
Regular Paper

1



Abstract—Research on intelligent vehicle and mobile robot

navigation has focused mostly on the development of a large and

smart “brain” in order to gain autonomous capability copying

homo sapiens. The approach is, however, facing a reliability

problem and a computational bottleneck due to uncertainties in

any dynamic environment. This paper reports an intelligent

environment with a mosaic of wireless camera eyes to support

navigation and the control of mobile robots. The mosaic of camera

eyes distributes the massive on-board intelligence required for

autonomous systems to the environment. A robot with less

intelligence can exhibit sophisticated mobility. The solution

reported here uses a multiple Bloom-filter for the efficient storage

of routing information and an active contour based scheme for

path planning, trajectory generation, and motion control. A

prototype intelligent environment consisting of 30 wireless visual

sensors was developed for indoor navigation. The integrated

experiments demonstrated the mobility of an

environment-controlled wheelchair.

Index Terms—Networked Robots, Mobile Robot Navigation,

Sensor Networks, Visual Servoing.

I. INTRODUCTION

utonomous navigation is a traditional research topic in

intelligent robotics and vehicles, which requires a robot to

perceive its environment through on-board sensors, such as

cameras or laser scanners, to enable it to drive to its goal. Most

research to date has focused on the development of a large and

smart “brain” to gain autonomous capability for robots[1][2].

Manuscript received April 2, 2009. This work was supported in part by the

Royal Society of the UK, the National Nature Science Foundation of China,

and the National High-tech Research and Development Program of China.

P. Jiang is with the School of Informatics, the University of Bradford,

Bradford, BD7 1DP, UK (corresponding author: phone: 0044 1274 233940;

fax: 0044 1274 236600; e-mail: p.jiang@ bradford.ac.uk).

Z. Feng is with the Systems Engineering Institute, Xi’an Jiaotong University,

Xi’an, 710049 China(e-mail: fzr9910@xjtu.edu.cn).

Y. Cheng is with the School of Engineering, Design and Technology, the

University of Bradford, Bradford, BD7 1DP,

UK(e-mail:y.cheng4@bradford.ac.uk)

Y. Ji is with the Department of Information and Control, Tongji University,

Shanghai, 200092 China(e-mail: jyx851110@hotmail.com).

J. Zhu is with the Department of Information and Control, Tongji University,

Shanghai, 200092 China(e-mail: zhujintj@ tongji.edu.cn).

X. Wang is with the Department of Information and Control, Tongji

Univeristy, Shanghai, 200092 China(e-mail: dawnyear@tongji.edu.cn).

F. Tian is with the Systems Engineering Institute, Xi’an Jiaotong University,

Xi’an, 710049 China(e-mail: ftian@xjtu.ac.edu.cn).

J. Baruch is with the School of Informatics, the University of Bradford,

Bradford BD7 1DP, UK, (e-mail:john@cyber.brad.ac.uk)

There are three fundamental questions to be answered by an

autonomous mobile robot: “Where am I going?”, “Where am

I?”, “How do I get there?”. In order to answer these basic

questions, a robot requires massive spatial-memory and

considerable computational resources to accomplish

perception, localization, path planning, and control. It is not yet

possible to deliver the centralized intelligence required for our

real life applications, such as autonomous ground vehicles and

wheelchairs in care centers.

In fact, most autonomous robots try to mimic how humans

navigate, interpreting images taken by cameras and then taking

decisions accordingly. They may encounter the following

difficulties.

Image processing and scene interpretation

The projection of a 3D world onto a 2D image plane through

a pin-hole camera (camera eyes used by vertebrates) makes the

motion analysis inherently ill-posed, for example the rotation

and translation are commingled in an inseparable way[3] so that

a large set of different motions can induce very similar optical

flows. This causes difficulties for efficient and reliable

perception. To understand the semantics of a scene and to

become location-aware from images is difficult for mobile

cameras[4]. A slight movement may result in a significant

change in the viewed images, due to discontinuities or

obstructions in a scene. There is also much less control over

illumination and background scene clutter compared with

stationary applications.

Movement control

The eye-in-head configuration introduces uncertainties from

the changing views of moving eyes, so that the changes of

illumination due to the environment and robot motion are often

commingled together, which cause difficulties for visual

tracking and robot motion control[5].

Behavior coordination

Current approaches need to maintain a centralized behavior

network[2]. The difficulty appears to be that various behaviors

are merged together. There is no guarantee that a goal can be

reached. Modification of the network and the prediction of

consequences are both difficult.

Localization

The current approaches rely on the fusion of odometry with

on-board sensing based on a map or on a bilateral technique

registering map data, i.e. SLAM(Simultaneous localization and

mapping)[6]. Uncertainties involved in initial location, mapping,

odometry and sensing have a significant influence on the

A Wireless Mosaic of Eyes to Support

Navigation and Control of Mobile Robots

P. Jiang, Z. Feng, Y. Cheng, Y. Ji, J. Zhu, X. Wang, F. Tian, J. Baruch

A

Regular Paper

2

accuracy and reliability of localization. Usually, it is necessary

to take a probabilistic approach to identify the belief in an

estimation, from single-hypothesis to multi-hypothesis[1]. Poor

localization precision may often occur due to sensing errors or

imperfect landmarks, e.g. for global localization and the

kidnapped robot problems[7][8].

Path planning

Current approaches usually abstract a geometric environment

into a topological map based on visual landmarks. Planning is

carried out on this topological map[1]. A planned route has to be

converted back to the geometric space for continuous motion

control. It introduces ambiguity and complexity in the linkages

between the planning space and the control space.

In order to overcome these difficulties, a system with cameras

distributed in the environment and connected by wireless

communication is presented in this paper. It releases the

massive requirement for centralized computation into a

distributed camera network for the entire environment. These

cameras support the navigation of vehicles or robots with a

lower level of on-board intelligence. It is economically feasible

in applications where a large number of vehicles need to be

controlled in a certain area, such as navigation of wheelchairs in

a care centre, trading environment intelligence for expensive

on-board intelligence in every robot.

Wireless Sensor Networks provide the IT infrastructure for

an intelligent environment, which could lead to a new paradigm

for navigation. If intelligence can be pervasive in an

environment[9], the complexity of the environment, which

causes the reliability problem and hinders the broad application

of autonomous robots, will be greatly simplified. Initially, a

distributed sensor network can provide a topological map of the

environment. The routing to a geographic goal becomes

querying a sensor sequence from the sensor network. The

distributed sensors then become active landmarks for robot

localization, which is more reliable and efficient than the

on-board sensors. Finally with a static camera configuration

mounted in the environment rather than on a mobile robot, the

intelligent environment will facilitate both perception and

control. Each sensor will be in charge of a local region and

therefore will face less uncertainty and exhibit higher reliability.

This current research into wireless sensor network-based robot

navigation took a hierarchical approach. Distributed sensors

were coordinated for high level activities only, for example

localization[11], routing[12], or event driven behavior

coordination[13]. A significant number of tasks of low level

perception and control were left to the robots. This paper

presents an efficient scheme for unifying routing, path planning,

trajectory generation and motion control for distributed wireless

sensors. It is a complete navigation solution developed in a

project, “Wireless Mosaic Eyes to Support Robot Navigation in

an Intelligent Environment(WiME)”. Individual sensors in a

wireless sensor network usually have very limited fields of

view, ad-hoc communication, limited memory space,

computational capacity, and power on-board[9][10]. This paper

includes two mechanisms for the coordination of distributed

cameras with limited on-board resources for robot navigation:

multiple Bloom-filter based routing and snake based navigation.

The paper is organized as follows: in section II, the hardware

and software platforms of the WiME system are introduced;

section III presents in summary a multiple Bloom-filter and

error expectation based design for robot routing; snake based

path planning and predictive control are presented in summary

in section IV; section V presents experiments using the newly

developed techniques; section VI forms a conclusion.

II. SYSTEM ARCHITECTURE

With dispersed visual sensors, a prototype of the WiME

system has been developed to support wheelchair and robot

navigation inside a building, as shown in Fig. 1. The system

consists of three hardware systems, 1) networked wireless visual

sensors, 2) wireless controlled robots, and 3) a remote console.

The networked wireless visual sensors shown in Fig.1 are the

main elements which implement the image processing, the

localization, and the robot navigation. They are developed from

the Intel IMote2 main microcontroller board. The Intel IMote2

is an advanced sensor network platform with built-in IEEE

802.15.4 radio transceiver CC2420. The sensor board is

developed with an OV7620 visual sensor module, which is a

highly integrated interlaced/progressive scan CMOS digital

video chip with resolution 640×480. The visual sensor board is

connected with the IMote2 main controller through DMA

(Direct Memory Access) to enable high speed data throughput.

In the project, we modified an off-the-shelf wheelchair to be

controlled by an Atmega128L processor. It receives commands

from the wireless visual sensors, measures motor speeds from

two encoders attached to the wheel shafts, drives and steers in

response to commands, as shown in Fig.1. It also connects with

sonar bumper switches for emergent survival control. A human

user can acquire a navigation service through a PDA, which

sends the destination to the WiME network to trigger a

navigation service.

The remote console is responsible for offline configuration,

Fig. 1. WiME intelligent environment

Regular Paper

3

online navigation requests and monitoring. The remote console

can be either a PC or a PDA with an IEEE 802.15.4 adaptor.

In order to provide unambiguous semantics and assign a

determinant role to each distributed visual sensor, a

configuration software kit was developed in the WiME project.

It runs on the remote console and has 3 functional blocks: map

configuration, visual context configuration, and data download.

The map configuration provides the tools for creating a

geographic map and locating the wireless sensors. It links a

geometric map with a sensor topological map. An example of

the map configuration for an indoor environment is shown in

Fig.2.

The visual context configuration provides tools for camera

calibration and visual semantics specification. The meta-data

model is shown in Fig.3. It links the topological map of the

wireless sensor network with visual clues in the image planes for

navigation. Regions of passages in the image plane, overlap

regions with other visual sensors, static obstacles on the

passages etc. are designated here. Calibration of the

homography matrix for each visual sensor is carried out to map

the floor plane from the image plane.

The data download software binds the data generated by the

map configuration and the visual context configuration into a

data package for each node in the wireless sensor network. It

assigns the physical address of a wireless sensor and downloads

the data package into it. With the aid of the data package, all

wireless visual sensors are organized into a purposed network

and each visual sensor is provided with unambiguous semantics

and clear visual clues for robot navigation, e.g. this is a camera

viewing “John’s office” and “linking the D-wing corridor” with

“region A” in the image as a passage.

Embedded navigation software has also been developed so

that each wireless visual sensor can support vision based object

tracking and robot navigation. The embedded navigation

software runs on an embedded engine, Linux kernel 2.6.14. It

captures video at 30 fps continuously. The visual tracking of a

robot is carried out by using the Posterior Probability Measure

based template match proposed by the authors[14]. A multiple

Bloom-filter routing function and a snake based navigation

function are implemented for driving the robots using the

distributed visual sensors. This is discussed in the following

sections.

III. MULTIPLE BLOOM FILTERS FOR DISTRIBUTED ROUTING

For navigation, global routing is the first task. It is located on

the top of the tiered navigation architecture [1]. Given a goal, a

robot needs to know a sequence of abstracted locations which

can lead it to the goal with the least cost. It is traditionally

implemented by searching in a topological map.

A. Routing Tables for Navigation

In the map configuration, a WiME network has been

configured as a topological map of visual sensors deployed in

the environment. When a vehicle is under the control of a sensor

node, it will query the node to determine which edge to follow in

order to reach the destination. The query will use a human

friendly identity such as “John’s office” rather than an artificial

code. This means that a user without knowledge of the coding

method can query the system to request a navigation service. It

also simplifies the program in PDAs, without the necessity to

translate a human friendly query into an internal code.

Due to the limited capacity of a wireless node, an on-line

shortest route search has to be avoided. Therefore, we take a

routing table approach, where routing tables are generated for

each node off-line by the Dijkstra search algorithm which is a

greedy algorithm to calculate the shortest path from a node to

any other node in a topological graph with or without loops. The

off-line search algorithm will generate a routing table for each

edge from a node. The routing table corresponding to an edge

records the set of nodes that can be reached, by following the

edge, with the shortest distances.

With the routing tables saved in each node, a robot at the

location of a node can query which passage it should take in

order to reach a destination, e.g. “meeting room”, travelling the

least distance. The sensor node can answer by determining if the

string of the destination belongs to a routing table. It sacrifices

Fig. 2. Map configuration of the WiME, wireless eyes are in red and

communication links are in blue.

Fig. 3. Meta-data model of visual context configuration

Regular Paper

4

memory to avoid on-line searching. However, for a big map, the

required memory for storing such routing tables could be huge

and searching for membership could be computationally

intensive. This is often not feasible for sensor nodes with limited

on-board memory and limited computational power. In this

section, multiple Bloom filters are introduced as a general

solution for wireless sensor network applications, although the

IMote2 used in this project does not have serious memory

concerns.

B. Multiple Bloom Filters for Navigation Routing

Bloom-filters are an efficient and lossy way of describing the

membership of elements belonging to a set[15]. They are

broadly used for the compression of membership in many fields,

such as spell-checkers[16] and dictionaries of passwords[17]. In

order to store n elements belonging to a branch path, a routing

table T can be implemented by a Bloom-filter that is a bit-vector

of length m. Each element can be a human friendly string. To

represent n random strings in table T, k independent hash

functions are used to generate digital fingerprints in T, which

map the strings belonging to the path to k integers in [0,m] and

the corresponding bits in bit-vector T are set as shown in Fig. 4.

If there are L branch paths for a node, L Bloom-filters are

needed for routing, called a multiple Bloom-filter in this paper.

Fig. 4. A routing table for a path with two members, John and Jerry.

A vehicle can query the multiple Bloom-filter in a sensor

node to determine which path to take. If any of the bits in a

Bloom-filter are not set, the corresponding path definitely

should not be taken. If all of the bits for a path are set, the

vehicle may take the path. There is a non-zero probability that

the decision is wrong because a bit could be set by other

elements when they are hashed. This is known as a false

positive. The advantage of using Bloom-filters as routing tables

can be clarified by considering its compression capability, from

n elements with any string length to m bits, and its high query

efficiency, from an n elements search to a k hash functions

check. However, there is a trade-off between the false positive

rate and the compression rate, which is relevant to element

number n, hash function number k and vector length m[18]:
/(1)nk m k

fpp e  (1)

The probability of false positives can be reduced by a

multi-hop approach, where a query is forwarded to the next

node in the path for double checking the membership.

 In order to design L Bloom-filters, an intuitive approach is to

select the table lengths m(i), i=1…L, to meet a common false

positive rate pfp for all branch paths based on (1). However, it

will result in different false positive errors for different edges. In

a multiple Bloom-filter, the encoded numbers of nodes n(i),

i=1,…,L, for individual Bloom-filters could be quite different,

e.g. some edges may lead to very few nodes but others may lead

to a lot. However, all Bloom-filters or sub-tables have to pass

equal numbers of queries, which could be legal queries or illegal

queries for an edge, e.g. a query belonging to another table.

Equal pfp means equal possibility of errors for all paths, however

many nodes there are in a path. As a result, a path with fewer

nodes will have a higher chance of being wrong than a path with

dense nodes. This can be verified by examining the relative

error expectations. Consider when there are altogether N

possible queries, e.g. a possible query consisting of 6 digits

could have N reach 10
6
, the relative error expectation for edge i

due to N queries is

)(

))((
)(

in

pinN
iE

fp

EPN


 (2)

Therefore, we need to take the error expectation as the design

criterion instead of the false positive rate in order to achieve a

uniform relative error expectation for all paths. A biased false

positive rate, pfp(i), i=1..L, is proposed for different edges i by

taking into account n(i):

  /fp fpp i p t with  

 

N n i n
t

n iN n


 



 (3)

where /n n L .

From (3), if   , 1n i n t  and pfp(i)≤pfp, a lower false rate is

set ; if   , 1n i n t  and pfp(i)> pfp , a higher false rate is set.

Then all edges exhibit equal relative error expectation rates

regardless of the number of nodes in an edge:

   
fp

fpfp

EPN p
n

nN

t

p

in

inN

in

ipinN
iE 










)(

)(

)(

)()(
)(

It can be proved[26] that a multiple Bloom-filter using the

error expectation based design will not only achieve uniform

relative error but will also save memory space in comparison to

the conventional design based on the false positive rate.

IV. ACTIVE CONTOUR BASED PATH PLANNING AND CONTROL

After obtaining discrete routing information, an admissible

and safe path has to be generated for a robot to travel from one

sensor node to another, compliant with all kinematic and

dynamic constraints.

Active contour models[19], also termed snakes, are

techniques broadly used in computer vision for image

segmentation and contour tracking. The determination of the

presence of an object depends not only on the image details at a

specific point, but also on the properties of an object’s shape.

Similar concepts have been applied to path planning, such as

elastic bands[20] and virtual springs[21]. A snake is defined as a

flexible entity that is deformable by applying internal and

external forces, which can be represented in the configuration

space of a robot as an admissible path. The deformation of a

Regular Paper

5

snake body is caused by the interaction of adjacent joints, it

appears to be suitable for distributed implementation since it

requires only adjacent information exchange. The information

flow along a snake evolves to make it energy-optimal as a whole

and constraint compliant locally. However existing methods

have been presented for centralized off-line planning and their

potential for on-line distributed applications in an intelligent

environment have been ignored. Paper[22] proposed a snake

based controller for the correction of the tracking paths of

wheelchairs. It uses only on-board sensors and therefore is a

local motion controller. In fact, sensors distributed in an

environment provide the infrastructure to consider both global

path planning and local on-line control, which can deal with

dynamic changes in the environment and predict future

uncertainties more effectively.

A snake based path planning and predictive control scheme is

proposed in this section as a unified mechanism, which

dynamically evolves as a path distributed amongst the mosaic of

wireless eyes for reaching a destination, for obstacle avoidance

and for smooth navigation. Both kinematic and dynamic

constraints are taken into account.

A. Snake as a Path Planner

Let pi=(xi, yi) be Euclidian coordinates of a point in a 2D

configuration space. For a positive integer n, },,,{ 10 nppp 

denotes a sequence of configurations in the 2D space from p0 to

pn. A snake is a curve connecting adjacent configurations pi,

i=0..n, sequentially. Each configuration pi is called a control

point, which can be moved by exerted internal and external

forces from adjacent control points and obstacles.

The total energy of a snake can be expressed as

externalernalsnake EEE  int
, (4)

where the Einternal=Eelastic+Ecurvature is concerned with the

constraints of the snake; the external energy Eexternal=Eobstacle is

concerned with the obstacles on the way.

The snake should evolve to minimize its energy along the

negative energy gradient direction with boundary conditions of

. :condition Terminal

);();(:condition Initial 00

gn

rr

pp

ttpp



 
 (5)

where (pr(t), θr(t)) is the robot position and orientation sampled

at instant t by a visual sensor. The proposed snake based path

planning is to evolve n control points pi dynamically for

maintaining clearance of m obstacles qi, satisfying a curvature

constraint and a minimal path-length. In addition, the initial

boundary conditions in (5) must meet the nonholonomic

constraint of a wheeled vehicle. The terminal condition ensures

that it reaches its goal. Due to the multiple constraints involved,

a flexible snake may change to a rigid or even to a broken state.

A state machine is developed to coordinate the state switch[23].

Fig.5 (and the video of snake.wmv) demonstrates how a snake

responds to a moving obstacle. When a dynamic intruder is

detected by a visual sensor, control points start moving, where

the yellow and red circles indicate the increased curvatures as

shown in Fig.5b. The whole snake is deployed into several

visual sensors as a global path planner; the control points

interact with adjacent points across cameras via the wireless

communication protocol. Therefore, a snake becomes a

coordination mechanism, among distributed wireless sensors,

for navigation.

B. Predictive Control for Snake Tracking

The snake provides a reference path for a robot to travel

along, but the actual control of the robot to follow the path is

another difficult task, which involves trajectory generation and

motion control. Due to the limited field of view of the on-board

sensors for the autonomous robots, the tracking speed has to be

controlled conservatively in order not to compromise safety.

The long range sight provided by a visual sensor network

provides the potential for optimal control of vehicles,

responding to distant changes long in advance and, therefore,

making it possible to drive with optimal speed or energy use in a

dynamic environment. Model Predictive Control is a technique

to achieve optimal control by predicting future system

behaviours[24]. One advantage of model predictive control is

its ability to handle constraints[25]. Its open-loop format also

provides the ability to control a system with a longer sample

period. Navigation using a wireless sensor network needs to

deal with motion constraints and slower sampling rates due to

the limitations of wireless communication. As a result,

predictive control becomes a powerful solution.

Define a rolling window of length l along a snake path for a

robot. For every sample period, optimal control is calculated by

taking into account the dynamic constraints and the geographic

features of the snake path in the window. The l-window rolls

forward one step at a time and makes the next set of predictions.

Working in this way repeatedly, a vehicle can react to possible

hazards on its route long in advance and use its driving capacity

effectively. This is formulated as the following optimization

problem for predictive control:

 

0, ,

0

max

max

max

min() min 1/ () ;

boundary conditions: (0) , () 0;

 (non-slippage)

subject to (limited driving force)

 (limited steering torque)

l

F F s A

r

T v s ds

v v v l

f N

F F

 



 



 
  

 

 

 



 



 (6)

where A is the snake path to be followed; v(s) is the velocity

profile of the robot to be optimized; vr0 is the sampled velocity

 Fig.5a. Initial snake Fig.5b. Responding to an obstacle

Regular Paper

6

of the robot at an instant; f is the friction of tires with coefficient

 and normal force N; F and  are the driving force and steering

torque of the robot with upper bounds of Fmax and max,

respectively. Optimization of the objective function (6)

minimizes the robot travelling time T along the snake from its

current location to the end of the l-window. The robot should be

able to stop at the end, v(l)=0, to cope with the worst

circumstances not seen in the rolling window. An optimal

velocity profile v(s) along the snake will be obtained and sent to

the vehicle to follow for this sampling period, which may vary

due to ad-hoc communications.

V. EXPERIMENTS

We have developed a complete solution for robot navigation

using distributed visual sensors or a mosaic of eyes. It includes a

multiple Bloom-filter for routing, a snake algorithm for path

planning, and a predictive control algorithm for trajectory

generation and motion control. This is different to the

mainstream of robot navigation research that uses on-board

sensors and computation; this solution aims to effectively utilize

intelligence placed in the environment for the navigation of low

intelligence robots.

A. Multiple Bloom Filter for Routing

In order to evaluate the performance of the proposed error

expectation based multiple Bloom-filter design in comparison

with the conventional false positive rate based design, we

randomly generate a topological map with altogether n=1000

nodes. For k=4 hash functions and a desired false positive rate

pfp=0.01, false positive rate based and error expectation based

multiple Bloom-filters are developed. For a node with four

branches(Path1, Path2, Path3 and Path4), which have 23, 193,

332 and 452 nodes, respectively, the two multiple Bloom-filters

are queried by four groups of 10
6
 random strings. Table 1 and

Table 2 show the experimental results.

TABLE 1: ERRORS USING THE FALSE POSITIVE RATE BASED DESIGN

Group 1 2 3 4 Average

Errors

Relative

Errors

Path 1

Path 2

Path 3

Path 4

9987

9976

10014

9982

10013

9984

9985

9986

9979

9981

9998

10011

10025

10012

10002

9993

10001

9988

9999

9993

434.83

51.75

30.12

22.11

TABLE 2: ERRORS USING THE ERROR EXPECTATION BASED DESIGN

Group 1 2 3 4 Average

Errors

Relative

Errors

Path 1

Path 2

Path 3

Path 4

937

7702

13178

17882

945

7734

13297

18123

914

7724

13206

18105

909

7727

13308

17934

926

7722

13247

18011

40.26

40.00

39.90

39.84

From Table 1, the conventional false positive rate based

design results in many more relative errors for a path with fewer

nodes than a path with more nodes, for example, path 1 exhibits

a 434.83 relative error. From the working process of a multiple

Bloom-filter proposed in III, any query needs to be checked by

all the Bloom-filters. Therefore, a path with fewer nodes will

suffer more errors from illegal queries. The errors will cause

more than one Bloom-filter to pass the hash check. The

multi-hop checks have to be carried out for further confirmation

as described in III.B, which increases the communication cost in

the wireless network. The proposed expectation based design

guarantees a uniform distribution of relative errors. In Table 2,

all paths show similar numbers of relative errors, about 40, that

generates equal risks for a query.

In terms of overall memory usage, we randomly generate

1000 topological maps with 1000 nodes each. The table lengths

by using the false positive rate based design and the error

expectation based design are shown in Figs. 6.

Fig. 6. Total table lengths of the two methods

It is clear that the proposed method outperforms the

traditional design. In order to have a quantitative view, we list

the memory usage of the Bloom-filter based routing tables

comparing with the routing tables without using Bloom-filters

for the 4 groups of results in Table 3.

TABLE 3: MEMORY USAGE OF ROUTING TABLES(KBITS)

Group 1 2 3 4 Percentage

No Bloom-filter

FPB Bloom-filters

EEB Bloom-filters

48

10.52

9.449

48

10.52

9.452

48

10.52

9.483

48

10.52

9.462

100%

21.9%

19.7%

From Table 3, the memory usage is reduced to 21.9% by

introducing Bloom-filters as routing tables, where the

Bloom-filters are designed to achieve equal false positive rates.

The relative memory usage is further reduced to about 19.7% by

using the new error expectation based design.

B. Path Planning and Predictive Control

Trajectory tracking of a robot controlled by the mosaic of

eyes is investigated with an experiment. The robot is a wireless

controlled model car. Four eyes are mounted on the ceiling in a

manner that each has two neighboring eyes to form a closed

running loop. The predictive control is designed with a rolling

window of l=20(control points). The maximum speed is

0.8(m/s). The robot with a mass of 0.56(kg) has its maximum

Regular Paper

7

driving force Fmax=4.4(N), τmax=2.0(N.m) and friction

coefficient μmax=0.6. The parameters are selected empirically.

In general, we adjust the maximum speed, force and torque to

produce fast and smooth tracking.

Fig.7 shows four real-time images captured by the four eyes

during the experiment. The four eyes arranged in a square have

IDs of 30, 40, 50 and 60 from the top-right anti-clockwise. In

Fig.7a, the robot is controlled by eye 30(top right) and is

heading towards the control area of eye 60(bottom right). The

light grey circles represent a dynamic snake-track for the robot

to follow. The green circles indicate the l-window used for

predictive control. The white rectangular blobs are dynamic

obstacles. As one can see in Fig.7a, dynamic obstacles exist in

the view of eyes 30, 40 and 50 but not in eye 60. After 0.5

seconds shown in Fig.7b, a triple obstacle is detected by eye 60.

Although the robot is controlled by eye 30, which cannot see the

new obstacle, the snake is updated to an obstacle-free path

through internal data exchange with eye 60. Robot control

privilege is handed over from eye 30 to eye 60 in Fig.7c, where

the robot is passing the triple obstacle area. Fig.7d shows the

robot after it has passed the triple obstacle successfully

returning to its original snake track.

Fig.8. Robot control and velocity

The corresponding control signals and robot velocity are

shown in Fig.8. It shows that predictive control keeps the

driving force and steering torque within the admissible ranges.

The alternating signs of the steering torque indicate the

feedback regulation of the predictive control required to follow

the snake track, even though the predictive control is designed

in an open-loop format for each single prediction in the

l-window. The robot speed is about 0.76(m/s) in Fig.7.a.

Because there is no obstacle in the view of eye 60, the path

generated is a straight line. When the obstacle is detected by eye

60, the snake track changes as in Fig.7b. The robot maintains its

high speed when crossing the overlap area between eye 30 and

eye 60. When the robot approaches the triple obstacle after 2.3

seconds, it decelerates to avoid skidding(Fig.7c). It accelerates

again after passing the triple obstacle in Fig.7d.

C. Integrated Experiments

A practical WiME system has been implemented. Altogether

30 wireless visual sensors are mounted on the ceiling in a

building with a topology shown in Fig. 2. Software packages

and communication protocols were developed for wheelchair

navigation using the proposed algorithms. The only processor

on-board the wheelchair is an 8-bit Atmega 128L, which is used

to link the WiME network wirelessly through the IEEE

802.15.4 protocol and to drive the two differential wheels via

two PWM signals. With such a low-performance processor

on-board, the high level functions, such as localization and path

planning in the tiered architecture[1] cannot be implemented.

However, the distributed environment intelligence developed in

this paper can control such a low intelligence wheelchair with

superior mobility, see the video MovieWiME.wmv. A

communication layer was developed on the top of the IEEE

802.15.4 short frame protocol for the coordination of wireless

sensors and wheelchairs. There are five sets of commands

defined, as shown in Fig. 9:

1) Control points exchanging commands: coordinates of

control points are exchanged between adjacent wireless sensors

for force calculation to deform the snake as in IV.A.

2) Control token commands: at a specific time, only a single

sensor node with the token can control a robot as the coordinator.

The commands are used to broadcast the ownership of the token

periodically or initiate a token handover procedure.

3) Control commands: the vision sensor with the control

token will send the velocity profile obtained from the predictive

control to the robot for tracking, as shown in IV.B.

Fig. 7a. Snake without obstacle Fig. 7b. Obstacles appear

Fig. 7c. Passing obstacle area Fig.7d. Passed obstacle area

Fig. 9. Communication protocol

Regular Paper

8

4) Monitoring commands: the commands are used to send out

current information, for example control points and detected

obstacles, to a remote console for the purpose of monitoring.

5) Service request commands: these commands are from a

remote console, such as a PDA, to request a navigation service

to a destination. The route to the destination can be obtained

from the multiple Bloom-filters as presented in III.

In the experiments, the system achieves a performance of

request -response time of less than 0.5 seconds, average moving

speed of about 0.3m/s, and a maximum control error of less than

0.2m. The control error considered here is the deviation of the

robot from the snake which produces a dynamic path

responding to unknown moving obstacles. This is higher than

the conventional tracking error with a static path because of

unexpected intruders and a longer control latency. The

wheelchair is driven by following a velocity profile obtained

from the predictive control for each sample period. If an

intruder is detected by a visual sensor during this period, the

snake will be updated and may produce a bigger error in the next

control period. As a result, the maximum error is dependent on

the control latency and the robot speed. For behaviors requiring

higher accuracy, such as passing a door, the snake will be

constrained with less flexibility in that area and the predictive

control will automatically generate a lower speed to guarantee a

safe passage, see the generated velocity profiles at about 2.4

seconds and 3.1 seconds in Fig.8 for passing obstacles.

The time spent on individual tasks by a visual sensor module

was recorded in Fig.10. The sampling period can be varied

between 260 and 400 ms, depending on whether this visual

sensor is controlling the robot. The visual sensor in control of

the robot does not increase the processing time for reading a

frame, extracting obstacles and adjusting the snake but increases

the time for trajectory generation using predictive control,

communication token processing and sending the snake to the

other nodes. The time for extracting the foreground also

increases with more time needed to distinguish the robot from

the background.

Fig.10. Time spent on tasks

VI. CONCLUSIONS

This paper has presented the WiME architecture and an

effective solution for navigation using pervasive intelligence.

The wireless visual sensors in the WiME were provided with

unambiguous semantics for routing, control and image

processing to support the navigation of “non-intelligent robots”.

This paper includes a multiple Bloom-filter technique for

storing large amounts of routing information in a wireless sensor

node where memory is a scarce resource. The multiple

Bloom-filter is based on an error expectation design, instead of

the conventional false positive rate based design, it achieves a

uniform relative error distribution and uses less memory. The

second contribution is to use snake based predictive control for

robot navigation with distributed vision, where a snake is a

concise and unified mechanism to embrace all the navigation

components: from path planning, trajectory generation to

motion control, dealing with kinematic and dynamic constraints.

In addition, a snake is an efficient way to self-organize

distributed visual sensors for realizing both global behavior and

local reactive behavior. The method is presented as a general

approach for navigation using a wireless sensor network,

considering limited on-board memory space and computational

power, although they are less critical in the prototype system.

Experiments proved that the proposed distributed cameras can

be used to enhance the mobility of service robots, such as indoor

wheelchairs for aged and disabled people.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

and editors for their constructive and helpful comments.

REFERENCES

[1] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile

Robots. Cambridge: USA: MIT Press, 2004.

[2] R. C. Arkin, Behavior-based Robotics. Cambridge: MIT Press, 2000.

[3] J. Neumann, C. Fermuller, and Y. Aloimonos, "Eyes from eyes: new

cameras for structure from motion," presented at IEEE Workshop on

Omnidirectional Vision, pp. 19-26, 2002.

[4] G. N. DeSouza and A. C. Kak, "Vision for mobile robot navigation: A

survey," IEEE Trans on Pattern Analysis and Machine Intelligence, vol.

24, pp. 237-267, 2002.

[5] F. Chaumette and S. Hutchinson, "Visual servo control, part 1:Basic

approaches," IEEE Robotics and Automation Magazine, vol. 13, pp.

82-90, 2006.

[6] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping

(SLAM), Part I: The essential algorithms," IEEE Robotics and Automation

Magazine, vol. 13, pp. 99-108, 2006.

[7] S. I. Roumeliotis and G. A. Bekey, "Bayesian estimation and Kalman

filtering: A unified framework for mobile robot localization," presented at

Proc. IEEE International Conference on Robotics and Automation

(ICRA-2000), pp. 2985 - 2992, San Francisco, CA, 2000.

[8] S. Thrunn, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo

localization for mobile robots," Artificial Intelligence, vol. 128, pp.

99-141, 2001.

[9] D. Estrin, D. Culler, and K. Pister, "Connecting the physical world with

pervasive networks," IEEE Pervasive Computing, vol. 1, pp. 59-69, 2002.

[10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey

on sensor networks," IEEE Communication Magazine, vol. 40, pp.

102-114, 2002.

[11] A. Howard, M. J. Mataric, and G. S. Sukhatme, "Relaxation on a mesh: A

formalism for generalized localization," presented at Proc. of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2001),

pp.1055-1060, Wailea, Hawaii, 2001.

[12] Q. Li and D. Rus, "Navigation protocols in sensor networks," ACM Trans.

on Sensor Networks, vol. 1, pp. 3-35, 2005.

Regular Paper

9

[13] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. S. Sastry,

"Distributed control applications within sensor networks," Proceedings of

the IEEE, vol. 91, pp. 1235-1246, 2003.

[14] Z. Feng, N. Lu, and P. Jiang, "Posterior probability measure for image

matching," Pattern Recognition, vol. 41, pp. 2422-2433, 2008.

[15] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors,"

Communications of the ACM, vol. 13, pp. 422-426, 1970.

[16] M. D. McIlroy, "Development of a Spelling List," IEEE Transactions on

Communications, vol. 30, pp. 91-99, 1982.

[17] E. H. Spafford, "Opus: preventing weak password choices," Computer and

Security, vol. 11, pp. 273-278, 1992.

[18] M. Mitzenmacher, "Compressed bloom filters," IEEE/ACM Transactions

on Networking, vol. 10, pp. 604-612, 2002.

[19] M. Kass, A. Witkin, and D. Terzopoulos, "Snake: Active contour models,"

International Journal of Computer Vision, vol. 1, pp. 321-331, 1988.

[20] S. Quinlan and O. Khatib, "Elastic bands: connecting path planning and

control," presented at IEEE Int. Conf. Robotics and Automation, pp.

802-807, Atlanta, USA, 1993.

[21] S. Cameron, "Dealing with geometric complexity in motion planning," in:

K. Gupta and A. P. del Pobil (eds), Practical Motion Planning in Robotics,

Wiley, New York, pp. 259-274, 1998.

[22] L. J. Zhou, C. L. Teo, and E. Burdet, "A nonlinear elastic path controller for

a robotic wheelchair," presented at 3rd IEEE Conference on Industrial

Electronics and Applications, pp.142-147, Singapore, 2008.

[23] Y. Cheng, P. Jiang, and Y. F. Hu, "A distributed snake algorithm for

mobile robots path planning with curvature constraints," presented at IEEE

International Conference on Systems, Man and Cybernetics,

pp.2056-2062, Singapore, 2008.

[24] C. E. Gacia, D. M. Prett, and M. Morari, "Model predictive control: theory

and practice-a survey," Automatica, vol. 25, pp. 335-348, 1989.

[25]D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,

"Constrained model predictive control: stability and optimality,"

Automatica, vol. 36, pp. 789-814, 2000.

[26] P. Jiang, Y. Ji, X. Wang, J. Zhu, "Design of a multiple bloom-filter for

distributed navigation routing", submitted to IEEE Transactions on

Systems, Man, and Cybernetics--Part A: Systems and Humans.

