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Abstract 

Purpose: This study determined the effect of ingesting galactose and glucose 30 minutes prior to 

exercise on exogenous and endogenous fuel use during exercise. Methods: Nine trained male 

cyclists completed three bouts of cycling at 60% Wmax for 120 minutes, after an overnight fast. 

Thirty minutes before exercise the cyclists ingested a fluid formulation containing placebo, 75g 

of galactose (Gal) or 75g of glucose (Glu) to which 13C tracers had been added, in a double blind 

randomized manner. Indirect calorimetry and isotope ratio mass spectrometry were used to 

calculate fat oxidation, total carbohydrate (CHO) oxidation, exogenous CHO oxidation, plasma 

glucose oxidation and endogenous liver and muscle CHO oxidation rates. Results: Peak 

exogenous CHO oxidation was significantly higher following Glu (0.68 ± 0.08 g·min-1, P<0.05) 

compared to Gal (0.44 ± 0.02 g·min-1), however mean rates were not significantly different (0.40 

± 0.03 vs. 0.36 ± 0.02 g·min-1, respectively). Glu produced significantly higher exogenous CHO 

oxidation rates during the initial hour of exercise (P<0.01), while glucose rates derived from Gal 

were significantly higher during the last hour (P<0.01). Plasma glucose and liver glucose 

oxidation at 60 minutes of exercise were significantly higher for Glu (1.07 ± 0.1 g·min-1, P<0.05 

and 0.57 ± 0.08 g·min-1, P<0.01) compared with Gal (0.64 ± 0.05 g·min-1 and 0.29 ± 0.03 g·min-1, 

respectively). There were no significant differences in total CHO, whole body endogenous CHO, 

muscle glycogen or fat oxidation between conditions. Conclusion: The pre-exercise 

consumption of Glu provides a higher exogenous source of CHO during the initial stages of 

exercise, but Gal provides the predominant exogenous source of fuel during the latter stages of 

exercise and reduces the reliance on liver glucose.  

Carbon isotope; exogenous oxidation; liver glycogen, muscle glycogen, plasma glucose 

oxidation. 
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Paragraph 1. The consumption of carbohydrate (CHO) during exercise can enhance endurance 

performance (9, 20) by maintaining high plasma glucose concentrations and a high rate of CHO 

oxidation, especially late in exercise when muscle and liver glycogen concentrations are 

becoming depleted (9). Plasma glucose, as well as muscle and liver glycogen are essential for 

prolonged strenuous exercise (8, 16, 19). Generally the consumption of CHO during cycling 

exercise does not spare muscle glycogen (23, 38) but reduces the reliance upon endogenous 

CHO stored in the liver (23, 27).  

Paragraph 2. Fuel use due to an exogenous source of CHO is dependent upon the type (s) of 

CHO consumed (1, 6, 42), the dose provided  (23, 38, 43), as well as the timing of ingestion (7). 

For example, the ingestion of highly insulinogenic glucose within the hour before exercise, 

rather than during exercise may have a different effect on fuel use than low glycaemic index 

CHOs, such as fructose or galactose, which do not have a primary insulin drive (37). The extent 

to which this may lead to differences in fuel selection is yet to be determined.    

Paragraph 3. Fructose is slowly absorbed from the intestine (18) and thus has been associated 

with gastro-intestinal discomfort, whereas galactose is absorbed more rapidly, at rates similar to 

glucose by the same sodium co-transport system (SGLT1 (41, 46)). However, glucose and 

galactose have uniquely different metabolic processing in the liver and peripheral tissues. 

Glucose provides a more immediate energy source as it can pass through the liver unchanged and 

enter the muscle for use and/or glycogen synthesis for subsequent use. Absorbed glucose 

potentially can also be taken up by the liver on the first pass (23). In contrast, galactose is 

converted by the liver through the Leloir pathway (17) for release as glucose, or stored as 

glycogen for subsequent release.   
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Paragraph 4. In only two studies has an evaluation of galactose during exercise using 13C tracer 

techniques been made (6, 25). Exogenous oxidation rates of glucose derived from galactose were 

48% and 61% lower in comparison to glucose during 120 minutes of cycling at ~75% and 65% 

of maximal oxygen uptake ( 2OV max), respectively. Galactose has been shown to produce 

significantly greater whole body endogenous CHO oxidation in comparison to glucose (124.4 ± 

6.7 and 100.1 ± 3.6g (25)), which is not a consistent finding in the literature (6). Differences 

between the studies (6, 25) may be related to the amount of CHO provided (100g vs. 150g, 

respectively) because the rates of intake at the gastro-intestinal tract were similar (~1.25 g.min-1), 

the prescribed relative exercise intensities and the equations used to establish exogenous 

oxidation rates ([29] vs. [32], respectively). Furthermore, neither study distinguished the 

differences between liver and muscle glycogen released during exercise. If galactose was 

consumed within the hour prior to exercise rather than during exercise, there may be the potential 

to pre-load newly synthesized liver glycogen, which may contribute to sustain plasma glucose 

concentrations and thus CHO oxidation during prolonged  endurance exercise.  

Paragraph 5. The purpose of the present study was to compare the effects of the pre-exercise 

ingestion (30 minutes prior to exercise) of galactose and glucose on fuel use during 120 minutes 

of moderate intensity cycling exercise. The use of indirect calorimetry combined with 13C tracer 

techniques enabled the estimation of the contributions to CHO oxidation from different substrate 

sources. Higher galactose exogenous oxidation rates can be achieved during a second bout of 

exercise (25) and ~30 minutes rest is sufficient time for galactose to be converted to glucose (2). 

Therefore, we hypothesized that an initial bolus of galactose 30 minutes prior to exercise would 

produce higher exogenous oxidation rates than previously reported during an initial bout of 
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exercise. In addition, we hypothesized that the pre-exercise ingestion of galactose would reduce 

the reliance on pre-existing liver glycogen more effectively than glucose ingestion.  

 
Methods 
Participants 

Paragraph 6. Nine trained male cyclists, aged: 33.1 ± 8.5 years, with a body mass of 80.3 ± 3.9 

kg, 2OV max of 60.4 ± 8.0 mL·kg-1·min-1 and maximal power output (Wmax) of 385.4 ± 32.5 W 

participated in this study. The inclusion criteria required the cyclists to have trained for ≥ 15-h 

per week, for at least the last 3 years. Procedures and potential risks were explained to each 

participant prior to the study, which was approved by the Leeds Metropolitan University ethics 

committee and all participants provided written informed consent.  

Preliminary Testing 

Paragraph 7. Participants completed a maximal incremental cycle test to volitional exhaustion 

to determine their individual Wmax (24), at least 1 week before the first experimental trial on an 

SRM high performance ergometer (SRM, Germany). Participants cycled at an initial intensity of 

100 W for  5 minutes, after which the workload was increased by 50 W every 2.5 minutes until a 

heart rate of 160 beats per minute, after which the work load increased by 25 W every 2.5 

minutes to volitional exhaustion. Wmax was calculated from Wmax = Wout + (t/150) x 25 W in 

which Wout is the highest power output (W) that the participant completed, and t the number of 

seconds the final uncompleted power output was sustained (24). Wmax was used to determine the 

relative exercise intensities to be undertaken by each participant during the experimental trials 

(viz. power output (W) at a given % Wmax).    
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Experimental Design 
 
Paragraph 8. Participants completed three experimental cycle trials for 120 minutes at 60% 

Wmax, each test separated by 7 days. Each trial involved the ingestion (30 minutes before 

exercise) of either 75g of galactose (Gal, (D-galactose, Hollandche, Melk & Suiker, Fabrique, 

The Netherlands)) or 75g of glucose (Glu, (D-glucose, Thornton and Ross Ltd, Huddersfield, 

UK)) or a placebo (water), as 1 litre formulations, using a randomized double blind experimental 

design. All formulations contained 26 mmol·L-1 sodium chloride, as well as sweetener and 

flavouring to blind the participants to each condition. Stock glucose (natural 13C abundance = -

26.49 ‰) and galactose (natural 13C abundance = -25.96 ‰), were enriched using 0.15g and 

0.75g of (D-13C6) glucose and (D-1-13C1) galactose (Sigma Aldrich, St Louis. MO, USA), as 

accepted (6, 25), achieving final 13C enrichments of +172.89 and +113.40 ‰, respectively. All 

13C measurements are quoted with reference to the internationally accepted standard for carbon 

isotope measurements, Vienna Pee Dee Belemnite (VPDB). The 13C abundance of stock glucose 

and galactose and 13C enrichment of spiked glucose and galactose was determined using liquid 

chromatography coupled to isotope ratio mass spectrometry (LC-IRMS; Isoprime, Cheadle, UK), 

using L-Fucose as an isotopic internal standard as previously described (29).  

Diet and physical activity before testing.  

Paragraph 9. Participants recorded their food intake and activity patterns during the 72-h prior 

to the first experimental test and were instructed to repeat the same diet and activity pattern in 

the 72-h before trials 2 and 3. Participants were required to refrain from any intense and/or 

prolonged physical activity, alcohol or caffeine consumption in the 36-h prior to each 

experimental trial. In addition, they were asked to refrain from ingesting CHO from plants with 

the C4 photosynthetic cycle, in which natural enrichment of 13C into synthesized CHO occurs 
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(e.g. corn, sugar cane (28)). This precaution ensured that background 13C enrichment of expired 

CO2 from endogenous substrate stores is less likely to be perturbed by unintentional but natural 

fluctuations of dietary 13C. Before each test, the evening meal was standardized and taken 

between 6.00 pm and 8.00 pm (total 1443 kcal; 53% CHO, 18% fat, 30% protein). 

Experimental Trials 

Paragraph 10. Following a 12-h overnight fast participants started their experimental trials at 

the same time of day (between 6 am and 9am) to avoid any influence of circadian variance. Upon 

arrival at the laboratory, a catheter was inserted into an antecubital vein for regular blood 

sampling. Resting blood samples were drawn for the analysis of plasma glucose, serum insulin 

and plasma lactate concentrations. Resting oxygen uptake ( 2OV ) and carbon dioxide production 

( 2COV ) measurements were made using an online gas analysis system (Metalyser, Cortex, 

Germany). The digital tripleV volume transducer was calibrated using a 3-litre syringe (Hans 

Rudolph Inc, USA) and the gas analyzers calibrated using room air and a mass standard gas 

mixture (Alpha Gravimetric standard, BOC gases, Guildford, UK) of oxygen and carbon dioxide 

in nitrogen equivalent to expired air (15% O2 and 5% CO2). The test-retest reliability for 2OV  

and 2COV  (l.min-1) had coefficients of variation of 1.3% and 2.4%, respectively. For the 

measurement of 13C/12C in expired air, 12 ml samples of expired gas were collected in duplicate 

in Labco Exetainers® (supplied by SerCon Ltd, Crewe, UK) via a mixing chamber (Jaeger, 

Germany).  

Paragraph 11. Thirty minutes prior to exercise, participants consumed 1 litre of one of the three 

different formulations (Gal (426 mosm·kg–1·H20), Glu (423 mosm·kg–1·H20) or placebo) within 

10 minutes. Participants then completed 120 minutes of cycling at 60% Wmax on an SRM high 

performance ergometer (SRM, Germany). Expired air breath samples were collected and 
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measurements of 2OV  and 2COV  were made every 15 minutes post fluid consumption until the 

end of exercise. Samples of 13C/12C in expired air were collected during the final 60 seconds of 

each expired air collection period. Samples for the analysis of plasma glucose and serum insulin 

concentration were drawn at 10 minutes intervals until 60 minutes into exercise and then every 

30 minutes thereafter. Samples for the analysis of plasma lactate concentration were drawn every 

30 minutes and those for 13C/12C plasma glucose were drawn at 90 and 150 minutes.  

Analyses 

Paragraph 12. Aliquots of plasma and serum prepared by centrifugation were analyzed for 

selected metabolites. Glucose (Glucose Oxidase kit, Siemens Healthcare Diagnostics Inc, New 

York, USA), and lactate (Lactate kit, Siemens), were analyzed enzymatically using a 

semiautomatic analyzer (ADVIA Centaur® System, Bayer Diagnostics, Newbury, Berks, UK), 

whereas insulin was analyzed using an antibody assay (Insulin IRI kit, Siemens) using the same 

analyzer.  

Paragraph 13. The 13C/12C ratio in expired air was determined through the use of isotope ratio 

mass spectrometry (IRMS; AP2003, GVI Instruments Ltd, Manchester, UK). The isotopic ratio 

13C/12C is derived against laboratory CO2 (itself calibrated against VPDB) from the ion beam 

area ratio measurements with correction of the small contribution of 12C16O17O at m/z 45; the 

Craig correction (11). The 13C in plasma glucose and galactose, as well as galactose 

concentration were determined using LC-IRMS as described in detail previously (29).    

Paragraph 14. Oxidation rates of total fat, total CHO, endogenous CHO (liver and muscle), 

plasma glucose and exogenous glucose derived from Gal and Glu ingestion, were calculated by 

indirect calorimetry ( 2OV  and 2COV ) and stable isotope measurements (13C/12C ratio in expired 

air and plasma), as detailed below. 
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Calculations  

Paragraph 15. Total CHO and fat oxidation (g·min-1) were computed from 2OV  (l·min-1) and 

2COV (l·min-1) using the stoichiometric equations of Péronnet & Massicotte (32), with the 

assumption that protein oxidation during exercise was negligible.   

 

 Glucose (g·min-1) = 4.585 2COV  - 3.226 2OV    (1) 

 Lipids (g·min-1) = 1.695 2OV  - 1.701 2COV    (2) 

 

The isotopic enrichment of Glu and Gal, (Rexo), was expressed in standard 13C units (‰) 

relative to VPDB (10). Exogenous glucose oxidation derived from Gal and Glu (Gexo, grams) 

ingestion was computed by using the following equation (33), with the placebo condition 

establishing the background ratio of 13C/12C in expired CO2 during exercise.   

 

 Exogenous CHO Oxidation (g·min-1) = 2COV [(Rexp – Rref1)/ (Rexo – Rref1)] /k (3) 

 

where 2COV  is in litres per minute, Rexp is the observed 13C/12C in expired CO2, Rref1 is the 

13C/12C of expired CO2 in response to exercise when the placebo was ingested, Rexo is the 13C/12C 

of the exogenous Gal and Glu ingested, and k (0.7426 l·g-1) is the rate adjusted value for the 

complete oxidation of glucose (33). Endogenous CHO oxidation was calculated by subtracting 

exogenous oxidation from total CHO oxidation.  

Paragraph 16. Computations were made on the assumption that, in response to exercise, 13C is 

not irreversibly lost in pools of tricarboxylic acid cycle intermediates and/or bicarbonate, and 

that 13CO2 recovery in expired gases was complete or almost complete during exercise (40). 
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Such computation has been shown to underestimate exogenous oxidation rates at the beginning 

of exercise because of the delay between 13CO2 production in tissues and at the mouth (31). 

Using the CO2 kinetics model proposed by Winchell et al. (45), the CO2 exchange in the 

bicarbonate pool was computed. These data indicated equilibrium within the bicarbonate pool 

from ~15 minutes onwards for both trials. Based on this, exogenous CHO oxidation rates are 

presented from 15 minutes onwards during the exercise period. 

Paragraph 17. On the basis of the isotopic compositions of plasma glucose (Rglu) the oxidation 

rate of plasma glucose was computed at 60 and at 120 minutes during exercise. This was 

modified from Peronnet et al. (34), to include placebo during exercise as the 13C/12C plasma 

background reference, as there were observed differences in these data at rest and during 

exercise. 

  

 Plasma glucose oxidation (g·min-1) = 2COV [(Rexp – Rref1)/ (Rglu – Rref2)] /k  (4) 

where Rref2 is the isotopic composition of plasma glucose observed during exercise when the 

placebo was ingested. The oxidation rate of muscle glycogen (g·min-1), either directly or through 

the lactate shuttle (4), was calculated by subtracting plasma glucose oxidation from total CHO 

oxidation. Finally, the amount of glucose released from the liver was estimated as the difference 

between plasma glucose (equation 4) and exogenous glucose oxidation (equation 3) (34). 

Statistical Analysis 

Paragraph 18. Data were approximately normally distributed (Kolmogorov-Smirnov test) and 

are presented as mean ± SE. Two-way ANOVA for repeated measures was used to compare 

differences in blood related parameters and fuel use over time and between conditions. One-way 

ANOVA was used to compare difference in fuel use between conditions. Where significance was 
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detected post hoc analysis was performed using a paired t-test, with Bonferroni adjustment. Data 

were evaluated using SPSS for Windows version 17 (Chicago, USA). A 0.95 level of confidence 

was predetermined to denote statistical significance (P < 0.05).  

 

Results 

Stable Isotope Measurements 

Paragraph 19. The 13C/12C in expired CO2 was significantly higher for Glu from the start of 

exercise until 90 minutes (range: -20.68 to +5.32 ‰, P < 0.01) in comparison to Gal (range: -

23.47 to +13.53 ‰), with Gal having significantly higher 13C/12C in expired CO2 compared to 

Glu at 135 minutes (-11.58 ± 0.54 vs. -16.21 ± 0.53 ‰, P < 0.001) and 150 minutes (-12.79 ± 

0.46 vs. -18.72 ± 0.50 ‰, P < 0.001), Fig. 1A. During the placebo condition, there was a small 

but significant increase (average difference: 1.02 ‰, P < 0.01) in 13C/12C in expired CO2 over 

time, from 105 minutes onwards in comparison to resting breath samples. These data were used 

as a background correction for the calculation of exogenous oxidation for the Gal and Glu 

conditions. 

Exogenous and Endogenous CHO Oxidation  

Paragraph 20. Exogenous CHO oxidation rates reached 0.66 ± 0.08 g·min-1 during the initial 15 

minutes of exercise for Glu, which was significantly higher (P < 0.001) than glucose rates 

derived from Gal (0.27 ± 0.02 g·min-1), Fig 1, B. The exogenous oxidation of Glu then 

decreased, while the oxidation rates of glucose derived from Gal steadily increased, with a 

crossover point occurring between the two conditions between 90 and 105 minutes. Exogenous 

CHO oxidation rates were significantly higher (P < 0.01) throughout exercise until 90 minutes 
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for Glu in comparison to Gal. From 105 minutes glucose oxidation rates derived from Gal were 

significantly higher (P < 0.01), peaking at 120 minutes (0.44 ± 0.02 g·min-1).  

Paragraph 21. There was inter-individual variability in the time taken to reach peak exogenous 

CHO oxidation rates. Therefore, the above data does not truly reflect the differences in peak 

exogenous oxidation rates achieved for each condition. The mean of each of the individual’s 

peak exogenous CHO oxidation rate was significantly higher (P < 0.05) for Glu (0.68 ± 0.08 

g·min-1) in comparison to Gal (0.44 ± 0.02 g·min-1), with individual CHO oxidation peaks 

occurring at mean time points of 60 and 150 min (30 and 120 minutes into exercise), 

respectively. The average exogenous CHO oxidation rates for Glu (0.40 ± 0.03 g·min-1) were not 

significantly different over the 120 minutes of exercise in comparison to Gal (0.36 ± 0.02 g·min-

1). The relative contribution of exogenous CHO to total energy expenditure for the 120 minutes 

of exercise was also significantly higher (P < 0.01) for Glu (8.67 ± 0.54%) compared to Gal 

(7.06 ± 0.33%) as shown in Fig 2. In addition, the oxidation efficiency was significantly (P < 

0.01) higher for Glu (71.07 ± 5.91%) compared to Gal (53.16 ± 3.13%).   

Paragraph 22. Endogenous CHO oxidation rates increased during the initial 15 minutes of 

exercise achieving average oxidation rates of 2.82 ± 0.23 g·min-1, 2.81 ± 0.38 g·min-1 and 2.87 ± 

0.37 g·min-1 for Gal, Glu and placebo conditions, respectively, over the 120 minutes of exercise 

(Fig 3, B). There were no significant differences between any of the conditions. There were also 

no significant differences between conditions in the relative contributions of endogenous CHO 

oxidation to the total energy expenditure over the 120 minutes of exercise (Fig 2).  

Total CHO and Fat Oxidation 

Paragraph 23. Total CHO oxidation peaked 15 minutes into exercise for Gal and Glu (on 

average 3.48 ± 0.31 g·min-1), whereas following placebo there was a delayed response, with peak 
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values achieved at 30 minutes into exercise (2.97 ± 0.34 g·min-1), with  relatively stable CHO 

oxidation rates thereafter (Fig 3, A). During the placebo condition the CHO oxidation rates were 

consistently lower in comparison to Glu and Gal, but there were no significant interactions 

between conditions.  

Paragraph 24. Fat oxidation rates (Table 1) progressively increased throughout exercise for all 

three conditions, with average rates of 0.64 ± 0.04, 0.59 ± 0.10 and 0.72 ± 0.10 g·min-1 for the 

120 minutes of exercise, for Gal, Glu and placebo, respectively. There were no significant 

interactions between conditions. The relative contribution of fat to total energy expenditure 

during the 120 minutes of exercise is shown in Fig 2.  

Oxidation of Plasma Glucose, Liver Glucose and Muscle Glycogen  

Paragraph 25. The rate of plasma glucose oxidation derived from Gal was significantly (P < 

0.01) greater at 120 minutes compared to 60 minutes (1.29 ± 0.16 and 0.64 ± 0.05 g·min-1, 

respectively), Fig 4. This was due to an increase in exogenous CHO oxidation and a significant 

increase in liver glucose oxidation rates from 60 to 120 minutes for Gal (P < 0.01). In contrast, 

there was no significant change in plasma glucose oxidation for the Glu condition (1.07 ± 0.11 

and 1.22 ± 0.15 g·min-1), as the significant (P < 0.001) decrease in exogenous CHO oxidation 

was accompanied by a significant increase (48%, P < 0.01) in liver glucose oxidation. Plasma, 

liver and exogenous CHO oxidation were significantly (P < 0.01) greater for Glu at 60 minutes 

compared to Gal. There were no significant differences in muscle glycogen oxidation rates at 60 

and 120 minutes between Gal and Glu conditions. However, the muscle glycogen oxidation rate 

significantly (P < 0.01) decreased from 60 to 120 minutes for Gal (2.5 ± 0.25 and 1.81 ± 0.27 

g·min-1, respectively) and Glu (2.18 ± 0.39 and 1.93 ± 0.38 g·min-1, respectively). 

Blood Biochemistry 
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Paragraph 26. Plasma glucose and serum insulin concentrations following the pre-exercise 

ingestion of Glu increased to peaks of 7.4 ± 0.6 mmol·L-1 (Fig. 5A) and 36.3 ± 7.5 μU·mL-1 (Fig. 

5B), respectively, directly prior to exercise. These were significantly higher in comparison to 

placebo (4.8 ± 0.1 mmol·L-1 and 4.5 ± 1.1 μU·mL-1 (P < 0.05), respectively) and Gal conditions 

(4.9 ± 0.3 mmol·L-1 1 and 9.1 ± 2.0 μU·mL-1 (P < 0.05), respectively).   

Paragraph 27. After the onset of exercise, mean plasma glucose concentrations fell rapidly to 

nadirs of 3.44 ± 0.28 mmol·L-1 and 3.59 ± 0.20 mmol·L-1, for Glu and Gal, respectively, during 

the initial 20 minutes of exercise. Mean plasma glucose concentrations for placebo remained 

stable ((4.71 ± 0.15 mmol·L-1 (40 minute time point), 5.01 ± 0.12 mmol·L-1 (50 minute time 

point)) and were significantly higher (P < 0.05) than the Glu and Gal conditions at 50 minutes. 

After the first 20 minutes of exercise (50 min from ingestion) mean plasma glucose 

concentrations increased back to basal concentrations by 70 minutes for Glu (4.83 ± 0.18 

mmol·L-1) and Gal (4.93 ± 0.11 mmol·L-1), with relative stability in plasma glucose 

concentrations thereafter. Mean plasma glucose concentrations were also significantly higher for 

Gal and placebo at 60 minutes (P < 0.05) compared to Glu. During the last hour of exercise 

plasma glucose concentrations for all three conditions started to slowly decrease below basal 

concentrations, with no significant differences between the three conditions. After the onset of 

exercise mean serum insulin concentrations took longer to decrease back towards baseline values 

for Glu (3.43 ± 0.74 μU·mL-1, 60 minutes) compared to Gal (2.98 ± 0.40 μU·mL-1, 40 minutes). 

Once fasting concentrations had been reached for each of the three conditions, concentrations 

remained stable until the end of exercise.  
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Paragraph 28. Plasma galactose concentrations decreased from 4.88 ± 0.50 mmol·L-1 at 60 

minutes into exercise to 0.91 ± 0.09 mmol·L-1 at the end of the 120 minutes of exercise, 

following Gal ingestion.  

Paragraph 29. Plasma lactate concentrations increased from resting values of 0.81 mmol·L-1 to 

approximately 1.63 mmol·L-1 after the initial 30 minutes of exercise, but increased to 

approximately 1.95 mmol·L-1 after 120 minutes of exercise. There was no significant difference 

in responses between the three conditions.  

 

Discussion 

Paragraph 30. This is the first study to evaluate the effects of the pre-exercise ingestion of 

galactose on plasma glucose oxidation and endogenous glucose contributions from the oxidation 

of glucose released from the liver and muscle glycogen oxidation (including the lactate shuttle) 

from pre-existing glycogen. The primary findings are that galactose ingestion reduces the 

reliance on liver glucose (from pre-exiting glycogen) during exercise and provides a more 

progressive energy source, with significantly higher oxidation of glucose derived from 

exogenous galactose during the last hour of exercise in comparison to exogenous glucose. In 

contrast, glucose ingestion produced higher exogenous oxidation rates during the initial hour of 

exercise, with greater availability in plasma glucose oxidation with a trend for a decreased 

reliance on muscle glycogen oxidation (though not significant) midway through exercise.   

Paragraph 31. The peak exogenous CHO oxidation rate (defined as the mean of the highest 

value reached by each individual) of glucose derived from Gal (0.44 ± 0.02 g·min-1) was lower 

than Glu (0.68 ± 0.08 g·min-1). However, the peak exogenous CHO oxidation rates following 

galactose ingestion are to the authors’ knowledge, the highest reported in the literature to date 



 16

during an initial bout of exercise. Leijssen et al. (25) using the equation of Mosora et al. (30) 

reported a peak exogenous oxidation rate of 0.41 g·min-1 during an initial bout of exercise. 

Caution in the interpretation of this value is required, due to difficulties associated with low 

isotopic enrichment and lack of 13C/12C ratios during exercise from a placebo trial. This equation 

may overestimate exogenous oxidation rates, as using the 13C/12C ratio at rest rather than during 

exercise is not a true reflection of substrate metabolism during exercise (33). For these reasons 

the present study used a high isotopic enrichment (+113.4 ‰) and the 13C abundance measured 

during the placebo trial was used for corrections (33). Further, the consumption of galactose 30 

minutes prior to exercise, may have enabled the liver to process galactose to glucose and liver 

glycogen more effectively, enabling greater peak exogenous CHO oxidation rates than the 

provision of repeated dosages throughout exercise (6, 25).  

Paragraph 32. The mean exogenous CHO oxidation rate of glucose derived from Gal (0.36 ± 

0.02 g·min-1) is higher compared to other studies (0.24 g·min-1 (6), 0.27 g·min-1, (25)). The 

timing and frequency of ingestion may be an explanation for the differences, as these studies 

used multiple doses throughout exercise (6, 25), rather than a single bolus before exercise. In 

addition, the lower relative exercise intensity used by Burrelle et al. (6) in comparison to the 

present study (65% vs. 70% 2OV max, respectively) is another possible explanation, as exogenous 

CHO oxidation has been shown to increase with exercise intensity (35).  

Paragraph 33. The differences in exogenous CHO oxidation rates following Gal and Glu 

ingestion are most likely explained by their different metabolic processing in the liver and 

peripheral tissues. On entering the circulation galactose is preferentially taken up by the liver 

(44) prior to conversion to glucose-1-phospate via the Leloir pathway (17). Glucose-1-phosphate 

is then available for the formation of glycogen in the liver or is released as free glucose (14). The 
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preferential conversion of galactose into liver glycogen is supported by previous data (12, 25). 

The literature (25) has showed that the exogenous CHO oxidation rate of glucose derived from 

galactose was much higher (0.85 g·min-1) during a second bout of exercise (30 minutes), 

following a 60 minute recovery period. This may reflect the release and oxidation of glucose 

from liver glycogen synthesised from galactose during the initial exercise period and the 

subsequent recovery. Furthermore, a recent 13C magnetic resonance spectroscopy study (12) 

revealed that ingestion of maltodextrin with galactose, was twice as effective at restoring liver 

glycogen compared to maltodextrin plus glucose. 

Paragraph 34. The metabolic fate of galactose is likely to explain the progressive increase over 

time in exogenous CHO oxidation following Gal ingestion. This may be a reflection of the time 

taken to convert galactose or glycogen recently formed from galactose, into glucose, before it 

can be released into the systemic circulation.  

Paragraph 35. Glucose oxidation is controlled in part by plasma glucose concentrations (15). 

Therefore, the higher exogenous CHO oxidation rates at the initiation and for the first part of 

exercise during the use of Glu may be attributed to the higher plasma glucose concentrations, as 

well as the higher serum insulin concentrations, directly prior to exercise in comparison to Gal. 

The higher serum insulin concentrations combined with increased muscular contraction, 

increases glucose uptake and thus glucose oxidation, with increased uptake reflected in the 

decreasing plasma glucose concentrations at the occurrence of peak oxidation rates. The transient 

decline in plasma glucose concentrations from a relative hyperglycaemia (prior to exercise) 

reflects a change in glucose flux into the muscle, which is consistent with the hyperinsulinaemia 

(shown directly prior to exercise for this condition) and an effect of increased contractile activity 

on muscle glucose uptake (13, 26).  
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Paragraph 36. The present study showed that overall, significantly more of the exogenous 

source of Glu was oxidized (71.1 ± 5.9%) in comparison to Gal (53.2 ± 3.1%). Therefore, a 

significant amount of the ingested Glu (27.4 ± 4.0g) and a larger amount of Gal (35.1 ± 2.4g) 

remained unaccounted for. Disappearance may in part be related to gastric emptying, as a single 

bolus of 75g was provided, and it is likely that a proportion of the glucose or galactose may have 

remained in the gut. However, none of the cyclists reported any gastro-intestinal problems prior 

to or during the exercise period. It is unlikely that the gastric emptying (25, 36), was limited by  

the exercise intensity during the exercise period, which was not above 70% 2OV max (5), or the 

rate of uptake and oxidation by the muscle (15). There is the possibility that glucose was 

absorbed and taken up and retained by the liver (23), which may also be the case for galactose. 

For glucose only, direct uptake by muscles is also possible. Since glucose release from the liver 

is highly controlled and may also be rate limited (24) the disposal of both glucose and galactose 

into hepatic metabolism before exercise in amounts that are not all used by the subsequent 

exercise was likely to be a significant part of the doses not accounted for in the present study. 

The loss of galactose in urine (galactosuria) has also been identified (39) presumably due to its 

low renal threshold (0.5 mmol·L-1 (44)) and thus could account for some galactose disposal. 

Paragraph 37. An original aspect of this study was the comparison of plasma glucose, liver 

glucose and muscle glycogen oxidation (including the lactate shuttle) rates during exercise, 

following galactose and glucose ingestion. These data indicate that plasma glucose oxidation 

rates following Glu ingestion are greater during the initial hour of exercise in comparison to Gal. 

Glucose is more likely to be used as an immediate energy source by muscle, especially when 

plasma glucose and serum insulin concentrations are still high as seen at the onset of exercise. 

Galactose disposal, as a source of plasma glucose for muscle oxidation, would be constrained by 
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the need to be supplied either from newly formed liver glycogen or from conversion by the 

Leloir pathway (14). However, this study was unable to report the quantity of galactose 

metabolized and stored as liver glycogen to be  subsequently released as glucose. The lower 

plasma glucose oxidation derived from Gal at 60 minutes into exercise was balanced by a 

slightly increased muscle glycogen oxidation (including the lactate shuttle) in comparison to Glu 

(though not significant), as there were no significant differences in whole body endogenous CHO 

oxidation between conditions. In contrast, the greater availability of plasma glucose following 

Glu ingestion at 60 minutes into exercise showed a trend for a decreased reliance on muscle 

glycogen oxidation (though not significant).  

Paragraph 38. This is the first study to show that glucose released from the liver (from pre-

existing liver glycogen) was used to a lesser extent following Gal ingestion in comparison to 

Glu, with an increase in use over time for both conditions. Galactose is a precursor for liver 

glycogen synthesis (12, 14), which may explain the reduced reliance on liver glucose from pre-

existing stores during both the initial and final parts of exercise. Even though the oxidation of 

glucose released from the liver (from pre-existing liver glycogen) was higher following Glu 

ingestion it is feasible that the associated hyperinsulineamia may have restricted hepatic output, 

as high insulin concentrations have been shown to inhibit hepatic output (23). The increased 

release of glucose from the liver over time for both conditions, to maintain effective plasma 

glucose oxidation, has been suggested to be related to depleting muscle glycogen concentrations 

(3, 34), but still there was a smaller contribution during the use of Gal. However, muscle 

glycogen oxidation (including the lactate shuttle) was still relatively high due to the stability in 

total CHO oxidation rates, which is not consistent with depleted muscle glycogen stores. It is 

important to note that 13C glucose and 13C galactose can undergo recycling and may 
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underestimate the rate of plasma glucose and hepatic oxidation, though is likely to be negligible 

during exercise (4 to 10% (22)). 

Paragraph 39. Even though there are differences in exogenous CHO, endogenous liver glucose 

and muscle glycogen oxidation rates throughout the two hour exercise period, there was no 

significant effects on the absolute or relative whole body endogenous CHO oxidation rates 

between the Gal and Glu conditions. Furthermore, despite higher serum insulin concentrations 

following Glu ingestion, there were not significant differences in total fat oxidation between 

conditions. Whether or not the same findings would occur with the pre-exercise ingestion of 

galactose, following a CHO rich meal several hours prior to exercise is yet to be established. 

Paragraph 40. The maintenance of an adequate plasma glucose oxidation, as well as a reduced 

reliance on liver glycogen and muscle glycogen would theoretically be beneficial for endurance 

performance (21). Therefore, there is the possibility that when CHO is prescribed pre-event 

glucose ingestion may produce benefits for performance due to higher rates of plasma glucose 

oxidation during the initial part of exercise. This is further supported by the trend to reduce 

reliance on muscle glycogen oxidation (including the lactate shuttle). In contrast, galactose 

provided a more progressive release of energy over time following its conversion to glucose, as 

well as reducing the reliance on glucose released from the pre-existing liver glycogen. This may 

be important for longer endurance activities where the maintenance of plasma glucose 

concentrations becomes more important, as muscle glycogen becomes depleted over time. 

Furthermore, significantly more of the exogenous source of Glu was oxidized in comparison to 

Gal, which may provide additional support for Glu in terms of endurance performance. Whether 

or not galactose improves performance directly, or whether the combined use of galactose and 
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glucose would be more beneficial for potential performance outcomes is yet to be fully 

established as is the combined use of galactose prior to and during exercise. 

Paragraph 41. In conclusion, the present study showed that following the ingestion of Gal 30 

minutes prior to exercise, peak exogenous oxidations rates of glucose derived from Gal of 0.44 ± 

0.02 g·min-1 can be achieved. This supports the hypothesis, that an initial bolus of galactose 30 

minutes prior to exercise would produce higher exogenous glucose oxidation rates than 

previously reported. However, Glu provided a more immediate energy source, whereas Gal 

provided a more progressive glucose oxidation response over the duration of the exercise period, 

as well as sparing pre-existing liver glycogen stores.  
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Figures  

 

Fig 1. Changes in 13C/12C in expired CO2 (A) and exogenous carbohydrate oxidation (B) at rest 
and during exercise following the pre-exercise ingestion of placebo and 13C labelled glucose 
(Glu) and galactose (Gal). Values are mean ± SE; N=9. * Glu significantly higher than Gal 
(P<0.05). † Gal significantly higher than Glu (P<0.05).  
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Fig 2. The relative (%) contributions of substrate oxidation to total energy expenditure for each 
trial during 120 minutes of exercise. * relative exogenous oxidation for Glu significantly higher 
than Gal (P<0.05).  
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Fig 3. Total carbohydrate oxidation (A) and endogenous carbohydrate oxidation (B) at rest and 
during exercise following each of the three trials. Values are mean ± SE; N=9.   
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Fig 4. Oxidation rates of plasma glucose (A) glucose release from the liver (B), exogenous 
carbohydrate (C) and muscle glycogen (D) at 60 minutes and 120 minutes during exercise. 
Values are means ± SE; N=9. * Glu significantly higher than Gal at 60 minutes, P < 0.01. # Gal 
significantly higher than Glu at 120 minutes, P < 0.01. † 120 minutes significantly higher than 60 
minutes, P < 0.05. ‡ 120 min significantly lower than 60 minutes, P < 0.05.   
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Fig 5. Plasma glucose (A) and serum insulin (B) concentrations. * Glu significantly higher than 
Gal and placebo (P<0.05). ‡ placebo significantly higher than Glu and Gal (P<0.05). † Gal 
significantly higher than Glu (P<0.05).  
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Table 1. Total fat oxidation (g·min-1) at rest and during exercise following each of the three trials 

Time 

(minutes) 

Placebo Galactose Glucose 

-10 0.16 ± 0.04 0.11 ± 0.03 0.15 ± 0.02 

30 0.13 ± 0.02 0.10 ± 0.04 0.10 ± 0.02 

45 0.55 ± 0.09 0.43 ± 0.03 0.44 ± 0.09 

60 0.72 ± 0.09 0.59 ± 0.04 0.50 ± 0.10 

75 0.72 ± 0.12 0.66 ± 0.04 0.54 ± 0.10 

90 0.76 ± 0.11  0.68 ± 0.04 0.61 ± 0.10 

105 0.78 ± 0.12 0.68 ± 0.04 0.61 ± 0.10 

120 0.79 ± 0.11 0.69 ± 0.04 0.68 ± 0.10 

135 0.73 ± 0.10  0.70 ± 0.05 0.68 ± 0.11 

150 0.71 ± 0.10 0.71 ± 0.06 0.65 ± 0.10 

 
 


