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ABSTRACT The biggest fear when deploying machine learning models to the real world is their ability
to handle the new data. This problem is significant especially in medicine, where models trained on
rich high-quality data extracted from large hospitals do not scale to small regional hospitals. One of
the clinical challenges addressed in this work is magnetic resonance image generalization for improved
visualization and diagnosis of hip abnormalities such as femoroacetabular impingement and dysplasia.
Domain Generalization (DG) is a field in machine learning that tries to solve the model’s dependency on the
training data by leveraging many related but different data sources. We present a new method for DG that is
both efficient and fast, unlike the most current state of art methods, which add a substantial computational
burden making it hard to fine-tune. Our model trains an autoencoder setting on top of the classifier, but the
encoder is trained on the adversarial reconstruction loss forcing it to forget style information while extracting
features useful for classification. Our approach aims to force the encoder to generate domain-invariant
representations that are still category informative by pushing it in both directions. Our method has proven
universal and was validated on four different benchmarks for domain generalization, outperforming state of
the art on RMNIST, VLCS and IXMAS with a 0.70% increase in accuracy and providing comparable results
on PACS with a 0.02% difference. Our method was also evaluated for unsupervised domain adaptation and
has shown to be quite an effective method against over-fitting.

INDEX TERMS Computer vision, deep learning, domain adaptation, domain generalization, transfer
learning.

I. INTRODUCTION
Deep learning (DL) and Convolutional neural networks
(CNN) empowered the computer vision field to be used
in many situations efficiently and provide very promising
results. Nowadays, all of our smart phones use facial recog-
nition as an option for authentication with Federated Learn-
ing [1], and all new self-driven cars [2] are based mainly
on a combination of deep CNNs for road image processing.
This massive adoption raises the bar for computer vision
systems to be more robust to edge cases and generalizes well
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in unforeseen situations. As useful as DL techniques are,
deploying them and using them on real-world data brings
some problems that we don’t commonly seewhile working on
toy datasets or training data in general [3], even if it was taken
from previous users of the system. As powerful as they are,
Deep Convolutional Networks showed a huge dependency
problem on the data set they were trained on, commonly
known as over-fitting [4]. This problem (called domain-shift
[5] or concept drift [6]) is mainly due to the fact that the
training data set (Source domain) comes from a different dis-
tribution than the deployment data (target dataset), resulting
in a decrease in the performance of the model [7], largely due
to the fact that the latent distribution extracted by the encoders
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for both domain don’t overlap, this can also be confirmed
by using several Manifold Learning [8], [9] techniques as
Bekkouch et al. showed [10] by reducing the dimensions of
the rich latent space into a lower dimensionality and visual-
izing the distributions of both domains. Manifold Learning
and domain generalization (deep learning in general) are
both similar on many levels since they both reduce the input
shape and learn an underlying structure in high dimensional
data. The main difference between them is the ability for
deep learning based feature extraction to include the class
information in the latent space that is easily interpretable by
a deep learning classifier unlike manifold learning methods
which are mostly unsupervised or lack the easy integration
with other deep learning components.

Such changes in real life can occur from very simple things
like a change in image resolution or the brightness of the
pictures or even changes in the background. As Fig 1 shows,
the horse was misclassified as an Arabian Camel by ResNet
mostly because of the sand and Arabian architecture in the
background, which the Local Interpretable Model-agnostic
Explanations (LIME) [11] algorithm (used to interpret the
decisions of black-box models per sample [12]) confirms
by showing the pixels on which the ResNet relied on to
make the decision. The same can be found in Fig 2 where
a horse painting was misclassified as a macaw parrot because
of the resemblance between their colors. Such problems are
unavoidable in real datasets, which created a new field in
transfer learning named Domain Generalization (DG).

FIGURE 1. A horse wrongly predicted as an Arabian camel by ResNet,
because of the surroundings. The left part is the LIME interpretation of
the ResNet decision.

FIGURE 2. A horse wrongly predicted as a macaw parrot by ResNet,
because of different colors (painting). The left part is the LIME
interpretation of the ResNet decision.

DGcan be also seen as a generalized case of the over-fitting
problem, in the sense that the model is learning the data
and not the task, even though in DG cases the model per-
forms very well on the source test data, unlike traditional

over-fitting scenarios. Domain Generalization (DG) [13] is a
sub-field of Transfer Learning (TL) [14] that aims to solve the
aforementioned problem by combining multiple data sources
to train a more resilient model in hopes of generalizing
to unseen domains. DG assumes the existence of multiple
sources of data Dsi (e.g. Photo, Art Paintings, and Cartoon)
that are used for the same task T si (e.g. classifying images
of animals), and a target domain Dt (e.g. Sketches of the
same classes of animals) that is harder to work with (harder
to label or to collect). Most DGmethods provide an extension
to a closely related field, Domain Adaptation (DA) [10],
[15] which often uses one source domain and one target
domain to solve the domain shift problem. At the time of
training, DA assumes the availability of target domain data
but can be classified according to the presence of labels
in the target domain in three key ways: Supervised [16],
Unsupervised [10], and Semi-SupervisedDA [17]. DGdiffers
from DA in the fact that we do not have access to the target
data nor its labels at training phase. Therefore, DG aims at
building a model that can generalize well to unseen domains
rather than generalizing to a single known domain.

Researchers have approached the problem of domain
gaps and their consequences in many ways. One traditional
yet very commonly used technique is to treat this prob-
lem as an over-fitting problem and use regularisation tech-
niques to help the model (parametric models) generalize well
[18], [19]. Many techniques have proven to be useful in the
case of deep neural networks such as learning rate decay,
dropout [18], batch normalisation [19], L1,L2 regularisa-
tion [20] and Shakeout [21]. Although these techniques were
proven effective to help the model generalize well within the
same data set and achieve higher test accuracy, however, it is
not the most effective method for DG. Hence, we need to
develop new methods that are both effective for over-fitting
and for DG problems.

Recent approaches for DG are commonly neural-network-
based and are separated into two main types: one-for-all
and one-for-each. The former uses all source domains and
learns a common model that works for all of them hoping it
would generalize to future domains [22] whereas the latter
approach (one-for-each), trains a different branch for each
source domain. Next, at evaluation, we measure the closeness
of each source domain to the target image and only consider
the output of the corresponding classifier [23].

In this article, we deal with the case of one-for-all DG
in its largest definition given its applicability and speed
increase over the one-for-each type. We implemented a new
DGmethod that can generalize frommultiple source domains
to an unknown target domain, from one domain to another,
and from one domain to itself, making this method easily
applicable in many real world scenarios where the CNN or
the neural networks in general show signs of over-fitting and
dependency on the underlying distribution of the training
data.

Similar to JiGen [22], who trains a jigsaw puzzle solver
over the images to help the encoder better learn the internal
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structure, our approach belongs to the one-for-all category
of DG approaches, focusing on how to use the training data
more effectively to help the model learn better features in
an unsupervised manner. In contrast to JiGen, the proposed
model uses an Encoder, a Decoder, and a classifier to for-
get specific features of the data and not to learn it better.
Unlike traditional Auto-Encoders that are trained to recon-
struct the input, by training a Decoder to reconstruct the
images and training the encoder in an adversarial way against
the reconstruction loss, we force the Encoder to neglect the
domain-specific details and only forward the information
required for classification.

As proven by our experimental results on single sourceDG,
our technique can also be helpful as a measure against over-
fitting. Our approach uses pure deep learning based methods
that can be run easily on GPUs, making it simpler to train
and quicker to converge, unlike most other DG methods that
add a huge computational burden such as JiGen (to make the
jigsaw puzzle).

In short, this article presents a newDG system based adver-
sarial auto encoders by training the encoder to extract only
classification needed information and remove all the style
details noise, which achieves state-of-the-art efficiency in
various scenarios for Domain Generalization, Domain Adap-
tation and Overfitting without adding a huge computational
burden, making it more applicable to real-world scenarios and
easily incorporated intomore complex architectures.We eval-
uated our method against the state of the art deep learning
methods based on five primary datasets and 13 sub-datasets
and showed that our method outperforms most of them on all
tasks.

II. RELATED WORKS
The field of transfer learning has witnessed a great deal of
research interest, especially domain adaptation and domain
generalization as two sub-fields of TL. Hence we will present
some of the most prominent works in both fields. Further-
more, since our method is based on the use of a robust adver-
sarial loss function, we will also briefly discuss works related
to designing adversarial loss functions and reconstruction
losses for neural networks in different problems.

A. DOMAIN ADAPTATION
Domain Adaptation has been one of the most active research
areas in the last few years, and has been approached in both
traditional Machine learning ways and more sophisticated
Deep Learning based techniques. The deep Learning tech-
niques that were applied on DA varied a lot but they all aimed
at achieving two properties for the latent space of the input:
(i) extract features from the data of both domains that can
be used by a classifier to get good accuracy i.e Category
Informative Latent Space, and (ii) make the latent spaces
of both domains harder to tell apart i.e Domain Invariant
Latent Space. For this purpose many researchers have used
Generative models to generate images from both domains
aiming at finding a mapping between domains that allows

the model to reduce the domain gap [24]. Only the discrimi-
nating portion of the Generate Adversarial Network has been
used to formulate a minimization-maximization competition
between the feature extractor (Encoder) and the domain dis-
criminator that showed more promising results and faster
convergence [10], [25].

B. DOMAIN GENERALIZATION
Domain Generalization is less explored as topic than Domain
Adaptation, but the ability to access multiple source domains
allowed for more innovation and creative techniques. Most
DG methods primarily fall into two main streams: (i) Calcu-
lating the similarity between and target image and possible
source domains and then this information is used later to
either combine or select a certain classifier to use for this
sample as in BSF [26]. (ii) Combining the source domains
in a way that allows the model to learn domain invariant
characteristics that can generalize well to unseen domains,
one of the state of the art techniques attempts to learn domain
agnostic representation by rearranging the input images and
asking the network to solve it as a puzzle [22]. While it
has proven to be very successful, it faces a risk as different
groups will share the same sub-components but are connected
together differently.

C. ADVERSARIAL & RECONSTRUCTION LOSSES
Using Convolutional Auto Encoders while Pre-Training CNN
classifiers is considered one of the best practices when the
dataset is too small or when the labels are too sparse [27].
In order to assist with the absence of labeled data, this task
leverages the availability of unsupervised data under recon-
struction loss. They are also used widely used for outlier
detection [28]–[30], novelty detection [31], auto-drawing for
with RNNs [32] andOpen-Set Recognition [33]. Reconstruc-
tion loss is also used for domain adaptation by jointly learning
a shared encoding representation for: i) supervised classifi-
cation ii) unsupervised reconstruction of unlabeled data [34],
this way the encoder learns to extract information from the
target dataset too making it more familiar with it. This idea
goes exactly against ours where our goal is to maintain the
latent space empty of any style information that can reduce
the performances of the classifier. Adversarial losses, which
are at the heart of most recent developments in Computer
Vision and Generative models, are another very useful type
of loss functions [35]. Adversarial losses allow us to define
an unwanted situation and go the other way around it. It has
been employed in GANs to generate new images similar to
the real ones by detecting the differences between them and
working to reduce them. In the same manner, [24] has used it
to generate images in both domains, whereas [10] has defined
the problem of the domains being distinguishable and trained
the encoder on the opposite of it, which allowed it learn more
domain agnostic representations of the images. Another inter-
esting approach was separating source and target domains
from the adversarial losses by only applying to one domain
only where [36] applied it target dataset and kept the source
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FIGURE 3. Model Architecture: The Encoder generates latent representation z which is used by the Decoder to reconstruct the input using LR and by the
Classifier to classify the sample using LC . The encoder is trained on the classification LC and adversarial LA losses.

domain the same whereas [37] applies it to the source domain
and keeps the target domain fixed.

III. METHODS
We explain the approach of Adversarial Reconstruction Loss
for Domain Generalization and the motivation behind it in
this section. We base our approach on the premise that for
the same problem, deep neural networks cannot generalize
to different domains because they are too dependent on their
training domain. In other words, the CNN encoder portion
is learning features that are helpful for prediction but also
for extracting other domain-specific features that restrict the
model’s ability to handle unseen data. The CNN (Enoder)
part of the models is responsible for the feature extraction;
our main assumption is that the feature extractor extracts two
types of information. Type 1 is the class-informative, which
helps make the decisions and the classification, whereas type
2 is the misleading background noise. Thus, we characterize
the model’s ability for generalizing to unseen datasets by
its ability to forget the data’s peculiarities, symbolizing how
much of the input has been overlooked or neglected by the
encoder.

We illustrate the Encoder’s ability to sustain low-level
image information despite the fact that the only loss we used
for the training was the classification loss. Figure 4 explains
the amount of information the Encoder preserves even after
applying extreme input alterations.

After training an Encoder plus a Classifier setup on
MNIST, the images were reconstructed based on a frozen
Encoder and newly trained Decoder. These findings on the
test dataset support our hypothesis that even though we train
the encoder for classification only, it retains numerous input
features from its source data.

A. DOMAIN GENERALIZATION
As with all DG methods, our technique requires S source
datasets (domains) and at least one target dataset (domain).
Ni is used to represent the ith source dataset’s sample
size, such that X si = {(x

s
i,j, y

s
i,j)}

Ni
j=1, where x

s
i,j references

the jth sample of the ith source dataset and ysi,j is its
corresponding label. Moreover, we denote M as the tar-
get domain’s sample size with X t = {(x tj , y

t
j )}

M
j=1, where

x tj is the jth sample from the target dataset and ytj is its
label, the t is used to distinguish between source and target
domains.

The three main components of our model are: Encoder,
Decoder, and a classifier, as shown in Figure 3. The central
part of the model and our point of focus is the Encoder E(.)
with its weights θE , which maps the input samples x into
the latent embedding space z. These features are commonly
known as the images’ latent representation.

The Classifier C(.) with weights θC , is a feed forward
neural network and the whole classificationmodel is the com-
bination of the encoder and the classifier which is represented
with the function fc = e ◦ c, where e : X −→ Z is the
encoder function that maps the images into feature vectors
and c : Z −→ Y is the classification function operating on
the latent space.

The last part of our method is the Decoder D(.), which will
not be included in the final model since it is not part of the
inference process. Its weights are denoted as θD and we use
it to reconstruct the input samples given their latent space
representation such that the reconstruction function fd = e◦d
where d : Z −→ X .
Each component of the architecture is trained with a

different combination of losses, starting with the Classi-
fier which is trained by minimizing the classification error
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FIGURE 4. Reconstructed images formed by training a decoder on a
model (Encoder+Classifier) trained only for classification. Reconstructed
on the left, Input image on the right.

(cross entropy loss) H (., .)

Lc(θE , θC ) =
S∑
i=1

( ∑
xsi ∈X

s
i

H (C[E(xsi )], y
s
i )
)

(1)

The decoder’s weights are updated to reduce the recon-
struction Loss (Mean Squared Error) between input sample
x and the reconstructed image x̂ even though it doesn’t have
access to the input, it does that by mapping the latent space
into a data sample.

LR(θD) =
S∑
i=1

( ∑
xsi ∈X

s
i

∥∥D[E(xsi )]− xsi ∥∥2 ) (2)

Algorithm 1 Domain Generalization With Adversarial
Reconstruction Loss
Input: X s — Source domain images.

Y s — Source domain image labels.
generalizing_epochs—NB epochs 1
pretraining_epochs—NB epochs 2
α— The learning rate
β —Balancing factor - hyperparameter

Output: θE —Weights of the encoder
θC —Weights of the classifier

// Start Pre-training the Model
for i← 1 to generalizing_epochs do

for j← 1 to nb_batches do
Sample a batch of source images
(x j1s, y

j
1s), (x

j
2s, y

j
2s), . . . , (x

j
Ns, y

j
Ns);

θE = θE − α ∂LC
∂θE

Equation 1 ;
end

end

// Start the Generalization process
for i← 1 to pretraining_epochs do

for j← 1 to nb_batches do
Sample a batch of source images
(x j1s, y

j
1s), (x

j
2s, y

j
2s), . . . , (x

j
Ns, y

j
Ns);

θD = θD − α ∂LR
∂θD

Equation 2 ;
θC = θC − α ∂LC

∂θC
Equation 1 ;

θE = θE − α
∂(LA+βLC )

∂θD
Equation 1, 3 ;

end
end
return θE , θC

Our method’s crucial element is that the reconstruction
loss LR will not be used to update the encoder’s weights
directly. Nevertheless, the encoder will be trained on both the
classification loss and the adversarial of the reconstruction
Loss:

LA(θE ) = −
S∑
i=1

( ∑
xsi ∈X

s
i

∥∥D[E(xsi )]− xsi ∥∥2 ) (3)

In computer vision, the initialization of the model’s
weights using an auto-encoder architecture and learning fea-
tures useful for reconstructing the input is considered a stan-
dard best practice; and assumed to help build better classifiers
using fewer data [38]–[41].We propose to take in the opposite
route, enabling the Encoder to update its weights under the
classification loss and skipping the structure, shape, and other
information that overfits the network.

The step by step process of the training is described in
Algorithm 1.

1) EXTENSION TO UNSUPERVISED DOMAIN ADAPTATION
Our method is easily generalisable to the Unsupervised
Domain Adaptation setting. Given the unsupervised nature
of the Adversarial Reconstruction Loss, we can always add
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more samples without labeling which will help the model
generalize even better. We also add in this setting a separation
loss that operates on the output of the encoder similar to Lin-
ear Discriminant Analysis (LDA). The optimization goal is
to maximize the between-class variability (making different
classes further apart from each other in the latent space) and
minimize the within-class variability (making samples from
the same class close together). Our separability loss is defined
as follows:

Lsep(θE ) =
(∑

i∈Y
∑

zij∈Zi d(zij, µi)∑
i∈Y d(µi, µ)

)
× λBF

λBF =
mini |Y ti |

maxi |Y ti |
(4)

where Zi is the set of all the latent representations of both
source and target domains, that belongs to class i. For the
target domain classes, we used the pseudo-labels that are
produced with a high level of confidence from the classifier
since we assume that the target data has no labels for training.
µi is the mean of all latent representations with label i, such
that µi = mean(Zi), whereas µ is the mean of all the latent
representations for both source and target µ = mean(Z ).
d(., .) is the distance function used to measure the dissimi-
larity between the latent vectors. λBF is a normalizer since
the behavior of this loss is very fluctuating in cases where
the batch doesn’t contain a large enough amount for each
class, and it represents the ratio between the number of least
represented pseudo-labeled target samples mini |Y ti | and the
number of the most represented ones maxi |Y ti |.

2) EXTENSION TO OVER-FITTING
Over-fitting arrives when a model has learned the training
data too well. It is very common with strong models such as
neural networks and decision trees. A number of techniques
for combating over-fitting in neural networks exist such as
reducing the model size, reducing the input data’s dimen-
sions, regularization (L1, L2), dropouts, and batch normal-
ization, yet most of them constrain the model from actually
learning category informative features.

Our technique althoughmade for DG, can be easily applied
in the case of single source datasets and contrarily to other
over-fitting techniques, ours allows the model to learn as
deep as possible without letting it over-fit on the style of
the training data. Our method is not exclusive with other
techniques, but it should be used along the side of most of the
previously mentioned techniques since they are considered to
be the best practice for the training process.

IV. ANALYSIS
Our Adversarial Reconstruction Loss method provided out-
standing performances compared to other states of the art
methods on several experiments using different datasets. This
section is split into four main parts; the first one is the dataset,
where we present the five primary datasets and their 13 sub-
datasets. The second part is the main results section, where

we compare our model against several Domain Generaliza-
tion methods on four benchmarks. The third and last parts are
related to unsupervised domain adaptation and over-fitting
results.

A. DATASETS
To explore our Method’s effect on the domain generalization
problem and its related issues (UDA, overfitting), we analyze
five datasets extensively chosen in the field. The first one
is MNISTR; the Rotated MNIST dataset is an alteration to
the popular digits classification dataset MNIST. The different
domains of RMNIST are created via rotating images by
15 degree increments: 0, 15, 30, 45, 60, and 75 (referred
to as M0, . . . ,M75). We employ a leave-one-out situation at
the training phase, signifying that we will have five source
domains and one remaining for the target. Nevertheless,
the data has an identical test/train split as the primaryMNIST;
therefore, there is no overlap between train and test sam-
ples of the different domains. Next, we use the MNIST-
SVHN-USPS Street View House Numbers (SVHN) which is
a real-world image dataset for digit recognition commonly
used with MNIST for domain adaptation tasks. SVHN is
obtained from house numbers in Google Street View images
and is a little bit more challenging because of many side
artifacts in it and the inclusion of color. US Post Office Zip
Code Data (USPS) Handwritten Digits has 7291 train and
2007 test images. The images are 16*16 grayscale pixels
which make them similar to MNIST but less complex. This
combination of datasets is used both for Domain Generaliza-
tion and Unsupervised Domain Adaptation. PACS dataset is
a new benchmark challenge dataset for object classification
which covers seven object classes (person, elephant, dog,
house, giraffe, horse, and guitar) spread across four differ-
ent domains (Photo, Art Paintings, Cartoon, and Sketches),
producing a more tough predicament for our models. Hence,
we start with a pre-trained imagenet model, namely AlexNet.
VLCS dataset is commonly used in Domain Generaliza-
tion settings as a benchmark for performance evaluation on
multi-class object recognition tasks. VLCS is an abbreviation
of the four datasets that make it up: PASCAL Visual Object
Classes 2007 (V) [42], LabelMe (L) [43], Caltech (C) [44],
and SUN09 (S) [45]. It was created by combining the five
common classes between its sub-datasets, which are: Birds,
Cars, Dogs, Chairs, Person. For evaluation purposes, we use
the same setup as the previous works [13], [22], [46], [47]
by using pre-extracted DeCAF6 features (4096-dimensional
vector) and performing a leave-one-domain-out validation
by randomly splitting each domain into 70% training and
30% testing. We also use a two fully connected layer neu-
ral network inputting to two fully connected layers with
sizes of 1024 and 128 respectively with ReLU activation.
IXMAS is a cross view action recognition dataset containing
eleven different human actions that are recorded by five
cameras in different positions. We aim to build an action
detector that works regardless of the angle of view.We follow
the same experimental setup as [23], [47], [48] by using
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the same Dense trajectory input features and excluding the
irregularly performed actions by only keeping the first five
actions (check watch, cross arms, scratch head, sit down,
get up) performed by the six actors (Alba, Andreas, Daniel,
Hedlena, Julien, Nicolas). Each camera position is treated
as a separate data domain named (0,1,2,3,4). Following the
previous works, we generate a 4-source domain generaliza-
tion task (leave-one-domain-out). Skin lesion dataset is a
combination of 7 public datasets for skin lesion detection
collected from different equipments. The main dataset is
HAM10000 [49] which is used as part of the source data
of all experiments following the setup of [50], [51]. The
other datasets are Dermofit (DMF) [52], Derm7pt (D7P)
[53], MSK [54], PH2 [55], SONIC (SON) [54], and UDA
[54]. All the datasets contain 7 common lesions which are
melanoma (mel), melanocytic nevus (nv), dermatofibroma
(df), basal cell carcinoma (bcc), vascular lesion (vasc), benign
keratosis (bkl), and actinic keratosis (akiec). Following [51]
we split the data into training (50%), validation (20%) and
testing set (30%) in a stratified manner. In each experiment
we choose one of the secondary datasets as a target domain
and keep HAM10000 and the other dataset for the source
domains. We use a pretrained Resnet18 as the backbone of
our model for fair comparison with the other methods. Hip
MR scan Landmark detection HML dataset is a 3D dataset
of 423 3D Magnetic resonance scans of the hip area for
114 patients [56]. The dataset contains 12 landmarks anno-
tated by doctors for diagnosis of several pathologies such as
Hip dysplasia and impingement syndrome. The dataset con-
tains three domains which are the different MRI sequences
(T1 weighted, T2 weighted and PD weighted). All three
modalities are needed for correct indentification of early
signs of hip abnormalities. However there is no guarantee
that all three of them will be available at a specific hospi-
tal. The challenge is therefore to mitigate the problem of
missing sequences and ensure higher rates of abnormality
defections. For each experiment we use two source domains
and the remaining one is the target. We split the data into 80%
training 5% validation (For hyper-parameter tuning) and 15%
testing in a stratified manner according to the pathologies for
the patients and the patient IDs don’t overlap between sets.
We use a pretrained Resnet18 as the backbone for our model
and decoder of 3 layers.

B. DOMAIN GENERALIZATION RESULTS
1) DIGIT CLASSIFICATION: RMNIST
For the task of digit classification, we assessed our model’s
performance versus numerous state of the art deep learning
methods in domain generalization which are: MTAE [57],
CAE [58], BSF [26], UDS [46], PSSO [59], AFLAC [60].
We were inspired to pursue this method after conducting
experiments on the MNIST dataset to understand domain
dependency better. Therefore, our model performs signifi-
cantly better on this dataset than all the current state of the art,
as Table 1 clearly shows our model’s performance exceeds

TABLE 1. Domain Generalization for digit classification: RMNIST. The
average accuracy over 20 runs of the model. We represent each
experiment by the name of its target dataset.

all the other models on average and is ranked at least first or
second in each experiment.

The reported results are the averaged over 20 runs
of the model with the learning rate set to 0.003,
generalizaing_epochs = 50, pretraining_epochs = 100,
and the balancing factor set to β = 0.1. Our method
outperformed all other methods on average providing more
consistent results than others especially on the extreme case
of 75 degrees, where we had 1.33% accuracy increase over
the second best method AFLAC. We trained our model on
a Tesla V100 SXM2 32 GB with a server with 64 cores and
80G of ram, for a total of 5 hours and 46min. The time needed
to train the models for classification only without our loss is
2 hours and 18 mins.

In order to fully understand what our technique achieves
we regenerated the experiment fromFig 4 but with adversarial
reconstruction loss used for the training of the model. So our
experiment goes as follows, We train the Encoder by the
adversarial reconstruction loss and the classification loss as
described in Algorithm 1 and after convergence, we re-train a
new decoder on the latent space of theMNIST dataset without
changing the encoder weights. After it converges, we evaluate
the results on the test data with extreme rotations to see if the
same effects from the previous experiment Fig4 still holds.
We inferred that the results in Fig 5 are definitely different
in this case where most of the reconstructions appear to be
centered and without rotation, unlike their respective original
inputs. Furthermore, we can see that most of the specific
details in the pictures tend not to appear in the reconstructed
images. We can also easily see that all the reconstructions
have the same class as their input. Proving that the aim of our
method was actually achieved and that the learned features
don’t contain information about the specific details of the
input yet they are still useful for classification.

2) OBJECT RECOGNITION 1: VLCS
We use the same experimental setup as the deep learning
works we compare our model with [13], [22] with our learn-
ing rate being α = 0.003, generalizaing_epochs = 550,
pretraining_epochs = 300, and the balancing factor is set
to β = 0.15. We found the values of our hyper parameter
with 10-fold cross validation hyper parameter tuning and we
report the average test accuracy over 20 experiments.
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TABLE 2. VLCS results for Domain Generalization.

FIGURE 5. Reconstructed images formed after applying our ARL
Generalization and training a new decoder to reconstruct the input
images. Reconstructed on the right, Input image on the left.

AsTable 2 shows, ourmodel achieves the best performance
on two experiments out of 4 and is quite competitive in the
rest being second and third, whereas on average it achieves
the best results. We trained our model on a Tesla V100 SXM2
32 GB with a server with 64 cores and 80G of ram, for a total
of 8 hours and 12 min. The time needed to train the models
for classification only without our loss is 4 hours and 12mins.

3) OBJECT RECOGNITION 2: PACS
We followed the same protocol as the previous deep learn-
ing papers, by using the same train/test/validation splits
for a fair comparison and the same model sizes and
pre-trained weights. Our learning rate is α = 0.003,
generalizaing_epochs = 150, pretraining_epochs = 500,
and the balancing factor is set to β = 0.25.
PACS object recognition dataset provides a much more

challenging setting due to its big image resolution, small
sample size, and the notable variation among the domains.

TABLE 3. AlexNet PACS dataset results for Domain Generalization.

TABLE 4. Cross-view action recognition results (accuracy. %) on IXMAS
dataset for Domain Generalization. Best result in bold.

Nevertheless, our method outperformed most of the state of
the art as table 3 shows. Furthermore, it gave near-perfect
results on the Photo target domain being the best at this
experiment. Overall, our model performed very well and was
ranked 2nd after JigSaw with similar performances as the
MetaReg model. Even though our model did not rank first,
it is still more applicable in real-world scenarios, given its
training speed and simplicity.

We trained our model on a Tesla V100 SXM2 32 GB with
a server with 64 cores and 80G of ram, for 2 hours and
37 min per experiment. The time needed to train the models
for classification only without our loss is 1 hours and 28mins.

4) ACTION RECOGNITION:IXMAS
IXMAS is a human action dataset with 5 actions and 5 dif-
ferent domains. We train on 4 domains and test on the
last one. We report the average accuracy of over 20 runs.
We use one hidden layer network with 2000 hidden neurons
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TABLE 5. Skin Lesion results for Domain Generalization. The bolded experiment is the best and underlined in the second.

as the previous works did. Our learning rate is α = 0.01,
generalizaing_epochs = 50, pretraining_epochs = 150, and
the balancing factor is set to β = 0.1. We trained our model
on a Tesla V100 SXM2 32 GB with a server with 64 cores
and 80G of ram, for a total of 6 hours and 08 min. The time
needed to train the models for classification only without our
loss is 3 hours and 02 mins.

From our experimental results in Table 4 we see that our
model is very competitive with the state of the art having the
best average accuracy and if most experiments either being
the best or the 2nd best.

5) SKIN LESION
Skin Lesion dataset is an image classification dataset used
to benchmark the knowledge transfer abilities of several
models. It contains 7 classes and 7 domains (1 primary and
6 secondary). For each of the experiments of Table 5 we use
one of the 6 secondary dataset as the target data and the rest
as the source. We report the results of the average of 5 runs
on each experiment and take the results as mentioned in their
original papers. We use the same experimental setup as the
state of the art methods used for comparison, by training a
Resnet 18 as our base classifier and using mirror of their
encoder as our decoder component. Our learning rate is α =
0.003, generalizaing_epochs = 75, pretraining_epochs =
150, and the balancing factor is set to β = 0.2. We trained
our model on a Tesla V100 SXM2 32 GB with a server with
64 cores and 80G of ram, for a total of 7 hours. The time
needed to train the models for classification only without our
loss is 4 hours.

As the results on Table 5 show, all the DG techniques can
outperform the DeepAll methods (which trains on all the
source domains using only the classification loss) which is
the expected behaviour. The best method on average is ours
with a significant marge of 1.58%. Our paper provides the
best results on 3 out of 6 experiments followed by LDDG and
MASF. We can see that the results of the different methods
are overall consistent with the difficulty of the domain gaps,
where they provide good results on datasets such as PH2 and
SON, and fail on datasets such as DMF.

6) PELVIC LANDMARK DETECTION
The pelvic Landmark Detection [56] dataset is a 3D
MR scans dataset manually annotated by expert doctors.

TABLE 6. Pelvic Landmark detection results for Domain Generalization.
The bolded experiment is the best.

It contains 12 landmarks with 423 3D scans of size ranging
from 350*350*42 to 370*370*128 for the x, y, and z axes
respectively. The dataset contains 3 different domains which
represent the different MR squences used for each scan: T1,
T2, and PD. We report the results of the average of 20 runs
on each experiment. We use a Resnet 18 as our base classifier
and using mirror of their encoder as our decoder component.
Our learning rate is α = 0.01, generalizaing_epochs = 50,
pretraining_epochs = 150, and the balancing factor is set
to β = 0.03. We trained our model on a Tesla V100 SXM2
32 GB with a server with 64 cores and 80G of ram, for a
total of 12 hours. The time needed to train the models for
classification only without our loss is 8 hours.

We compared our model against two of the state of the art
methods in Domain Generalization which are JiGen and Epi-
FCR. Ourmodel and all comparedDGmodels outperform the
deep all baseline as shown in Table 6 and Fig 6. Our method
outperforms both of them but with a small margin against
Epi-FCR which outperforms our method on the T1,PD −→
T2 experiment. Our method still outperforms both methods
on the two other experiments.

C. UNSUPERVISED DOMAIN ADAPTATION
In the case where the unlabeled target images exist during the
training (Unsupervised Domain Adaptation), we add an extra
loss to our model which is the Separability loss 4. We explore
the effects of this loss along with the performance of our
model on two challenging scenarios, MNIST-USPS-SVHN
dataset and the PACS data.

1) DIGIT CLASSIFICATION: MNIST-USPS-SVHN
This is the most common benchmark for domain adapta-
tion tasks and UDA specifically. Hence we follow the same
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TABLE 7. Digit Recognition Benchmark on the MNSIT-USPS-SVHN dataset for Unsupervised Domain Adaptation. Each experiment name follows
source_domain - target_domain naming convention. ARL-sep is used to reference to our method + the seperability loss and ARL is used to reference our
model without it. The ‘‘-‘‘ notation is used for experiments where the results have not been reported in previous works.

FIGURE 6. Comparison of the deep all baseline versus our ARL models on
the task of landmark detection. Only four out of twelve landmarks are
shown. The 3D landmarks were projected into a coronal MR cross-section
for better visibility.

experimental setup as [10], [24]. We compare our results
against first the two baselines (Upper Bound UB, and Lower
Bound LB) which represent the accuracy of training and
testing on the target dataset, and the accuracy of training on
the source dataset only without access to the target dataset
(not even unlabeled images), respectively. We also compare
it against several of the state of the art deep learning methods
in the field such as TripNet [10], DuplexGan [24], TarGan
[66], Image2Image [67], Maximum Classifier Discrepancy
[68], Generate to adapt [69], Joint Adaptation Networks [70]
and Transferrable Prototypical Networks [71].

Our learning rate is α = 0.01, generalizaing_epochs =
250, pretraining_epochs = 200, and the balancing factor is
set to β = 0.15. Table 7 shows that our method outperforms
most of the current state of the art techniques in 2 out of 4
experiments and ranked 2nd in the other two being only a few
0.05% away in the MNIST-USPS experiment. We can also
see that our ARL-sep model outperforms our ARL model on
all experiments, demonstrating the efficiency of the separabil-
ity loss, yet it is also worth mentioning that the ARL model
alone performed nicely being only 1.18% behind ARL-sep

in the MNIST - USPS. We trained our model on a Tesla
V100 SXM2 32 GB with a server with 64 cores and 80G of
ram, for a total of 1 hours and 32min. The time needed to train
the models for classification only without our loss is 0 hours
and 31 mins.

2) PACS - MULTI-SOURCE DOMAIN ADAPTATION
Multi-source Domain Adaptation is a subset of DA where
we have multiple source domains with labels but they are
treated as one source, and a target domain either with or
without labels. We are focused on the unsupervised case
where the target domain is only available with images. Our
method is unsupervised at its core making it easily applied
in such case. To verify our assumptions we make the same
experimental setup as other deep learning methods such
as JiGen [22], DDiscovery [72], and Dial [73] by using
ResNet18 [74] as our base model (Encoder + Classifier),
whereas our Decoder is built as the mirror of the Encoder.
We compare our method against all of the previous models
and against a ResNet18 only model as our lower baseline.
Our learning rate is α = 0.003, generalizaing_epochs = 350,
pretraining_epochs = 500, and the balancing factor is set
to β = 0.1. We trained our model on a Tesla V100 SXM2
32 GB with a server with 64 cores and 80G of ram, for a
total of 12 hours. The time needed to train the models for
classification only without our loss is 8 hours and 12 mins.

The results in Table 8 summarize the outcome of this exper-
iment, where the provided accuracies show that our method
ARL-sep is superior to the other techniques on average and
on two out of four of the experiments which are Photo target
domain and the more difficult task of Cartoon target domain.
We can also see that even though the ARL only model isn’t
outperforming the other methods but it still way better than
the baseline with a 8.78% increase in accuracy on average
and a maximum of 11.64% accuracy increase on the Sketches
dataset.

TABLE 8. Multi-source Unsupervised Domain Adaptation results on PACS
datasets obtained as average over five runs for each experiment.
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TABLE 9. Accuracy results of different models on digit classification
datasets MNIST-USPS-SVHN and MNISTR for the Over-fitting scenario. The
best model is bolded and the second best is underlined.

D. OVER-FITTING
Over-fitting problems have been explored ever since the start
of neural networks. Given the strong ability of neural nets to
remember and memorize data samples. To evaluate the effi-
ciency of our method on this problem we make the following
setting, Train a model longer than it needs to force it to over
fit, and then see if adding our loss can help bring it back from
the over-fitting scenario, we refer to this model as (O-ARL).

We compare our method against several baselines:
(i) Over-fitted model (OF), (ii) Well trained model (WT),
(iii) model trained with ARL only from the start (T-ARL),
and (iv) model fine-tuned with ARL-sep (F-ARL-sep).
We perform this experiment on several benchmarks for digit
classification which are: MNIST, SVHN, USPS, MNISTR-0,
. . . , MNISTR75. For each one of these experiments we used
a different set of Hyper-parameters which are all mentioned
in Table 10. We use the same experimental setup as [75]. We
trained ourmodel on a Tesla V100 SXM2 32GBwith a server
with 64 cores and 80G of ram, for a total of 14 hours and
52 min. The time needed to train the models for classification
only without our loss is 2 hours and 12 mins.

Table 9 shows the results of our over fitting experiments.
The most obvious conclusion we can make is that the F-ARL-
sep model, which was first trained on the data and then fine
tuned with both the Adversarial Reconstruction Loss and the
Separability loss, outperforms all the other models in most
cases specifically the models that suffer from over-fitting OF
and those who are well trainedWT proving that our method is
quite good for increasing model’s performances and accuracy
even on the same data domain. We can also see that O-ARL
model which was used on top of an over-fitted OF model
was able to help the model go back to performing good even
though it was not as good as F-ARL-sep but it still gave an
increase of 29.81% in accuracy on average. We also see that
the T-ARL model which is trained from the beginning on the
ARL loss was as rigid as O-ARL and even better than WT
model in most of the cases.

TABLE 10. Hyper-parameters for the over fitting experiments on digit
classification Table 9. G-epochs is generalizing epochs and PT-epochs is
pretraining-epochs.

FIGURE 7. Comparison of different models on the task of digit
classification on MNIST for the over-fitting scenario. The accuracy results
are reported as the average of 5 experiments with the best
hyper-parameters. OF is the over-fitted model, which is used by O-ARL as
the initial start for solving the over-fitting problem. WT is the well trained
model, T-ARL is the model which is trained from the start with ARL, and
F-ARL-Sep is the WT model and fine-tuned with both ARL and sep loss4.

We also confirm our findings through Figure 7 where we
show the behaviour of our different losses and how they influ-
ence the testing accuracy of the model on the MNIST dataset.
We can easily notice that the over-fitted models always go
up and then quickly decreases in performance as shown with
OF chart, which is continued using the O-ARL chart which
drops the performance in the first few epochs but then quickly
starts giving positive outcome on the model’s performance
approaching results provided by the WTmodels. We can also
notice that the WT models achieve better than our models in
the first few epochs where as our models (F-ARL-Sep and
T-ARL) improve slower but with enough epochs they exceed
the WT performances.

V. CONCLUSION
We proposed a simple but effective task agnostic method
for Domain Generalization and Unsupervised Domain
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Adaptation that is based on the assumption that models
extract two types of information, class informative -useful-
and style information -harmful-. Our method pushes the
model to forget the style information while keeping the class
informative part of the input which leads to high perfor-
mance increase on several Object detection and classification
benchmarks for DG and UDA. Our method also showed a
great effect in fixing over-fitted models as shown by the
experimental results. Moreover, the proposed method shows
great promise of wide applicability since it is implemented
orthogonally to other models and hence can be applied to
different problems such as facial recognition without having
to change the underlying algorithms.
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