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Slender phoretic loops and knots
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We present an asymptotic theory for solving the dynamics of slender autophoretic loops
and knots. Our formulation is valid for nonintersecting three-dimensional center lines,
with arbitrary chemical patterning and varying (circular) cross-sectional radius, allowing
a broad class of slender active loops and knots to be studied. The theory is amenable to
closed-form solutions in simpler cases, allowing us to analytically derive the swimming
speed of chemically patterned tori, and the pumping strength (stresslet) of a uniformly
active slender torus. Using simple numerical solutions of our asymptotic equations, we
then elucidate the behavior of many exotic active particle geometries, such as a bumpy
uniformly active torus that spins and a Janus trefoil knot, which rotates as it swims
forwards.
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I. BACKGROUND

Artificial microscale swimmers (microbots) are an exciting miniaturized technology, with
promising applications in healthcare [1] and microfluidics [2]. Examples of swimming microbots
include helices with magnetic heads [3—6], magnetic spermlike swimmers [7], oscillating-bubble
powered capsules [8], and phoretic microbots [9].

Phoretic microbots are active particles that propel via interaction with gradients of a field in
the surrounding environment, such as electrical charge (electrophoresis) [10], temperature (ther-
mophoresis) [11,12], or concentration of solute (diffusiophoresis) [13]. In autophoretic propulsion,
the microbot self-generates local gradients in the concentration of a surrounding solute fuel through
differential reaction at its surface, often achieved by patterning the surface with a catalyst [9,14].
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Since the trajectory of autophoretic swimmers emerges from complex interactions between solute
and fluid dynamics, it is dependent not only on the choice of catalytic patterning, but also on particle
shape, and environmental factors such as position of domain boundaries. For instance, spherical
Janus particles can follow the walls of microchannels [15], straight rods with uniform coating can
translate if their cross section is nonuniform [16], the end profile of a slender rod can greatly affect
its speed [17], a particle comprising two linked, uniformly coated spheres of different sizes can
reverse direction depending on their separation [18], uniformly coated spheres (which drive no
fluid flow in isolation) can self-organize into mobile assemblies of multiple spheres [19], Saturn
rods (which pump flow in isolation) can self-organize into translating and rotating assemblies [20],
and a flexible uniform filament can pump fluid, translate, or rotate, depending on its center line
configuration [21,22]. It is noteworthy that the vast majority of these studies are characterized by
rigid particles that are topologically equivalent to the sphere, with topologically nontrivial active
particles receiving comparatively little study [23,24].

Technological and theoretical advances are now allowing for the consideration of more complex
systems. For example, an analytical solution for the dynamics of an axisymmetric autophoretic
torus was derived by Schmieding et al. [23]. These active tori were subsequently fabricated and
shown to demonstrate translational swimming behavior and cargo transport capabilities, as well
as the ability to self-assemble into dimers and trimers that could rotate [24]. No analytical theory
currently exists to study more general looped and knotted autophoretic microswimmers, and the
developing capability to fabricate nontrivial phoretic designs paves the way for considering these
more advanced geometries. It is not clear how these more complex shapes will interact and behave
collectively; a key first step to understanding many-bodies is to study the individual particle
dynamics.

Theoretical and computational frameworks exist that can solve for the phoretic swimming of
particles of arbitrary shape. For example, Lammert et al. [25] showed that the phoretic swimming
can be calculated directly from the surface solute flux by evaluating a surface integral, bypassing
solving for the concentration field and slip velocity using the Lorentz reciprocal theorem. This
approach has many advantages, since it is general and exact, and once the test solution is known in
a given geometry, it can be reused for all chemical patternings on that geometry. However, in the
case of slender bodies, calculating these integrals is often costly. Here, we aim to use an approach
tailored to slender objects that calculates the intermediate solutions for concentration and slip, since
doing this admits natural extensions to multiple interacting swimmers [26] and to fluid-structure
interactions, once the relevant hydrodynamic surface tractions are calculated.

Looped and knotted shapes are often slender by design, that is, their cross-sectional radius is
much smaller than their length. This slender limit allows asymptotic slender-body theories to be
developed, which are computationally far less intensive than standard numerical techniques, such as
boundary element methods [27-29], which require a fine mesh to resolve the smallest scales across
the entire body length. They also have the additional benefit of affording analytical solutions and
insights. In the field of phoretic swimmers, a slender-body theory for straight electrophoretic rods
was developed [30], which was later extended to straight autophoretic rods with simple reaction
kinetics [16], and more complex reactions by Yariv [31]. A matched asymptotics framework
examined how end shape and the cross-sectional profile of autophoretic rods affects swimming
speed [17], and detailed studies have shown the swimming behavior of slender helices [32] and
bent rods [33]. Recently came the development of slender phoretic theory (SPT) [34,35], which
is capable of analyzing filaments with a general three-dimensional (curved, nonplanar) center line
and arbitrary cross-sectional radius and chemical patterning, and follows a previous asymptotic
approach for slender filaments in viscous fluids [36].

In this work, we present a slender phoretic theory [34] for nonintersecting, looped, and knotted
autophoretic filaments, such as that shown in Fig. 1, before applying our theory to derive new closed
form analytical results for tori, as well as results for more complex designs. We begin with a broad
discussion of the underlying theory.
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FIG. 1. An example of a nonintersecting slender active loop (here, the 4, “figure of eight” knot), to
which our theory applies. Note the center line is fully three dimensional, and there is azimuthal variation
in the chemical patterning. We may also consider loops with longitudinal variation in patterning, and varying
cross-sectional radius. Right: A zoom in on a segment of the slender structure, highlighting a circular cross
section (shaded) at a given coordinate s, where the loop center line is r(s), the dimensionless cross-sectional
radius is € o(s), and the local coordinates in the plane of the cross section are &,(s, 8), €(s, 0).

II. SLENDER PHORETIC THEORY FOR ACTIVE LOOPS

The dynamics of an autophoretic active particle are considered in the zero Péclet number limit,
whereby the solute concentration at any instant is found from the solution to Laplace’s equation, and
the surface gradients of the resultant concentration field provides a slip flow boundary condition for
the solution of a Stokes flow problem.

We derive the slender phoretic theory for looped filaments (SPT loops) by substituting the
slender looped geometry into a boundary integral representation of Laplace’s equation, and applying
a matched asymptotic expansion in the small parameter, € < 1, that quantifies the ratio of the
maximum cross-sectional radius compared to the half-length of the filament center line. The
derivation of SPT loops is involved, and given in full in Appendix A.

Broadly speaking, we will find that the resulting solute concentration on the filament’s surface is
determined from an integral equation due to the given filament geometry and chemical patterning,
with the slip flow found as its surface gradient. This slip flow can then be used as a boundary
condition in a slender-body theory for Stokes flows to find the swimming and bulk fluid behavior.

We will now present the main components of this theory, before proceeding to calculate results
for various looped filaments with a range of chemical patterning. The presented results will be given
in dimensionless form (as outlined below).

A. Governing equations

We consider a phoretic swimmer in an infinite bath of fluid; the swimmer is chemically patterned
so that it produces or depletes a solute due to a reaction occurring on its surface. Any gradients in the
concentration of the solute by the swimmer’s surface causes a slip flow in the fluid. If appropriately
patterned, the swimmer can self-propel due to this slip flow.

We consider the limit of zero Péclet number [14], where diffusion dominates advection of solute.
This decouples the solute evolution from the fluid flow, and so the solute concentration, ¢, must
obey Laplace’s equation

DV?c =0. )

There are two major surface properties that characterize the behavior of phoretic swimmers: the
activity, .4, which quantifies the generation or depletion of solute on the microbot’s surface, and
the mobility, M, which encodes the generation of fluid slip velocities due to surface concentration
gradients. These enter the governing equations as boundary conditions on the surface of the phoretic
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object
—Dny - Ve = A(x), 2

Vaiip = M)A —nyny) - Ve, 3)

where ny is the normal to the surface, pointing into the fluid. We choose ¢ to be the disturbance
from a background concentration, so that ¢ — 0 far from the surface, and, for simplicity, consider
zeroth-order reaction kinetics, where the activity .4 is independent of concentration. This is the limit
of zero Damkohler number, where the diffusive transport rate dominates the reaction rate, valid for
small particles, fast diffusion, or slow reaction rates. This assumption provides a simple starting
point that could be extended in the future to more complex reaction behaviors, e.g., Ref. [31].

The fluid velocity, u, is then governed by the Stokes flow equations

uViu=Vp, V.u=0, 4)
which is forced at the swimmer’s boundary by the slip velocity
u = Uy + gy xS+ Vslips (5)

where Ugy, 2y are the swimmer’s translational and rotational swimming velocities, respectively,
and S is the position vector of a point on the swimmer’s surface. These must be such that the
swimmer is both force and torque free, i.e., its surface traction f must satisfy

/de:O, /Sxde:O, (6)
s s

where the integral is taken over the surface of the phoretic swimmer.

For a filament with total arc length 2¢ and maximum cross-sectional radius rs, we nondimen-
sionalize length by ¢, activity by a typical activity [.A], and concentration by a typical concentration
[c] = [Alr;/D. For a typical mobility scale, [M], we then find a typical phoretic velocity scale
Vgip ~ [MI][Alry/(D£). We use these scales to nondimensionalize our slender phoretic loops: all
quantities are henceforth dimensionless, unless otherwise stated.

B. Looped filament geometry

We capture the geometry of the slender loops in a similar manner to previous work on slender
filaments [34,36,37]. The slender loop has a center line, r(s), which is parametrized by its arc
length s € [—1, 1]. We denote the vector from the center line at arc length 5 to the center line at s
by Ry (s, 5) = r(s) — r(5). The center line has a tangent t(s), normal f(s), and binormal f)(s) that
satisfy the Serret-Frenet equations,

ot . oh b . .

aS_lcn, 35 = Kkt + th, 35 = T, @)
where k, T are the curvature and torsion of the center line, respectively. Note that, unlike a filament
with free ends, a looped filament has periodicity in s, so that the two ends are joined at s = %1, i.e.,
r(—1)=r(1).

We focus on filaments with a circular cross section. Cross sections are perpendicular to the center
line tangent, as shown in the schematic in Fig. 1 The cross-sectional radius is captured by €p(s),
where € = r;/{ is the slenderness of the filament and 0 < p(s) < 1. Note the assumption that p(s)
remains nonzero everywhere along the center line, so that the filament is a continuous closed loop.

The surface of the filament is then parametrized by its arc length, s, and the azimuthal angle of
the cross section, 6 € [0, 2], through the relation S(s, 8) = r(s) + €p(s)€,(s, €). Here, €,(s, 0) is
the local radial unit vector perpendicular to the center line tangent, and & (s, 6) is the corresponding
azimuthal unit vector (around the slender direction), as illustrated in Fig. 1. Note that the curve on
the surface with & = 0 can be chosen arbitrarily, and so we also define a fixed coordinate frame
angle O(s, 8) = 6 — 6;(s), that tracks the azimuthal angle compared to 6;(s), which rotates with the
torsion of the center line, 96;/ds = t. With this definition, ® = 0 occurs where the surface normal
aligns with the Serret-Frenet normal fi(s), so that €,(s, 8) = cos ©(s, 0)fi(s) 4 sin O(s, 0)b(s)
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and &y (s, 0) = — sin O(s, O)i(s) + cos O(s, H)b(s). This angle parametrization is convenient as it
removes the influence of the line torsion, t, from the leading-order equations [36].

C. Slender expansion

For slender filaments, with € < 1, we look for solutions in terms of an asymptotic expansion in
the slenderness. For example, the concentration field will be expanded as

c(s,0) = 9 + eV 4+ 0(?). (8)

Similarly, quantities to be calculated—such as the fluid velocities and swimming speed—will be
expanded in €, with a bracketed superscript denoting the order of the relevant term.

The derivation of SPT loops follows the same procedure as for open-ended filaments [34].
However, due to the key change in topology between looped and unlooped filaments, a complete
rederivation of the theory is required for full academic rigor, rather than simply applying or
extending the existing theory.

This theory is derived systematically from a boundary integral representation of Laplace’s
equation for the solute diffusion. Performing a matched asymptotic expansion allows us to transform
the surface integral equation into a line integral formula for evaluating the concentration on the
filament surface, thereby significantly simplifying its calculation.

In particular, the surface solute concentration is determined from two main contributions: a
nonlocal integral contribution due to the geometry and the cross-sectionally averaged activity,
which are integrated over the entire center line of the filament (the outer region), and a local
contribution due to the nearby region where the thickness of the filament is important (the inner
region).

Importantly, the slip flow that drives the bulk fluid motion is generated by gradients in the
surface solute concentration, and concentration gradients in the azimuthal direction (around the
small cross section of the filament) are enhanced relative to gradients along its length. It is therefore
often necessary to determine the next order contribution to the concentration as this can impact the
swimming behavior at leading order.

D. Slender phoretic theory for loops

We summarize the main equations of SPT loops in Eqs. (9)—(12) below, with the derivation
provided for completeness in Appendix A. In particular, we give an expression for the leading-order
surface solute concentration for an arbitrary activity profile, A = A(s, 6), and the first two orders of
the concentration when the activity is axisymmetric, A = A(s), as well as the resulting slip velocity.

a. General activity, A = A(s, 0)

27eOs. 0y = /‘ [p<s+q><A(s+q)> OIEO)
U2l RoGss+ )l 4]

d ! A(s)) 1 !
] 4"‘5/0(5)( (s)) H<m)

— o(s) i A(s, 8)In[1 — cos(d — §)]dD + O(e). 9)

-7

b. Axisymmetric activity, A = A(s)

L[ Tps+DAG+q)  p(s)AGs) 1 4 )
- - - n(——— 1
2/_1[ Ro(s. s + )| 4l ]d“zp (S)A(S)“<e2p2(s> > (10

(s, 0) = lpz(s)K(S)A(S) cos O(s, 9)[111 <L) — 3]
€2p2(s)

¢ s)

p(s + QA+ q) 5 P(s)k (5).A(s) cos O(s, 0)
—p(s )/ |: RoG.s 191 Ro(s, s+ q) - &,(s,0) + 2] :|dq.

(1)

054201-5



PANAYIOTA KATSAMBA et al.

c. Slip velocity

1 1 .
—Vaip(s,0) = & @ + [ég;aec“) + tasc“’)} +0(e). (12)

M €p(s)

o(1/e) o)

Note that the general activity case, Eq. (9), has been integrated over 6, which gives rise to the
factor 27 on the left-hand side, as well as the 9-averaged terms, () = ffﬂ -d#, on the right-hand
side. Only the leading-order concentration is shown for nonaxisymmetric activities since, in these
cases, we would typically expect a 6 dependence in the leading-order surface concentration, c(®,
which by itself gives the leading-order behavior of the slip velocity at O(1/¢), as seen from Eq. (12).

The effect of changing from open-ended to looped filaments in slender-body theories has been
previously achieved in the context of viscous hydrodynamics of ribbons, called slender ribbon
theory (SRT) [37]. Correspondingly, we find the expansion of slender phoretic theory to looped
filaments takes a similar form to the free-end SPT case, but with § replaced by s+ ¢ in the
integrals, where ¢ is now the integration variable, while also removing the (1 — s?) factor from
inside the logarithmic term. This substitution § — g describes a looped system as the integration
becomes independent of the choice of origin (s = 0). We emphasize that, although similar effects
are observed in other similar theories such as SRT, a full rederivation (see Appendix A) was required
to confirm this.

E. Fourier series representation

At any given arc length, s, all properties on the surface of the filament must be periodic in 6; this
periodicity suggests using a Fourier decomposition in the azimuthal angle [35]. We can therefore
expand the (known a priori) activity in terms of Fourier modes as

2 p(s)A(s, 0) = Ap(s) + Z [A..n(s)cosn®O(s, 0) + A, ,(s)sinn®(s, 0)], (13)
n=1

where Ay = p(s)(A(s)) for (A(s)) = ffﬂ A(s, 0)d6. Similarly, we expand the (to be determined)
solute concentration and slip velocity as

o0
2mce(s,0) = co(s) + Z [cen(s)cosn®(s, 0) + c5.,(s) sinn® (s, 0)], (14)
=1
27 Vaip(s, 0) = V) P(s) + Z [V (s) cos nO(s, 0) + v'P (s) sin nO(s, 6)]. (15)
n=1

From the known Fourier coefficients for the activity, the aim is then to calculate the Fourier
coefficients for the concentration field and slip velocity.

Substituting these Fourier expansions into the leading-order expression for the surface solute
concentration for a general activity, Eq. (9), and noting that

/ In[1 —cos¢ldp = —27In2, (16)
T i —2m
/ cos(ng)In[l —cos¢p]ldp = ——, forn > 0, a7
o n
/ sin(ng)In[1 — cos¢ldgp =0, forn > 0, (18)
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we find that the Fourier coefficients for the solute concentration on the filament surface are given by

T A+ Ag(s) 4
20 :/ [ 0 - }d 1(—) 1
©O=] | Roestal g 9T GG (19
O (s) = %Ac,n(sx (20)
cOs) = lAs,nm. 1)
’ n

This decomposition into Fourier modes is often useful in practice, and will be applied in the
applications to follow.

F. Swimming

Having resolved the effect of activity on the surface concentration field and the concomitant slip
velocity from the SPT loops equations, it remains to determine the motion of the swimmer. In the
laboratory frame, the fluid velocity at the swimmer’s surface is composed of the aforementioned
slip velocity and the rigid body motion of the swimmer

u(s, 0) = Ugy + Rsw X 1(5) + VSlip(Ss 6), (22)

where Uy, is the leading-order swimming velocity and g, is the leading-order angular velocity,
both of which are to be determined. These velocities must be such that the swimmer is force and
torque free, so that the surface traction, f(s, 0), satisfies Eq. (6).

From the slip velocity of the SPT loops equations, we can then calculate the swimming motion of
the phoretic loops using any appropriate slender-body theory (SBT) for Stokes flows. We choose to
use the SBT of Koens and Lauga [36], which relates the Fourier modes of the surface fluid velocity
to the surface tractions via an integral equation, combined with force- and torque-free conditions.
This method is outlined in Katsamba et al. [34].

III. NUMERICAL IMPLEMENTATION OF SLENDER PHORETIC THEORY

Although in some special cases, the SPT equations can be solved analytically [35], in general,
they must be solved numerically for arbitrary geometry and chemical patterning. Alongside this
work, we provide a MATLAB code that can numerically calculate the solute concentration, slip
velocity, and swimming behavior of a filament for a given filament center line, radius, and activity
[38]. This code has been written to solve for the looped filaments presented in this work, as well
as the previously considered case of open-ended filaments [34,35]. This unoptimized code typically
runs within seconds in MATLAB on a laptop.

The inputs are the geometry via the center line, r, cross-sectional radius, p, and slenderness,
€, as well as the activity over the surface, .A. Our code first calculates the arc length coordinates
and renormalizes to a total arc length 2 (if required), before calculating the tangent, normal, and
binormal. From these, a quadrature mesh is generated in the arc length direction, s. Variations in
the activity in the cross-sectional direction, 6, are decomposed into a (truncated) Fourier series, as
described in Sec. IIE, with cosine and sine coefficients stored as real and imaginary parts of the
vector of modes, respectively.

The line integral for the (§-averaged) leading-order surface concentration, c?, is then evaluated
via quadrature, with higher-order Fourier modes simply determined as multiples of the correspond-
ing activity modes. If the activity is axisymmetric, then the next-order contribution, ¢!, is also
calculated via quadrature.

The resulting leading-order slip velocity is calculated by taking derivatives of the concentration.
Derivatives in the longitudinal direction, s, are calculated using a spline interpolant, while 6
derivatives are calculated by appropriately updating the Fourier series.
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(a) Glazed torus (b) Dunked torus (c) Uniform torus

FIG. 2. The active slender tori considered herein. Red regions represent active surfaces, while white
regions represent inert surfaces. The aspect ratio of the swimmers has been increased for easier visualization.
(a) “Glazed” activity profile with azimuthal variation swims along its symmetry axis. (b) “Dunked” activity
profile with local axisymmetry swims in-plane. (c) The uniformly active torus does not swim, but acts as a
pump (stresslet).

The swimming behavior is determined from the slender-body theory of Koens and Lauga [36],
using the same method detailed in Katsamba et al. [34]. This involves discretizing the slender-body
integral equations for the known slip velocities, given as line integrals of the unknown surface
tractions, as well as the force- and torque-free integral conditions, to reduce these to a matrix
equation Ax = b where x is a vector of surface tractions and the swimming velocities, and b is
a vector of the #-averaged slip velocities. The matrix A is determined from the geometry of the
slender object. This linear equation is inverted to determine x = A~'b, and hence the swimming
behavior of the slender filament.

We now use our theory to analyze the dynamics of key examples of slender chemically active
loops and knots. As it is a commonly used chemical patterning, both in theory and practice, we will
mostly consider examples with “Janus” designs, whose surface is comprised of uniformly active and
inert regions. For simplicity, we will also apply a uniform mobility over the whole surface. However,
note that the theory is valid far beyond this, and can handle general variations in surface chemical
patterning. All results are presented for active regions that deplete the solute (negative activity), with
slip flows directed up the chemical gradient (positive mobility); as such, we may typically expect
the net swimming behavior to be towards active regions.

IV. TORUS

The simplest looped filament is the torus (an unknot). The earliest conception of a swimming
microscale torus was given by Purcell [39], where the proposed method of locomotion was tank
treading. Slender-body theories have previously been applied to tori to find the velocity-drag
relations for translation and rotation along different axes [40], which were subsequently extended to
include the effect of electrophoresis [41]. Leshansky and Kenneth [42] later found a series solution
for the swimming of a squirming torus, valid for any axisymmetric distribution of surface slip
velocity. This approach was used by Schmieding et al. [23] to derive a solution for the phoretic
propulsion of any axisymmetrically chemically patterned torus, which led to the first experimental
realization of toroidal active particles by Baker et al. [24].

Here, we demonstrate some of the power and flexibility of our slender theory by deriving
analytical results for archetypal chemically active tori, illustrated in Fig. 2: two types of half-coated
tori that swim and have been previously manufactured [24] (the glazed torus and dunked torus),
and a uniformly active torus (the uniform torus). The uniformly active torus does not swim (by
symmetry), but rather acts as a pump via confinement effects; remarkably, we are able to derive the
strength of this pumping (the stresslet) analytically in the slender case.

A. Geometry

We consider a torus with a circular center line that lies in the (x,y) plane, with a constant
cross-sectional radius p(s) = 1. The torus center line can be parametrized by the arc length, s, such
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that
_ (x() _ 1 [ sin(sm)
re) = (y(5)> T <1 - COS(sr[))' (23)
Then the distance between two points on the center line is
2| (ng
|R()(S, s+ q)l = —|sin| — . (24)
/4 2

Note also that the planar center line has no torsion, hence 6; = 0, and (s, #) = 6, and that the
curvature is constant, taking a value x = 7. Here, we define 8 = 0 as the innermost edge of the
torus, with 0 < 6 < 7 on the top surface. The normal fi lies within the plane of the center line,
pointing towards the center of torus, and b is directed upwards out of the plane of the center line,
b=ce,.

B. Glazed and dunked tori

Swimming at the small scale requires symmetry breaking [39]. A simple mechanism to induce
swimming on a highly symmetric particle, such as a torus, is to vary the activity over its surface.
The resulting asymmetric concentration gradients can then generate a net slip flow past the torus
that propels it forwards.

We consider two main types of activity variation, depicted in Fig. 2: a glazed torus with activity
that varies in the slender (azimuthal) direction [Fig. 2(a)], and a dunked torus, which varies around
the loop but is locally axisymmetric [Fig. 2(b)]. By symmetry, the glazed torus must swim out of
plane and the dunked torus swim in plane, both with no rotation.

We calculate the swimming velocity of the glazed torus analytically by decomposing into Fourier
modes in the azimuthal direction. Here, we present results for a sharp transition in the activity
(Janus) with one half inert and the other half active, i.e., A = —1 in one half and A = 0 in the
other, with uniform mobility M. In Appendix B, we also present the calculation of the swimming
for a smoothly varying sinusoidal activity around the azimuthal direction. For the dunked torus,
we determine analytic expressions for the solute concentration and the slip velocity, but resort to
calculating the resulting swimming numerically.

1. Glazed torus

For a glazed torus with a Janus profile, that is one half is active and the other inert, the activity is
given by

-1, 0<0 <m,
Als, ) = {O - <6<0 (25)
and can be decomposed into Fourier modes as
oo
1
2m A(s,0) = —m + ZZ —[(=1)* = 1]sinnf. (26)
n=1 n
The leading-order surface concentration is then
8 1
27¢9(s,0) =—7In (—) +2 Z —[(=1)" = 1]sinno, (27)
€m —n
and the slip velocity can be calculated to be
M =1
Vilip (5, ) =—& (s, Q)Z —[(—=1)" — 1]cosnd + O(1)
e —n
M 5
= — —arctanh[cos(6)]és (s, 0) + O(1). (28)
b143
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Note that this is the same result as the azimuthally Janus slender phoretic filaments that was found
in Ref. [35].
This can be integrated around a cross section to find the zeroth Fourier mode for the slip velocity

2M

viP(s) = — e, (29)
€

where we have used the fact that, since the torus is planar, the binormal points along the symmetry
axis, b =e,.

To calculate the swimming speed, Ugy, we first need to consider the surface tractions, f, acting
on the torus. We focus on a torus that has a uniform mobility, M = const. Using symmetries of
Stokes flows on a torus with the given slip, we find that the leading-order traction must act in the z
direction only, fy(s) = fye,, and fy must be constant. The slender-body theory of Koens and Lauga
[36] then gives the Fourier coefficients for the surface fluid velocity in terms of the surface tractions.
In our case, we find that the zeroth Fourier mode for the surface fluid velocity, Uy, which is the only
mode important to determine the translational motion, is

4Uy(s) = foez|:1 + ln< 2642)} +0C(e). (30)
€°TT

Since fy is constant, the condition of total zero force on the swimmer is only satisfied when
Jo =0, and so the surface fluid velocity is zero, Up = 0. But this fluid velocity is composed of the
slip velocity and the swimming velocity, Uy = US¥™ + v3'®, and so the swimming velocity can be
simply determined as

Usw = Mez. 31D

b143

where we note the change in factor of 27 from Eq. (29) due to the initial azimuthal averaging
to obtain the Fourier modes. This swimming speed for the glazed torus is plotted in Fig. 6(a) as
function of €, for comparison with later results. Note that although the swimming speed appears to
diverge as € — 0, the velocity has been scaled by a factor AMe /D when rendered dimensionless
(for asymptotic convenience) and so the fully dimensional speed is in fact constant with respect to
slenderness.

2. Dunked torus

We now consider a second example of a Janus torus, the dunked torus, which is patterned in
a perpendicular manner to the glazed torus, so that the activity is uniform over any cross section,
as illustrated in Fig. 2(b). This torus again has a constant cross section, p(s) = 1, but now the
axisymmetric activity profile is given by

-1, O0<s<l,

Als) = {O, -1 <s<0. (32)

We split the results into active and inert regions, and calculate the integrals separately in each

region. These integrals can be evaluated analytically, using the fact that d/dx [Intan(wx/4)] =
7 /[2 sin(;rx/2)]. For notational compactness, we define the functions

7(x) = tan (%), o(x) = +IM (33)

sin (T)

In the active region, s > 0, the concentration profile is given by
1 64 b4 64 5
c(s,0)=—=In| ——=1t(1 —5)1(s) | —€=cosOiIn| ——=1t(1 —s)t(s)| — 3} + O(¢”), (34)
2 | w2e? 2 w2e?
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whereas in the inert region, s < 0, it is

(1+me cos@)] (1l —¥)
2 7(s)

The resulting slip velocity in the active region, 0 < s < 1, is therefore given by

. _n;\/l |:<0(s) =S s)>f - (m [:2‘;1(1 - s)f(s)} - 3) sin9é9:|, (36)

and in the inert region, —1 < s < 0, it is given by

M —o(l—s)\, 1—
R a [ ) B Bl P @

c(s,0)=—

] + 0(€?). (35)

Note that these results are functionally the same as found for a slender circular arc with an active
middle section [35].

We numerically calculate the swimming behavior (from the geometry and activity, with the
numerically calculated concentration and slip agreeing closely with the presented analytical results).
Results for the swimming speed are shown in Fig. 6(b) (presented later in the text for comparison
with other results), showing a near constant behavior for the dimensionless in-plane swimming
speed as a function of the slenderness, Uy ~ 1.4, with no rotation. We also consider the effect of
varying the activity coverage from completely inert to completely active. As shown in Fig. 6(c), the
maximum swimming speed is obtained for the half-active dunked torus, with no swimming when
completely active or completely inert.

C. Uniform tori

The simplest active torus has uniform activity, A(s) = —1 [as shown in Fig. 2(c)]. The inside
walls of this uniform torus have enhanced solute depletion compared to the outside, due to geometric
confinement, creating a surface concentration gradient that drives a slip flow from inside to outside.

The symmetry of the uniform torus means that it will not swim, but, in the far field, the fluid
velocity is given by a straining flow, which has the general form

@ 3(y-S-yy
wy)=————
Y Raulyp

where S is a second-rank tensor called a stresslet. Our aim is to find an expression for this stresslet
from our slender phoretic theory for loops.
We begin by noting that the integral in the ¢’ term can be evaluated as

! /2 1 16
T2 L lgg=1m| =], 39
/1[|sin<nq/2>| |q|} 1 n[nz] &9

and that the integrand in the expression for ¢!’ can be simplified using

(38)

. cos(mrqg) — 1 2  ,(mq
Ro(s, s +¢g) - €,(s,0) = —————cosf = ——sin ER cosf. 40)
b4 T

From these, we find that the concentration field on the surface of the torus is given by
c(s,0) = —L — em cosO[L — 3] + O(?), (41)

where L = In(8/em). This differs from the surface concentration of a uniformly active circular arc
in the limit of closing the loop [35], since the end effects are important there; however, this result
is equivalent to setting s = O everywhere in the SPT result for a full circular arc (since there is no
obvious choice of origin once the loop is closed).
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Since the uniform torus has an axisymmetric activity, the leading-order slip velocity will be O(1),
with contributions from both the leading-order surface concentration gradient in the s direction and
next-order surface concentration gradient in the 6 direction. However, the leading-order surface
concentration is uniform. Therefore, the leading term in the slip velocity is

1 1 3
Hvshp(s, 0) = égmagc(” + 0(e) = & sin@[L — 5} + O(e). (42)

This can be expanded in terms of the tangent, normal, and binormal vectors that represent our
slender curve and integrated in 6 to find the zeroth Fourier mode for the slip velocity

o T 3
voP(s) = / Vaip(s, 0)d6 = —hi(s)7*M [L - E] (43)
-
We wish to determine the stresslet of the resulting flow, which can be written as
S / ! [T+ ! (ry” lT [[]1¢dS (44)
= - - — =Tr
= s 2= 2= 3 = ’

and the tensor, I, can be written for an arbitrary slender looped swimmer as
£ = S(g : nf) - 2/’Lunf = [l’(s) + Eép(sv 9)]f(ss 9) - 2/’Lvslip(s9 Q)Hf(sv 9)1 (45)

where u is the fluid velocity and ¢ is the stress tensor, and we recall that the vector S denotes a point
on the surface of the swimmer (which should not be confused with the stresslet tensor S).

Note that, since the uniform torus will not swim, the surface fluid velocity is equal to the slip
velocity, U = vgjjp. For a uniform mobility, M, Eq. (43) shows that the first mode of the surface
fluid velocity is Uy(s) = Uphi(s) with Uy = —m> M[L — 3/2]. From the symmetries of the Stokes
flow equations, we conclude that the surface traction due to such a slip flow on a torus can only
have a component in the normal direction and with a constant magnitude, fo(s) = fofi(s). Using the
slender-body theory of Koens and Lauga [36], the relation between the traction f; and fluid velocity
Uy is given by

4l
T 2L-5

Noting that the surface normal n; = €, and so the second term in the expression of I integrates

Jo + 0(¢) = —27°*M

2L=3 .0 46
L—5 (e). (46)

. . lip lipp R
to zero since [ Vyip€,d6 = v. Th + v; 'b = 0, as well as Vi, - €, = 0. Therefore, we can evaluate
the surface integrals of I as

: efo (1.,

I'dS=e¢ rfpds = —— nn ds, “n
s -1 T J
1
2

/Tr[L]dS:e/ rofods = — 20 (48)

s = —1 T
where we have used that r = —f/7 for a circular center line of length 2. The integral [ fifids =

diag(1, 1, 0). Hence, the leading-order expression for the stresslet due to a uniformly coated torus is

|lwn

_amelnE) =310 ] 0 o, )
3 [n(Z)-51\o o —2

Rather remarkably, our slender theory has made it possible to derive the strength of this straining
flow analytically for a uniformly active torus. The stresslet of an active particle is important for
understanding far-field interactions of active particles with boundaries and other particles, and is a
key component in developing theory for active suspensions.
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(a) Squashed torus (b) Centreline profiles (¢) Swimming speed
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FIG. 3. Deforming the center line of a uniform torus can induce swimming. (a) A squashed torus that
translates in plane, which has a constant cross-sectional radius but asymmetric center line. (b) Top: Profiles of
the deformed center line for the considered squashed tori with fixed n = 5, and varying b =0, 0.5, 1, 1.5, 2.
Bottom: Center line profiles when varying n from 0-5 with b = 1 fixed. Note that when b = 0 or n = 0, the
center line is a circle and the slender object is a uniform torus. (c) In-plane swimming speed for the squashed
torus as a function of the deformed center line parameter, b, for various fixed n =1,...5 when € = 1072,
Positive U corresponds to rightward swimming in (a). These squashed tori do not rotate.

V. PROPULSION FROM GEOMETRIC ASYMMETRY

While a uniform symmetric torus cannot swim, it is well established that particles with uniform
chemical activity may swim via geometric asymmetries, which lead to variations in solute concen-
tration near the particle surface [18,43,44]. We now use our theory to demonstrate that a squashed
uniform torus may translate, and a bumpy uniform torus may rotate.

We begin by maintaining a constant circular cross section, and deforming the center line of the
torus in the manner given in cylindrical polar coordinates (r, ¢, z) by

r= g|:1 + bcos™ (g)], (50)
b4 2

where n is an integer, with higher n corresponding to a more localized deformation, and b is the
amplitude of the center line deformation. Here, « is chosen to rescale the geometry such that the
arc length of the swimmer is 2. Note that ¢ € [0, 277) is not an arc length parametrization, and so
we must numerically find an appropriate representation of the curve for use in our slender phoretic
theory.

An example of such a deformed torus, which we term a “squashed” torus, is shown in Fig. 3(a).
In Fig. 3(b), we show examples of the center line profile when varying b and n independently. Note
that when b = 0 or n = 0, the center line is circular and the filament is the undeformed uniform
torus previously considered in Sec. IV C.

The swimming speed of these squashed slender tori are calculated numerically using our slender
theory and plotted in Fig. 3(c) for different values of n when the slenderness € = 1072, We see that
these asymmetric center line deformations can generate small, but significant, swimming speeds
without rotation. The direction of motion depends sensitively on the precise shape, with possibility
of motion in either direction along the symmetry axis as the deformation from a circular center line
is increased.

Alternatively, we can maintain a circular center line, and generate asymmetry by varying the
cross-sectional radius. By creating longitudinally asymmetric (sawtoothesque) bumps, concentra-
tion gradients can be created in a similar manner to Michelin et al. [43]. If these bumps are arranged
in a rotationally symmetric manner, then we may expect this geometric alteration to lead to rotational
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(a) Bumpy torus (b) Rotation speed
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FIG. 4. Deforming the cross-sectional radius of a uniform torus can induce swimming. (a) A bumpy torus
that rotates, with a circular center line but varying cross-sectional radius. (b) Rotation speeds as a function
of the bump amplitude, a, for different numbers of bumps, k = 1,2, 3,4, 5, when € = 1073, For k > 2, these
bumpy tori do not translate. The k£ = 1 bumpy torus has a translational speed U ~ 0.75a towards the raised
bump.

motion. For a finite number of asymmetric bumps around the loop, we may expect the phoretic
swimmer to rotate if these bumps all point in the same direction around the curve, whereas a net
swimming motion may be achieved if not.

Inspired by previous work on pumping in autophoretic channels [43], we consider one possible
deformation of the torus cross-sectional radius that retains some rotational symmetry, in the form of
a sheared sine wave, for which we utilize the second Clausen function. The cross-sectional radius
of the loop is given by

p(S)Zﬂ[1+aZSin::¢], (51)

n=1

where a < 1 is the amplitude of the variation in cross section and k gives the number of waves along
the loop. The constant 8 here is chosen to enforce that max p = 1. An example of this swimmer
with k = 5 is shown in Fig. 4(a). By symmetry, we might expect swimmers to rotate for k > 2,
while the case k = 1 might result in a loopy drift motion.

The resulting swimming for various fixed k and varying a is shown in Fig. 4(b). For k > 2, the
deformed torus spins about its central axis, with negligible translational velocity, as expected from
symmetry arguments. Increasing the number of bumps increases the rotational speed. However,
when there is only one bump on the torus (k = 1), these symmetry arguments do not apply, and the
slender deformed torus translates in plane with a smaller rotation about its central axis, which would
combine to give a large looping trajectory in the plane of the torus.

VI. TWISTS AND KNOTS

We conclude our results with a demonstration of the flexibility of our theory to examine more
complex surface chemistries and looped geometries, such as twists and knots. We begin by twisting
the activity strip of a glazed torus as it passes around the loop [Fig. 5(a)]. The resulting dimension-
less swimming behavior is plotted in Fig. 6(a) as a function of the slenderness. The translational
swimming speed is comparable to that of the glazed torus, with a speed U =~ 0.21/¢. However,
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(a) Twisted torus (b) Glazed trefoil (c) Dunked trefoil

FIG. 5. Geometric and topological variations from uniformly active tori can induce swimming. (a) A
twisted torus, with an active strip that rotates around both the longitudinal and azimuthal directions, swims in
plane and rotates. (b) A glazed trefoil, topologically distinct from a torus, swims and rotates about its rotational
symmetry axis. (¢) A dunked trefoil swims in plane and rotates about its swimming direction.

while the regular glazed torus swims out of plane with no rotation, this twisted torus swims in plane
while rotating about its swimming axis, with a rotation speed 2 & 1.00/¢.

We are also able to determine the swimming behaviors for more complex topologies than the
torus, for example knots. Here, we focus on a regular representation of the trefoil, given by the
parametrization

x = y[sin¢ + 2sin2¢],
y = y[cos¢ — 2 cos2¢], (52)
z = — ysin3¢,

where ¢ € [0, 27), and y is a constant chosen such that the total arc length is equal to 2. The
considered examples are shown in Figs. 5(b) and 5(c). As with the tori, we consider glazed and
dunked trefoils, which are half active and half inert.

The glazed trefoil, with activity variation around its slender cross section, translates similarly to
the glazed torus, with a speed U & 0.25/¢ in the out-of-plane direction, e,, as shown in Fig. 6(a).
However, due to the chirality of the trefoil, it also rotates about its swimming axis, with a rotational
speed 2 ~ 1.04/¢.

Similarly, the dunked trefoil’s swimming behavior is much like the dunked torus, but with added
rotation about the swimming direction, as shown in Fig. 6(b). Both the dimensionless swimming and
rotation speeds remain approximately constant with the slenderness, €, but, perhaps surprisingly,
the dunked trefoil translates in the opposite direction to the torus, away from the active end, with a
significantly larger rotation speed.

This barrel-rolling swimming behavior of the dunked trefoil has a complex dependence on the
coverage of the chemical activity, with swimming possible in either direction depending on how
much of the knot is coated. In Fig. 6(d), we show the numerically calculated swimming velocities of
a dunked trefoil as the coverage of the active region is varied. In particular, it shows the translational
and rotational speed for an active region that extends for an arc length s either side of the one of the
most extreme points of the loops. We observe a complex relation between coverage and swimming
speed that is neither symmetric nor monotonic. In fact, the direction of swimming changes as the
coverage varies. The maximum swimming observed is approximately U =~ —3 when s. ~ 0.75,
whereas the maximum rotation occurs for a different activity, with Q ~ —19 near s, &~ 0.4. This
nontrivial behavior occurs as the activity interface moves around the knot, causing the strong slip
flows close to the jump in activity to be oriented in different directions, as well as variation in the
contributions to the surface concentration due to points that are distant in arc length but relatively
close in space (but still far relative to the slenderness).
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(a) Glazed swimming (b) Dunked swimming
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FIG. 6. Swimming behavior of tori and trefoils with different chemical patterning. Solid lines represent
translational velocities, dashed lines are rotational velocities. (a) The glazed torus (blue), twisted torus (red),
and glazed trefoil (yellow) swim with a dimensionless speed of O(1/¢). Both glazed examples swim parallel
to the axis of rotational symmetry, e,, whereas the twisted torus swims in plane. The twisted torus and glazed
trefoil rotate (clockwise) about their swimming axes, with rotational velocities of O(1/¢€). (b) The dunked torus
and dunked trefoil swim in plane, with the dimensionless swimming speed appearing near constant with €. The
dunked trefoil also rotates about its swimming axis. (c) The (in-plane) swimming speed for a partially dunked
torus with activity A = —1 in s € (—s., +s.) and A = 0 elsewhere. Here the slenderness is € = 1072, and
there is no rotation for any coverage. (d) The in-plane swimming and rotation speed of a dunked trefoil as a
function of the half-coverage, when the activity is centered around the extremity of a loop [such as the example
shown in Fig. 5(c), corresponding to a half-coverage 0.5].

VII. OUTLOOK

Slender and flexible active filaments are an exciting new class of self-propelled active matter, with
a rich variety of dynamical behaviors. In this work, we have studied the swimming of such looped
and knotted active filaments. The design space of possible filamentous knots grows staggeringly
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quickly with the number of possible crossings, and that is before variations in surface chemistry and
cross-sectional radius are incorporated. We have provided a rapid and simple theoretical approach,
that amounts to evaluating a line integral and its derivatives, followed by solving a line integral
equation, to elucidate the dynamics of these active filaments.

This complements our recent work on a slender theory for unlooped active filaments [34,35],
with the important distinction that, in the looped case, there are no end-point effects, where the
asymptotic assumption of slenderness breaks down, making the slender-body theory accurate at
every point on the filament.

Crucially, the theory is amenable to closed form solutions for the dynamics, particularly in the
case of the torus, for which we were able to calculate swimming speeds and pumping strengths
analytically. These solutions can not only provide a benchmark for testing other numerical schemes,
but also generate simple expressions to be used as a basis for suspension modeling. Furthermore, the
speed of calculation makes the theory suitable for coupling to elastic beam/loop equations, allowing
rapid simulation of flexible phoretic loops. Our (currently unoptimized) code [38] typically solves
within seconds in MATLAB on a laptop, comparable to state-of-the-art, highly optimized routines for
nonasymptotic boundary integral representations running on multiple cores [45], yet has room for
significant improvements in both accuracy and runtime.

Additionally, the framework of our theory may be adapted to account for more complicated reac-
tions than the zeroth-order kinetics that we have presented. For example, in first-order kinetics (finite
Damkohler number), which may be required to reproduce the size-dependent swimming speeds
observed experimentally [46], the activity is proportional to the local solute concentration, and so we
may expect the equivalent of our slender phoretic theory to result in (implicit) integral equations for
the surface concentration, that could then be solved numerically. Increases in Damk&hler number
typically tend to decrease swimming speeds, but without significant qualitative impact on dynamics
[31].

From a small number of geometries and chemical patterns, we have found several distinct fluid
flows and modes of swimming, including: perpendicular and parallel translation, bulk pumping
with and without rotation, stationary spinning, circling, and barrel rolling. We hope that, in the near
future, our theory can be utilized to explore the full extent of parameter space, and impart novel
functionality to active matter systems.

One potential area of interest is in active colloids research, where slender active filaments may
have rich new dynamical behaviors, as seen in related systems with adaptive locomotion through
constrictions [47], dynamic clustering of Brownian rings [48], and spontaneous oscillations [49].
In nature, colloids (such as in milk, smoke, fog) are generally topological spheres, as their shape is
driven by minimizing interfacial tension. However, recent work on these passive (nonswimming)
colloids has shown that particle topology can drive interesting phenomena. For instance, when
multiply connected particles were introduced into a nematic liquid crystal, the colloids created
topological defects in the liquid crystal that were dictated by the particle topology [50]. Similarly,
knotted colloids fabricated via two-photon polymerization (2PP) were able to pattern bulk and
surface defects in nematic fluids [51]. These results in passive topological colloids suggest that tying
the knot on active filaments may provide further behaviors, particularly in bulk, that we have yet to
predict and are only beginning to be explored [52], and we hope that understanding the behavior of
single particles, as discussed here, is the first step towards achieving this.
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APPENDIX A: DERIVATION OF THE SLENDER PHORETIC THEORY
OF SLENDER ACTIVE LOOPS

Here we give a full derivation of the slender phoretic theory for looped filaments.

1. Boundary integral equation for the diffusion equation
We use Green’s second identity for the concentration field ¢(X) and the well-known Green’s func-
tion, G(x, X) = m, for Laplace’s equation in an unconfined, three-dimensional region, forced
by a point sink at %. This Green’s function has V?G(x, %) = —8(x — X). (Note the translational
invariance in our unbounded domain, hence the notation G(x, X) = G(x — X) = 1/47|R|, where
R = x — &) Asin Katsamba et al. [34], we apply Green’s second identity to the fluid domain outside
the filament, V, bounded by the filament surface S with normal ny pointing out of the filament, to

obtain
he(x) = - / [C(i)“f 6oy AR ]dS(i), (A1)
4 Jg Ix — %3 |x — X|

where L =1/2forx e S, A =1forxe V,and A =0forx ¢ V [27].
Substituting the filament geometry into Eq. (Al) for two points on the filament surface, x =
S(s, 6) and X = S(5, 0), and setting > = 1/2, gives the boundary integral formula

e 9)—/1fn I:A(ﬁ,é) s o8 . O)R (as asn 4B &, (A2)
=L L ITIR |05 " 90 IR 95 90

where the vector between two points on the surface is
R =S(s,0) — 8@, 0) = Ro(s,3) + €[p(5)&,(s, 0) — p(3)&,(5, H)], (A3)

and Ry = r(s) — r(5) is a vector joining the points on the center line. Note that the surface element
and its magnitude are given by

08 S _ do(s)g 1 O, (s, 6 A4
3 30 = €p(s )< ——1t(s) — [1 — €p(s)k(s)cos O, (s, )) (A4)
08 S p() ]’ >
3 <29 ep(s )\/[ s ] + [1 — ep(s)k(s)cos O]°. (AS)

Similarly to Koens and Lauga [37], in the case of looped filaments we replace § by s + ¢, and
fjl ds by fll dg, so that

1 T
2me(s, 0) :/ [Ki(s,0,5+q,0)+ Ky(s,0, s+ q,0)]dbdq, (A6)

1J—m

where the expanded kernels K (s, s + ¢, 9, 9), Ky(s,s4+q,0, é) are the same as in Katsamba et al.
[34], but with § replaced by s + ¢, so that

p(s+q)A(s +q,0)

K, = R| [1 —€ep(s+ g)k(s+ g)cos O(s + g, é) + 0(62)], (A7a)
.0 . - ) .
Ky = p(”"');('i” 'R {6, (5 +4.0) — e[/ + PG5 + )
+p(s + @k (s + q)cos O(s + q, 0)e, (s + g, )]} (A7b)

054201-18



SLENDER PHORETIC LOOPS AND KNOTS

2. Matched asymptotic expansion
a. Quter region

In the outer region, points are relatively far apart with ¢ = O(1), hence points on the center line
are separated by Ry (s, s + g) = O(1), and so we can approximate the vector between the two points
on the surface by the difference between the center line near them, R ~ R,. Expanding in powers
of € to first order, we find that

_ (5.6) ©0  _ oa _ A 2
R=Ro(s.5+¢)+ €Dy 0 DED = p()y(s.0) = pls + Op(s +0.0).  (AB)

The outer expansions, K; © and K@, of the kernels K; and K>, as defined in Egs. (A7a) and

(A7b), are similarly expanded to give

p(s + q)A(s +¢q,0)

Kl(o) —
IRo(s, s + q)I
> RO (s,0) 2
x 11 —€|p(s+q)(s+q)cosO(s +¢q,0) + Rol Doy | TOE L (A9
© _ PG +qe(s+4q,6) L 2 5.6 \ . a 3

K'Y =€ INE Ry e,,(s—i—q,@)—i—e(’D(Hq’é)) €,(s+4q,9)

—€Ry - [0'(s + (s + q) + p(s + gk (s + q) cos O(s + ¢, )&, (s + g, 6)]

_ 3Ro-DPY)
—e(Ry - &,(s +q. 9))% +0(eN) . (A10)

b. Inner region expansion

In the inner region, the distance between points is small so that g = O(¢) and we let g = €,
where x is O(1). The displacement vector, R, can then be expanded as

R =€eR{) + 'R + 0(e), (A11)
where
R = —xi(s) + p(5)[&,(s, ) — &,(s5. D)), (A12)
N 2 d ~ ~
Rg)) = - I:X?K(s)ﬁ(s) + x 'Ois)ép(s, 0) — xp(s)k(s)cos O(s, O)t(s)]. (A13)

The inner kernels, K;® and K,V are then found to be
K0 p(s)A(s, 0) A(s, 0)
O - _
eVx2+v: Vi ty
P2 ($)A(s, 0) [k (s)x>
o+ 7P
+ ——L—a[p() A5, B)] + O(e), (A14)
Vxi+y?
8 -
@ _ P (s)c(s, 8) ~
K2 —W[COS(Q — 0) - 1] +
p(s)c(s, Bk (s)cos Os, 6)
- (X2 + 22

- 02 (s)k(s) cos O(s, )

[cos O(s, B) + cos O(s, 0)] + x do(s)
2 ds

[cos(6 — ) — 1]:|

xp(s)

2 12 eos@ = 0) — 1lailp)cts. )]

X2 2 ~
Y + p“(s)[cos(d — ) — 1]
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p3(s)c(s, 0)
o+
2

+ X?K(S)[COS O(s, 6) + cos O(s, 9)]} + O(ec), (A15)

dp(s)

o [cos(B —0) — 1]

[cos(6 — ) — 1]{)(

where we have used that
RG | = VX2 + 2, (A16)
y2 =2p%(s)[1 — cos(® — B)]. (A17)

We will perform the integration with respect to ¢, following Koens and Lauga [37], by using the
values of integrals of the form

. 1 i asinh(l/ey) sinh
Hj’ = / X —A/qu = 6/ y’_]'H—,_?dqﬁ, (A18)
-1 (x> +y? asinh(—1/ey) cosh/~1 ¢

where y is independent of ¢, i, and j are positive integers, and we recall ¢ = € x. To obtain the
last integral here, we used the substitution x = y sinh ¢ (hence dg = edx = €y cosh ¢ d¢), as in
Koens and Lauga [36].

We note that H J’ = 0 when i is odd, because then the integrand is an odd function of ¢ or ¢. The
other relevant values of H are calculated to be

2 2
Hlo = 26 ln <_> + 0(633/), H:? = _62 + 0(63)7
€y 14
H? = €|l 4 -2+ 0(*y?) H2—2—6+0(3) (A19)
3_6n627/2 €y), 5= 3,0 €).

Integrating the inner kernels with respect to g therefore gives

1 . - Yl 4 _
/ KVdg = p(s)Als, 9){[1 —€p(s)k(s)cos O(s, 0)] |:1n < 2 2)}

1

+lep(s)fc(s)[cos@(s,9)+c08®(s,9)]1n <—2 42 2)} 0, (A20)
2 €‘y‘e
IK(i)d— g 1+ (s, 0 1+11 S
/,1 > dg = c(s,0)) — 1+ ep(s)x(s)cos OCs, 0) En(ezy2e2>

— %ep(s)ic(s)[cos O(s, 0) + cos O(s, 0)]} + 0(62c). (A21)

Expanding the logarithm term, we note that

4 2 2 -
In (W) = (ezpzw[l ~cos(@ — é)]) =l <m> ~ ol = cos@ =0l (A22)

¢. Matching region

To match the inner and outer solutions, we must first expand the outer solutions in terms of
the inner variables (or vice versa, which gives the same result), for which we use the superscript
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(o) € (i). We find that the expanded outer kernels are

K](o)e(i) — M + sign(q)ds[p(s).A(s, ]

gl
—%e Wp(s)x(s)[cos (s, 0) — cos O(s, 0)] + O(e?), (A23)
KO0 Z 2L o 5+ o). (A24)

lql?

After integrating over g, we lose the sign(g) term so that the integrated kernels in the matching
region are

1 w » .
/ dg / dé K{<®
—1 —1
Vdg [*
:,o(s)/ ﬁ/ A(s, 8)dd
1

— —6,0 (s)/((s)/ Tl A(s,é)[cos O(s, 0) — cos O(s, 0)]d + O(€?), (A25)
1

1 b4
/ dq / 4G KO — &2 / o / P (s)c(s, B)[cos(8 — §) — 11[1 + 0(e)1dd = O(E%¢).
—1 —r -1 T J-n

(A26)

d. Full expression for the expansion of the concentration field

The full boundary integral equations are approximated by the adding the outer and inner
expansions and subtracting from each the common part,

1 b4
2me(s, ) ~ / / (KD + K + K + K — KV — kP dAdg
—1J-n

I/ p(s)A(s, 9){ In <6247> + 6,0(s)/c(s)|:cos O(s, 6)1In <6_12/@>
+ cos O(s, 6)In <%>:| }dé

+ /ﬂ c(s, é)[ —1- %ep(s)lc(s)cos (s, 0)

¥4

1 5 ! 0
+ S €P()K(s) cos Os, 9)[1 +in (ezy—zezﬂ }de

—p(s)/ | | A( 6)do + —6,0 (S)K(S)/ / A(s, 0)[cos O(s, 0)

1 gl
— cos O(s, 6)]db

T p(s + ) AGs + ¢.0) ~
+/ /_n IRo(s, s + q)| {1—e[,O(s+q)/c(s+q)cos@(s+q,9)

Ro (s.0) =
+|R0|2 'D(s+q,é) dodg
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1 pm a)
p(s+q)c(s+4q,0) 5 s, . >
+6// q|R0|3 1 Rooep(s—l—q,@)—i-e(’DE_f)g)) &,(s+q,0)
-

—€Ry - [p'(s + t(s + q) + p(s + @)k (s + g) cos O(s + q, 0)&,(s + ¢, 0)]

3Ry DYDY
—e(R0~ép(s+q,9))T2’ dddg
+ 0(e?). (A27)

e. Leading-order concentration

Removing terms of O(e) or higher, we find an expression for the leading-order concentration
field

e 4 o - -
2me(s, 0) %/ 0()ACs, 9)ln< )d@ —/ c(s, 6)do

-7

o(s + A +q,0)
— A(s, 6)dd dfdg. A28
”(s)flm e +/ /_ IRo(s, s + )| . (A)

Noting again that the log term can be expanded as in Eq. (A22), we find that the leading-order
concentration field satisfies

! AGs+a)  pEAG)
27 (s, 0) + (c© zf [P(”‘I)( - }d
T OO = 1T Ryss + ) s

+ p(s){A(s)) In <%) — p(s) fﬂ A(s, 8)In[1 — cos(6 — 6)]d6,
€-p=(s) n
(A29)

where (f(s)) = ffn f(s,0)d0 is the O-integrated value of a function f(s, #). Integrating this over
6, we find that

2V = [ 1 [MS FAGTg)  p(5)IAW))
S Ja L IRoGs, s+ gl lq

d A 1 4 A30
j| q + p(s){A(s)) ﬂ(m) (A30)

where we have used that ffﬂ In[1 — cos(d — 6)]df = —2m In(2). This can be substituted back
into Eq. (A29) to obtain the leading-order slender phoretic expression for looped active
filaments:

2c(s. 0) = /[p(s+q><A(s+q)> p($)(A(s))
“2J).L IRe(s, s+ 9)l lq

—p(s) | A(s,0)In[1 — cos(d — 9)]dA. (A31)

-7

}dq — p(){A(s) In (ep(s))

Note that for an axisymmetric activity, A(s, 8) = A(s), the O-integrated activity is simply
(AC(s, 0)) = 2w A(s). In this case, we therefore find a simplified leading-order expression for the
concentration

2605, 0) = / ‘ [Ms + DA +9)  p($)A)
1L [Ro(s, s+l lql

4
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f. Next-order concentration

Collecting the O(¢) terms from Eq. (A27), we find that

21V (s, 0) + (¢ V(s))

b/

1 4 ~ e?y? ~
= —p 2(s)k(s) A(s, 8)| cosO(s, 8)In <m) + cos (s, 6)1In <—2) do
yZe 4e

-7

-7

n lp(s)x(s) " s, 9){ — cos O(s, 0) + cos O(s, 9)[1 +In (_2 42 z)] }dé
5 €“y“‘e

+ = ,o (S)K(S)/ Tl A(s,é)[cos O(s, 6) — cos O(s, 0)]dd
1
_ P(S‘FCI)A(S‘FCI,é) ~ (5,0) ~
/ /;n RoG.s + ) [p(s—l—q)lc(s—i-q)cos Os+gq,0)+ R, |2 ’D(Hq 9):|d6dq
1 T 0) Fa
+ / / 4 (s“)lcR |(3S+"’9)Ro.ép(s+q,é)dédq. (A33)
- 0

If the activity is axisymmetric, then this expression can be simplified since some of the integrals
vanish, for example f €,(s, 6)dd = 0 and f cos O(s, 6)do = 0. In addition, y can be expanded
using Eq. (A22). The ﬁrst-order concentration ﬁeld can then be rewritten as

2nc<1>(s,9)+/ (s, 6)do

-7

b

—12()()%1() O( 9)21<#>—/1[1— (6 —6)] |df
= 50" (W ()A(s)) cos O(s, 7 In pEpTpYe _ﬂn cos

+ /ﬂ cos O(s, 6) In[1 — cos(d — é)]dé}

T

i cos O(s, 8) In[1 — cos(f — @)]dé}

-7

1 0
— gp(s)K(s)c( V()4 27 cos@(s,9)+/

1
— 7 p*(s)k (5).A(s) cos @(s,@)/ —

ps + ) A(s +q) A
-2 ———— " Ry(s, s +g)dg - &,(s, 0). A34
p()/ RoGs. 5 + ) ol q)dq - &,(s,0) (A34)
The integrals in § can be evaluated to give
T ~ ~
/ In[1 — cos(d —6)]d0 = — 27 In2, (A35)
b/
/ In[1 — cos(8 — 6)] cos O(s, 8)dd = — 27 cos O(s, ). (A36)

Finally, we note that when this expression is integrated over 6 we find that
J™_c¢M(s,6)d0 = 0; hence the O(e) contribution to the surface concentration for an axisymmetric
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activity is

(s, ) = lpz(s)K(s)A(s) cos O(s, 9)[1n <L> - 3:|
€2p2(s)

p(s + QAG + ) ) P ()i (s).A(s) cos O(s, 0)
_p()/ [ RoGs s+ qp 005 +a) &0+ 204l }dq

(A37)

3. Slip velocity

The normal to the filament’s surface, pointing out of the filament, is

05,0 = [1 — ep(s)K(s)cos O1&, (s, 0) — edP“)t(s) (A38)

\/[1 — €p(s)k(s)cos OF + € (dp(s))

Combining the boundary conditions for the activity and slip velocity allows us to write the slip
velocity as

Vaip = M(x)(1 —nyny) - Ve = M(Ve +npA) onS, (A39)

since A = —ny - Vc. Using the local cylindrical polars (with the axisymmetry axis along t(s)), we
then find that the concentration gradient can be written as

A A 1
Ve=1t(t-Vc)+&(& -Vc)+¢&,(&, - Vc) =tdc+ e —dgc +€,(&, - Vo), (A40)
€p

where we have used thatf - V¢ = d,c and & - Ve = ep(x) dgc.
For the final term in Eq. (A40), we apply the activity boundary condition, which says that ny -
Vc = —A. This means that &, - Vc = —.A 4 O(¢), and so the slip velocity can be rewritten as

1 ~ 1 R
/VVSHP = tosc + eegagc + ep(ep -Ve)+ Ilf.A

X 1
= tosc + €9—dgc + O(e). (A41)
€p
This gives the required result, as given in the main text.

APPENDIX B: GLAZED TORUS WITH SINUSOIDAL ACTIVITY

An activity A = —sin6 decomposed into a Fourier series has only one nonzero coefficient:
the first sine mode of the activity, A, | = —27. We therefore find that the leading-order surface
concentration is given by

¢ = —sing, (B1)

and the leading-order slip velocity is
M, M o . N
Viiip(s, 0) = ——&(s,0)cos 0 + O(1) = —2—[(1 + cos 260)b(s) — sin20n(s)] + O(1), (B2)
€ €

since & (s, ) = b(s)cos® — fi(s) sin 0. In terms of our Fourier modes, we find that the zeroth mode
for the slip velocity is then

viP(s) = -T2, (B3)
€
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(a) Uniform torus concentration (b) Uniform torus concentration error
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FIG. 7. Comparison between boundary element solutions (circles) and analytic solutions to SPT (curves)
for slenderness € = 0.01, 0.02, 0.04, 0.06, 0.08, 0.1 (dark blue to yellow). (a) The surface concentration for a
uniform torus as a function of 6, compared to the analytic result, Eq. (41). (b) The percentage relative error
between analytic and BEM solutions decays faster than O(¢). (¢) The surface concentration for a glazed torus
as a function of 6, compared to the analytic result, Eq. (27). (d) The percentage relative error between analytic
and BEM solutions decays like O(e).

Using the same arguments as for the Janus glazed torus, the swimming speed must exactly com-
pensate for the (uniform) slip velocity, and so we determine the swimming speed of the sinusoidal
glazed torus (with uniform mobility) to be

Uy = (B4)

e..
2e¢ °

APPENDIX C: COMPARISON WITH BOUNDARY ELEMENT METHODS

To validate the results of our slender phoretic theory for looped filaments, we compare our
analytic solutions to those generated using a boundary element method (BEM). In Fig. 7, we
show the BEM results for a uniformly active torus and a glazed torus for a range of values of
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the slenderness, compared to the analytical solutions given in Eqgs. (41) and (27). We also plot
the maximum percentage difference between the two, and find that the error decays superlinearly
with € for the uniform torus and linearly for the glazed torus. These are exactly as expected,
since the analytical expressions given are valid up to O(¢) in the uniform case, and O(1) (just the
leading-order term) in the glazed case. Note that we also calculate the swimming velocity for the
glazed torus using BEM, and find that in the range € € [0.02, 0.2] the calculated swimming speed
differs from the analytical solution (31), U = 1/me, by less than 5%.
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