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 

Abstract—Research on intelligent vehicle and mobile robot 

navigation has focused mostly on the development of a large and 

smart “brain” in order to gain autonomous capability copying 

homo sapiens. The approach is, however, facing a reliability 

problem and a computational bottleneck due to uncertainties in 

any dynamic environment. This paper reports an intelligent 

environment with a mosaic of wireless camera eyes to support 

navigation and the control of mobile robots. The mosaic of camera 

eyes distributes the massive on-board intelligence required for 

autonomous systems to the environment. A robot with less 

intelligence can exhibit sophisticated mobility. The solution 

reported here uses a multiple Bloom-filter for the efficient storage 

of routing information and an active contour based scheme for 

path planning, trajectory generation, and motion control. A 

prototype intelligent environment consisting of 30 wireless visual 

sensors was developed for indoor navigation. The integrated 

experiments demonstrated the mobility of an 

environment-controlled wheelchair.   

 
Index Terms—Networked Robots, Mobile Robot Navigation, 

Sensor Networks, Visual Servoing.  

 

I. INTRODUCTION 

utonomous navigation is a traditional research topic in 

intelligent robotics and vehicles, which requires a robot to 

perceive its environment through  on-board sensors, such as 

cameras or laser scanners, to enable it to drive to its goal. Most 

research to date has focused on the development of a large and 

smart “brain” to gain autonomous capability for robots[1][2]. 
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There are three fundamental questions to be answered by an 

autonomous mobile robot: “Where am I going?”, “Where am 

I?”, “How do I get there?”. In order to answer these basic 

questions, a robot requires massive spatial-memory and 

considerable computational resources to accomplish 

perception, localization, path planning, and control. It is not yet 

possible to deliver the centralized intelligence required for our 

real life applications, such as autonomous ground vehicles and 

wheelchairs in care centers.  

In fact, most autonomous robots try to mimic how humans 

navigate, interpreting images taken by cameras and then taking 

decisions accordingly. They may encounter the following 

difficulties.  

Image processing and scene interpretation 

The projection of a 3D world onto a 2D image plane through 

a pin-hole camera (camera eyes used by vertebrates) makes the 

motion analysis inherently ill-posed, for example the rotation 

and translation are commingled in an inseparable way[3] so that 

a large set of different motions can induce very similar optical 

flows. This causes difficulties for efficient and reliable 

perception. To understand the semantics of a scene and to 

become location-aware from images is difficult for mobile 

cameras[4]. A slight movement may result in a significant 

change in the viewed images, due to discontinuities or 

obstructions in a scene. There is also much less control over 

illumination and background scene clutter compared with 

stationary applications.  

Movement control 

The eye-in-head configuration introduces uncertainties from 

the changing views of moving eyes, so that the changes of 

illumination due to the environment and robot motion are often 

commingled together, which cause difficulties for visual 

tracking and robot motion control[5]. 

Behavior coordination 

Current approaches need to maintain a centralized behavior 

network[2]. The difficulty appears to be that various behaviors 

are merged together. There is no guarantee that a goal can be 

reached. Modification of the network and the prediction of 

consequences are both difficult. 

Localization 

The current approaches rely on the fusion of odometry with 

on-board sensing based on a map or on a bilateral technique 

registering map data, i.e. SLAM(Simultaneous localization and 

mapping)[6]. Uncertainties involved in initial location, mapping, 

odometry and sensing have a significant influence on the 
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accuracy and reliability of localization. Usually, it is necessary 

to take a probabilistic approach to identify the belief in an 

estimation, from single-hypothesis to multi-hypothesis[1].  Poor 

localization precision may often occur due to sensing errors or 

imperfect landmarks, e.g. for global localization and the 

kidnapped robot problems[7][8].           

Path planning 

Current approaches usually abstract a geometric environment 

into a topological map based on visual landmarks. Planning is 

carried out on this topological map[1]. A planned route has to be 

converted back to the geometric space for continuous motion 

control. It introduces ambiguity and complexity in the linkages 

between the planning space and the control space. 

In order to overcome these difficulties, a system with cameras 

distributed in the environment and connected by wireless 

communication is presented in this paper. It releases the 

massive requirement for centralized computation into a 

distributed camera network for the entire environment. These 

cameras support the navigation of vehicles or robots with a 

lower level of on-board intelligence. It is economically feasible 

in applications where a large number of vehicles need to be 

controlled in a certain area, such as navigation of wheelchairs in 

a care centre, trading environment intelligence for expensive 

on-board intelligence in every robot. 

Wireless Sensor Networks provide the IT infrastructure for 

an intelligent environment, which could lead to a new paradigm 

for navigation. If intelligence can be pervasive in an 

environment[9], the complexity of the environment, which 

causes the reliability problem and hinders the broad application 

of autonomous robots, will be greatly simplified. Initially, a 

distributed sensor network can provide a topological map of the 

environment. The routing to a geographic goal becomes 

querying a sensor sequence from the sensor network. The 

distributed sensors then become active landmarks for robot 

localization, which is more reliable and efficient than the 

on-board sensors. Finally with a static camera configuration 

mounted in the environment rather than on a mobile robot, the 

intelligent environment will facilitate both perception and 

control. Each sensor will be in charge of a local region and 

therefore will face less uncertainty and exhibit higher reliability. 

This current research into wireless sensor network-based robot 

navigation took a hierarchical approach. Distributed sensors 

were coordinated for high level activities only, for example 

localization[11], routing[12], or event driven behavior 

coordination[13]. A significant number of tasks of low level 

perception and control were left to the robots. This paper 

presents an efficient scheme for unifying routing, path planning, 

trajectory generation and motion control for distributed wireless 

sensors. It is a complete navigation solution developed in a 

project, “Wireless Mosaic Eyes to Support Robot Navigation in 

an Intelligent Environment(WiME)”. Individual sensors in a 

wireless sensor network usually have very limited fields of 

view, ad-hoc communication, limited memory space, 

computational capacity, and power on-board[9][10]. This paper 

includes two mechanisms for the coordination of distributed 

cameras with limited on-board resources for robot navigation: 

multiple Bloom-filter based routing and snake based navigation.  

The paper is organized as follows: in section II, the hardware 

and software platforms of the WiME system are introduced; 

section III presents in summary a multiple Bloom-filter and 

error expectation based design for robot routing; snake based 

path planning and predictive control are presented in summary 

in section IV; section V presents experiments using the newly 

developed techniques; section VI forms a conclusion. 

II. SYSTEM ARCHITECTURE 

With dispersed visual sensors, a prototype of the WiME 

system has been developed to support wheelchair and robot 

navigation inside a building, as shown in Fig. 1. The system 

consists of three hardware systems, 1) networked wireless visual 

sensors, 2) wireless controlled robots, and 3) a remote console. 

The networked wireless visual sensors shown in Fig.1 are the 

main elements which implement the image processing, the 

localization, and the robot navigation. They are developed from 

the Intel IMote2 main microcontroller board. The Intel IMote2 

is an advanced sensor network platform with built-in IEEE 

802.15.4 radio transceiver CC2420. The sensor board is 

developed with an OV7620 visual sensor module, which is a 

highly integrated interlaced/progressive scan CMOS digital 

video chip with resolution 640×480. The visual sensor board is 

connected with the IMote2 main controller through DMA 

(Direct Memory Access) to enable high speed data throughput.  

In the project, we modified an off-the-shelf wheelchair to be 

controlled by an Atmega128L processor. It receives commands 

from the wireless visual sensors, measures motor speeds from 

two encoders attached to the wheel shafts, drives and steers in 

response to commands, as shown in Fig.1. It also connects with 

sonar bumper switches for emergent survival control. A human 

user can acquire a navigation service through a PDA, which 

sends the destination to the WiME network to trigger a 

navigation service.  

The remote console is responsible for offline configuration, 

 
Fig. 1. WiME intelligent environment  
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online navigation requests and monitoring. The remote console 

can be either a PC or a PDA with an IEEE 802.15.4 adaptor.    

In order to provide unambiguous semantics and assign a 

determinant role to each distributed visual sensor, a 

configuration software kit was developed in the WiME project. 

It runs on the remote console and has 3 functional blocks: map 

configuration, visual context configuration, and data download.  

The map configuration provides the tools for creating a 

geographic map and locating the wireless sensors. It links a 

geometric map with a sensor topological map. An example of 

the map configuration for an indoor environment is shown in 

Fig.2. 

The visual context configuration provides tools for camera 

calibration and visual semantics specification. The meta-data 

model is shown in Fig.3. It links the topological map of the 

wireless sensor network with visual clues in the image planes for 

navigation. Regions of passages in the image plane, overlap 

regions with other visual sensors, static obstacles on the 

passages etc. are designated here. Calibration of the 

homography matrix for each visual sensor is carried out to map 

the floor plane from the image plane. 

The data download software binds the data generated by the 

map configuration and the visual context configuration into a 

data package for each node in the wireless sensor network. It 

assigns the physical address of a wireless sensor and downloads 

the data package into it. With the aid of the data package, all 

wireless visual sensors are organized into a purposed network 

and each visual sensor is provided with unambiguous semantics 

and clear visual clues for robot navigation, e.g. this is a camera 

viewing “John’s office” and “linking the D-wing corridor” with 

“region A” in the image as a passage.  

Embedded navigation software has also been developed so 

that each wireless visual sensor can support vision based object 

tracking and robot navigation. The embedded navigation 

software runs on an embedded engine, Linux kernel 2.6.14. It 

captures video at 30 fps continuously. The visual tracking of a 

robot is carried out by using the Posterior Probability Measure 

based template match proposed by the authors[14]. A multiple 

Bloom-filter routing function and a snake based navigation 

function are implemented for driving the robots using the 

distributed visual sensors. This is discussed in the following 

sections.  

III. MULTIPLE BLOOM FILTERS FOR DISTRIBUTED ROUTING 

For navigation, global routing is the first task. It is located on 

the top of the tiered navigation architecture [1]. Given a goal, a 

robot needs to know a sequence of abstracted locations which 

can lead it to the goal with the least cost. It is traditionally 

implemented by searching in a topological map.  

A. Routing Tables for Navigation 

In the map configuration, a WiME network has been 

configured as a topological map of visual sensors deployed in 

the environment. When a vehicle is under the control of a sensor 

node, it will query the node to determine which edge to follow in 

order to reach the destination. The query will use a human 

friendly identity such as “John’s office” rather than an artificial 

code. This means that a user without knowledge of the coding 

method can query the system to request a navigation service. It 

also simplifies the program in PDAs, without the necessity to 

translate a human friendly query into an internal code.      

Due to the limited capacity of a wireless node, an on-line 

shortest route search has to be avoided. Therefore, we take a 

routing table approach, where routing tables are generated for 

each node off-line by the Dijkstra search algorithm which is a 

greedy algorithm to calculate the shortest path from a node to 

any other node in a topological graph with or without loops. The 

off-line search algorithm will generate a routing table for each 

edge from a node. The routing table corresponding to an edge 

records the set of nodes that can be reached, by following the 

edge, with the shortest distances.  

With the routing tables saved in each node, a robot at the 

location of a node can query which passage it should take in 

order to reach a destination, e.g. “meeting room”, travelling the 

least distance. The sensor node can answer by determining if the 

string of the destination belongs to a routing table. It sacrifices 

 
 

Fig. 2. Map configuration of the WiME, wireless eyes are in red and 

communication links are in blue. 

 

Fig. 3. Meta-data model of visual context configuration 
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memory to avoid on-line searching. However, for a big map, the 

required memory for storing such routing tables could be huge 

and searching for membership could be computationally 

intensive. This is often not feasible for sensor nodes with limited 

on-board memory and limited computational power. In this 

section, multiple Bloom filters are introduced as a general 

solution for wireless sensor network applications, although the 

IMote2 used in this project does not have serious memory 

concerns.     

B. Multiple Bloom Filters for Navigation Routing  

Bloom-filters are an efficient and lossy way of describing the 

membership of elements belonging to a set[15]. They are 

broadly used for the compression of membership in many fields, 

such as spell-checkers[16] and dictionaries of passwords[17]. In 

order to store n elements belonging to a branch path, a routing 

table T can be implemented by a Bloom-filter that is a bit-vector 

of length m. Each element can be a human friendly string. To 

represent n random strings in table T, k independent hash 

functions are used to generate digital fingerprints in T, which 

map the strings belonging to the path to k integers in [0,m] and 

the corresponding bits in bit-vector T are set as shown in Fig. 4. 

If there are L branch paths for a node, L Bloom-filters are 

needed for routing, called a multiple Bloom-filter in this paper.  

 
Fig. 4.  A routing table for a path with two members, John and Jerry. 

 

A vehicle can query the multiple Bloom-filter in a sensor 

node to determine which path to take. If any of the bits in a 

Bloom-filter are not set, the corresponding path definitely 

should not be taken. If all of the bits for a path are set, the 

vehicle may take the path. There is a non-zero probability that 

the decision is wrong because a bit could be set by other 

elements when they are hashed. This is known as a false 

positive. The advantage of using Bloom-filters as routing tables 

can be clarified by considering its compression capability, from 

n elements with any string length to m bits, and its high query 

efficiency, from an n elements search to a k hash functions 

check. However, there is a trade-off between the false positive 

rate and the compression rate, which is relevant to element 

number n, hash function number k and vector length m[18]: 
/(1 )nk m k

fpp e                                                               (1) 

The probability of false positives can be reduced by a 

multi-hop approach, where a query is forwarded to the next 

node in the path for double checking the membership. 

 In order to design L Bloom-filters, an intuitive approach is to 

select the table lengths m(i), i=1…L,  to meet a common false 

positive rate pfp for all branch paths based on (1). However, it 

will result in different false positive errors for different edges. In 

a multiple Bloom-filter, the encoded numbers of nodes n(i), 

i=1,…,L, for individual Bloom-filters could be quite different, 

e.g. some edges may lead to very few nodes but  others may lead 

to a lot. However, all Bloom-filters or sub-tables have to pass 

equal numbers of queries, which could be legal queries or illegal 

queries for an edge, e.g. a query belonging to another table. 

Equal pfp means equal possibility of errors for all paths, however 

many nodes there are in a path. As a result, a path with fewer 

nodes will have a higher chance of being wrong than a path with 

dense nodes. This can be verified by examining the relative 

error expectations. Consider when there are altogether N 

possible queries, e.g. a possible query consisting of 6 digits 

could have N reach 10
6
, the relative error expectation for edge i 

due to N queries is 
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Therefore, we need to take the error expectation as the design 

criterion instead of the false positive rate in order to achieve a 

uniform relative error expectation for all paths. A biased false 

positive rate, pfp(i), i=1..L, is proposed for different edges i by 

taking into account n(i): 
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where /n n L .  

From (3), if   , 1n i n t   and pfp(i)≤pfp, a lower false rate is 

set ; if   , 1n i n t   and pfp(i)> pfp , a higher false rate is set. 

Then all edges exhibit equal relative error expectation rates 

regardless of the number of nodes in an edge: 
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It can be proved[26] that a multiple Bloom-filter using the 

error expectation based design will not only achieve uniform 

relative error but will also save memory space in comparison to 

the conventional design based on the false positive rate.  

IV. ACTIVE CONTOUR BASED PATH PLANNING AND CONTROL 

After obtaining discrete routing information, an admissible 

and safe path has to be generated for a robot to travel from one 

sensor node to another, compliant with all kinematic and 

dynamic constraints.  

Active contour models[19], also termed snakes, are 

techniques broadly used in computer vision for image 

segmentation and contour tracking. The determination of the 

presence of an object depends not only on the image details at a 

specific point, but also on the properties of an object’s shape. 

Similar concepts have been applied to path planning, such as 

elastic bands[20] and virtual springs[21]. A snake is defined as a 

flexible entity that is deformable by applying internal and 

external forces, which can be represented in the configuration 

space of a robot as an admissible path. The deformation of a 
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snake body is caused by the interaction of adjacent joints, it 

appears to be suitable for distributed implementation since it 

requires only adjacent information exchange. The information 

flow along a snake evolves to make it energy-optimal as a whole 

and constraint compliant locally. However existing methods 

have been presented for centralized off-line planning and their 

potential for on-line distributed applications in an intelligent 

environment have been ignored. Paper[22] proposed a snake 

based controller for the correction of the tracking paths of 

wheelchairs. It uses only on-board sensors and therefore is a 

local motion controller. In fact, sensors distributed in an 

environment provide the infrastructure to consider both global 

path planning and local on-line control, which can deal with 

dynamic changes in the environment and predict future 

uncertainties more effectively.  

A snake based path planning and predictive control scheme is 

proposed in this section as a unified mechanism, which 

dynamically evolves as a path distributed amongst the mosaic of 

wireless eyes for reaching a destination, for obstacle avoidance 

and for smooth navigation. Both kinematic and dynamic 

constraints are taken into account. 

A. Snake as a Path Planner 

Let pi=(xi, yi) be Euclidian coordinates of a point in a 2D 

configuration space. For a positive integer n, },,,{ 10 nppp   

denotes a sequence of configurations in the 2D space from p0 to 

pn. A snake is a curve connecting adjacent configurations pi, 

i=0..n, sequentially. Each configuration pi is called a control 

point, which can be moved by exerted internal and external 

forces from adjacent control points and obstacles.  

The total energy of a snake can be expressed as 

externalernalsnake EEE  int
,                                                   (4) 

where the Einternal=Eelastic+Ecurvature is concerned with the 

constraints of the snake; the external energy Eexternal=Eobstacle is 

concerned with the obstacles on the way. 

The snake should evolve to minimize its energy along the 

negative energy gradient direction with boundary conditions of  

. :condition Terminal

);();( :condition Initial 00

gn

rr

pp

ttpp



 
                            (5) 

where (pr(t), θr(t)) is the robot position and orientation sampled 

at instant t by a visual sensor. The proposed snake based path 

planning is to evolve n control points pi dynamically for 

maintaining clearance of m obstacles qi, satisfying a curvature 

constraint and a minimal path-length. In addition, the initial 

boundary conditions in (5) must meet the nonholonomic 

constraint of a wheeled vehicle. The terminal condition ensures 

that it reaches its goal. Due to the multiple constraints involved, 

a flexible snake may change to a rigid or even to a broken state. 

A state machine is developed to coordinate the state switch[23].  

Fig.5 (and the video of snake.wmv) demonstrates how a snake 

responds to a moving obstacle. When a dynamic intruder is 

detected by a visual sensor, control points start moving, where 

the yellow and red circles indicate the increased curvatures as 

shown in Fig.5b. The whole snake is deployed into several 

visual sensors as a global path planner; the control points 

interact with adjacent points across cameras via the wireless 

communication protocol. Therefore, a snake becomes a 

coordination mechanism, among distributed wireless sensors, 

for navigation. 

B. Predictive Control for Snake Tracking 

The snake provides a reference path for a robot to travel 

along, but the actual control of the robot to follow the path is 

another difficult task, which involves trajectory generation and 

motion control. Due to the limited field of view of the on-board 

sensors for the autonomous robots, the tracking speed has to be 

controlled conservatively in order not to compromise safety. 

The long range sight provided by a visual sensor network 

provides the potential for optimal control of vehicles, 

responding to distant changes long in advance and, therefore, 

making it possible to drive with optimal speed or energy use in a 

dynamic environment. Model Predictive Control is a technique 

to achieve optimal control by predicting future system 

behaviours[24]. One advantage of model predictive control is 

its ability to handle constraints[25]. Its open-loop format also 

provides the ability to control a system with a longer sample 

period. Navigation using a wireless sensor network needs to 

deal with motion constraints and slower sampling rates due to 

the limitations of wireless communication. As a result, 

predictive control becomes a powerful solution.   

Define a rolling window of length l along a snake path for a 

robot. For every sample period, optimal control is calculated by 

taking into account the dynamic constraints and the geographic 

features of the snake path in the window. The l-window rolls 

forward one step at a time and makes the next set of predictions. 

Working in this way repeatedly, a vehicle can react to possible 

hazards on its route long in advance and use its driving capacity 

effectively. This is formulated as the following optimization 

problem for predictive control: 

 

0, ,

0

max

max

max

min( ) min 1/ ( ) ;

boundary conditions: (0) , ( ) 0;

  (non-slippage)       

subject to   (limited driving force) 

  (limited steering torque)

l

F F s A

r

T v s ds

v v v l

f N

F F

 



 



 
  

 

 

 



 

  

                     (6) 

where A is the snake path to be followed; v(s) is the velocity 

profile of the robot to be optimized; vr0 is the sampled velocity 

   

           Fig.5a. Initial snake                Fig.5b. Responding to an obstacle 
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of the robot at an instant; f is the friction of tires with coefficient 

 and normal force N; F and  are the driving force and steering 

torque of the robot with upper bounds of Fmax and max, 

respectively. Optimization of the objective function (6) 

minimizes the robot travelling time T along the snake from its 

current location to the end of the l-window. The robot should be 

able to stop at the end, v(l)=0, to cope with the worst 

circumstances not seen in the rolling window. An optimal 

velocity profile v(s) along the snake will be obtained and sent to 

the vehicle to follow for this sampling period, which may vary 

due to ad-hoc communications. 

V. EXPERIMENTS  

We have developed a complete solution for robot navigation 

using distributed visual sensors or a mosaic of eyes. It includes a 

multiple Bloom-filter for routing, a snake algorithm for path 

planning, and a predictive control algorithm for trajectory 

generation and motion control. This is different to the 

mainstream of robot navigation research that uses on-board 

sensors and computation; this solution aims to effectively utilize 

intelligence placed in the environment for the navigation of low 

intelligence robots.  

A. Multiple Bloom Filter for Routing 

In order to evaluate the performance of the proposed error 

expectation based multiple Bloom-filter design in comparison 

with the conventional false positive rate based design, we 

randomly generate a topological map with altogether n=1000 

nodes. For k=4 hash functions and a desired false positive rate 

pfp=0.01, false positive rate based and error expectation based 

multiple Bloom-filters are developed. For a node with four 

branches(Path1, Path2, Path3 and Path4), which have 23, 193, 

332 and 452 nodes, respectively, the two multiple Bloom-filters 

are queried by four groups of 10
6
 random strings. Table 1 and 

Table 2 show the experimental results. 

 
TABLE 1: ERRORS USING THE FALSE POSITIVE RATE BASED DESIGN 

  

Group 1 2 3 4 Average 

Errors 

Relative 

Errors 

Path 1 

Path 2 

Path 3 

Path 4 

9987 

9976 

10014 

9982 

10013 

9984 

9985 

9986 

9979 

9981 

9998 

10011 

10025 

10012 

10002 

9993 

10001 

9988 

9999 

9993 

434.83 

51.75 

30.12 

22.11 

 

 

TABLE 2: ERRORS USING THE ERROR EXPECTATION BASED DESIGN 
 

Group 1 2 3 4 Average 

Errors 

Relative 

Errors 

Path 1 

Path 2 

Path 3 

Path 4 

937 

7702 

13178 

17882 

945 

7734 

13297 

18123 

914 

7724 

13206 

18105 

909 

7727 

13308 

17934 

926 

7722 

13247 

18011 

40.26 

40.00 

39.90 

39.84 

 

From Table 1, the conventional false positive rate based 

design results in many more relative errors for a path with fewer 

nodes than a path with more nodes, for example, path 1 exhibits 

a 434.83 relative error. From the working process of a multiple 

Bloom-filter proposed in III, any query needs to be checked by 

all the Bloom-filters. Therefore, a path with fewer nodes will 

suffer more errors from illegal queries. The errors will cause 

more than one Bloom-filter to pass the hash check. The 

multi-hop checks have to be carried out for further confirmation 

as described in III.B, which increases the communication cost in 

the wireless network. The proposed expectation based design 

guarantees a uniform distribution of relative errors. In Table 2, 

all paths show similar numbers of relative errors, about 40, that 

generates equal risks for a query.  

In terms of overall memory usage, we randomly generate 

1000 topological maps with 1000 nodes each. The table lengths 

by using the false positive rate based design and the error 

expectation based design are shown in Figs. 6.  

 

Fig. 6. Total table lengths of the two methods  

It is clear that the proposed method outperforms the 

traditional design. In order to have a quantitative view, we list 

the memory usage of the Bloom-filter based routing tables 

comparing with the routing tables without using Bloom-filters 

for the 4 groups of results in Table 3. 

 
TABLE 3: MEMORY USAGE OF ROUTING TABLES(KBITS) 

Group 1 2 3 4 Percentage  

No Bloom-filter 

FPB Bloom-filters  

EEB Bloom-filters 

48 

10.52 

9.449 

48 

10.52 

9.452 

48 

10.52 

9.483 

48 

10.52 

9.462 

100% 

21.9% 

19.7% 

 

From Table 3, the memory usage is reduced to 21.9% by 

introducing Bloom-filters as routing tables, where the 

Bloom-filters are designed to achieve equal false positive rates. 

The relative memory usage is further reduced to about 19.7% by 

using the new error expectation based design. 

 

B. Path Planning and Predictive Control   

Trajectory tracking of a robot controlled by the mosaic of 

eyes is investigated with an experiment. The robot is a wireless 

controlled model car. Four eyes are mounted on the ceiling in a 

manner that each has two neighboring eyes to form a closed 

running loop. The predictive control is designed with a rolling 

window of l=20(control points). The maximum speed is 

0.8(m/s). The robot with a mass of 0.56(kg) has its maximum 
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driving force Fmax=4.4(N), τmax=2.0(N.m) and friction 

coefficient μmax=0.6. The parameters are selected empirically. 

In general, we adjust the maximum speed, force and torque to 

produce fast and smooth tracking.   

Fig.7 shows four real-time images captured by the four eyes 

during the experiment. The four eyes arranged in a square have 

IDs of 30, 40, 50 and 60 from the top-right anti-clockwise. In 

Fig.7a, the robot is controlled by eye 30(top right) and is 

heading towards the control area of eye 60(bottom right). The 

light grey circles represent a dynamic snake-track for the robot 

to follow. The green circles indicate the l-window used for 

predictive control. The white rectangular blobs are dynamic 

obstacles. As one can see in Fig.7a, dynamic obstacles exist in 

the view of eyes 30, 40 and 50 but not in eye 60. After 0.5 

seconds shown in Fig.7b, a triple obstacle is detected by eye 60. 

Although the robot is controlled by eye 30, which cannot see the 

new obstacle, the snake is updated to an obstacle-free path 

through internal data exchange with eye 60. Robot control 

privilege is handed over from eye 30 to eye 60 in Fig.7c, where 

the robot is passing the triple obstacle area. Fig.7d shows the 

robot after it has passed the triple obstacle successfully 

returning to its original snake track.  

 
Fig.8. Robot control and velocity 

The corresponding control signals and robot velocity are 

shown in Fig.8. It shows that predictive control keeps the 

driving force and steering torque within the admissible ranges. 

The alternating signs of the steering torque indicate the 

feedback regulation of the predictive control required to follow 

the snake track, even though the predictive control is designed 

in an open-loop format for each single prediction in the 

l-window. The robot speed is about 0.76(m/s) in Fig.7.a. 

Because there is no obstacle in the view of eye 60, the path 

generated is a straight line. When the obstacle is detected by eye 

60, the snake track changes as in Fig.7b. The robot maintains its 

high speed when crossing the overlap area between eye 30 and 

eye 60. When the robot approaches the triple obstacle after 2.3 

seconds, it decelerates to avoid skidding(Fig.7c). It accelerates 

again after passing the triple obstacle in Fig.7d. 

C. Integrated Experiments 

A practical WiME system has been implemented. Altogether 

30 wireless visual sensors are mounted on the ceiling in a 

building with a topology shown in Fig. 2. Software packages 

and communication protocols were developed for wheelchair 

navigation using the proposed algorithms. The only processor 

on-board  the wheelchair is an 8-bit Atmega 128L, which is used 

to link the WiME network wirelessly through the IEEE 

802.15.4 protocol and to drive the two differential wheels via 

two PWM signals. With such a low-performance processor 

on-board, the high level functions, such as localization and path 

planning in the tiered architecture[1] cannot be implemented. 

However, the distributed environment intelligence developed in 

this paper can control such a low intelligence wheelchair with 

superior mobility, see the video MovieWiME.wmv. A 

communication layer was developed on the top of the IEEE 

802.15.4 short frame protocol for the coordination of wireless 

sensors and wheelchairs. There are five sets of commands 

defined, as shown in Fig. 9:  

1) Control points exchanging commands: coordinates of 

control points are exchanged between adjacent wireless sensors 

for force calculation to deform the snake as in IV.A.  

2) Control token commands: at a specific time, only a single 

sensor node with the token can control a robot as the coordinator. 

The commands are used to broadcast the ownership of the token 

periodically or initiate a token handover procedure.  

3) Control commands: the vision sensor with the control 

token will send the velocity profile obtained from the predictive 

control to the robot for tracking, as shown in IV.B.  

  
Fig. 7a. Snake without obstacle Fig. 7b. Obstacles appear 

  
Fig. 7c. Passing obstacle area Fig.7d. Passed obstacle area 

 
Fig. 9. Communication protocol 
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4) Monitoring commands: the commands are used to send out 

current information, for example control points and detected 

obstacles, to a remote console for the purpose of monitoring. 

5) Service request commands: these commands are from a 

remote console, such as a PDA, to request a navigation service 

to a destination. The route to the destination can be obtained 

from the multiple Bloom-filters as presented in III.   

In the experiments, the system achieves a performance of 

request -response time of less than 0.5 seconds, average moving 

speed of about 0.3m/s, and a maximum control error of less than 

0.2m. The control error considered here is the deviation of the 

robot from the snake which produces a dynamic path 

responding to unknown moving obstacles. This is higher than 

the conventional tracking error with a static path because of 

unexpected intruders and a longer control latency. The 

wheelchair is driven by following a velocity profile obtained 

from the predictive control for each sample period. If an 

intruder is detected by a visual sensor during this period, the 

snake will be updated and may produce a bigger error in the next 

control period. As a result, the maximum error is dependent on 

the control latency and the robot speed. For behaviors requiring 

higher accuracy, such as passing a door, the snake will be 

constrained with less flexibility in that area and the predictive 

control will automatically generate a lower speed to guarantee a 

safe passage, see the generated velocity profiles at about 2.4 

seconds and 3.1 seconds in Fig.8 for passing obstacles.          

The time spent on individual tasks by a visual sensor module 

was recorded in Fig.10. The sampling period can be varied 

between 260 and 400 ms, depending on whether this visual 

sensor is controlling the robot. The visual sensor in control of 

the robot does not increase the processing time for reading a 

frame, extracting obstacles and adjusting the snake but increases 

the time for trajectory generation using predictive control, 

communication token processing and sending the snake to the 

other nodes. The time for extracting the foreground also 

increases with more time needed to distinguish the robot from 

the background. 

 
Fig.10. Time spent on tasks 

VI. CONCLUSIONS 

This paper has presented the WiME architecture and an 

effective solution for navigation using pervasive intelligence. 

The wireless visual sensors in the WiME were provided with 

unambiguous semantics for routing, control and image 

processing to support the navigation of “non-intelligent robots”. 

This paper includes a multiple Bloom-filter technique for 

storing large amounts of routing information in a wireless sensor 

node where memory is a scarce resource. The multiple 

Bloom-filter is based on an error expectation design, instead of 

the conventional false positive rate based design, it achieves a 

uniform relative error distribution and uses less memory. The 

second contribution is to use snake based predictive control for 

robot navigation with distributed vision, where a snake is a 

concise and unified mechanism to embrace all the navigation 

components: from path planning, trajectory generation to 

motion control, dealing with kinematic and dynamic constraints. 

In addition, a snake is an efficient way to self-organize 

distributed visual sensors for realizing both global behavior and 

local reactive behavior. The method is presented as a general 

approach for navigation using a wireless sensor network, 

considering limited on-board memory space and computational 

power, although they are less critical in the prototype system. 

Experiments proved that the proposed distributed cameras can 

be used to enhance the mobility of service robots, such as indoor 

wheelchairs for aged and disabled people.  
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