno ID #REQUIRED>
 <!ELEMENT lecturer *(EMPTY) >
 <!ATTLIST lecturer tno ID #REQUIRED>
 <!ELEMENT lecturernew *(tname)>
 <!ATTLIST lecturernew tno ID #REQUIRED>
 <!ELEMENT studentnew *(fname , lname) >
 <!ATTLIST studentnew Sno ID #REQUIRED>
 <!ELEMENT fname(#PCDATA) >
 <!ELEMENT lname(#PCDATA) >
]>

334 Zurinahni Zainol and Bing Wang

Figure 15: Non redundancy XML document conforms to DTD in Figure 14

<!DOCTYPE Department [
 <course>
 <course cno = “csc101”>
 < title > XML database </title>
 < student >
 <student sno = “112344”>
 <lecturer>
 <lecturer tno = “123”>
 </lecturer>
 </ student >
 < student >
 <student sno = “112345”>
 <lecturer>
 <lecturer tno = “123”>
 </lecturer>
 </student >
 </course>
 <course>
 <course cno = “csc201”>
 < title > Database technique </title>
 < takenby>
 < student >
 <student sno = “112344”>
 <lecturer>
 <lecturer tno = “123”>
 </lecturer
</ student >
 < student >
 <student sno = “112346”>
 <lecturer>
 <lecturer tno = “123”>
 </lecturer
 </student >
 </course>

<course>
 <course cno = “csc102”>
 < title > Z formal methods </title>
 < student >
 <student sno = “112344”>
 <lecturer>
 <lecturer tno = “124”>
 </lecturer>
 </student>
 < student >
 <student sno = “112345”>
 <lecturer>
 <lecturer tno = “124”>
 </lecturer>
 </student>
 </course>
 <lecturernew>
 <tinfo tno = “123”>
 <tname> bing </tname>
</lecturernew>
<lecturerinfo>
 <tinfo tno = “124”>
 <tname> bottaci</tname>
</lecturernew>
<studentnew>
 <studentnew sno = “112344”>
 <fname> David</fname>
 <lname> Grey </lname>
</studentnew>
<studentnew>
 <studentnew sno = “112345”>
 <fname>Helen</fname>
</studentnew>
</Department>]

7. Conclusion and Future Work
We have proposed a method for designing a “good” XML document in two steps: first, we building a
conceptual model by means of GN-DTD at the schema level and second, using normalization theory
where functional dependencies are refined among its simple elements and attributes. The GN-DTD can
be further normalised either to 1XNF, 2XNF, 3XNF or XNF using the proposed normalization
algorithm. In the proposed methodology, a GN-DTD is used as input and the normalization rules are
applied during the normalization process. In this process, the original GN-DTD is restructured
accordingly by considering the hierarchical relationship types, the level of nodes, and the set of data
dependencies given between nodes. The normal forms GN-DTD presented in this paper have shown
three advantages. First, the designer can indentify complex elements, simple elements, and attributes
graphically and can add the relationship types between the nodes from the user specification. This will
give more control to the designer to evaluate each normal form GN-DTD. Second, GN-DTD is able to

XML Document Design via GN-DTD 335

preserve both DTD hierarchical structure and XML document structure and satisfy user requirements.
More importantly, the semantic constraint in the GN-DTD is preserved. Although we have chosen
DTD rather than XML schema as a starting point to research XML normalization, the concept and
methods used in this work can be generalised to XML schema. As an ongoing work, we are
implementing this normalization process using a formal specification method.

References
[1] Arenas, M. and Libkin, L. A Normal Form for XML Documents, ACM Transaction on Database

System,vol 29(1), 2004, pp. 195-232.
[2] Bird,L., Goodchild, A., and Halpin, A. Object Role Modeling and XML-Schema. ER 2002, pp.

309-322.
[3] Buneman, P., Fan,W.,Simeon, J., and Wienstein,S. Constraints for Semistructured data and

XML. SIGMOD record 30 , 2001, pp. 47-54.
[4] Chen, P.P. The entity-relational model: Towards a unified view of data, ACM transaction on

Database System, 14, 1976.
[5] Codd, E. Further Normalization of the DataBase Relational Model. In Database system,

Computer Science Symposia series 6. Prentice Hall,1972.
[6] Dobbie, G., Xiaoying, W., Ling. T.W., and Lee, M.L. ORA-SS: An Object-Relationship-

Attribute Model for Semi-Strucured Data. Technical Report, Department of Computer Science,
National University of Singapore, 2001.

[7] Embley, D. and Mok, W.Y., Developing XML Documents with guaranteed "good" properties, In
Preceedings of the 20th International Conference on Conceptual Modeling, 2001, pp. 426-441.

[8] Feng, L., Chang, E., and Dillon, T., A Semantic Network-Based Design Methodology for XML
Documents, ACM Transactions on Information Systems, Vol 20, Number 4, 2002, pp. 390-421.

[9] Gustas, R., A Look Behind Conceptual Modelling Constructs in Information System Analysis
and Design, International Journal of Information System Modelling and Design, 1(1), 2010, pp.
79-108

[10] Halpin, T., Object Role Modelling: Principle and Benefit, International Journal of Information
System Modelling and Design, 1(1), 2010, pp. 33-55.

[11] Kolahi, S., Dependency-preserving normalization of relational and XML data, Journal of
Computer and system Sciences, 2007, pp. 636-647.

[12] Lee, S.Y., Lee, M.L., Ling, T.W., and Kalinichenko, L.A., Designing Good Semi-strucutred
Databases, 1999, pp. 131-135.

[13] Ling, T.W and Yan, L.L, NF-NR: A practical Normal Form for Nested Relations, Journal of
System Integration,4, 1994, pp. 303-340

[14] Ling, T.W, A normal form for entity-relationship diagram, Proceeding 4th International
Conference on Entity Relationship Approach, 1985, pp. 24-35

[15] Ling, T.W., Lee, M.L. and Dobbie, G. Semi structured Database Design, Springer 2005.
[16] Lv, T., Gu, N., Yan, P., Normal forms for XML documents, Information and Software

Technology, 2004, pp. 839-846.
[17] Mani, M., Lee, D., and Muntaz, R.R., Semantic Data Modeling Using XML Schemas, In

Proceeding of 20th International Conference on Conceptual Modelling. 2001
[18] Mok, W. (2002). A comparative Study of Various Normal forms. IEEE Transanctin on

Knowledge and Data Enginnering, Vol.14 , pp. 369-385.
[19] Mok, W.Y., Ng, Y.K and Embley, D.W., A normal for precisely characterizing redundancy in

nested relation, ACM Transaction Database System, Vol. 12, no.1, 1996. pp. 77-106
[20] Ozsoyoglu, Z.M and Yuan, L., A new normal form for Nested Relations, ACM Transaction on

Database System, Vol. 12, No 1, 1987, pp.111-136.

336 Zurinahni Zainol and Bing Wang

[21] Vincet, M. , Liu, J., Mohania, M.,On the equivalence between FDs in XML and FDs in relations.
Acta Infomatica , 2007, pp. 230-247.

[22] Wang, J. and Topor, R., Removing XML Data Redundancies Using Functional and Equality-
Generating Dependencies, 16th Australasian Database Conference, 2005, pp. 65-74.

[23] Yu, C. and Jagadish, J.H., XML schema refinement through redundancy detection and
normalization, The VLDB Journal, 2008, pp. 203-223.

[24] Yuliana, O.Y. & Chittayasothorn, S. (2005). XML Schema Re-Engineering Using a Conceptual
Schema Approach. Internatinal Conference on Information Technology: Coding and Computing.
IEEE.

[25] Zainol, Z. and Wang, B., GN-DTD: Graphical Notation for Describing XML Docuements, In
Preceeding of 2nd International Conference on Advances in Databases, Knowledge, and Data
Applications, DBKDA, IEEE Computer Society, 2010, pp. 214-221.

