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Abstract

To date, one of the main challenges and requirements in wave energy technologies
is to design energy-maximising control for a wave energy converter (WEC) device
to achieve the energy maximization production, so as to reduce the levelized cost
of energy (LCoE). Hence, this study starts from the numerical modelling of a 1:20
scaled Wavestar-prototype device based on the open source WEC-SIMulator (WEC-
Sim) benchmark, which is developed by the National Renewable Energy Laboratory
(NREL) and Sandia National Laboratories (Sandia).

Next, a hierarchical tracking structure is selected as the core idea of this study and it
contains two different parts. The first high-level part includes the wave excitation mo-
ment (WEM) estimation and the determination of the optimal reference signal. Four
simple but effective robust methods are considered to design WEM estimators using
some practical ways with low computation complexity, such as (i) Unknown Input Ob-
server (UIO) with linear matrix inequality (LMI), (ii) Luenberger observer (LO) with
LMI, (iii) LO with pole-placement, and (iv) Adaptive sliding mode observer (ASMO).
On the other hand, the Extended Kalman Filter (EKF) can perform well in estimating
the instantaneous amplitude and frequency of WEM for optimal reference calculation.

The second low-level part is to design energy-maximising controller. For example, a
mixed LQR/H∞ control and sliding mode control (SMC) based on model-following
tracking strategy (continuous-time modelling), model-predictive control (MPC) veloc-
ity tracking with Gaussian Process (GP) models (discrete-time modelling) are pro-
posed, respectively. The designed tracking system can provide a near-resonance oper-
ation for the PAWEC device to achieve maximizing energy capture. Finally, a compar-
ison study is done between the MPC and robust control methods in order to give some
discussions and analysis about the robustness and optimality of the PAWEC control
system with and without added matched disturbance tests, in terms of absorbed energy,
extracted energy, extracted power and power take-off (PTO) moment, etc.



iii

The simulation results show that ASMO gives best performance demonstrating low
estimation delay, owing to fast sliding mode response property. ASMO has strong ro-
bustness and best all-round performance. LO-PP method has the simplest structure and
is very attractive in real applications. The mixed LQR/H∞ control and SMC methods
can provide strong robustness for PAWEC system. But the main problem of robust
Model-Following is large negative power in energy conversion. The approach of MPC
tracking is one of the best methods in this PhD study. It can provide PAWEC system
with good robustness and solve control input constraint properly.

The proposed novel tracking control methods (a) a robust Model-Following or (b) a
robust MPC framework can help PAWEC system to achieve robustness enhancement
and maintain maximized energy conversion efficiency with modelling uncertainty con-
sidered as a matched disturbance.
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Chapter 1

Introduction

1.1 Wave energy

Since the industry revolution, energy as a resoure has played a crucial role in the social
and economic development of human society (Penalba, 2018) and the demand of car-
bon neutrality through reduction of fossil fuels and increase in use of renewable energy,
keeps rising year by year. On the whole, the energy supply systems still mainly revolve
around the fossil fuels (coal, oil, gas and their derivatives). Furthermore, the distribu-
tion of global energy resources (Prasad et al., 2022) used for electricity generation in
2019 as shown in Figure 1.1.

Figure 1.1: the percentage distribution of global energy resources used for electricity
generation in 2019 (Prasad et al., 2022).

However, fossil energy sources have caused adverse problems manifested particularly
as different aspects of climate change (Siegel, 2019). Examples are: global temperature
increase, sea level rise, intensifying droughts and tropical storms, etc. Furthermore, for
several decades governments and scientists realized that there is a crisis of fossil fuel
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depletion (Abas et al., 2015) and the disadvantages of using traditional fossil fuels.
Hence, the concept of exploring sustainable and renewable energy has been enhanced.

In the Global Energy Outlook report, renewable energy is considered to be the domi-
nant source of main energy consumption by 2040 (Newell et al., 2019), particularly in
electricity generation. At present, the main renewable energy sources (Ellabban et al.,
2014) include bioenergy, geothermal energy, wind energy, solar energy, marine energy
(tidal or wave energy), hydro energy, etc. One of the primary renewable sources is the
unexploited wave energy, which shows great potential to fulfill the growing electricity
demand worldwide.

Several studies have tried to estimate that the exploitable wave energy source is around
29500TWh/year (IRENA, 2020; Gunn and Stock-Williams, 2012; Reguero et al.,
2015), which can cover global electricity consumption about 22300TWh (IEA, 2020)
estimated in 2018. Compared with the wind and solar energy sources, wave energy has

some prominent advantages, such as higher energy density (2 - 3
kW
m2 ) with respect to

wind energy (0.4 - 0.6
kW
m2 ) and solar energy (0.1 - 0.2

kW
m2 ) (Pozzi et al., 2018), high

availability for stable and continuous power production which is not limited by the
daytime hours or no windy weather (López et al., 2013). Huge reserves and the avail-
ability of wave energy are distributed worldwide with higher energy densities at higher
latitudes as illustrated in Figure 1.2.

Figure 1.2: The global power density distribution of wave energy (Gunn and Stock-
Williams, 2012).

Regarding the wave energy technology itself, the first idea of harvesting the energy
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from the ocean waves dates back to a wave power patent (Ross, 1995) in 1799. But
the initial utilization of the modern wave energy converter (WEC) was developed in
Japan in 1940s. It is the first concept of floating oscillating water column (OWC)
(Titah-Benbouzid and Benbouzid, 2015), which contains a navigation bouy equipped
with an air turbine that can be powered by the ocean waves. From the very early work,
a large number of WEC concepts have been proposed and frequently updated. WEC
technology reached application developments during the 1990s (Babarit, 2017).

Figure 1.3: The capacity evolution of the WECs in the UK (Jin and Greaves, 2021).

In recent years various types of WEC devices have been evaluated, based on several
subsystems and components. There is a substantial amount of development and testing
by industry together with academic institutions (López et al., 2013; Prasad et al., 2022).
Investigative wave tank tests follow design studies, including Power Take-Off (PTO)
systems (Davidson et al., 2015; Martin et al., 2020; Bacelli et al., 2019) and tests in
open sea were carried out by (Sheng et al., 2017; Kofoed et al., 2006; Li et al., 2022).
There are also several WEC prize competitions (Scharmen, 2016; Dallman et al., 2018;
Driscoll et al., 2018) in the literature. In view of summarising the WEC development
in the UK, (Jin and Greaves, 2021) discussed the capacity of WECs that have been
installed and developed in the UK, as shown in Figure 1.3.
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1.2 WEC System Challenges

Despite the fact that many technically sound WEC applications have been developed,
none of these has reached full economical and commercial development (Penalba,
2018). This is due to the fact that WEC devices have high Levelized Cost of En-
ergy (LCoE) (Chang et al., 2018). It is estimated that the Cost of Energy from the
offshore ocean wave is approximatly 5 times more than the other conventional energy
resources (Guo, 2017). WEC technologies still lack development in terms of energy
efficiency and significant improvements in driving down the LCoE. Furthermore, the
development of full economic cost modelling has been slow. Some specific or salient
challenges faced by WEC system developments are as follows:

• Reduction of Construction, Deployment and Maintenance Cost: It is in-
evitable that the construction expenditure of a full-scale prototype WEC or an
array of such devices is usually high due to the fundamentally large mechanical,
electrical components, mooring systems and long length scale cables to connect
with the grid, etc. In addition, the investigation and analysis have to be done on
how to deploy the WEC devices/array efficiently in a suitable place (Mwasilu
and Jung, 2019). For a long time reliable working of WECs, the operation and
maintenance (O&M) cost will naturally be higher as well. It is interesting to
note that in most cases WEC systems continue to be designed and implemented
without considering O&M issues at the design stage. There is clearly a need for
"co-design" to consider these important issues.

• Modelling of wave-WEC interaction: Normally, Computational Fluid Dynam-
ics (CFD) packages are used to build the fully non-linear modelling for the WEC
applications in order to provide a suitable understanding of the precise hydro-
dynamics (Guo, 2017) for cases involving significant non-linear phenomerna in
terms of wave and WEC interactions. For example dynamic issues involving
viscosity and compressibility. However, it is pity that CFD modelling methods
are computationally expensive and CFD results are not intuitive, which is not
proper for a WEC control system design with the requirement of fast real-time
response. On the other hand, linear modelling is based on linear wave theory
which has strong assumptions, such as the ideal and small wave height by ignor-
ing high oscillation motions of the WEC device, linearised hydrodynamic forces
without the non-linear effects. Hence, the linear modelling is usually chosen by
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many researchers as a control model to do control works for their selected WEC
systems. But it is inevitable that the model errors between the plant dynamics
and control model will cause the reduction of energy conversion efficiency.

• Improvement of Energy Conversion Efficiency: Real WEC systems involve
considerable system modelling uncertainty and should account for external dis-
turbance effects and faults. The modelling must also face the challenges arising
from complex random wave characteristics, e.g. in terms of amplitude, phase,
frequency and even wave direction. All these characteristics affect the efficiency
of energy absorption from incident sea waves. Hence, to achieve power maximi-
sation for a WEC system, a suitable control design method should be considered
(Abdelrahman, 2019) to generate as much electricity as possible from incom-
ing ocean waves. The control system should also be selected to minimise the
effect of the WEC device and hydrodynamic parameters. This an important ap-
plication of robust control to make sure that the best energy can be achieved
over a defined range of parameter changes (Abdelrahman, 2019). Besides, the
generated negative power should be diminished during the energy conversion
procedure. Otherwise, the bi-directional power flow problem (Guo, 2017) will
increase the burden of the PTO system and cause large energy loss. Therefore,
the proper PTO system should be selected to provide a good electromechanical
conversion efficiency and then reduce the cost of energy (CoE) (Penalba, 2018).
If necessary, the novel PTO mechanisms should be developed for satisfying the
requirement of the wave energy conversion.

• Elevation of Survivability: The WEC devices must be reliable and able to sur-
vive changing or extreme environmental conditions (Guo, 2017). For example,
operating in rough sea surfaces, huge waves and stormy weather. The survivabil-
ity strategy (Peña-Sanchez, 2020) has to be considered during the WEC design
and installation procedures using co-design to minimise structural damage and
for the purpose of life-time CoE reduction. Furthermore, the fault-tolerant strat-
egy has potential to improve the reliability of the WEC system when the sensor
or other component faults are arised in the WEC systems.
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1.3 Research Aim and Objectives

Aalborg University built a 1:20 scaled point absorber wave energy converter (PAWEC)
device in their wave tank (Zurkinden et al., 2014) (See Figure 1.4). This well-known
prototype WEC device is taken from the Wavestar system concept of an array of such
devices, sometimes referred to as a Wavestar-like device.

Figure 1.4: The 1:20 scaled Wavestar-like device (Zurkinden et al., 2014) built in Aal-
borg University.

Some researchers focus on this special PAWEC doing their research on modelling and
control works (Zurkinden et al., 2014; Windt et al., 2020; Nguyen et al., 2016; Ring-
wood et al., 2023a; Guerrero-Fernandez et al., 2023). This thesis study also chooses
the above 1:20 scaled Wavestar-like device as the research target and to do energy-
maximising control design work.

1.3.1 Research Aim

The Aim of this PhD research work is to design advanced control robustness strategies
for point absorber type WEC systems to achieve maximum energy generation. The
study uses as a basis the Wavestar-prototype benchmark model contributed by National
Renewable Energy Laboratory (NREL).

Note: a hierarchical tracking structure was first proposed by (Fusco and Ringwood,
2014a) and it is selected as the main scheme for this PhD study design as shown in
Figure 1.5. The reference velocity signal is constructed based on a near-resonance
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condition that can bring the WEC system into energy maximization operation when
the tracking system is achieved. The near-resonance operation keeps the WEC float
velocity share same phase with wave excitation force/moment. As for the numerical
modelling, a 1:20 scaled Wavestar-prototype device is built in the famous open source
WEC-Sim benchmark (Tom et al., 2018). The WEC-Sim software gives users some
freedom to test their designed controllers.

WEM

Observer

Controller
WEC

SystemReference

signal

u

High-level part

Reference 

computation

Low-level part

WEM

Observer

Controller
WEC

SystemReference

signal

u

High-level part

Reference 

computation

Low-level part

Figure 1.5: Selected hierarchical tracking structure for the whole WEC control system.

Where y is the WEC system output in Figure 1.5, which represents the position and
velocity of the float, denoted θ and θ̇ in later chapters. u is the calculated power take-
off (PTO) moment as the control input to the WEC system, denoted MPTO in later
Chapters. Mex is the wave excitation moment (WEM).

• High-level part: To implement decision-making such as the reference gener-
ation, which includes wave excitation moment (WEM) estimation and optimal
reference velocity computation.

• Low-level part: The controller directly drives the hardware of the WEC system.

The terms "high" and "low" are relative.

1.3.2 Research Objectives

1. Practical ways to design observers for wave excitation moment estimation.
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2. Model-following robust strategy, based on a near-resonance condition for maxi-
mization of energy extraction.

3. Model-predictive velocity tracking control based on Gaussian Process model.

4. A comparison study between model predictive control (MPC) and robust control
methods for energy maximization analysis.

1.4 Research Contributions and Thesis Structure

The main contributions in this thesis are listed below:

• The practical ways for WEM estimators: The WEM estimator should not
only have low computation complexity for real-time requirement but should bet-
ter be designed in a robust way for providing good estimation performance. The
Unknown Input Observer (UIO) and Luenberger Observer (LO) based on Lin-
ear Matrix Inequality (LMI) methods (Zhu and Li, 2021b; Du et al., 2015) are
restricted by the need for feasibility in the LMI design. This means that the
estimation performance of both LMI methods is not that attractive but limited.
Hence, in this study the LO is considered along with pole-placement, following
(Laub and Wette, 1984) and also the Adaptive Sliding Mode Observer (AMSO)
(Lan et al., 2017a). Both of these methods are chosen as they are considered to
satisfy effcient and robust estimation performance. The LO with pole-placement
is the simplest and most effective estimator (Li and Patton, 2023c). ASMO is a
nonlinear estimation method that has a built in strategy for robustness. This ap-
proach has shown the best estimation performance. In this study the ASMO has
provided a new vision for future nonlinear estimator design when considering a
complex WEC system operating in a more uncertain, dynamical environment.

• Model-following robust control methods: Overall, the application of WEC
control contains unmodeled uncertainties and nonlinear effects (Fusco and Ring-
wood, 2014a). Hence, a robust control method is important for minimizing or
compensating the effects of uncertainty whilst, at the same time enhancing the
energy capture from the ocean waves. Furthermore, a hierarchical tracking struc-
ture can provide design freedom to achieve the required WEC system energy
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maximization. The model-following strategy (Spurgeon et al., 1996) is consid-
ered with the previous tracking structure, which forces the WEC system to follow
a reference model to do tracking work that can reach a near-resonance operation
(Li and Patton, 2023b). The near-resonance condition means that the WEC float
velocity is in-phase with the WEM. The proposed both mixed LQR/H∞ control
and Sliding Mode Control (SMC) are able to show strong robustness against
the so-called matched disturbance. The concept of the matched disturbance is
explained in Chapter 5.

• Model-predictive velocity tracking control: Typically, MPC is a very popular
method for the design of WEC systems, especially as an optimal energy maxi-
mizing solution can be considered, along with constraint-handling (Faedo et al.,
2017). A new form of Model-predictive tracking control (Li and Patton, 2023a)
is designed on the basis of the hierarchical tracking structure scheme and basic
MPC idea. The energy maximization can be achieved when the WEC system can
track the optimal reference velocity. In addition to tracking control this approach
includes the important feature of constraint handling. This MPC reference ve-
locity tracking strategy uses two Gaussian Processing (GP) Machine Learning
models to provide the short-term forecasting work (Shi et al., 2018).

• Comparisons study between robust control and MPC methods: Usually, op-
timality and robustness are two important requirements of a WEC device to ex-
tract more energy from waves. However, the available WEC discussions appear
to divide these issues into separate control methods of, on the one hand MPC
(Li and Belmont, 2014; Faedo et al., 2017) and on the other hand robust control
(Zou et al., 2023; Lao and Scruggs, 2020). Many researchers want to test the use
of MPC even without constraint handling. Others, focus only robust WEC con-
trol design, without any consideration of the potential advantages of using MPC.
This gap in understanding can mean that it is not straightforward to compare ro-
bust control and MPC methods for WEC, i.e. to determine suitable criteria for
comparison. In order to overcome this, model-following WEC robust control
strategy (Li and Patton, 2023b) is validated in Chapter 5. The MPC tracking
strategy (Li and Patton, 2023a) is presented in Chapter 6. Thereby, a comparison
study between MPC and robust control strategies is described in Chapter 7. This
discussion sheds a new light on the use of these methods in WEC control.
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Chapters 4, 5, 6 & 7 contain original work. The LO with pole-placement method and
ASMO are investigated and tested for WEM estimation in Chapter 4. Next, the mixed
LQR/H∞ and sliding mode, model-following robust control strategies are proposed and
compared in Chapter 5. Later, the model-predictive velocity tracking control based on
GP model is designed in Chapter 6. Finally, to check robustness and optimility the
proposed three control methods on the 1:20 scaled Wavestar-prototype WEC system,
the comparison study between the MPC and robust control is given in Chapter 7.

The structure of the thesis is illustrated in Figure 1.6.

Figure 1.6: Thesis structure.

Chapter 1 concentrates on introducing the global trend of wave energy utilisation and
some current related challenges, and then discusses the research Aim and Objectives



1.4. Research Contributions and Thesis Structure 11

and outlines the Structural Arrangement of the thesis.

Chapter 2 is a brief literature review on WEC control is illustrated around four differ-
ent parts as follows:

• Review of Wave Energy Converter Classification.

• Wave Excitation Force Estimation and Forecasting Methods.

• Classical Control Strategies.

• Modern Control Strategies.

Chapter 3 gives an overview of WEC-Sim software to introduce the WEC-Sim code
structure, the building and running steps of a WEC-Sim simulation, the wave gen-
eration including regular and irregular waves, numerical modelling analysis through
sinusoidal steady-state response or Convolution Integral formulation. And then a de-
scription of a numerical model is given for a 1:20 scaled Wavestar-prototype device in
the WEC-Sim benckmark, which is used in a famous WEC control competition (WEC-
CCOMP). Finally, some basic tests are conducted to check the numerical modelling.

Chapter 4 commences with the design of the first part of tracking structure for the
focused Wavestar-like device, in view of the hierarchical tracking control structure for
energy-maximising design is the main idea of the whole thesis. Based on continuous-
time modelling, some practical ways are considered to do the WEM estimation work
following a feasible scheme for real application requirement, such as the UIO with
LMI, LO with LMI, LO with pole-placement and ASMO. On the other hand, the de-
termination of the optimal reference signal is based on discrete-time modelling using
an Extended Kalman Filter (EKF) that provides the instantaneous amplitude and fre-
quency of WEM. The further designed low-level controllers in Chapter 5 and 6 will
force the WEC system to perform suitable tracking to achieve energy maximising gen-
eration.

Chapter 5 turns attention to the design of the second part of the hierarchical tracking
structure, and the low-level robust controller is based on the model-following strategy
to force the WEC system to follow a reference model, which consists of reference
position and velocity signals. A mixed LQR/H∞ control and SMC robust methods are
proposed based on continuous-time modelling in this Chapter, respectively, aiming to
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enhance the WEC system robustness and the tracking way can bring the WEC system
into a near-resonance operation to maximize energy absorption from irregular waves.

Chapter 6 continues to concentrate on designing of the energy-maximizing controller
as the low-level part of the hierarchical tracking structure for the 1:20 scaled Wavestar-
prototype device. On the basis of the hierarchical tracking structure scheme and basic
MPC idea, a model-predictive velocity tracking control with GP model is designed
based on discrete-time modelling in this Chapter. where two GP models are used to
predict the future sequences of WEM and reference velocity which are needed in MPC
objective function.

Chapter 7 performs a comparison study between the MPC and robust control ap-
proaches in order to give some discussions about the characterstic of these methods
on energy maximization and do robustness analysis for the scaled Wavestar-like device
modeled in WEC-Sim. Firstly, The frequently used MPC design is derived by choosing
the average absorbed mechanical power as its objective function to solve an optimiza-
tion problem for maximisation of energy capture, but it is not based on a tracking
control way. Then, the popular MPC is selected to as a comparison with the model-
following mixed LQR/H∞ control, SMC presented in Chapter 5 and model-predictive
velocity tracking control proposed in Chapter 6. The simulation results are based on
absorbed energy, extracted energy, extracted power, PTO moment, and disturbance
testing.

Chapter 8 gives a Concluding Discussion concerning the whole thesis work and com-
ments about the PhD contributions. Suggestions are also made for pursuing future
work at available opportunities. Future research is expected to investigate some more
advanced control methods to further improve the robustness and optimality of the WEC
system for extracting maximum energy.



Chapter 2

Literature Review on WEC Control
for Energy Maximization

2.1 Introduction

In this Chapter, Section 2.2 starts to give a brief review of three different ways of
the WEC classification including giving some examples of the main and well-known
WEC applications, which can be found in the literature. Next, in view that the energy-
maximising or optimal control needs the current and future knowledge of the wave
excitation force (WEF). Section 2.3 describes the idea of WEF estimation and fore-
casting works, which should be done before the WEC systems control work design.
Then, Section 2.4 lists some classical control approches that are used for the power
maximisation purpose in the wave energy community. Furthermore, the mordern and
advanced control methods are divided into model-based and model-free types and dis-
cussed separately in the Section 2.5. Finally, Section 2.6 is the Summary of this Chap-
ter.

2.2 Review of Wave Energy Converter Classification

Several review papers discuss the classifications of WEC devices according to criteria
defined in (Maria-Arenas et al., 2019). These include (a) location along the coast-line,
(b) WEC orientation and dimension with respect to wave direction, and (c) working
principles.



2.2. Review of Wave Energy Converter Classification 14

2.2.1 Deployment locations

WEC systems can be classified simply into three main types: onshore, nearshore and
offshore (Farrok et al., 2020), based on relative distance between devices and their
position in the sea (Figure 2.1).

Figure 2.1: The classification by their deployment locations (Farrok et al., 2020).

• Onshore devices: The WECs are deployed onshore or installed above the sea
in the shallow water regions with depth about 10-15m and the wave height can
reach up to maximum 7.8m (Farrok et al., 2020). Onshore installation brings
some advantages such as low maintenance cost and no requirement for mooring
systems or long cable lengths (López et al., 2013) for transmitting the generated
electricity to the grid. However, the shoreline waves contain less energy and
there are limited sites (Czech and Bauer, 2012) that can install WEC devices.

• Nearshore devices: The WEC devices rest on the sea bed in the intermediate
area for water depths of 15-25m (Farrok et al., 2020). In this case, the mooring
systems are still not required. But the devices have to overcome the stress caused
from the passing waves.

• Offshore devices: Floating or submerged structure WECs are set up in the deep
water region and moored to the sea floor, for depths greater than 50m with a
wave height reaching up to 30m (Farrok et al., 2020). The offshore open sea has
vast wave power potential. However, WECs usually suffer from the large loads
that will cause the reliability and survivability problems (López et al., 2013).
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Moveover, the long length cables have to be considered and used to transmit the
power to the grid (Czech and Bauer, 2012).

2.2.2 Dimension and orientation with respect to the waves

The second classification is based on the WECs dimension and orientation with respect
to the incoming waves (Maria-Arenas et al., 2019). The WEC devices can be distin-
guished into three categories: point absorbers, attenuators, and terminators, as given in
Figure 2.2.

Figure 2.2: The classification by their dimension and orientation (López et al., 2013),
including (a) point absorber (PowerBouy OPT), (B) attenuator (Pelamis), (c) termina-
tor (Wave Dragon).

• Point absorber: It has small dimensions with respect to the wave length and the
axisymmetric geometry is able to harvest energy from waves in any directions.
The well known PowerBouy OPT (Artal-Sevil et al., 2018) is standard floating
PAWEC, see Figure 2.3 (a), developed in the USA. The bouy can oscillate with
the incident waves and the relative heave motion between the bouy and spar
foundation will drive the generator to produce large amounts of energy.

Another notable PAWEC is the Wavestar concept (Kramer et al., 2011) as a mul-
tiple structure device, as shown in Figure 2.3 (b), which is one of the leading
WEC technologies, developed in Aalborg. The standard Wavestar was a com-
mercial WEC array comprising two rows of PAWEC devices installed with a
structural bridge. The floats of the system were connected with hydraulic PTO
systems and were free to move up and down with the incoming ocean waves. The
hydraulic fluid will be pumped into a common mainfold system to introduce high
pressure flow into the hydraulic motor to drive the electric generator to produce
power (Kramer et al., 2011).
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(a) (b)

Figure 2.3: Single and array PAWEC schemes, (a) PowerBouy OPT WEC (Artal-Sevil
et al., 2018), (b) Wavestar prototype WEC (Kramer et al., 2011).

(a) (b)

Figure 2.4: The other special designed PAWECs, (a) PS frog MK 5 WEC (Taylor et al.,
2002; Faizal et al., 2014), (b) TALOS WEC (Aggidis and Taylor, 2017).

Apart from those two standard PAWECs, the Lancaster University Renewable
Energy Group developed two specially designed PAWECs, such as the PS frog
MK 5 and TALOS WECs, as given in the Figure 2.4. Regarding the PS frog
MK 5 WEC, (see Figure 2.4 (a)), this is developed and described by (Taylor
et al., 2002; McCabe et al., 2006). The device looks like a large buoyant pad-
dle connected a handle with a sliding mass placed in. This PAWEC can react
to the oncoming waves by pitching back and forth about its dynamic centroid
(McCabe et al., 2006) but only the motion of internal sliding mass drives the
hydraulic PTO system to generate power. The sliding mass can be controlled to
do dynamic tuning for the WEC system to change its behaviour (Taylor et al.,
2002), to maximise the generated power.
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As for the TALOS PAWEC device, there is a moving mass (ball) connnected with
hydraulic cylinders attached in the solid outer hull as shown in Figure 2.4 (b).
The internal mass can move freely in multiple directions when the point abosrber
oscillates with the wave motions (Aggidis and Taylor, 2017; Sheng et al., 2022b).
The movement drives the hydraulic PTO systems to generate power. The multi-
axis PTO structure provides a more efficient energy extraction from the three
degrees of freedom motions of the heavy ball (Sheng et al., 2022a).

(a) The Pelamis WEC device (Heath et al., 2001).

(b) The new development Blue X Mocean WEC device (Mocean, 2023).

Figure 2.5: The standrad representative of attenuator WECs.

• Attenuator: A large device with two or more sections/tubes connected together
and placed parallel to the expected wave direction. The earliest form of atten-
uator is the well-known Pelamis system (Westwood, 2004) first designed in the
UK, as shown in Figure 2.5 (a). It is made up of several mechanical cylindri-
cal segments that are connected by a few hinged points. The Pelamis floating
system is held on a place moored to the seabed (Czech and Bauer, 2012), and it
is activated to move vertically and laterally by the incoming waves to generate
power and extract energy using hydraulic PTO. More recently, a development of
Pelamis with 2 connected segments is being tested off the Aberdeen Coast called
Blue X (Figure 2.5 (b)) through Mocean Energy Ltd.
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• Terminator: Usually a large device with length the same or greater than wave-
length and placed perpendicular to the direction of the incident waves. Wave
Dragon (Kofoed et al., 2006) is a kind of terminator WEC that contains two re-
flectors linked with a reservoir, as shown in Figure 2.6, created in Denmark at
Aalborg University. Two reflectors are used to focus sea waves towards a ramp
and collect water in the reservoir (Kofoed et al., 2006) to drive several hydro
turbines for generating electricity.

Figure 2.6: The terminator type Wave Dragon WEC (Kofoed et al., 2006).

2.2.3 WEC Working Principles

Thirdly, based on the working principle (Pozzi et al., 2018), WEC devices can be sub-
divided into 5 categories as follows:

• Oscillating Water Column (OWC): This type of device has an oscillating air
chamber that can compress and decompress the sea water between the water line
and a Wells air turbine that connected to a generator, using the changing air-
flow to produce electrical power. The basic structure of oscillating water column
WEC is shown in Figure 2.7.
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Figure 2.7: The basic structure of oscillating water column WEC (Zhang et al., 2021).

Examples of famous OWC WECs are: Limpet (Heath et al., 2001), Oceanlinx
(Delmonte et al., 2014) as shown in Figure 2.8.

(a) The Limpet WEC device (Heath et al., 2001).

(b) The Oceanlix WEC device (Delmonte et al., 2014).

Figure 2.8: The standrad representative of OWC type WECs.

• Pressure Differential: The devices are fixed and submerged to the seabed and
the wave motions can cause a pressure differential above the WEC device when
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the sea level starts to rise and fall. The sketch of submerged pressure differential
WECs is given in Figure 2.9.

Figure 2.9: The sketch of submerged pressure differential WEC (Farrok et al., 2020).

Representative device examples are: CETO (De Chowdhury et al., 2015) and
AWS (Nguyen et al., 2019) devices, see Figure 2.10.

(a) (b)

Figure 2.10: Pressure Differential structure WECs, (a) CETO WEC (De Chowdhury
et al., 2015), (b) AWS WEC (Nguyen et al., 2019).

Figure 2.11: The basic idea of floating structure type WEC (Zhang et al., 2021).
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• Floating structure: This can be further subdivided into single or multiple struc-
tures. The floating body/bodies can absorb wave energy and convert it into mech-
incal energy. Figure 2.11 illustrates the basic idea of floating structure type WEC.

For example, PowerBouy OPT (Artal-Sevil et al., 2018) is single floating struc-
ture device, as shown in Figure 2.3 (a). Moreover, Wavestar (Kramer et al., 2011)
and Pelamis (Westwood, 2004) are multiple floating structures, see Figure 2.3 (b)
and Figure 2.5 (a), which have been introduced in Section 2.2.2.

• Overtopping: This device has a storage reservoir that can drop the water back to
the ocean under gravity and several low-head turbines will be driven to generate
electricity during the water falling process. Figure 2.12 shows the basic working
principle of overtopping WEC.

Figure 2.12: The basic working principle of overtopping WEC (Zhang et al., 2021).

The well known examples of overtopping devices SSG (Vicinanza et al., 2012),
Waveplane (WavePlane, 2008) are shown in Figure 2.13, and Wave Dragon (Ko-
foed et al., 2006) can be seen in Figure 2.6.

(a) (b)

Figure 2.13: The structure of overtopping WECs, (a) SSG WEC (Vicinanza et al.,
2012), (b) Waveplane WEC (WavePlane, 2008).

• Oscillating Wave Surge (OWS): This device is fixed to the seabed through a
pivoted joint, see Figure 2.14, and the device can oscillate like a pendulum when



2.2. Review of Wave Energy Converter Classification 22

the incoming waves drive a paddle and then harvest energy from wave surges
and the horizontal movement of the wave particle.

Figure 2.14: The basic illustration of oscillating wave surge WEC (Farrok et al., 2020).

OWS examples are: Oyster (Cameron et al., 2010) and Langlee (Pecher and
Kofoed, 2017) belong to this type of WEC devices, see Figure 2.15.

(a) (b)

Figure 2.15: The structure of OWS WECs, (a) Oyster WEC (Oyster, 2012), (b) Lan-
glee WEC (Pecher and Kofoed, 2017).

In addition to the WECs classified in 3 ways, according to Section 2.2, there are further
WEC types with special characterstics. For example the rotating mass WEC (Wello
Penguin) (Penguin, 2022), or Bulge Wave WEC, the Anaconda (Anaconda, 2023), etc,
as shown in Figure 2.16. As for the Penguin WEC, it rotates with the movement of
waves and spins the rotating mass around a shaft, which is connected with an electric
generator to produce power. For Anaconda WEC, it is the different concept that a
sealed rubber tube is filled with water, and anchored in the sea (Heller et al., 2000).
The external waves can induce the bulge waves within the rubber tube and travel in it,
which can be used to drive a PTO system to produce electricity at the tube stern.
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(a) (b)

Figure 2.16: Further WEC examples of specially, (a) Wello Penguin WEC (Penguin,
2022), (b) Anaconda WEC (Anaconda, 2023).

Among the various WEC applications, PAWEC systems draw much more attention
due to its following obvious merits. In general, the PAWEC has simple structure with
small dimensions, as a relatively small device expected to be more economical. It
can easily reach resonance between the bouy and the incident waves to capture much
more wave energy compared with the other WEC types. The PAWEC is also well
suited to research work to test new ideas (Guo et al., 2022). Typical research involves
novel modelling methods, appropriate PTO mechanisms, advanced control approaches.
This PhD study concentrates on the 1:20 scaled special Wavestar-prototype PAWEC
device for energy maximising control system design, to improve the energy conversion
efficiency. Furthermore, the PAWEC device can be arranged into an array (Stratigaki
et al., 2014) and deployed in the offshore ocean area. In this case, the infrastructural
costs can be reduced when the mooring and electrical connections be shared between
all WEC devices in the array (Peña-Sanchez, 2020). The significance of this is that the
LCoE from the WEC array can be decreased.

2.3 Wave Excitation Force Estimation and Forecasting
Methods

In some cases the computation of the WEF (or WEM, in the case of a wave moment
problem) plays an important part in wave energy maximum absorption for a PAWEC
system (Guo et al., 2018). Several energy-maximising control strategies are available
(Coe et al., 2017; García-Violini et al., 2020a; Guo and Ringwood, 2021; Li and Patton,
2023a; Ringwood et al., 2023b; Li and Patton, 2023b). Although, these have been used
for the purpose of energy maximisation extraction, most require the information of the
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WEF. Particularly, MPC requires the current and the future knowledge of the WEF to
compute the optimal solution (Garcia-Abril et al., 2017).

In principle, for all fixed (or non-PAWEC) cases WEF signal could be computed after
integrating the pressure over the submerged body surface (Peña-Sanchez et al., 2019).
However, for the moving body (or PAWEC) device pressure sensing can still be used
with sensor placed e.g. one typical wavelength away from the device itself. In general,
the WEF is best determined by estimation based on the device displacement and veloc-
ity. This is a very convenient method for WEF computation, although to a small extent
affected by viscous and friction force terms. This WEF computation fits well with the
MPC requirement for forecasting (Fusco and Ringwood, 2010).

2.4 Classical control strategies

For the power maximization control work design of the WEC systems, the fundamen-
tal research can date back to the resonant concept for oscillating systems proposed by
(Budar and Falnes, 1975) in 1975. The primary idea is based on linear hydrodynamics,
the assumption of monochromatic waves and an ideal PTO system. According to linear
potential flow theory, the physical meanings of the WEC hydrodynamic forces can be
clearly described by a linear numerical modelling. At present, the Boundary Element
Method (BEM) packages (time-domain or frequency domain) are widely used to pro-
vide the hydrodynamic coefficients (Penalba et al., 2017b; Pastor and Liu, 2014) for
building a linear numerical modelling of a WEC device.

Usually, the Cummins’ Equation of the dynamic motion of a PAWEC device (Rafiee
and Fiévez, 2015; Lawson et al., 2014a) can be written as:

(Mb +M∞)Ẍb(t)+
∫

∞

−∞

Kr(t − τ)Ẋb(τ)dτ +KhsXb(t) = Fext(t) (2.1)

where Mb is the Mass of bouy, Xb is heave position of the buoy, M∞ is the added mass
at the infinity frequency, Kr is the Impulse Response Function (IRF) of the radiation
force and Khs is the hydrostatic stiffness coefficient. Fext means the external forces,
which includes excitation force Fexc, PTO force Fpto, mooring force Fmo, etc. The Fexc

is independent of the PAWEC system variables (position Xb, velocity Ẋb, acceleration
Ẍb) but restricted to the wave surface elevation η(t). The Fpto is the desired controller
term acting as the loading on the PTO system that can optimise the behavior of PAWEC
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device, which means to maximise the absorbed energy over a wide range of ocean
waves.

The Cummins’ Equation (2.1) of a PAWEC device can be expressed into a frequency
domain force-to-velocity form (Guo et al., 2022), given by

V (ω)

Fexc(ω)+Fpto(ω)
=

1
Zi(ω)

Zi(ω) = B(ω)+ jω
[

Mb +A(ω)− Khs

ω2

] (2.2)

where V (ω) is the Fourier transform of the PAWEC body velocity Ẋb in frequency
domain, and Zi(ω) denotes the intrinsic impedance of the PAWEC system (Falnes and
Kurniawan, 2020). A(ω) and B(ω) are the added mass and radiation damping coeffi-
cients.

From the maximum power transfer theorem (Svoboda and Dorf, 2013), the PTO system
impedance for optimal power conversion (Guo and Ringwood, 2021) should satisfy the
following form

Zpto(ω) = Z∗
i (ω) (2.3)

where Z∗
i (ω) is the complex conjugate of Zi(ω). The PTO parameters can be easily

determined by the Mass-Spring-Damper (MSD) coefficients of the PAWEC system.

This means that the power absorbed by the PAWEC device can be maximized if the
PTO impedance Zpto equals the complex conjugate of the system intrinsic impedance
Zi (Falnes and Kurniawan, 2020). This is the well known concept of "maximum power
transfer" or complex-conjugate impedance matching, or alternatively "reactive con-
trol". In general, reactive control will bring bi-directional power flow in the PTO mech-
anism (Guo, 2017). However, some PTO systems might only allow uni-directional
power flow. For these cases the passive control with a damping term can be considered
as:

Bpto = |Zi(ω)| (2.4)

This linear damping control is the simplest way that only requires to be tuned based on
the frequency of the incoming waves (Abdelrahman, 2019), but it cannot generate the
optimal and maximum power for a PAWEC device.



2.4. Classical control strategies 26

According to the requirement of resonance between the wave and PAWEC device, the
optimal velocity of reactive control (Guo and Ringwood, 2021) can be defined as:

Vopt(ω) =
Fexc(ω)

2B(ω)
(2.5)

Thus, the optimal power conversion is achieved when the amplitude and phase condi-
tions satisfy

|Vopt(ω)|= |Fexc(ω)|
2|B(ω)|

, Vopt(ω) = Fexc(ω)
2B(ω)

(2.6)

As for the optimal velocity phase condition, it can be used to implement the latch-
ing control (Babarit et al., 2004) or de-clutching control (Babarit et al., 2009) by us-
ing mechanical or hydraulic PTO systems. It is important to keep in mind that the
wave prediction is necessary for setting the optimal duration of switching or releas-
ing (Abdelrahman, 2019), in order to latch the WEC device after its velocity becomes
minimum and unlatch the WEC device during the optimal time interval. Thereby, the
PAWEC body velocity will keep in phase with the excitation force to maximise energy
harvesting during the optimal latching duration. Several different latching approaches
(Babarit et al., 2004; Sheng et al., 2015) have been compared and tested to increase the
absorbed energy over a broad range of irregular wave conditions. On the other hand,
the de-clutching control can be considered as an extension version of the latching con-
trol. It considers to disconnect the PTO system, so unloading the PAWEC device at
specific moments during the power cycle (Garcia-Rosa and Ringwood, 2015), but to
connect the PTO system when the device velocity keeps in phase with the WEF. The
de-clutching control has strength to switch on and off the hydraulic PTO systems by
using a simple by-pass valve. The optimal command theory can determine the control
law of the valve (Babarit et al., 2009). A special combination of latching and de-
clutching strategy has been tested in (Feng and Kerrigan, 2015). This new stratgey can
increase the energy harvesting compared with the single use of latching or de-clutching
approaches.

Overall, the classical control strategies are based on linear hydrodynamics and ideal
PTO assumptions (Guo and Ringwood, 2021) that do not involve the physical opera-
tional constraints like PAWEC position, velocity limitations or PTO force maximum
value. It is important to note that these approaches are limited to regular or monochro-
matic wave conditions. However, the optimal solutions are frequency-dependent, as
described above, related to resonance concept. This implies that optimal settings are
difficult to choose, especially when the PAWEC device is operated under irregular seas
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(Faedo et al., 2017) that contains several frequencies. In addition, the power fluctua-
tions are an inevitable problem that should be considered for choosing the PTO systems
to reduce the energy losses during the conversion process.

2.5 Modern control strategies

2.5.1 Model-based type

To date, a number of advanced control strategies have been proposed and tested to
obtain the maximized energy production for the WEC applications with system con-
straints and non-linearities over a wide range of sea states. Most of the published stud-
ies on WEC control focus on PAWEC type systems. A popular idea focuses on MPC
(Li and Belmont, 2014; Tona et al., 2015; Zou et al., 2017; Ling et al., 2019; Hillis et al.,
2020) is used by many researchers and engineers to provide an optimal solution of PTO
force for the purpose of power or energy maximization and to deal with the PAWEC
system physical and PTO input constraints. In other words, the energy maximization
problem of a PAWEC system is converted into a quadratic programming problem with
the properly defined objective function and the specific system constraints (Richter
et al., 2014). The optimal control action will be calculated by solving the predeter-
mined cost function in every discrete time step and the first term of control sequence
will be chosen as the PTO force acting on the WEC system. Some related objective
functions about the energy absorption have been discussed by (Faedo et al., 2017). The
most representative form of the MPC objective fucntion is as follows:

min −EJ +E∗
J

sub ject to, f or t ∈ [t, t +Th] :

ẋ(t) = f (x, ẋ,u, t) dynamics equation (2.7)

|x(t)| ≤ Xmax,
|ẋ(t)| ≤ Ẋmax,
|u(t)| ≤ umax

 state and input constraints

where the absorbed energy is EJ = −
∫ t+Th

t u(τ)ẋ(τ)dτ and E∗
J denotes the alternative

penalty terms. But it should be notied that the additional penalty terms can modify
the original optimal control objective and lead to a sub-optimal solution (Zhong and
Yeung, 2019). Th is the prediction horizon, Xmax is the maximum of the displacement,
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Ẋmax is the maximum of the velocity, and umax is the maximum of the PTO force.
Generally, most of the references concentrate on both the PAWEC body displacement
and control input constraints (Faedo et al., 2017), while some researchers attempt to
consider the study of velocity or rate of change of the control input constraints.

The standard MPC methods for PAWEC are based on the linear modelling, without
including the nonlinear viscous force, mooring term, etc (Penalba et al., 2017a). Ac-
tually, the performance of MPC relies on the accuracy of the modelling significantly.
Otherwise, the MPC optimization of the WEC energy maximization may fail to find a
proper solution or even give rise to the possibility of divergence, i.e. closed-loop insta-
bility. Hence, the MPC approaches may not be suitable for some complicated PAWEC
applications with large uncertainties or modelling errors. On the other hand, the fu-
ture knowledge of the excitation force is required in the MPC optimisation procedure
(Ringwood et al., 2023b) and it should be obtained by doing short-term forecasting
work as described in Section 2.3. The prediction errors (Hillis et al., 2020) will affect
the MPC performance and lead to unsatisfactory reduction in absorbed energy. Some
nonlinear model predictive control (NMPC) strategies are proposed that can deal well
with the non-linear PAWEC devices. For example, in view of the possible nonlinear
effects of mooring forces, (Richter et al., 2012) choose NMPC for a PAWEC device
to optimize the absorbed energy whilst satisfying its system operational constraints.
Considering the non-linear buoyancy force, (Li, 2017) chooses an efficient NMPC op-
timisation approach to exploit the differential flatness of the WEC model. (Karthikeyan
et al., 2019) concentrates on the viscous drag force and non-ideal PTO loss model of
the WEC system and applies a NMPC to maximize the generated power. However,
the NMPC methods usually involve large online computation complexity due to the
problem of non-convexity optimization. Thus, they may not satisfy the requirements
of real-time control for the complex PAWEC applications.

Along with a consideration of MPC methods, some MPC-like spectral methods (Ba-
celli and Ringwood, 2011) and pseudo-spectral (Herber and Allison, 2013; Bacelli
and Ringwood, 2014) approaches offer different choices to tackle the constrained opti-
mization control problem and calculate its solution in a specific parameterization way.
Those methods supply a flexible balance between the computational complexity and
system performance index (absorbed energy) by altering the number of the approximat-
ing basis functions. Nevertheless, the main formulations of the spectral and pseudo-
spectral methods have a drawback in a receding-horizon context when the trigono-
metric polynomials are considered to compute periodic solutions (Faedo et al., 2017).
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Hence, some researchers pay attention to investigate and develop the receding horizon
pseudo-spectral methods (Faedo et al., 2017) based on the Lagrangian polynomials or
Half-Range Chebyshev Fourier (HRCF) polynomials as basis functions, to solve the
real-time constrained optimization control problems for the different WEC systems.
Not merely for the computation of control solution directly, another interesting appli-
cation of the receding horizon pseudo-spectral (Genest and Ringwood, 2016; Auger
et al., 2018) is based on using Fourier approaches to compute the optimal reference
trajectory, meanwhile to take the system non-linearity and constraints into considera-
tion.

Apart from the above, another choice for PAWEC optimization problem is proposed
by (Zhan et al., 2016), in which the optimal feedback law can be obtained by solving
the algebraic Riccati Equation. This scheme can also be combined with adaptive (Zhan
et al., 2018) and robust (Zhang and Li, 2019) concepts, which demonstrate good prac-
tical prospects in the PAWEC applications. In addition, the linear quadratic Gaussian
(LQG) control (Sun and Nielsen, 2018; Scruggs et al., 2013) is an alternative idea that
has simple structure and can directly calculate the algebraic Riccati Equation whilst
minimizing the objective function to give the optimal control solution for the PAWEC
system. Gain-scheduling (Scruggs et al., 2013) is a fascinating concept that can be ap-
plied when the knowledge of the spectral content and the propagation direction of the
sea conditions have been known. The remaining part of the optimized control can be
based on a "bang-bang" type scheme or dynamic programming (DP). A few research
studies describe the singular arcs control approach (Abraham and Kerrigan, 2012) or
singular-bang control (Hendrikx et al., 2017) according to either Pontryagin’s Mini-
mum or Maximum Principle, to find the best solution for a dynamical WEC system
with operational constraints. Referring to the non-convex problem of the control opti-
mization during the programming procedure, (Li et al., 2012) introduces the bang-bang
control concept and selects the DP algorithm to do the optimization work for giving an
optimal solution to improve the efficiency of wave energy conversion. Besides, an
adaptive DP strategy is formulated by (Na et al., 2018) to efficiently solve the con-
strained nonlinear optimal problem online, and reach the energy maximization absorp-
tion for the WEC system with non-linearity and constraints. Aiming at the non-linear
effects of hydrostatic restoring force and viscous forces, a moment-based approach is
demonstrated in (Faedo et al., 2021) on a CorPower-like device, mapping the original
objective function of average absorbed mechanical energy into a new tractable nonlin-
ear program, subject to both system physical and PTO input constraints.
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Apart from the control optimization design, the literature describes other forms of con-
trol methods. For instance, a broadband solution LiTe-Con control is proposed by
(García-Violini et al., 2020b), which is based on a approximated frequency domain
optimality condition from the impedance matching. This energy maximising control
strategy can efficiently help the PAWEC device to capture more energy from the sea.
There is no need to consider prediction work in this controller design but only WEF
estimation/calculation is required. On the other hand, a suboptimal mechanism is con-
sidered to do constraint handling, which results in a conservative performance in energy
maximisation absorption. In view of that limitation, a new online adaptive mechanism
(García-Violini et al., 2023) is replaced and being added into the LiTe-Con control
method to provide a time-varying solution in order to improve the energy conversion
efficiency for the scaled Wavestar-like device (described in Chapter 3). Regarding the
adaptive control design of PAWEC, a gain-scheduling approach (Nguyen and Tona,
2017a) is investigated to continuously update the PI controller gain in an optimal way,
based on the evaluation of the current irregular wave conditions. Where the proposed
variable-gain PI strategy needs to do WEF estimation and calculate the dominant fre-
quency of the WEF. Another interesting idea of adaptive control is based on a vectorial
approach (Cantarellas et al., 2017) not only achieving the maximum power absorp-
tion but also reducing the Peak-to-Average Power Ratio (PAPR) under irregular wave
conditions.

Except the requirement of the optimality, robustness is the another key point (Ring-
wood et al., 2018; Giorcelli et al., 2023) that should be considered for the PAWEC de-
vices to overcome the non-linear phenomena viscous forces and Froude-Krylov forces
(Penalba, 2018). In general, many researchers choose the linear modelling formula-
tion to describe the WEC body motion according to the Cummins’ Equation, which
inevitably involves the unmodeled errors and system uncertainties. Additionally, the
hydrodynamic parameters are time-varying and frequency-dependent with the chang-
ing of the incoming waves. Especially, the assumption of the linearity of the hydro-
dynamics might be violated when the PAWEC motion is amplified by some energy-
maximising controllers (Fusco and Ringwood, 2014b). Therefore, the robust control
work should be designed against the PAWEC system disturbances to maintain and en-
sure the energy maximization. However, generally, the main control objective of a
PAWEC system is to optimize the generated power/energy from the incoming waves,
which is different from the purpose of the traditional tracking control design. (Fusco
and Ringwood, 2014a) first introduced a special hierarchical tracking structure that can
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force the PAWEC system to track a reference velocity so as to reach a near-resonance
condition to keep the WEC body velocity in phase with the excitation force for en-
ergy maximisation purpose. Even if the designed tracking structure only provides sub-
optimal solution onto the PAWEC system, but can show much more freedom on design
control methods with other new features, such as the robustness (Fusco and Ringwood,
2014b) or adaptability (Davidson et al., 2018), etc. The similar tracking idea can also
be found in (Wahyudie et al., 2015). In view of enhancing the PAWEC system to
overcome the non-linearity and possible coupled dynamic terms, (Abdelrahman and
Patton, 2017) tried to design a backstepping sliding mode control based on the hier-
archical tracking structure for the PAWEC system to absorb energy from the irregular
waves as much as possibly. But the designed robust controller just forces the PAWEC
system to do a reference position tracking work, not the velocity tracking. That is why
this PhD study foucses on the purpose of the energy maximising control to propose
model-following LQR/H∞ control and SMC methods to do position and velocity track-
ing in Chapter 5. On the other hand, a gap exists in the discussion of the robustness and
optimality of the two aspects for PAWEC applications. This has motivated the design
study of model-predictive velocity tracking control in Chapter 6. Following this, the
Chapter 7 makes a comparison between robust control and MPC systems.

2.5.2 Model-free type

The second category of advanced control methods can be considered a "Model-Free".
An example of this is a practical application of Fuzzy logic based PI control (Bur-
gaç and Yavuz, 2019), which makes use of Fuzzy logic inference to tune the PTO
system stiffness and damping coefficients according to the estimated dominant wave
frequency, in order to obtain maximum energy extraction. With this, the PAWEC sys-
tem can have the ability to reach the resonance condition for maximum power absorp-
tion. In another application the Hull Control Group developed a special data-driven
method (Shi et al., 2019) using Bayesian optimization based on Gaussian Processing
to achieve on-line PID coefficients tuning according to the WEC control performance.
It was shown that the MSD coefficients of the PTO system can reach the optimum
values after 25 iterations, i.e in a short time. This machine learning tuning strategy
has been validated by the Hull team as one of three competing teams using an experi-
mental wave tank implementation at Aalborg University during the second stage of the
WECCCOMP (Ringwood et al., 2023a).
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Another interesting application like extremum-seeking (Sun et al., 2018; Parrinello
et al., 2020; Moens de Haste et al., 2021), has attracted significant attention in the lit-
erature. The extremum-seeking control has also given rise to the idea of optimizing
the coefficients of the PAWEC PTO system (Parrinello et al., 2020) under realistic ir-
regular wave conditions. This is used to maximise the average extracted power and
conversion efficiency of the device as well as reducing the Peak-to-Average Power Ra-
tio (PAPR), when a "Flower Pollination" algorithm is considered (Sun et al., 2018).
However, some applications of extremum-seeking control have limitations when con-
sidering the panchromatic nature of wave excitation (Moens de Haste et al., 2021) due
to the requirement for long performance evaluation times.

So far, Reinforcement Learning (RL) algorithms have been popular as model-free con-
trol design methods. These have been investigated by some researchers to achieve
maximum energy absorption for different WEC applications (mainly PAWEC). For ex-
ample, the classical Q-learning algorithm has been tested to provide the optimal PTO
coefficients for resistive control (Anderlini et al., 2016; Bruzzone et al., 2020) or re-
active control (Anderlini et al., 2018). The Q-learning algorithm can adapt well to
the hydrodynamic variations and bias arising from the unmodeled errors. In addition,
(Zou et al., 2022) used the Deep Q-Network (DQN) algorithm that as an improvement
from the basic Q-learning to design deep reinforcement learning (DRL) controller for
the PAWEC with PTO dynamics, to reach energy maximization absorption. The re-
sults show that the designed DRL control can provide better power quality in terms of
Peak-to-Averate Ratio, the coefficient of variation compared with the MPC, PD con-
trol, etc. A study has been conducted by (Zadeh et al., 2022) to validate the proposed
Bayesian Actor-Critic (BAC) scheme and compare it with reactive control and MPC
when the PAWEC system contains large modelling errors. The RL control based on
Bayesian optimization and Actor-Critic form has an advantage in robustness against
the modelling errors, in which the control performance outperforms 20 % compared
with reactive control and 27 % compared with MPC. Overall, RL control methods con-
verge in a long time for training and typically achieve optimal policy in several hours
(Anderlini et al., 2017; Zadeh et al., 2022) or even longer. Hence, in reality RL may
not be suitable for real time WEC control. However, RL algorithms have demonstrated
strengths in dealing with the system uncertainties (Anderlini et al., 2020; Zou et al.,
2022), so this aspect should be explored in future research.
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2.6 Summary

The purpose of this Chapter is to provide a literature review of WEC control for en-
ergy maximization. Section 2.2 starts by giving a brief review of the classification of
WEC devices, including deployment locations, dimension and orientation with respect
to the waves, as well as WEC Working Principles. On the whole, the current and future
knowledge of WEF are needed in energy-maximising or optimal control design. Thus
Section 2.3 discussed the requirements of WEF estimation and forecasting work as an
important precursor for the control design studies. Next, the classical control methods
are illustrated in Section 2.4 according to the complex conjugate concept or optimal
phase condition, to achieve the optimal power conversion. Then the modern control
strategies are classified into two different types, model-based and model-free. A litera-
ture review of WEC control system is elaborated based on some main advanced control
methods used by many researchers in wave energy field.

Following the review of the state of the art of Control for PAWEC systems, the well-
known 1:20 scaled Wavestar-like PAWEC device is chosen as a model for applying
the thesis work. The WEC-Sim numerical simulation of this system is described in
Chapter 3. Following the review of advanced control strategies for PAWEC systems
robustness and optimality are considered two important aspects to explore in this work.
Most research work related to PAWEC control system design is based on the MPC
approach, which belongs to the subject of optimization control. However, there are
not many studies focusing on robust control. Hence, in this study it is considered that
there is significant scope for research work and discussion on this topic. Hence, in
view of a requirement for robust control design and robustness enhancement of MPC
for PAWEC devices, the model-following robust control and model-predictive tracking
control methods are proposed in Chapter 5 and Chapter 6, respectively. In addition,
to further assess the optimality and robustness of the proposed controllers on PAWEC
system, a comparison study between model-following robust control and MPC is done
in Chapter 7, based on some assessment metrics.



Chapter 3

WEC-Sim Numerical Modelling for
Wavestar-prototype WEC

3.1 Introduction

In this Chapter, the numerical modelling of Wavestar-prototype device is described,
based on a popular open-source Wave Energy Converter SIMulator (WEC-Sim) (Law-
son et al., 2014b). This has been chosen as a benchmark in an open competition for the
purpose of comparisons between different WEC energy-maximising control strategies
(Ringwood et al., 2023a). It is thus appropriate that the thesis focuses on an energy-
maximising controller together with a strategy for testing the control methods, based
on WEC-Sim. The overview of the WEC-Sim software is discussed in Section 3.2,
including some descriptions of a software flow chart and the numerical modelling of a
PAWEC scheme based on Cummins’ Equation. In Section 3.3, the rotational dynamics
of Wavestar-like device system is given for building a state space model. Next, a basic
form of SMC is designed as a test regulator for the PAWEC to force its float to remain
it at the (original) equilibrium point. This is considered as the pre-test procedure before
applying the tracking design discussed in Chapters 5 and 6. Section 3.4 provides a de-
scription of the basic tests on the numerical modelling, used to check and validate the
WEC-Sim model. A SMC regulator is also described as a test procedure for checking
the controllability and effectiveness of the PAWEC control system. Section 3.5 is the
Summary of this Chapter.
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3.2 Overview of WEC-Sim software

WEC-Sim software is an open-source tool (NREL and Sandia, 2014) developed jointly
by National Renewable Energy Laboratory and Sandia National Laboratories, for the
purpose of simulating and comparing the control performances of various PAWEC
controllers (based on the Wavestar concept). The implementation is a combination of
Matlab scripts and Simulink libraries, that can be visualised as an open-source GitHub
repository (Yi-Hsiang Yu et al., 2014). The WEC-Sim code is based on Simscape
Multibody to solve for a PAWEC’s rigid body dynamics. Usually, the modular structure
of WEC-Sim is implemented in Matlab code and Simulink blocks (SimMechanics)
(Lawson et al., 2014b), as shown in Figure 3.1.
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Figure 3.1: WEC-Sim code structure.

It can be seen that WEC-Sim has three main modules:

1. The first Pre-processing modules play a role in preparing user input of hydrody-
namic data in frequency domain. The hydrodynamic data of a PAWEC device is
obtained from the BEM software as external input of WEC-Sim.

2. The second modules calculate the time-domain hydrodynamic forces/torques,
simulating specific components, and solve the Cummins’ Equation to model the
PAWEC system. WEC-Sim provides a 6 degrees of freedom (DOF) simulation
of PAWEC device. The 6 DoF Coordinate System is shown in Figure 3.2 (NREL
and Sandia, 2014), illustrating the motions of a 3-D floating body under incoming
waves.
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Figure 3.2: WEC-Sim Coordinate System (NREL and Sandia, 2014).

3. The third Post-processing modules are used to perform a visualization stage and
result data (position, velocity, power, etc) analysis from the plotted figures.

Based on the above description, Figure 3.3 gives the four steps that have been followed
in this study, to create a standard WEC-Sim simulation.

1. Define WEC-Sim user inputs

2. Execute BEM pre-processing 

modules 
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WEC model 

4. Execute WEC-Sim

1. Define WEC-Sim user inputs

2. Execute BEM pre-processing 
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3. Build muliti-body dynamics 
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Figure 3.3: Primary steps to build and execute a WEC-Sim simulation (Lawson et al.,
2014b).

Step 1: The user should choose wave properties, such as wave period and height for
specifying a regular wave or wave spectrum type, peak wave period, significant
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wave height for specifying an irregular wave. Besides, the user needs to define
the WEC geometry properties such as mass, moments of inertia, centre of gravity
(CoG) and centre of buoyancy (CoB).

Step 2: To execute the Pre-processing procedure, WEC-Sim modules can generate wave
time series and BEM solver (WAMIT, AQWA, or NEMOH) can provide hydro-
dynamic coefficients for a designed PAWEC device.

Step 3: To choose the required components (hydrodynamic bodies, constraints, PTOs,
etc) from WEC-Sim library blocks and connect them to build a multi-body dy-
mamics model of the device.

Step 4: When the selected WEC model being constructed, the numerical simulation is
performed by SimMechanics 6 DOF multi-body solver to sum hydrodynamic
forces in time domain at every time step.

More information about WEC-Sim theory, code structure, implementation, advanced
features and applications can be found in (NREL and Sandia, 2014).

3.2.1 Wave generation

Regular waves

Usually, planar sinusoidal waves are used to express regular or harmonic waves (Falnes
and Kurniawan, 2020), and the incident wave elevation can be defined as:

η(x,y, t) =
H
2

cos(ωt − k(xcosθ̄ + ysinθ̄)+φ), ω =
2π

T
, k =

2π

λ
(3.1)

where ω is the wave angular frequency and H is the wave height. k is the wave number,
λ is the wave length, θ̄ is the wave direction, and φ is initial wave phase.

Irregular waves

Generally, irregular waves are generated from linear superposition of a large number of
harmonic waves with different frequencies and with random incidence angles (Falnes
and Kurniawan, 2020). From this, the wave elevation can be defined as:

η(x,y, t) =
∑

i

Hi

2
cos(ωit − ki(xcosθ̄i + ysinθ̄i)+φi) (3.2)
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where i denotes the i-th harmonic wave component, and Hi is the i-th wave height.

For irregular waves, a particular wave energy spectrum, or wave spectral density func-
tion, is selected to represent the real sea waves in a statistical way. This description can
be used to characterize the linear superposition of distinct harmonic waves in frequency
domain. The general form of an irregular wave spectra can be expressed as:

S( f , θ̄) = S( f )D(θ̄) (3.3)

where f is the incident wave frequency. D(θ̄) represents the wave directional distribu-
tion which should satisfy:∫

∞

0

∫
π

−π

S( f )D(θ̄)dθ̄d f =
∫

∞

0
S( f )d f (3.4)

which means that the calculated energy in the directional spectrum equals the corre-
sponding energy in a one-dimensional spectrum. The power spectrum S( f ) (Falnes,
2007) can be expressed as:

S( f ) = Aωs f−5exp[−Bωs f−4] (3.5)

where Aωs and Bωs are general forms for the coefficients of the spectrum, and exp is
the natural exponential function. From this, the j-th related wave spectral moments m j

are defined as:

m j =

∫
∞

0
f jS( f )d f , ( j = 0,1,2, ...) (3.6)

The signficant wave height Hm0 can be expressed by the zero-order spectral moment
m0 as:

Hm0 = 4
√

m0 (3.7)

Note: the significant wave height is defined as the average wave peak-to-trough of the
one third largest waves (Mérigaud, 2018).

Usually, the wave spectrum S( f ) can be modified into another form of the angular
frequency ω . The corresponding term can be written as Sω(ω), given by∫

∞

0
Sω(ω)dω =

∫
∞

0
S( f )d f (3.8)

The relationship between S( f ) and Sω(ω) (Falnes and Kurniawan, 2020) is

S( f ) = 2πSω(2π f ) = 2πSω(ω) (3.9)
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The WEC-Sim software provides the user to choose one of the well-known wave spec-
tra such as: Pierson-Moskowitz (PM) Spectrum, Bretschneider Sprectrum (BS) and
JONSWAP Spectrum. The choice of spectrum is made according to typical charac-
teristics of a particular sea or ocean. Additionally, the user is allowed to import their
own special spectrum. The JONSWAP Spectrum (Hasselmann et al., 1973) has been
selected as an irregular wave generator in later chapters of this thesis. According to the
Equation (3.5), the general coefficients of the JONSWAP Spectrum are:

Aωs =
Bωs

4
H2

m0
Cωs(ϒ)ϒ

α

Bωs =
5
4

f 4
p

(3.10)

Cωs(ϒ) is a normalizing factor (NREL and Sandia, 2014) and can be defined as:

Cωs(ϒ) = 1−0.287ln(ϒ) (3.11)

The non-dimensional peak-shape parameter ϒ is defined as:

ϒ =



5 f or
Tp√
Hm0

≤ 3.6

exp(5.75−1.15
Tp√
Hm0

) f or 3.6 ≤
Tp√
Hm0

≤ 5

1 f or
Tp√
Hm0

> 5

(3.12)

where Tp is the peak wave period.

The peak-shape exponent α is given as:

α = exp
[
−
( f

fp
−1

√
2σ̄

)2]
, σ̄ =

{
0.07 f ≤ fp
0.09 f > fp

(3.13)

where fp is the peak wave frequency.

3.2.2 Numerical modelling analysis

The dynamic response of each rigid body in 6-DOF can be calculated by solving the
Cummin’s Equation (NREL and Sandia, 2014) about its centre of gravity in WEC-Sim.
The dynamic motion of a PAWEC system can be expressed as:

mẌ = Fra +Fhs +Fvis +Fexc +Fpto (3.14)



3.2. Overview of WEC-Sim software 40

where m is the mass matrix, X is the (translational and rotational) displacement vector
of the PAWEC device, Fra is the radiation force and torque (6-element) vector, gen-
erated by the body motion in still water, Fhs is the total hydrostatic restoring force
and torque vector, based on linear stiffness and bouyancy forces. Fvis is the viscous
force and torque vector, due to linear damping and quadratic drag effects. Fexc is the
wave excitation force and torque vector, acting on the PAWEC body from the incoming
waves. Fpto is the PTO force and torque vector which is the system calculated control
input from the control method. The wave-WEC interaction terms, Fra, Fhs and Fexc

are computed based on hydrodynamic coefficients generated by BEMIO functions for
BEM solvers (NREL and Sandia, 2014). Where the calculation of Fhs depends on the
hydrostatic stiffness Khs coefficient, body displacement, and body mass.

WEC-Sim provides two numerical methods, sinusoidal steady-state response and con-
volution integral formulation, for calculating Fra and Fexc.

Sinusoidal Steady-State Response

This approach can be used to do the regular wave simulations, if the system response
is in the form of sinusoidal steady-state. The radiation term Fra can be computed based
on two terms the added mass and radiation damping (Falnes and Kurniawan, 2020) as
follows:

Fra(t) =−A(ω)Ẍ −B(ω)Ẋ (3.15)

where A(ω) and B(ω) are the added mass and radiation damping coefficients.

Based on linear wave theory, the wave excitation term Fexc can be calculated as:

Fexc(t) =Re

[
Rr f (t)

H
2

Fexc(ω, θ̄)eiωt
]

(3.16)

where Re denotes the real part of (3.16). Rr f is the defined ramp function, H and ω is
the pre-selected wave height and frequency, respectively. Fexc(ω, θ̄) is the frequency-
dependent complex wave-excitation amplitude vector and θ̄ is the wave direction.

As for the ramp function Rr f , it is included to avoid strong transient flow generation
when the simulation is run during earlier time steps, given by

Rr f (t) =


1
2
(1+ cos(π +

πt
tr
)) t

tr
< 1

1 otherwise
(3.17)
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where t and tr are simlulation time and ramp time, respectively.

Convolution Integral Formulation

For irregular wave simulations, or any simulations which involve the fluid memory
effects, these effects can be expressed by the convolution integral approach based on
Cummin’s Equation (Cummins et al., 1962). Then the radiation term Fra is calculated
by

Fra(t) =−A∞Ẍ −
∫ t

0
Kr(t − τ)Ẋ(τ)dτ (3.18)

where A∞ is the added mass matrix at infinite frequency, and Kr(t) is the Impulse
Response Function (IRF) of the radiation term.

Kr(t) =
2
π

∫
∞

0
B(ω)cos(ωt)dω (3.19)

According to the Ogilvie relation (Ogilvie, 1964), the relationship between frequency-
domain and time-domain coefficients of radiation term is given by

A(ω) = A∞ − 1
ω

∫
∞

0
Kr(t)sin(ωt)dt (3.20)

B(ω) =

∫
∞

0
Kr(t)cos(ωt)dt (3.21)

The radiation convolution term can be approximated by a system of linear ordinary dif-
ferential equations. A linear state space model can be obtained by doing time-domain
system identification through Matlab functions such as imp2ss (Kung, 1978) or balmar
(Safonov and Chiang, 1988). This approximation can help to reduce the computation
burden of the convolution integral and this is convenient for PAWEC control system
design since state space designs are usually made. The desired linear state space model
is:  Ẋr(t) = ArXr(t)+Bru(t); Xr(0) = 0∫ t

0
Kr(t − τ)Ẋ(τ)dτ ≈CrXr(t)+Dru(t)

(3.22)

where Ar, Br, Cr, and Dr are the system matrix, input matrix, output matrix and
feedthrough matrix of the identified state space model, respectively. u is the control
input and Xr is the system state vector.
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For irregular waves, the surface elevation is created from the linear superposition of
several harmonic wave components. Each component is selected from a wave spectrum
Sω(ω), which is characterized by a peak frequency fp and significant wave height Hm0 ,
used to describe the wave distribution over a wide range of wave frequencies (NREL
and Sandia, 2014).

Hence, the wave excitation term Fexc under irregular wave conditions (Babarit et al.,
2012) can be computed from taking the real part of an intergal term that contains all
wave frequencies, as shown below:

Fexc(t) =Re

[
Rr f (t)

N∑
j=1

Fexc(ω j, θ̄)ei(ω jt+ψ j)
√

2Sω(ω j)dω j

]
(3.23)

where j means the j-th component, N is the number of wave frequency bands.

Apart from the hydrodynamics mentioned in (3.14), the WEC-Sim software also allows
the user to consider a mooring load by choosing a mooring stiffness or MoorDyn block
(Hall, 2015), and set the other weakly nonlinear hydrodynamics such as Nonlinear
Buoyancy and Froude-Krylov Wave Excitation, Morison Elements, etc. More details
can be found on the website (NREL and Sandia, 2014). Note: The wave slamming and
breaking effects are not considered in WEC-Sim since the model of highly non-linear
hydrodynamic effects are beyond the scope of the WEC-Sim code.

3.3 Wavestar Prototype PAWEC modelling and regula-
tion work design

A large number of studies in the literature describe the determination of hydrodynamic
parameters of specific devices operating under assumed wave conditions. Only a few
of these studies compare a variety of control approaches on a standard platform con-
sidering consistent wave excitation. The well-known WECCCOMP (Ringwood et al.,
2017) focused on a point absorber type WEC or PAWEC, named Wavestar-prototype
device (Zurkinden et al., 2014). A numerical model of the Wavestar-prototype device
was developed in WEC-Sim software in support of the competition (Tom et al., 2018).
In the first stage of the competition competitors tested and compared their innovative
control strategies through an objective of maximizing performance metrics over a range
of sea states. The Hull Control Group took part in the second stage of the competition
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(Ringwood et al., 2023a), in which there were 3 teams in total. This involved an exper-
imental wave tank implementation based on the 1:20 scaled Wavestar-prototype device
at Aalborg University (Denmark). The Hull Group came 3rd in the competition and
was the only competing group not equipped at the University with the scaled proto-
type. The lack of this facility has meant that this current thesis could not be based on
experimental work. The simulation work presented in Chapters 4-7 are based on the
WEC-Sim numerical model used in WECCCOMP.

The scaled Wavestar-prototype device can be considered as a kind of wave-activated
body PAWEC (Ringwood et al., 2019), as shown in Figure 3.4. A hemispherical float is
mechanically connected to an arm that can rotate around a fixed hinge point A, which
has three independent motions (surge, heave and pitch). At the other side of the arm,
a linear motor (power take-off system) is attached on the rotating arm to provide the
power take-off force, and it only has one degree of freedom. The linear position and
force measurements can be converted corresponding to rotational angular position and
control moment (Tom et al., 2018). Alternatively, several up-stream wave gauges can
be used to provide wave elevation information. Two rods can be seen in Figure 3.4 (a)
the sketch model such as Rod EC and Rod BC which will be appear in the numerical
Simulink model.

(a) The sketch model. (b) The physical model in laboratory.

Figure 3.4: The scaled Wavestar-prototype PAWEC device (Peña-Sanchez, 2020).

The Wavestar-like device Simulink model in WEC-Sim not only includes the hydrody-
namic response but also the physical inertia of linkages and joints, as shown in Figure
3.5, along with a CAD visualization see Figure 3.6.
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Figure 3.5: The scaled Wavestar Simulink model in WEC-Sim (Tom et al., 2018).

Figure 3.6: The WEC-Sim simulation visualization (Tom et al., 2018).

The Simulink model (Tom et al., 2018) contains body(1), a hydrodynamic body means
the float, and body(2), body(3), body(4) and body(5), the other non-hydrodynamic
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bodies which are the arm (Rod EC), frame, Rod BC and motor linear actuator mass. A
linear motor (translational PTO) is labeled as pto(1), which represents the movement
of Rod BC, and it is actuated by the control method designed in Controller block. The
wave gauges, either linear motor position and force, or float angular displacement and
motor rotary torque can be used as Controller inputs. There has a fixed connection
block between the float and arm (point E), labeled as constraint(1). Additionally, the
constraint(2), constraint(3) and constraint(4) denote the revolute joints A, B and C,
respectively. The hydrodynamic solution from the BEM solver WAMIT is provided
in advance. The hydrodynamic coefficients were computed at angular frequencies ∞

rad/s and between 0.2 rad/s and 40 rad/s. The Simulink model was validated by (Tom
et al., 2018) through comparison to experimental data from Aalborg University. The
model dimensions and mass properties relative to the still water line (SWL) are given
in Table 3.1.

Table 3.1: Wavestar numerical mass properties and model dimensions at SWL (Tom
et al., 2018).

Parameters Values [Unit]

Float Mass 3.075 [kg]
Float Cg (x, z) (0.051,0.053) [m]

Float MoI (at Cg) 0.001450 [kg ·m2]
Float Draft 0.11 [m]

Float Diameter (at SWL) 0.256 [m]
Arm Mass 1.157 [kg]

Arm Cg (x, z) (−0.330,0.255) [m]
Arm MoI (at Cg) 0.0606 [kg ·m2]

Hinge A (x, z) (−0.438,0.302) [m]
Hinge B (x, z) (−0.438,0.714) [m]
Hinge C (x, z) (−0.621,0.382) [m]

In order to reduce the design complexity for estimation and control, the hydrodynamic
response of the float-arm can be equivalent to pitch moment only around the fixed hinge
point. This means that the linear position and force measurements can be converted to
the rotational displacement and moment. Then the following float rotational dynam-
ics (Tona et al., 2019) at the hinge point A can be considered as the equivalent pitch
moment:

(J f a + J∞)θ̈(t) = −Khsθ(t)−Kvθ̇(t)+Mex(t)−Mra(t)−MPTO(t)

ṙa(t) = Arara(t)+Braθ̇(t) (3.24)

Mra(t) = Crara(t)+Draθ̇(t)
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where J f a is the total (float and arm) mass moment of inertia, J∞ is the added mass
moment of inertia, θ̈ is the rotational angular acceleration of the float, Khs and Kv

are the hydrostatic stiffness coefficient and linear damping coefficient, respectively,
and Mra, Mex and MPTO are the radiation damping moment, the equivalent wave ex-
citation moment and PTO moment around the hinge point. The radiation damping

moment Mra =

∫ t

0
hr(t − l)θ̇(l)dl is a convolution integral term, which can dramat-

ically increase computational burden and bring difficulties in estimation and control
work design. To overcome these problems, the convolution term is converted into
a second-order linear state space model by using system identification according to
Prony’s method (Tona et al., 2019) according to the realization theory. The internal
variable ra(t) in the identified second-order state space model does not have physical
meaning. (Ara;Bra;Cra;Dra) are the state space identified matrices of the convolution
term of Mra.

Theoretically, the equivalent wave excitation moment around the hinge point can be
computed as:

Mex =−Fex,xsin(θ0 +θ)larm −Fex,zcos(θ0 +θ)larm +Mex,θ (3.25)

where θ0 is the initial angular displacement of the float when it is located at the equi-
librium point, larm is the length of the arm, and Fex,x, Fex,z, Mex,θ are the surge, heave
and pitch direction components of the wave excitation force acting on the float.

The state space model of the PAWEC system can then be expressed as:

ẋ = Ax+Bu+BMex

y = Cx (3.26)

where A =


0 1 01×2

−Khs

Jt
−Kv +Dra

Jt
−Cra

Jt
02×1 Bra Ara

 ,x =
 θ

θ̇

ra

 ,B =


0
1
Jt

02×1

 ,u =−MPTO,

C =

[
1 0 01×2
0 1 01×2

]
.

The state variables θ and θ̇ are the angular displacement and velocity of the float. ra is
the internal variable of the identified state space model in Equation (3.24). Concerning
the model parameters, Jt = J f a + J∞ is the total inertia, where 0p×q denotes a zero
matrix with p rows and q columns.
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The electrical energy Ee absorbed by the grid (Guerrero-Fernandez et al., 2023) can be
defined as:

Ee(t) =
∫ t+Tl

t
Pel(r)dr =

∫ t+Tl

t
Γ(r)Pm(r)dr (3.27)

where Pm is the absorbed mechanical power by the PTO system, Γ is the conversion
efficiency, Pel is the extracted electrical power, Tl is a time horizon and r is the integra-
tion variable.

In general, the PTO systems will not be ideal and perfect in energy conversion in real-
world applications. There are bound to have some energy loss. Additionaly, there still
have power flow between the PAWEC float and grid, which involves the bi-directional
flow problem. When the energy is absorbed from the incident waves, the PTO system
works as a generator. On the contrary, if the energy is poured from the PAWEC device
into the waves, the PTO system plays like a motor.

The relationship between Pel and Pm is given below:

Pel(t) = Γ(t)Pm(t) =−Γ(t)MPTO(t)θ̇(t),

{
Γ(t) = µgen i f Pm(t)≥ 0
Γ(t) = µmot i f Pm(t)< 0 (3.28)

where µgen is the efficiency when the PTO system is assumed to be working in gener-
ator mode and µmot is the motor mode efficiency.

Regulation work design based on SMC

As the research Aim and Objectives described in Section 1.3, the main idea of this
PhD study is to design advanced control strategies (See Chapters 5 and 6) based on
a hierarchical tracking structure for the 1:20 scaled Wavestar-like PAWEC to reach a
near-resonance condtion in order to achieve the energy maximization generation. Be-
fore the tracking control work design, it is necessary to test the regulation work on the
PAWEC device to check and see if the WEC-Sim numerical modelling is reasonable.

Here, the basic SMC method is selected to stabilize the PAWEC system and regulate it
to stay at the equilibrium point, which means that the PAWEC float displacement and
velocity will remain at the zero.

Based on the state space model (3.26), a switching function can be defined as:

sr = Srx (3.29)
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The hyperplane Sr (Edwards and Spurgeon, 1998) is defined by

Sr = {x ∈R1×4 : sr(x) = 0} (3.30)

The time derivative of sr is

ṡr = Srẋ = Sr(Ax+Bu+BMex) (3.31)

Considering the system states converge to and stay on the surface Sr, to define the SMC
control law u as:

u = ulr +unr (3.32)

ulr is the linear equivalent term and unr is the nonlinear switching term.

ulr =−(SrB)−1SrAx− M̂ex , unr =−knrsr − εrsign(s) (3.33)

where knr and εr are positive constants. M̂ex is the estimated WEM that can be obtained
from the observers proposed in Chapter 4.

Next, define a Lyapunov function:

Vr =
1
2

s2
r (3.34)

The time derivative of (3.34) has the form:

V̇r = sr ṡr = sr(SrAx+SrBu+SrBMex) (3.35)

Substituting (3.32) into (3.35) it follows that:

V̇r = sr[SrB(Mex − M̂ex)− knrsr − εrsign(sr)]

≤−knr||sr||22 −||sr||2(εr −||∆M||2)
(3.36)

where ∆M = SrB(Mex − M̂ex), sign(sr) is the signum function of sr.

According to (3.36), if εr > ||∆M||2, then V̇r ≤ 0 is satisfied. The stability of the control
system is thus proved which means that the system states can reach and remain at the
sliding surface with an ideal sliding motion in finite time.
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3.4 Basic tests on numerical modelling

The parameters of the float rotational dynamics at hinge point A (Tona et al., 2019) are
listed as shown in Table 3.2, used for doing numerical simulations in this thesis work.
The JONSWAP wave Spectrum is adopted to generate six irregular waves (Ringwood
et al., 2019) which can be seen in Table 3.3.

Table 3.2: The simulation parameters.

Parameters Values

Total mass (float, arm and added)
moment of inertia Jt

1.4805 kg · m2

Hydrostatic coefficient Khs 92.33 Nm · rad−1

Linear damping coefficient Kv 1.8 Nm · rad−1s−1

Length of the arm larm 0.54875 m
Efficiency of generator mode µgen 0.7

Efficiency of motor mode µgen 0.7−1

System matrix Ara Ara =

[
−13.59 −13.35

8.0 0

]
Input matrix Bra Bra =

[
8.0; 0

]T

Output matrix Cra Cra = [4.739 0.5]
Feedthrough matrix Dra Dra =−0.1586

The significant wave height Hm0, the peak wave period Tp and the wave peak enhance-
ment factor κ are used to parametrize the various sea scenarios. The spectral energy
distribution of the selected seastates are given in Figure 3.7. Combined with Table 3.3,
it can be seen that the spectral energy will be increased when the significant wave height
Hm0 and peak wave period Tp become larger from Seastate1 to Seastate3 and Seastate4
to Seastate6. On the other hand, if the Hm0 and Tp are held at constant values, the
spectral energy gets larger when the wave peak enhancement factor κ is increased.
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Table 3.3: JONSWAP Specturm sea states.

Sea State Hm0 Tp κ

Seastate1 0.0208 0.988 1
Seastate2 0.0625 1.412 1
Seastate3 0.1042 1.836 1
Seastate4 0.0208 0.988 3.3
Seastate5 0.0625 1.412 3.3
Seastate6 0.1042 1.836 3.3
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(f) Sea State 6.

Figure 3.7: The JONSWAP Spectrum for six sea states.

According to the Equation (3.25), the wave excitation moment Mex can be calculated
using the ideal formula. Apart from this, the default Mex can also be obtained from
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the WEC-Sim output measurement when the PAWEC device is fixed at Hinge point A.
This means that the excitation test procedure can be carried out when the float is fixed
and cannot oscillate, to measure and acquire the wave excitation moment. The results
of two ways for computing Mex under 6 irregular waves are given in Figure 3.8.
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Figure 3.8: Wave excitation moment measured at fixed point A vs computed moments
for six sea states.

However, although the phase remains the same in both cases, there exists an amplitude
offset between the computed Mex and measured Mex from a fixed A constraint. The
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reason for this is that there is an additional moment due to the offset between CoG
and CoB, and a static moment caused by the weight of the arm between the float and
the point A. The bias of the excitation moment is ∼ 1.25Nm. Figure 3.9 presents the
computed Mex from the formula and the compensated Mex. It can be seen that the offset
is almost removed from the value of the excitation moment.
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Figure 3.9: Wave excitation moment being compensated vs computed by Equation
(3.25) for six sea states.

In order to check and test the approximated state space model of the radiation damping
moment Mra, Figure 3.10 gives the results of the default radiation damping moment in
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WEC-Sim and the calculated Mra from state space model. This indicates that the state
space model in Equation (3.24) is a feasible and proper representation of the radiation
damping moment convolution integral term of the WEC-Sim under 6 Seastates, even
if a small phase bias is evident between them.
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Figure 3.10: Radiation damping moment from WEC-Sim vs state space model approx-
imation.

Figure 3.11 illustrates the surge, heave, pitch components of the wave excitation mo-
ment Equation (3.25) acting on the float. The equivalent excitation moment at the hinge
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point A is also illustrated. This equivalent moment comprises the superposition of the
three direction components based on the Equation (3.25).
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Figure 3.11: The components of wave excitation force in surge, heave, pitch directions
and equivalent excitation moment at hinge point A (Seastate 5).

Additionally, the results of two different MPTO forced motion tests are shown in Fig-
ures 3.12 and 3.13. The sinusoidal and mult-sine PTO moment signals are selected to
do a simple checking on the scaled Wavestar-like numerical modelling. Figure 3.12
shows the sinusoidal signal test and Figure 3.13 shows the multi-sine signal test. The
multi-sine signal consists of a linear combination of some simultaneously generated
sinusoids. The float angular displacement and velocity results of both tests can be seen
in both Figures 3.12 and 3.13.
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Figure 3.12: Sinusoidal signal of PTO moment test (Seastate 5).
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Figure 3.13: Multi-sine signal of PTO moment test (Seastate 5).
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Figure 3.14: Regulation test: the float angular displacement of PAWEC without control
or with SMC.

The SMC displacement and velocity regulation responses of the PAWEC device are
shown in Figure 3.14 and Figure 3.15, respectively. The simulation results are also
compared with the cases when the PAWEC system just oscillates by the incoming
waves without any control force being acting on it. This is repeated for the six irregular
Sea states. It is clear that the SMC scheme effectively provides sufficient effectiveness
to maintain stability of the PAWEC Wavestar-prototype, at the equilibrium point. The
results show that the PAWEC system states (float angular displacement and angular
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velocity) remained close to zero.
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Figure 3.15: Regulation test: the float angular velocity of PAWEC without control or
with SMC.

3.5 Summary

This Chapter introduces the flowchart of WEC-Sim software and described the steps of
running a WEC-Sim numerical simulation. Following this the wave generation descrip-
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tion and some background theory behind the numerical modelling analysis are given.
Next, a numerical modelling for a Wavestar-like device (the 1:20 scaled benchmark) is
illustrated including the WEC-Sim numerical model and its rotational dynamics based
on the well-known Cummin’s Equation at the hinge point A, in order to build a state
space model for this thesis for the purpose of energy-maximizing control design. Fi-
nally, the numerical model in WEC-Sim is verified based on some basic tests. For
example, the validation of ideal excitation moment formula (3.25) and the checking
of radiation moment state space approximation (3.24), sinusoidal and mult-sine PTO
moment signal tests, and the regulation test based on SMC.

Recall that the main focus of the thesis work is a study on the development of Energy-
Maximizing Control Design for the 1:20 scaled Wavestar-prototype device, under ir-
regular wave condtions. As a part of this work the WEM estimation and the determi-
nation of optimal reference have to be prepared before the tracking control work can
be achieved. Hence, the purpose of Chapter 4 is to introduce some practical ways re-
alising estimator designs for WEM estimation. Following this, the calculation of the
optimal reference velocity, based on the WEC-Sim numerical model is described. The
numerical model continues to be used in the WEC-Sim simulation studies described in
Chapters 5, 6 and 7.



Chapter 4

Wave Estimation Strategies for
PAWEC Control

4.1 Introduction

As described in Chapter 1 Figure 1.5, the hierarchical tracking control structure for
PAWEC energy maximization is the main idea and contribution of this thesis, based on
the use of the 1:20 scaled Wavestar-like device. The contribution contains two parts:

• The high-level part, including WEM estimation (Li and Patton, 2023c) and ref-
erence signal computation (Li and Patton, 2023a).

• The low-level work comprises the design of an energy-maximizing controller (Li
and Patton, 2023b).

The low-level model-following mixed LQR/H∞ tracking control and SMC work are
discussed in Chapter 5 and the model-predictive velocity tracking control is proposed
in Chapter 6. This Chapter focuses on the WEM estimation of the high-level part
design. Some robust methods are proposed that can fit well in practice in simulation
feasibility study. This also includes the determination of the optimal reference signal
for the PAWEC tracking control. Theoretically, the WEM is assumed to be a narrow-
band harmonic process and modelled as a single cyclical component based on Harvey’s
structural model (Li and Patton, 2023a). Following this, it is shown how an on-line
estimation can be performed to obtain the instantaneous amplitude and frequency of
WEM using an EKF to compute the reference velocity.
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Some simple but effective robust methods are considered to design four different esti-
mators (See Section 1.4):

(1) UIO with LMI,

(2) LO with LMI,

(3) LO with pole-placement, and

(4) ASMO.

The designs and derivations of each estimators are given in Section 4.2. The lin-
ear modelling including modelling errors and system uncertainty are inevitable in the
PAWEC system. Hence, the estimator is better to be considered in a robust way, in
order that its estimation performance satisfies the efficient and robust operation over a
suitably wide enough range of irregular waves. The EKF is selected in Section 4.3 to
obtain the instantaneous amplitude and frequency of the WEM in order to be able to
calculate the optimal reference velocity. Recall that the reference velocity is required to
achieve energy-maximising tracking control and this is essential for the study consid-
ered in Chapters 5 and 6. The simulation results of the WEM estimation work and the
calculated reference velocity are shown in Section 4.4, where four estimators are anal-
ysed based on suitable performance indices. Section 4.5 summarises this estimation
study, prior to applying it in the Control designs of Chapters 5 and 6.

4.2 Estimator designs

As mentioned in Chapter 2, the PAWEC oscillates with the incoming waves in a non-
fixed body (Guo, 2017) structure. And the WEF is a physically unmeasurable quantity
for the real application of PAWEC devices (Guo et al., 2018). However, for PAWEC
systems the WEF itself is difficult to measure by some sensors and it usually needs
to be calculated or estimated by one or more alternative approaches (Guo et al., 2018;
Abdelrahman and Patton, 2019). Usually the estimation or calculation of WEF plays an
important part of the PAWEC maximum energy absorption (Garcia-Abril et al., 2017).
Moreover, the WEF is required to be as accurate as possible to further improve the
control performance. There have abundant control strategies have been employed for
the purpose of energy maximisation extraction (Guo and Ringwood, 2021) but most of
them require the WEF information.
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(Peña-Sanchez, 2020) illustrates a critical comparison of 11 different estimation meth-
ods in his thesis. According to the following classification, those methods can be di-
vided into three groups: (i) The requirement of using wave elevation measurements:
the WEF Fexc(t) can be calculated by doing a convolution operation on wave elevation
η(t) and the time domain kernel function ke(t). ke(t) can be obtained from the inverse
Fourier transform of the frequency domain response of excitation force (Guo et al.,
2018). However, a frequently encountered challenge is that the kernel function ke(t)

is non-casual feature which can render this approach as physically unimplementable.
A time-shift technique (Guo, 2017) can be used to overcome this non-causality prob-
lem by choosing a wave predictor to provide the wave elevation prediction ηp(t) to
the causalised form ke,c(t) for computing the WEF, as shown in Figure 4.1. tc is the
selected causalisation time (Falnes, 1995). This type of approach is not affected by
the viscous/friction forces, but it is not valid for calculating the WEF under irregular
waves. Since this study is limited to irregular waves it is not considered in this work,
beyond mention here.

Figure 4.1: The wave elevation-based approach for WEF calculation (Guo, 2017).

(ii) The requirement of using both PAWEC motion and pressure measurements: the
concept of this structure is to firstly obtain the total wave force Fw(t) based on the pres-
sure information form some pressure sensors installed on the wet surface of the WEC
float. Then the radiation force Fra(t) and hydrostatic force Fhs(t) can be calculated sep-
arately based on the linear variable displacement transducer and accelerometer (Guo
et al., 2018). Thus the WEF Fexc(t) can be computed by using Fw(t) subtracting the
Hydrostatic and Radiation forces Fhs(t) and Fra(t), as can be seen in Figure 4.2. Where
km is hydrostatic coefficient and v(t) is the bouy velocity.
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Figure 4.2: Both PAWEC motion and pressure meaurements based WEF computation
(Guo, 2017).

This structure can be used to get Fexc(t) under irregular wave conditions and is not
affected by friction forces. But it relies on using lots of measurement sensors that
will suffer significantly from the measurement noise, especially for real applications.
Moreover, the WEC-Sim benchmark does not offer the pressure information of the
WEC system, hence, this structure is also not involved to do research work in this PhD
study.

Figure 4.3: The PAWEC motion based way for WEF estimation (Guo, 2017).

(iii) The requirement of using PAWEC motion measurements: Figure 4.3 shows the
idea of WEF estimation based on the WEF estimator that can be based on different
estimation approaches (Peña-Sanchez et al., 2019), which can provide the more free-
dom for the estimation computation according to the requirements on robust or optimal
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mechanisms. This is a more general way that is followed by many researchers for es-
timating the WEF since only displacement meassurement is needed. Hence, it is easy
to implement for PAWEC devices excited by irregular waves (Guo, 2017). This thesis
follows the procedure of using the PAWEC motion measurement.

In the review paper (Peña-Sanchez et al., 2019), some of the approaches are based on
Kalman filter (KF) (Nguyen and Tona, 2017b; Ling, 2015) or EKF (Crassidis and Junk-
ins, 2004; Abdelkhalik et al., 2017), which requires a priori knowledge of the process
and measurement covariance matrices. Otherwise, the KF and EKF methods lose their
effectiveness and even suffer from a diverge problem due to lack of robustness resulting
from parameter uncertainty. Both the Fast Adaptive Unknown Input Estimator (Abdel-
rahman et al., 2016) and Unknown Input Observer (Abdelrahman and Patton, 2017) are
designed based on LMI and show the robustness to some extent. However, the LMI fea-
sibility problem would bring a side effect in calculating the observer gain and limit the
estimation performance. In addition, the other estimators are described and discussed,
such as the receding horizon method (Nguyen and Tona, 2017b), convolution with pre-
dicted wave elevation (Guo et al., 2017), pressure acceleration displacement method
(Guo et al., 2018), unified linear input and state approach (Yong et al., 2016) and so on.
Basically, the majority of methods can show satisfactory estimation performance but
with high computation burden or lack of robustness against system uncertainty. More-
over, most of the approaches are model-based and use linear WEC modelling which
naturally involves unmodeled dynamics and system uncertainty from the real PAWEC
applications. Therefore, the simple but effective robust WEF estimation design is re-
quired and should be developed.

As this study focuses on the use of the scaled Wavestar-prototype device, it can be
seen (Figure 3.4 in Section 3.3) that the Cummin’s Equation 3.24 for this problem
concerns rotational dynamics, with the terms in the Equation representing moments
rather than forces. Hence, the concept of Wave Excitation Moment (WEM) replaces the
WEF as the modelling outline given in Chapter 3. However, the estimation can still be
designed using the same procedure, but just with different dynamics. The assumption
that equivalent Mex is based on the hinge point A can reasonably be considered as an
"unknown input" term for the special Wavestar-like device. This means that Unknown
Input Observer designs which only use the PAWEC motion measurements can be used
reliably.
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Hence, for the Mex estimation, an augmented form of the state-space system (3.26) will
have to be used as follows:

ẋo = Aoxo +Bou+Dod

y =Coxo
(4.1)

where Ao =


0 1 01×2 0

−Khs

Jt
−Kv +Dra

Jt
−Cra

Jt

1
Jt

02×1 Bra Ara 02×1
0 0 01×2 0

 ,xo =


θ

θ̇

ra
Mex

 ,Bo =


0
1
Jt

03×1

,

u =−MPTO,Co =

[
1 0 01×3
0 1 01×3

]
, Do =

[
0 1 01×2 0
0 0 01×2 1

]
,

d =

[
d1
d2

]
denotes the lumped disturbances (unmodeled dynamics, uncertainties, etc).

The estimated WEM M̂ex can be obtained after the estimation of the state vector xo

using the output measurements y.

4.2.1 UIO with LMI

The UIO (Zhu and Li, 2021b) can generally be defined as:

ż = Muz+Guu+Luy

x̂o = z+Huy
(4.2)

where z ∈ ℜ5 means the observer state vector, Mu ∈ ℜ5×5, Gu ∈ ℜ5×1, Lu ∈ ℜ5×2 and
Hu ∈ ℜ5×2 are observer matrices desired to be designed. x̂o ∈ ℜ5 is the estimate of xo.
To give the estimation error of UIO as eu = xo − x̂o, and calculate its time derivative

ėu = ẋo − (ż+Huẏ)

= (I5 −HuCo)ẋo − (Muz+Guu+Luy)

= Ξ(Aoxo +Bou+Dod)−Muz−Guu− (Lu1 +Lu2)y

= (ΞAo −Lu1Co)eu +(ΞBo −Gu)u+ΞDod +(ΞAo −Lu1Co)(z+Huy)−Muz−Lu2y

= (ΞAo −Lu1Co)eu +(ΞBo −Gu)u+ΞDod

+[(ΞAo −Lu1Co)Hu −Lu2]y+(ΞAo −Lu1Co −Mu)z

(4.3)

where, Ξ = I5 −HuCo, Lu = Lu1 +Lu2.
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For convenient design, the matrices Mu, Gu and Lu2 (Lan et al., 2017b) are defined as:

Mu = ΞAo −Lu1Co, Gu = ΞBo, Lu2 = (ΞAo −Lu1Co)Hu (4.4)

and further to reduce the error dynamics (4.3) into the form as:

ėu = (ΞAo −Lu1Co)eu +ΞDod (4.5)

The estimated observer measurement is then defined as:

zu =Cueu (4.6)

where Cu = I6. To check the asymptotic stability of the estimator system (4.5) a Lya-
punov matrix must be selected, such that:

Vu = eT
u Pueu (4.7)

where Pu is a symmetric positive definite matrix.

The time derivative of the Lyapunov function Vu is:

V̇u = ėT
u Pueu + eT

u Puėu

= [(ΞAo −Lu1Co)eu +ΞDod]T Pueu + eT
u Pu[(ΞAo −Lu1Co)eu +ΞDod]

= eT
u [Pu(ΞAo −Lu1Co)+(ΞAo −Lu1Co)

T Pu]eu + eT
u PuΞDod +dT DT

o Ξ
T Pueu

(4.8)

The H∞ performance ||Tzud||∞ < γu can be expressed as:

Ju =

∫
∞

0
(zT

u zu − γ
2
u dT d)dt < 0 (4.9)

Under zero initial conditions (Lan and Patton, 2017), it follows that

Ju =

∫
∞

0
(zT

u zu − γ
2
u dT d +V̇u)dt −

∫
∞

0
V̇u dt

=

∫
∞

0
(zT

u zu − γ
2
u dT d +V̇u)dt − (Vu(∞)−Vu(0))

≤
∫

∞

0
(zT

u zu − γ
2
u dT d +V̇u)dt

Thus a sufficient condition of Equation (4.9) is

J1 = zT
u zu − γ

2
u dT d +V̇u < 0 (4.10)

By substituting Equation (4.8) into Equation (4.10) it follows that

J1 =

[
eu
d

]T [
J11 PuΞDo
∗ −γ2

u I

][
eu
d

]
< 0 (4.11)
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where J11 = Pu(ΞAo −Lu1Co)+(ΞAo −Lu1Co)
T Pu +CT

u Cu

According to the Bounded Real Lemma (Boyd et al., 1994), if there exists a symmetric
positive definite matrix Pu such that the following LMI is feasible, PuĀo + ĀT

o Pu PuΞDo I
∗ −γ2

u I 0
∗ ∗ −I

< 0 (4.12)

where Āo = ΞAo −Lu1Co.

Then the error system (4.5) is asymptotically stable with γu > 0. Next define N1 =PuHu,
N2 = PuLu1, then the LMI (4.12) is equivalent to the next LMI: He(PuAo −N1CoAo −N2Co) (Pu −N1Co)Do I

∗ −γ2
u I 0

∗ ∗ −I

< 0 (4.13)

The matrices Pu, N1 and N2 can be calculated by using Matlab LMI toolbox to solve the
LMI (4.13). Furthermore, the matrices Hu and Lu1 will be known from Hu = P−1

u N1,
and Lu1 = P−1

u N2. Finally, the matrices Mu, Gu and Lu can be obtained according to
(4.4).

4.2.2 LO with LMI

The LO estimator (Du et al., 2015) usually has the form:

ξ̇ = Aoξ +Bou+Lol(y−Coξ ) (4.14)

where ξ ∈ℜ5 is the state vector of LO, Lol ∈ℜ5×2 is the required observer gain matrix.

By defining its estimation error as eol = xo−ξ , and taking the time derivative leads to:

ėol = ẋo − ξ̇ = (Ao −LolCo)eol +Dod (4.15)

The design procedure of LO with LMI is similar to the UIO with LMI. Hence, con-
sidering the Bounded Real Lemma (Boyd et al., 1994), it is easy to show that if there
exists a symmetric positive definite matrix Pol ensuring the below LMI feasible: He(PolAo −YolCo) PolDo I

∗ −γ2
olI 0

∗ ∗ −I

< 0 (4.16)
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thereby the stability of the LO error system (4.15) is satisfied with γol > 0 and a matrix
Yol = PolLol . The observer gain is computed as Lol = P−1

ol Yol .

4.2.3 LO with Pole-Placement

The LO can be reconsidered in the form:

ξ̇ = Aoξ +Bou+Lop(y−Coξ ) (4.17)

Here to define eop = xo − ξ , Al = AT
o , Bl =CT

o . The Matlab default function can help
to place the desired poles (Laub and Wette, 1984), such as Lop = place(Al,Bl, po), to
calculate the observer gain Lop. Where po ∈ ℜ5 are the user selected poles.

4.2.4 ASMO

To rearrange the float rotational dynamics described in Equation (3.24) into a new form
as:

ẋ1 = x2

ẋ2 =− 1
Jt
(Khsx1 +Kvx2 +Crara +Drax2)+

u
Jt
+

Mex

Jt

(4.18)

where x1 = θ is the pitch angular position , and x2 = θ̇ is the pitch angular velocity.
The ASMO followed from (Lan et al., 2017a) can be defined as:

˙̂x1 = x̂2 +υ1

˙̂x2 =− 1
Jt
(Khsy1 +Kvy2 +Crara +Dray2)+

u
Jt
+υ2

(4.19)

where x̂1 and x̂2 are the observer states, and y1 and y2 are the system output mea-
surements. Next to define the error signals as es1 = x1 − x̂1 and es2 = x2 − x̂2 and the
switching functions υ1 and υ2 are given as:

υ1 = ηυ1sign(es1), υ2 = ηυ2sign(es2) (4.20)

Thus, the estimation error system becomes

ės1 = es2 −υ1

ės2 =
Mex

Jt
−υ2

(4.21)
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Choose the observer adaptive law as the following form

˙̂ρυ1 = συ1 ||es1||2, ˙̂ρυ2 = συ2||es2||2 (4.22)

Then, define the switching function parameters in (4.20) as ηυ1 = ρ̂υ1 + ευ1 and ηυ2 =

ρ̂υ2 + ευ2 , where συ1 , συ2 , ευ1 and ευ2 are all positive constants. Hence, the estimated
Mex can be obtained from M̂ex = Jtυeq,2. υeq,2 is the equivalent switching function of
υ2, and υeq,2 ∼= υ2/(1+ τs). Where τ is a time constant.

4.3 Optimal reference computation

Following on from the high-level part of the hierarchical tracking structure shown in
Figure 1.5, the instantaneous amplitude and frequency of WEM are required before
computing the reference velocity θ̇re f . Therefore, an efficient EKF method is selected
to do the recursive estimation for those two coefficients. Here, assume that the WEM
signal is a narrow-band process (Fusco and Ringwood, 2014a), and to express its har-
monic model as

Mex(t) = Aex(t)cos(ω(t) · t +β (t)) (4.23)

where Aex(t),ω(t) and β (t) are the time-varying amplitude, angular frequency and
phase of the Mex signal, respectively. Considering the Harvey’s structural model given
in (Harvey, 1990), the Mex can be converted into a single cyclical component (Fusco,
2012): ψ(k+1)

ψ∗(k+1)
ω(k+1)

=

 cos(ω(k)Ts) sin(ω(k)Ts) 0
−sin(ω(k)Ts) cos(ω(k)Ts) 0

0 0 1


 ψ(k)

ψ∗(k)
ω(k)

+
 ς(k)

ς∗(k)
κ(k)


Mex(k) = ψ(k)+ζ (k)

(4.24)
where de(k) = [ς(k) ς∗(k) κ(k)]T and ζ (k) are random process and measurement
noise, and ψ(k) and ψ∗(k) are state components related to the amplitude and phase.

The state vector xe(k) =
[

xe,1(k) xe,2(k) xe,3(k)
]T

=
[

ψ(k) ψ∗(k) ω(k)
]T

and xe(k) ∈R3×1, corresponding to the sampling time Ts.

Then the non-linear time-varying model of (4.24) (Welch et al., 1995) is formulated as:

xe(k) = f (xe(k−1),de(k−1))

ze(k) = h(xe(k),ζ (k)) (4.25)
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where the estimated M̂ex is considered as the actual measurement ze(k). According to
the above descriptions and without knowing the noise information arised in the PAWEC
system, the a priori state and measurement from time k−1 are

x̂e(k|k−1) = f (x̂e(k−1|k−1),0)

ẑe(k|k−1) = h(x̂e(k|k−1),0) (4.26)

where x̂e(k|k−1) is the estimate of xe(k) and ẑe(k|k−1) is the estimate of ze(k) based
on measurements from time k−1. On application of a first-order Taylor series expan-
sion of the Equation (4.26), the linearized system time-varying Jacobian matrix F(k)

(ASSEL, 2014) is obtained as

F(k) =
∂ f
∂xe

∣∣∣∣x̂e(k−1|k−1)

=

 cos(ω(k)Ts) sin(ω(k)Ts) Ts(−sin(ω(k)Ts)ψ(k)+ cos(ω(k)Ts)ψ
′(k))

−sin(ω(k)Ts) cos(ω(k)Ts) Ts(−cos(ω(k)Ts)ψ(k)− sin(ω(k)Ts)ψ
′(k))

0 0 1


The observed Jacobian matrix is

H(k) =
∂h
∂xe

∣∣∣∣x̂e(k|k−1)≜ [1 0 0]

Thus, the time-update equations of EKF are

x̂e(k|k−1) = f (x̂e(k−1|k−1),0)

Pe(k|k−1) = F(k)Pe(k−1|k−1)FT (k)+Qe

The utilize of Jacobian matrices F(k) and H(k) to achieve both the model and mea-
surement updates lead to

Ke(k) = Pe(k|k−1)HT (k)(H(k)Pe(k|k−1)HT (k)+Re)
−1

x̂e(k|k) = x̂e(k|k−1)+Ke(k)(ze(k)−h(x̂e(k|k−1),0))

Pe(k|k) = (I −Ke(k)H(k))Pe(k|k−1)

where Qe and Re are the covariance process and measurement noise matrices, which
should be properly chosen. After the on-line estimation procedure, the estimated am-
plitude Âex and frequency ω̂ (Fusco, 2012) are

Âex(k|k) =
√

x̂e,1(k|k)2 + x̂e,2(k|k)2

ω̂(k|k) = x̂e,3(k|k)
(4.27)
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Next, consider the float can reach a near-resonance condition for the purpose of energy
maximising. The near-resonance condition means that the float angular velocity is in-
phase with the WEM. The reference angular velocity (Fusco and Ringwood, 2014a) is
presented as:

θ̇re f (t) =
1

T (t)
M̂ex(t) (4.28)

where
1

T (t)
=


1

2B(ω̂)+2K(0)
v

, i f
ω̂θlim

Âex
>

1

2B(ω̂)+2K(0)
v

ω̂θlim

Âex
, otherwise

(4.29)

B(ω̂) is the radiation damping coefficient, and K(0)
v is the extra viscous damping coef-

ficient. θlim denotes the maximum angular displacement of the Wavestar float. Finally,
the optimal reference velocity θ̇re f can be computed when the instantaneous amplitude
Âex and frequency ω̂ of the M̂ex signals are obtained from the EKF.

4.4 Simulation results

In this Section WEM estimation results are derived, based on WEC-Sim, for the four
different estimators (1) UIO with LMI, (2) LO with LMI, (3) LO with pole-placement,
and (4) ASMO. EKF estimation results are also obtained, for instantaneous amplitude
Âex and frequency ω̂(t) of the WEM, These are also required in the reference genera-
tion step, prior to implanting the PAWEC tracking control.

The parameters of four estimators: γu = 1.5, γol = 1.5, συ1 = 3, ευ1 = 2.5, συ2 = 10,
ευ2 = 6, τ = 0.01, po = [−26,−24,−18,−16,−40]T .

The estimated Mex from four methods at six different sea states are shown in Figure
4.4. On account of convenience and to avoid redundancy, the following discussion and
analysis focus on the estimation result corresponding to Seastate 2. The ideal in Figure
4.4 means the theoretically calculated equivalent wave excitation moment around the
hinge point A, see Equation (3.25).
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Figure 4.4: Estimated M̂ex from four methods at six sea states.

In order to compare and analyse the estimation performances of all estimators pre-
sented in Section 4.2, some indices are considered here, such as the average error (AE)
(Zhang et al., 2019), normalized root-mean-square accuracy (NRMSA) (Peña-Sanchez
et al., 2019) and delay.

The AE is chosen as:

AE =
1

Ls −Ns

Ls∑
k=Ns

|Mex(k)− M̂ex(k)| (4.30)
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and the NRMSA is selected as:

NRMSA =

(
1−

√√√√∑Ls
k=Ns

(Mex(k)− M̂ex(k))2∑Ls
k=Ns

Mex(k)2

)
(4.31)

where Ls is the total number of samples and Ns is the selected first data sample. It
is appropriate to set Ns as 0.6 Ls to remove the effects of the transient response. The
maximum value of NRMSA is 1 which means the best estimation. Here, to set Ls =

141200, and the calculated performance indices for analysis are given in Table 4.1.

Table 4.1: Performance indices of estimators in Seastate 2.

Performance
index

AE NRMSA Delay

UIO-LMI 1.0824 0.6790 0.113
LO-LMI 1.0436 0.7014 0.109
LO-PP 0.3577 0.9635 0.026
ASMO 0.0818 0.9938 0.002

It can be seen that both UIO and LO based on LMI show large AE and delays, which
means that the estimation performance is restricted, to some extent by these indices.
Furthermore, the computed NRMSA from both LMI methods are less than the other
two approaches (LO-PP and ASMO). Theoretically, the robustness of an observer
based on H∞ performance can be improved, but the LMI feasibility problem brings
a limitation into the computation of the observer gain. Considering the enhancement
of the estimation performance, a small H∞ performace index γ is required here, but to
attempt to achieve this LMI infeasibility was a challenging issue which was difficult
to overcome. This is the main reason why the estimation performance based on LMI
method is limited.

On the other hand, the LO-PP method performs well with a small AE and delay, and its
NRMSA is larger than the UIO-LMI and LO-LMI estimators. The estimation result of
ASMO presents very little AE and delay as the sliding mode has the fast response prop-
erty. Besides, ASMO has strong robustness and provides the high value of NRMSA.
However, ASMO may introduce some high frequency components that could poten-
tially increase the burden of a PTO system operating with the PAWEC system. This
can be aggravated especially when ASMO is used with sliding mode control, although
there are methods to ensure that the sliding occurs close to but not on the sliding bound-
ary, and so removing the effect of switching discontinuities (Utkin, 2013).
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On balance, the LO-PP method has the simplest structure and is very attractive in real
applications. ASMO is a nonlinear approach and can provide better performance if a
more complex form of PAWEC model is considered.
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(e) Amplitude of M̂ex at Seastate 5.
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(e) Amplitude of M̂ex at Seastate 6.

Figure 4.5: Instantaneous amplitude of M̂ex at six sea states.

The instantaneous amplitude Âex of M̂ex is given in Figure 4.5 along with estimated
M̂ex. The estimated instantaneous frequency ω̂ of M̂ex is shown in Figure 4.6. The
estimated frequency ω̂ fluctuates with a range around the peak frequency of the Sea
states spectrum in Figure 3.7. Generally, the EKF needs long time to converge, and its
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initial values should be properly selected, which close to the expected values in order
to avoid there has a long time for the result convergence.
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Figure 4.6: Instantaneous frequency of M̂ex at six sea states.
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Figure 4.7: Optimal reference angular velocity at six sea states.

Figure 4.7 gives the calculated optimal reference velocity based on the Equation (4.28).
It serves a function in guiding the scaled Wavestar-prototype device into a near reso-
nance condition for the purpose of energy-maximising control design. For example, it
is adopted to derive the angular displacement reference and build a reference model for
model-following tracking work illustrated in Chapter 5. The optimal velocity reference
is also used for the MPC veloctity tracking control work designed in Chapter 6.
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4.5 Summary

This Chapter provides a comparison study between four estimators for WEM estima-
tion work and it contributes to give some insight of a scaled Wavestar-prototype WEC
developed in WEC-Sim. From the analysis of the simulation results, UIO and LO
methods designed with LMI have restrictions but still give feasible solutions. AMSO
provides the best estimation performance as a nonlinear and robust approach. LO pole-
placement actually is the simplest and most effective method in estimating the WEM,
which might be very valuable when used in future real applications. On the other
hand, the EKF can perform well in estimating the instantaneous WEM amplitude and
frequency, and then these two signals are sufficient to build the reference velocity.

Overall, The WEM estimation and the calculation of the optimal reference velocity in
this Chapter 4 are the preliminary work for Chapter 5 in model-following robust control
design and for the MPC velocity tracking method in Chapter 6. A near-resonance
condition can be reached for the energy maximisation generation when the tracking
work is done by the PAWEC system.



Chapter 5

Robust Tracking Control Methods
based on Model-Following

5.1 Introduction

In general, the WEC device aims to capture energy from the ocean waves and convert
the absorbed mechanical power into some electrical power to the grid by a selected
PTO system (Sheng, 2019). The primary task in wave energy is to lower the Levelized
Cost of Energy (LCOE). There are two attractive aspects of this. One aspect is to
reduce the device maintenance cost (Mérigaud and Ringwood, 2016), and the second
is to maximize the energy conversion by a designed energy-maximising control system
(Ringwood et al., 2014), considered to operate over a range of sea states. At present,
the control for the purpose of energy maximisation is one of the most popular topics
(Ringwood et al., 2023b) for which lots of research focuses on PAWEC devices due to
some advantageous features, as outlined in Section 2.2.

In early work, some researchers preferred to consider the use of the complex-conjugate
control (CCC) (see Section 2.4) method to achieve energy maximization generation,
based on the linear resonance theory (Falnes and Kurniawan, 2020). The interest is
to achieve significant amplification of the WEC motion, in order to harvest as much
energy as possible from waves. However, this requirement usually violates the as-
sumption of linear modelling, by considering the action of large motion in non-linear
dynamics. Furthermore, CCC tends to give rise to significant power fluctuations (Faedo
et al., 2017) that make it difficult to choose a suitable PTO system for a PAWEC de-
vice. The most significant argument against the use of reactive control is that it has
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an inherent non-causal characteristic. An additional negative feature is that reactive
control is frequency-dependent for monochromatic or regular wave conditions, for giv-
ing an optimal solution (Faedo et al., 2017). Clearly, regular wave conditions do not
exist in practice as sea waves contain several random frequency components. These
deficiencies prompted researchers to move away from CCC designs towards MPC.

As introduced in Section 2.5.1, the key point of using MPC is to choose the average
absorbed mechanical power as an objective function to maximize the absorbed me-
chanical energy (Soltani et al., 2014). MPC not only provides the optimal solution
for energy maximization but also solves the physical constaints during its optimization
procedure. There are several MPC studies (Faedo et al., 2017) which have been shown
in the literature with attractive results in energy generation. However, the frequently
used MPC is based on linear theory that is susceptible to system uncertainties. Some
nonlinear MPC approaches (Li, 2017; Richter et al., 2012; Tom and Yeung, 2014) are
tested on the PAWEC system but the computational complexity are relatively large in-
volved result from the non-convexity optimization. Additionally, the future knowledge
of WEF is needed in optimal control calculation due to the non-casual nature (Fusco
and Ringwood, 2010), and the prediction work will cause prediction errors, which is
not desirable in control design. In contrast, the more obvious deficiency lies in the
robustness of MPC (Zhang and Li, 2022) and it is possible to diverge in some real
PAWEC devices. Overall, a real PAWEC application contains unmodeled uncertainties
and nonlinear effects, making the robust control design becomes a crucial work.

In addition to the above widely used methods, there is a new alternative way to design
energy-maximising control. It is a kind of hierarchical tracking structure that contains
two-level parts first proposed by (Fusco and Ringwood, 2014a). The high-level part
relates to WEF/WEM estimation and optimal reference profile building (Li and Patton,
2023c). As for the low-level part, a controller can be designed to track the optimal
reference signal and reach a near-resonance condition for energy-maximizing gener-
ation (Li and Patton, 2023b). The near-resonance operation keeps the PAWEC float
velocity share same phase with the WEF/WEM. The hierarchical approach can accom-
modate lots of different strategies, which will has great potential in the exploration of
the PAWEC control systems, such as robust control, adaptive control, etc.

Following from the hierarchical structure of tracking control, a model-following strat-
egy is described in Section 5.2 this Chapter. The main idea of the model-following
concept is to force the PAWEC system to follow a reference model, which consists of
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reference position and velocity signals, in order to enhance the system robustness and
maximize energy absorption from irregular waves. The basic LQR and two different
robust methods are proposed separately in Section 5.3. A mixed LQR/H∞ controller
is based on a combination of linear quadratic regulator (LQR) index and H∞ perfor-
mance. The other one is sliding mode controller that has strong robustness but simple
structure. A comparison study is conducted and analysed in Section 5.4 between the
basic LQR, mixed LQR/H∞ and SMC approaches. Finally, Section 5.5 provides the
Summary.

5.2 The Model-Following Tracking Structure

From the early description of (Erzberger, 1967), a feedback control law is designed to
ensure that the output of a physical system (the plant) can effectively follow the desired
output of a given reference model, which contributes to a "model-following control
system". In other words, it is called "asymptotic model matching" (Isurugi, 1990). The
error-dynamics between the plant output and the conceptual reference model should
be asymptotically stable. An intuitive example for understanding of model-following
control is discussed in (Durham, 1989). If a conventional airplane (the plant) aims to
simulate the Dutch roll characteristics or correct some flying qualities deficiency in
the airplane, the model-following control is a good idea since the desired dynamics
contained in the description of a model, and the airplane roll and yaw responses can
keep in the same manner as that of the reference model when the control law drives
the plant’s control surfaces. Apart from the application utilized in field of in-flight,
some other applications of model-following control adjust the plant to have the desired
behaviors (Isurugi, 1990), such as handling qualities or transient responses, etc.

In general, there are two categories, so-called implicit or explicit model-following (Isu-
rugi, 1990). In terms of implicit model-following, it is normally a matching decision
that can modify the plant dynamics by using the feedback to approximate the dynam-
ics of the reference model (Erzberger, 1967). But there is no attempt to guide the
plant to track the model’s state trajectory. However, the explicit model-following con-
siders doing both the dynamics and state trajectories matching between the plant and
the model (Isurugi, 1990). In this case, the error vector between the model and plant
states will be eliminated, even if the external disturbances involved to the plant. The
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properly designed model-following (robust) controller will drive the plant states ap-
proaching to the undisturbed states of the model. Here, the explicit model-following
technique is considered to force the PAWEC system to follow the states (Calculated
reference trajectories) of the reference model robustly by designed mixed LQR/H∞

and sliding mode controllers. When the PAWEC device can track the position and ve-
locity reference signals, the near-resonance condition will be achieved for the energy
maximization purpose (Li and Patton, 2023b).

As described in Chapter 1 Figure 1.5, the hierarchical tracking structure is the main idea
of this thesis work for a Wavestar-like device (the 1:20 scaled benchmark). The overall
tracking structure of model-following control is shown in Figure 5.1. The high-level
part: WEM estimation work and optimal reference velocity generation are described
in Chapter 4. This Chapter is based on low-level part model-following robust control
design.

WEM

Observer

Reference Model

Robust

Controller

WEC

SystemReference
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Figure 5.1: Overall tracking structure of model-following control.

Different from the conventional tracking work, here the optimal reference postion and
velocity signals are considered to build a reference model. And the designed robust
controller will drive the PAWEC system output to follow the reference model output
effectively, yield so as to reach position and velocity tracking together. In other words,
the controller role is to eliminate the state errors between the PAWEC system and
a reference model, and to achieve the control system asymptotically stable. When
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the tracking work is accomplished, the PAWEC system can reach a near-resonance
condition for the energy maximization.

Note: the discussed WEM observer, reference model building and robust controller
in this Chapter are all based on continuous system design. But the Extended Kalman
Filter (EKF) is designed in discrete system, which follows the details described in
Section 4.3 Chapter 4.

If the PAWEC float is treated as an oscillating mass point, the reference velocity θ̇re f

can be assumed (Falnes and Kurniawan, 2020) as below:

θ̇re f (t) = θa cos(ω̂t +ϕθ ) =
1
2

θ̂re f eiω̂t +
1
2

θ̂
∗
re f eiω̂t =Re{θ̂re f eiω̂t} (5.1)

where θa is the amplitude of θ̇re f , ω̂ is the instantaneous frequency of WEM, to see
more details in Chapter 4. ϕθ is the phase information, θ̂re f is the complex amplitude
of the position reference θre f , and θ̂ ∗

re f represents the complex conjugate of θre f .

Then, the reference position θre f of the oscillating mass will have the form of

θre f (t) =
θa

ω̂
sin(ω̂t +ϕθ ) =

θa

ω̂
cos(ω̂t +ϕθ − π

2 )

=
1

2iω̂
θ̂re f eiω̂t − 1

2iω̂
θ̂
∗
re f e−iω̂t =Re{

θ̂re f

ω̂
eiω̂te−i π

2 }
(5.2)

The maximum energy generation can be realized if the PAWEC system be able to track
a resonant system with the optimal displacement and velocity references. Considering
the utilization of the model-following strategy, a proper linear model can be defined as:

ẋm = Amxm +Bmu+Bm(Mex −Mra)

y =Cmxm
(5.3)

where Am =

 0 1

−Khs

Jt
−Kv

Jt

 ,xm =

[
θ

θ̇

]
,Bm =

 0
1
Jt

 ,Cm =

[
1 0
0 1

]
.

The parameters Khs, Kv and Jt can be seen in Table 3.2.

Next, the reference model can be represents as:

ẋr = Amxr +Bmr

yr =Crxr
(5.4)
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where xr =

[
θre f
θ̇re f

]
is the state vector of the reference model, r = Khsθre f +Kvθ̇re f +

Jt θ̈re f . θ̈re f is the time derivative of θ̇re f .

Then, define the tracking error states between PAWEC system and reference model as:

e = xm − xr (5.5)

and based on Equations (5.3) and (5.4), the model-following error system can be ob-
tained as:

ė = Aee+Beu+Be(Mex −Mra − r) (5.6)

where e =

[
θ −θre f
θ̇ − θ̇re f

]
, Ae = Am and Be = Bm.

The tracking error e will be minimised by the designed robust controller in Section 5.3.

5.3 Model-Following Tracking Controller Designs

5.3.1 Basic LQR control design

The general idea of LQR is to design a controller to minimise the given performance
index JLQR and this can be referred to as the optimal design for quadratic control prob-
lems.

Considering the error system (5.6), define a control law:

u = ulb +ul f (5.7)

where ul f = −(M̂ex − M̂ra)+ r is the feedforward control term and ulb = −KLQRe is
the LQR feedback term. M̂ex is the estimated WEM using a pole-placement Luen-
berger observer and M̂ra is the calculated radiation damping moment, according to the
identified state space model in Equation (3.24).

To substitute control law (5.7) into error system (5.6) and assume the uncertainty term
(Mex −Mra)− (M̂ex − M̂ra) is zero, then a new error system corresponding to the LQR
control input will be

ė = Aee+BeuLQR (5.8)
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Define a quadratic performance index of the error system as

JLQR =

∫
∞

0
[eT Qle+uT

LQRRluLQR]dt (5.9)

where Ql is a positive definite matrix and Rl is a positive constant. The feedback gain
matrix can be computed from KLQR = R−1

l BT
e Pl after a positive definite matrix Pl can

be obtained by solving the following Riccati Equation:

AT
e Pl +PlAe −R−1

l PlBeBT
e Pl +Ql = 0 (5.10)

5.3.2 Mixed LQR/H∞ control design

The mixed robust controller (Zhu and Li, 2021a) combines LQR index and H∞ perfor-
mance to force the PAWEC sysetm track the reference position and velocity trajectories
robustly. The H∞ performance can guarantee the robustness of control system and LQR
index is able to constrain the control input by tuning the weight matrices (Li and Patton,
2023b).

To define its control law as:

u = um +u f (5.11)

the feedforward term is u f =−(M̂ex − M̂ra)+ r, and the feedback term is um =−Km e.

Next, substituting Equation (5.11) into Equation (5.6), the rearranged error system then
takes the form:

ė = Aee+Beum +Bew (5.12)

where w = (Mex −Mra)− (M̂ex − M̂ra).

Following the LQR Principle, a quadratic cost function is defined as:

JM =

∫
∞

0
[eT Qme+uT

mRmum]dt (5.13)

The square-root of the quadratic objective JM can be expressed as the 2-norm form of
a controlled output (Liu et al., 2018):

zM = Ee+Fum (5.14)
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where E =

[
Q1/2

m
0

]
, F =

[
0

R1/2
m

]
, Qm =

[
c1 0
0 c2

]
, Rm = r1.

A trade-off exists to minimise the effect from external input to tracking error by tun-
ing the elements of the positive-definite weighting matrices Qm and Rm. The tuning
weight coefficients c1 and c2 can reduce the system steady-state error and the weight
coefficient r1 can adjust the control input.

It is assumed that the disturbance term w of (5.12) is bounded in l2 space. Hence, an
H∞ performance index to perform robustness optimization on the system, such that

JM < γ
2
m||w||22 (5.15)

From this original optimal control problem is converted to calculate a controller gain
Km, such that the closed-loop system is asymptotically stable and can satisfy corre-
sponding to the H∞ performance index:

||zM||2 < γm||w||2 (5.16)

where ||zM||2 is the 2-norm of the control objective, and ||w||2 is the 2-norm of distur-
bance w.

By using the H∞ performance index the transfer from the external input to objective
siganl zM can be minimized. In this way an optimal and robust control design can be
obtained.

The performance measure can be defined as (Du et al., 2015):

||TzMw||∞ = sup||w||2 ̸=0
||zM||2
||w||2

(5.17)

where ||zM||22 =
∫

∞

0
zT

M(t)zM(t)dt, and ||w||22 =
∫

∞

0
wT (t)w(t)dt.

From the Bounded Real Lemma (Boyd et al., 1994), it is easy to determine that the
system (5.12) is asymptotically stable with ||TzMw||∞ minimized, if there exists a sym-
metric positive definite matrix P > 0 such that the following LMI is feasible, (Ae −BeKm)

T P+P(Ae −BeKm) PBe (E −FKm)
T

∗ −γ2
mI 0

∗ ∗ −I

< 0 (5.18)
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Next, define P−1 = Z, M = KmZ, and multiply the left and right of LMI (5.18) by
diag(Z, I, I) and its transpose leading to a new LMI: (AeZ −BeM)T +(AeZ −BeM) Be (EZ −FM)T

∗ −γ2
mI 0

∗ ∗ −I

< 0 (5.19)

The controller gain Km can be obtained as Km = MP after solving the LMI (5.19) using
the Matlab LMI toolbox.

5.3.3 Sliding mode control design

The SMC plays a role in forcing the PAWEC system to do tracking work with strong
robustness and providing insensitivity to the matched disturbance arised in the PAWEC
system. The first design step of SMC is to choose a switching function (Edwards
and Spurgeon, 1998) in order that the motion of the error system is stable when it
is restricted to the hyperplane Ns. The second step is to design a variable structure
control law to force the error system states reach and subsequently remain at the silding
mainfold, with an ideal sliding motion in finite time.

Considering the error system (5.6), the switching function can be defined (Lan et al.,
2017b) as:

s = Nse (5.20)

where Ns = B†
e −Y (I −BeB†

e) with a design matrix Y ∈ R1×2 and a pseudo-inverse
matrix B†

e = (BT
e Be)

−1BT
e .

then, considering the reachability of e down to the sliding mainfold (5.20), to get the
time derivative of s

ṡ = Nsė = Ns(Aee+Beu+Be(Mex −Mra − r)) (5.21)

To define the sliding mode control law in the form of

u = ueq +unl (5.22)

ueq is the linear equivalent control term and unl is the nonlinear switching control term.

ueq =−NsAee− (M̂ex − M̂ra)+ r , unl =−kns− εnsign(s,δ ) (5.23)
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where kn and εn are positive constants, the smooth function sign(s,δ ) =
s

||s||2 +δ

is a differentiable approximation of sign(s), which can handle the chattering phe-
nomenon, during sliding mode (Edwards and Spurgeon, 1998). The approximated error

is ∆sign = sign(s)− sign(s,δ ). It can be proved that ||∆sign||2 ≤
( 1
||s||2/δ +1

)
≤ 1

with ||s||2 ̸= 0, and ||∆sign||2 becomes small if δ is sufficiently small.

Certainly, the chattering rejection will lead to a loss of robustness to some extent. The
value of δ is set to 0.003 in the SMC smooth function, considering trade-off between
chattering and tracking performance.

Next, define a Lyapunov function:

Vs =
1
2

s2 (5.24)

The time derivative of Vs is

V̇s = sṡ = s(NsAee+u+Mex −Mra − r) (5.25)

On substituting (5.22) into (5.25):

V̇s = s[(Mex −Mra)− (M̂ex − M̂ra)− kns− εnsign(s,δ )]

= s[w− kns− εnsign(s)+ εn∆sign]

≤−kn||s||22 −||s||2(εn −||w||2 −||εn∆sign||2)

(5.26)

According to (5.26), if the condition εn > ||w||2 + ||εn∆sign||2 is satisfied, then it fol-
lows that V̇s ≤ 0. It is then easy to see that V̇s = 0 holds only when s = 0 and Vs ≥ 0,
and if V̇s < 0, limt→∞Vs(t) = 0. Therefore, the SMC law ensures stability of the error
system (5.6) with tracking guaranteed along the sliding mainfold.

5.4 Simulation results

In this Section, the comparative results of LQR, mixed LQR/H∞ control and SMC
are illustrated for a Wavestar numerical modelling (1:20 scaled benchmark), described
in Chapter 3. The proposed PAWEC control system is designed in doing continuous
version simulation with sampling rate (simulation step) 0.001s. Two cases are dis-
cussed in the simulation results with/without the added matched disturbance Be ·dm =
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1
Jt
(4sin(3t +

π

4
)− sin(2t +

π

3
)). The matched disturbance Be · dm accounts for un-

certainty in control channel, which is an important consideration in PAWEC control
system design.

Note: to specify a uncertain linear system as follows:

ẋmd(t) = Amdxmd(t)+Bmd[umd(t)+ξmd] (5.27)

where uncertainty ξmd means the so-called matched disturbance, which appears in the
system same control channel.

The LQR parameters: Ql = diag(1, 1), Rl = 0.01;
The mixed LQR/H∞ control parameters: γm = 0.03, c1 = 0.7, c2 = 0.5, r1 = 0.01;
The SMC parameters: kn = 2, ε = 5, δ = 0.003, Y = [−0.1,0.1].

More discussion and analysis will be given Chapter 7, in a comparison study between
frequently used MPC (Chapter 7), MPC velocity tracking (Chapter 6) , Mixed LQR/H∞

and SMC (Chapter 5) for the purpose of PAWEC energy maximisation.

70 71 72 73 74 75

Time/s

-0.06

-0.04

-0.02

0

0.02

0.04

ra
d

Position tracking

Reference position

LQR

Mixed LQR/H-infinity

SMC

Figure 5.2: Position tracking of three methods (Seastate 2).

Figure 5.2 shows the postion tracking results of LQR, mixed LQR/H∞ control and SMC
methods corresponding to Seastate 2. It is clear that no methods are able to provide
accurate position tracking as there is an additional moment from the offset between the
CoG and CoB, and a static moment caused by the weight of the arm between the float
and the hinge point A.
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Figure 5.3: Velocity tracking of three methods (Seastate 2).

The velocity tracking results of all methods under Seastate 2 are given in Figure 5.3.
It can be seen that the basic LQR approach fails to enable the PAWEC system to track
the reference velocity, due to lack of robustness. However, both the mixed LQR/H∞

control and SMC possess strong robustness that present low velocity tracking errors.
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Figure 5.4: Velocity tracking of three methods (Seastate 2).

The switching procedure of the switching function s is shown in Figure 5.4, which
demonstrates the states of error system can reach a state close to the sliding mainfold.
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Figure 5.5: Absorbed energy from three methods (Seastate 2).

Figure 5.5 gives the absorbed energy Eabs from all methods corresponding to Seastate
2. The total simulation time is 100 times the peak period and the first 25s is omitted
in the energy computation, since its role of wave ramp. Obviously, the mixed LQR/H∞

control and SMC methods can absorb more energy from the waves than the basic LQR
approach. But the SMC can generate slightly more energy than the mixed LQR/H∞

control strategy, owing to its stronger robustness property.
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Figure 5.6: Position tracking of three methods with added matched disturbance (Seast-
ate 2).

Figure 5.6 shows the position tracking of three methods with added matched distur-
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bance corresponding to Seastate 2. It is still the same that all three methods are unable
to accurately do position tracking, due to the additional static moments.

Additionally, the velocity tracking results of three methods with matched disturbance
are given in Figure 5.7. It may not be surprising that the LQR design presents a large
velocity tracking error, once again. The SMC design demonstrates a good PAWEC
system disturbance suppression capability in the velocity tracking result. However,
the velocity tracking result from the mixed LQR/H∞ control strategy shows a larger
magnitude than the corresponding result in Figure 5.3, when the matched disturbance
affects the PAWEC system.
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Figure 5.7: Velocity tracking of three methods with added matched disturbance (Seast-
ate 2).

Figure 5.8 gives the absorbed energy Eabs from all three methods with added matched
disturbance, corresponding to Seastate 2. It is clear that the energy production of the
LQR design degrades significantly with the additional disturbance. There is a slight
reduction in Eabs of the mixed LQR/H∞ strategy. However, the SMC provides the best
robustness in wave energy conversion, when the matched disturbance is presented in
the control channel as system uncertainty. The disturbance is eliminated during sliding
mode, as expected for a matched uncertainty.
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Figure 5.8: Absorbed energy from three methods with added matched disturbance
(Seastate 2).

5.5 Summary

This Chapter focuses on the model-following tracking concept and the designed two
robust control methods, mixed LQR/H∞ control and SMC. A comparison study is con-
ducted between the basic LQR, mixed LQR/H∞ control and SMC approaches in nu-
merical simulation, based on the WEC-Sim modelling. The comparative simulations
demonstrate that the proposed model-following mixed LQR/H∞ control and SMC can
perform well with good PAWEC system tracking. Each of two robust methods have
strong robustness and the designs have achieved fast response in control performance.
In summary, the robustness analysis is a very important topic for energy production
in the wave energy field. Separate studies must be made for the robustness of control
methods applied to a wider class of non-PAWEC systems.

In preparation for a comparison study between the robust control and MPC methods
in Chapter 7, the model-predictive velocity tracking control is proposed in Chapter 6
using the same hierarchical tracking structure as described in Chapter 1. More discus-
sions of the comparison between model-following robust control and MPC are shown
in Chapter 7.



Chapter 6

Model-Predictive Tracking Control
Approach based on Gaussian Process
Model

6.1 Introduction

Apart from the CCC and MPC, there are several PAWEC control design methods in
the literature, to achieve energy maximization. For example, adaptive Dynamic Pro-
gramming (Na et al., 2018), moment-matching based control (Faedo et al., 2018), Re-
inforcement Learning control (Anderlini et al., 2020), as well as several forms of basic
LTI control (García-Violini et al., 2020b), etc. Usually adaptive Dynamic Program-
ming can provide optimal solution in each time step but it has very large complexity
in both time and space, which is difficult to be applied to the real PAWEC applica-
tions. As for Reinforcement Learning control, it needs very long time for training an
agent to provide optimal policy. In general, it is a black box and not always to be
wised enough to make the good decision to obtain optimal PTO coefficients. Some-
times misjudgments occur in the Reinforcement Learning control system. Regarding
moment-matching based control and basic LTI control depend on strong assumptions
to approximate the optimal objective condition or PAWEC dynamics, which are not
always feasible or can only give suboptimal solution in PAWEC control design.

Different from these methods, MPC is the most frequently used method for wave en-
ergy application studies. MPC is used to set the average absorbed mechanical power
as its objective function to achieve energy maximization on a PAWEC device. MPC
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not only provides an optimal solution for energy production but deal with system con-
straints simultaneously. However, MPC is often combined with WEF/WEM prediction,
which usually involves prediction errors that possibly limit its value in practice.

This Chapter continues to concentrate on energy-maximizing control of a Wavestar-
like device described in Chapter 3, by placing the MPC system at the low-level part
of the hierarchical tracking structure of Figure 1.5. The MPC objective function then
consists of the velocity error signal and control input term. Its objective can be trans-
formed into a quadratic index to reach optimality with a control input constraint (Li
and Patton, 2023a). It is shown that the PAWEC system can get into a near-resonance
operation with promising results for energy maximization, by achieving optimal ref-
erence velocity tracking (Li and Patton, 2023a). The near-resonance operation means
that the WEC float velocity is in-phase with the WEF/WEM.

On the other hand, for the design of high-level part of the hierarchical structure, fol-
lowing (Nguyen and Tona, 2017b), a Kalman filter is chosen to estimate the WEM
signal. When used correctly the Kalman filter shows a potential for following the high
frequency components as this makes the estimation better matched with MPC design
than other estimators, when the system sampling time is increased. Following the work
of (Fusco, 2012) the reference velocity is computed using an Extended Kalman Filter
(EKF). The EKF computes the instantaneous amplitude Âex and frequency ω̂ of the
WEM (see its design details in Chapter 4).

The short-term predictions of the WEM sequence and the reference velocity sequence
are required in the MPC objective function. Considering the short-term prediction of
the WEM sequence, an Auto-Regressive (AR) model is often used to perform this func-
tion (Guo et al., 2018). However, the AR model should be updated frequently in the
real-time forecasting function. This has the effect of a considerable increase in compu-
tation and real-time prediction capability. As an alternative to the use of AR a Gaussian
Processing (GP) approach (Williams and Rasmussen, 2006) has been used with two GP
models to perform more realistic forecasting. Typically, the hyperparameters of the GP
models are preselected before the training process with no requirement on updating the
parameters during real-time forecasting, thereby reducing the prediction time. The GP
is a kernel-based and nonparametric learning method (Williams and Rasmussen, 2006)
having the advantages of modelling flexibility, prediction with learning smoothness
and the use of noise parameters, based on a training set.
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This approach was used by the Hull team in the real-time application of the competition
completed at Aalborg University (Ringwood et al., 2023a) and has been adopted here to
make the study consistent with potential real application. For the competition the Hull
team used GP modelling with Bayesian learning control (Shi et al., 2018), i.e. without
the use of MPC. However, the different work in this Chapter describes the combination
of GP for prediction along with MPC.

This Chapter Section 6.2 presents the whole concept of the model-predictive tracking
control structure. The Kalman filter for implementing WEM estimation is described in
Section 6.3. Section 6.4 describes the design of the model-predictive velocity tracking
control with GP model for short-term forecasting. Section 6.5 gives the simulation
results and discussions. Section 6.6 provides the Chapter Summary.

6.2 The tracking structure of model predictive control

After referring to the hierarchical tracking structure described in Chapter 1 and Figure
1.5 again, the velocity tracking idea of MPC design is presented in Figure 6.1.
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Figure 6.1: Tracking structure of model predictive control.

The high-level part still includes the WEM estimation and reference velocity generation



6.3. Kalman filter with random walk 95

in which the Kalman filter is used to achieve the WEM estimation, with a focus on
following the high frequency wave components which is more matched with MPC
design than other estimators when the system sampling time is increased. The reference
velocity θ̇re f computation is still based on the EKF for providing the instantaneous
amplitude and frequency of the estimated M̂ex.

Furthermore, for the low-level controller design, MPC is selected to force the scaled
Wavestar-like device to perform velocity tracking in order to reach the energy maxi-
mization generation. Two GP models are chosen to do predictiton works with multiple
steps ahead of the future WEM M̂ex(k + 1), · · · ,M̂ex(k +N) and future reference ve-
locity θ̇re f (k+ 1), · · · , θ̇re f (k+N), which both are required in MPC velocity tracking
design.

Note: Different from Chapter 5 Figure 5.1 model-following tracking design, all of
Kalman filter, EKF, two GP models and MPC velocity tracking in this Chapter is based
on discrete system design.

6.3 Kalman filter with random walk

For this Wavestar-prototype device WEM is a physical unmeasurable quantity, since
the required device total pressure measurements are not available in the benchmark.
However, a suitably accurate WEM signal is crucial for designing the optimal energy-
maximising controller. As mentioned in Section 3.3, the equivalent WEM around the
hinge point A can be regarded as an external term. Hence, the WEM can be generated
by a Kalman filter (or other estimator). All of this work can be based on discrete-time
state space model (6.1) of the PAWEC system:

x(k+1) = Adx(k)+Bdu(k)+BdMex(k)+ εx(k)

y(k) = Cdx(k)+µ(k) (6.1)

where εx(k) is chosen to represent the unmodeled dynamics and µ(k) denotes the mea-
surement noise. Mex(k) is an external moment term acting on the PAWEC float, and
it can be treated as an unknown input term of system (6.1). Thereby, to assume the
discrete-time dynamics of the WEM (Nguyen and Tona, 2017b) as:

Mex(k+1) = Mex(k)+ εm(k) (6.2)
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where εm(k) means a Gaussian distributed random variable. In general, the next value
of WEM will conduct a random step away from the present value after a sampling time,
and all moving steps are considered independent. Mex(k) can be considered as a new
system state and then be estimated through optimal state estimation by a Kalman filter.
Then, the related augmented system can be defined as a Random Walk system as:

x̄(k+1) = Āx̄(k)+ B̄u(k)+ ε(k)

y(k) = C̄x̄(k)+µ(k)
(6.3)

where Ā =

[
Ad Bd

01×4 1

]
, x̄ =

[
x

Mex

]
, B̄ =

[
Bd
0

]
,C̄ =

[
Cd 02×1

]
,

ε(k) =

[
εx(k)
εm(k)

]
. The dimensions of system matrices are Ā ∈R5×5, B̄ ∈R5×1, C̄ ∈

R2×5. ε(k) and µ(k) are uncorrelated zero-mean white noise processes with covariance
matrices Q f and R f .

Hence, the prediction update equations (Nguyen and Tona, 2017b) of the Kalman filter
are:

ˆ̄x(k|k−1) = Ā ˆ̄x(k−1|k−1)+ B̄u(k−1)

Pf (k|k−1) = ĀPf (k−1|k−1)ĀT +Q f

The correction update equations (Nguyen and Tona, 2017b) of the Kalman filter are:

K f (k) = Pf (k|k−1)C̄T (C̄Pf (k|k−1)C̄T +R f )
−1

ˆ̄x(k|k) = ˆ̄x(k|k−1)+K f (k)(y(k)−C̄ ˆ̄x(k|k−1))

Pf (k|k) = (I −K f (k)C̄)Pf (k|k−1)

The estimated M̂ex will be acquired after the optimal estimation of state vector ˆ̄x is
known. Note the following:

ˆ̄x(k|k−1) is a predicted priori state estimate given the observations at time k−1.

Pf (k|k−1) is a predicted priori covariance matrix given the observations at time k−1.

ˆ̄x(k|k) is an updated posteriori state estimate given the observations at time k.

Pf (k|k) is an updated posteriori covariance matrix given the observations at time k.
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6.4 Model-predictive tracking control with short-term
forecasting

The proposed new MPC approach (Li and Patton, 2023a) considers to add the velocity
error signal into its quadratic objective function for the purpose of tracking. On the
other hand, the sequences of future M̂ex and future reference velocity θ̇re f are also
required, and they will be predicted in the short term by two uncorrelated GP models.
As outlined in Section 6.1, the required reference velocity can be computed using an
EKF. Furthermore, it is necessary to choose the forecasting time carefully due to a
trade-off between computation burden and prediction accuracy.

6.4.1 Model-predictive tracking control design

To define v = θ̇ and with Cv = [0 1 0 0], and set the angular velocity θ̇ as the
PAWEC system output, then a discrete-time state space model has the form of:

x(k+1) = Adx(k)+Bdu(k)+BdM̂ex(k)

v(k) =Cvx(k)
(6.4)

After applying the iteration process to model (6.4), with the prediction horizon N,
a prediction model (Li and Patton, 2023a) can be obtained as below:

VN = Savx(k)+SbvuN +SbvMex,N (6.5)

with VN =


v(k+1)
v(k+2)

· · ·
v(k+N)

 ,Sav =


CvAd
CvA2

d
· · ·

CvAN
d

 ,Mex,N =


M̂ex(k)

M̂ex(k+1)
· · ·

M̂ex(k+N −1)



uN =


u(k)

u(k+1)
· · ·

u(k+N −1)

 ,Sbv =


CvBd 0 0 · · · 0

CvAdBd CvBd 0 · · · 0
...

...
... . . . ...

CvAN−1
d Bd CvAN−2

d Bd · · · CvAdBd CvBd

.

These stacked predictions are involved in the MPC objective function of the next opti-
mization problem.

By defining vre f = θ̇re f , Then, the constrained optimization problem about velocity
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tracking can be represented (Oscar Mauricio Agudelo Mañozca, 2017) as follows:

min
VN ,uN
Mex,N

N∑
i=1

[v(k+ i)− vre f (k+ i)]T Qv[v(k+ i)− vre f (k+ i)]+
N−1∑
i=0

[u(k+ i)]T Rvu(k+ i)

(6.6)

sub ject to |u(k+ i)| ≤ umax (6.7)

According to Equations (6.5) and (6.6), the objective function can be chosen as:

Jm =
1
2

V T
N Q̄VN − vT

re f ,NQ̄VN +
1
2

vT
re f ,NQ̄vre f ,N +

1
2

uT
NR̄uN (6.8)

where Q̄ =


Qv 0 · · · 0

0
N −1

N
Qv · · · 0

...
... . . . ...

0 0 · · · 1
N

Qv

, R̄ =


Rv 0 · · · 0

0
N −1

N
Rv · · · 0

...
... . . . ...

0 0 · · · 1
N

Rv

,

vre f ,N =

 vre f (k+1)
...

vre f (k+N)

.

Then, on substituting Equations (6.5) into (6.8), the objective function (Li and Patton,
2023a) will be transformed into:

Jm =
1
2
(Savx(k)+SbvuN +SbvMex,N)

T Q̄(Savx(k)+SbvuN +SbvMex,N)+
1
2

uT
NR̄uN

− vT
re f ,NQ̄Savx(k)− vT

re f ,NQ̄SbvuN − vT
re f ,NQ̄SbvMex,N +

1
2

vT
re f ,NQ̄vre f ,N

(6.9)
In terms of the velocity tracking and dropping some bias terms, the quadratic form of
the above objective function Jm will be as follows:

Jm =
1
2

uT
NHmuN + f T

m uN (6.10)

where Hm = ST
bvQ̄Sbv + R̄, f T

m = xT (k)ST
avQ̄Sbv +MT

ex,NST
bvQ̄Sbv − vT

re f ,NQ̄vre f ,N .

Hence, the purpose of the MPC velocity tracking has been transformed into a Quadratic
Programming (QP) optimization process (Li and Patton, 2023a), and the energy maxi-
mization can be achieved when the Wavestar-prototype device does the velocity track-
ing work across a range of irregular waves. To solve the QP optimization of the de-
signed new MPC method, the qpOASES QP solver (Ferreau et al., 2014) is selected
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and it has an advantage of being well-suited to the applications of MPC that require
fast and reliable computation. As for the Mex,N and vre f ,N , these sequences can be
obtained by a short-term forecasting from two GP models, respectively.

6.4.2 Gaussian Process model design

An a priori expression of a GP model f (a) is usually expressed by a mean function
m(a) and covariance function k(a,a∗) (Williams and Rasmussen, 2006) as follows:

f (a) ∼ GP(m(a),k(a,a∗))

m(a) = E[ f (a)] (6.11)

k(a,a∗) = cov( f (a), f (a∗))

where a ∈ ℜD is a vector of the dynamics inputs with dimension D, and the random
Gaussian scalar variables f (a) and f (a∗) (Liu et al., 2022) are indexed by input a and
a∗. The k(a,a∗) is a kernel function which is usually parametrized by the specific
hyperparameters.

Next, define a training set D = (aaa,zzz), where aaa = [a1,a2, · · · ,an] is a input vector,
and zzz = [z1,z2, · · · ,zn] is a corresponding vector with all scalar outputs. Thereby, to
express a GP a posterior model as the form of

zi = f (ai)+ εi εi ∼N (0,σ2) (6.12)

where zi are the values of observed output, f (ai) denote the GP model values, and εi

represent zero mean white Gaussian noise.

Here, a spectral mixture (SM) kernel is chosen as the covariance function of a GP
model, to perform the forecasting computation work for generating future WEM or
future reference velocity sequences. The form of SM kernel is given by (Wilson and
Adams, 2013):

kSM(τ̄) =
S∑

s=1

wscos(2πτ̄
T

µs)
O∏

o=1

exp(−2π
2
τ

2
o v(o)s ) (6.13)

where the one-dimensional input O = 1, S is the number of the total wave frequency
components, and τ̄ denotes the distance between two arbitrary input points ai and a j.



6.5. Simulation results 100

In terms of the concept of wave reconstruction (Shi, 2021), the three elements in the
SM kernel hyperparameter vector Θ = (µs,ws,vs)

T represent the period, amplitude and
evolutionary-scale of each wave component, respectively. In other words, the SM ker-
nel is suitable to be used as the covariance function of a GP model to do the short term
wave forecasting (Shi et al., 2018) due to its automatic discovery capability (Wilson
and Adams, 2013).

The hyperparameters of Θ in the SM kernel can be obtained by optimizing its log

marginal likelihood function (Williams and Rasmussen, 2006) as follows:

logp(zzz|aaa,Θ) =−1
2

log|K +σ
2I|− 1

2
zzzT (K +σ

2I)−1zzz− n
2

log(2π) (6.14)

Note that there are advantages of choosing the initial hyperparameters with highly suit-
able values before the training process (Shi, 2021), such as the promotion on the con-
vergence rate of optimization and to avoid reaching an unsatisfactory local optimum.

After finishing the training process, the a posterior joint distribution of the prediction
f ∗ with given input vector aaa∗ takes the following form:[

f ∗

zzz

]
∼
([

m(aaa∗)
m(aaa)

]
,

[
k(aaa∗,aaa∗) k(aaa∗,aaa)
k(aaa,aaa∗) K +σ2I

])
(6.15)

with k(aaa∗,aaa) = k(aaa,aaa∗) = [k(aaa1,aaa∗), · · · ,k(aaaN ,aaa∗)]. Then, based on the Joint Gaussian
Distribution Theorem, the predicted result about f ∗ can be described as:

µ( f ∗) = m(aaa∗)+ k(aaa∗,aaa)[K +σ
2I]−1(zzz−m(aaa))

σ( f ∗) = k(aaa∗,aaa∗)− k(aaa∗,aaa)[K +σ
2I]−1k(aaa,aaa∗)

(6.16)

The Gaussian Process for Machine Learning (GPML) package (Williams and Ras-
mussen, 2006) is then applied to design the GP model and perform the training and test
prediction work.

6.5 Simulation results

The main simulation results include GP modelling for short-term forecasting and MPC
velocity tracking for testing on a WEC-Sim model of the Wavestar-prototype device
considering irregular waves. As mentioned in Section 6.2, all of algorithms used in
this Chapter is designed in discrete version simulation with sampling rate (simulation
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step) 0.05s. The discussion and analysis of extracted energy, generated instantaneous
power, and PTO moment are also given, respectively. More testing and comparison
works between model-following robust control and MPC methods are described in
Chapter 7.

The related simulation parameters for this Chapter are listed in Table 6.1 and as for the
Wavestar modelling parameters, given in Table 3.2. A fixed-step size ode8 (Dormand-
Prince) solver is selected to conduct the simulation works for the WEC-Sim numerical
model in Matlab/Simulink software.

Table 6.1: The simulation parameters.

Parameters Values

Simulation sampling time Ts 0.05s
KF coefficient Q f diag(0.01, 0.1, 0.01, 0.01, 200)
KF coefficient R f diag(0.01, 0.01)

EKF initial state xe [1,1,5]T

EKF coefficient Qe diag(0.2, 0.2, 0.001)
EKF coefficient Re 0.1

Angular displacement limit θlim 0.4 rad
Control limit umax ±12 Nm
GP coefficient S 12/14

As mentioned in Chapter 3, the JONSWAP wave Spectrum is still used here to generate
three irregular waves: Seastate 4, 5 and 6. The MPC prediction horizon Np and MPC
coefficients Qv and Rv are shown in Table 6.2.

Table 6.2: The irregular wave information and MPC coefficients.

Case Np Qv Rv

Seastate4 20 0.5 2×10−3

Seastate5 30 0.5 5×10−4

Seastate6 40 0.5 2×10−4

The predicted results of WEM and reference velocity from two GP models under three
sea states are shown in Figure 6.2. The future sequences of WEM and reference veloc-
ity are required in the objective function of MPC tracking design.
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Figure 6.2: Predicted WEM and reference velocity by GP models (three sea states).

From the Figure 6.2, it is clear that the predicted WEM is matched well with the ideal
WEM computed by formula (3.25). The GP modelling presents a high accuracy of
WEM prediction with good learning smoothness. In addition, as long as suitable hy-
perparameters are chosen in advance before the training process, there is no extra need
to update the GP hyperparameters during the forecasting work. According to the Equa-
tion (4.28), it can be determined that the wave excitation moment M̂ex and reference
velocity θ̇re f share the same phase but with different amplitude if the velocity tracking
work has been achieved correctly through the PAWEC system MPC approach. This
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shows clearly that the predicted velocity reference is able to generate similar trends to
the predicted WEM.
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Figure 6.3: MPC velocity tracking and corresponding extracted energy (three sea
states).

The MPC tracking results and the corresponding extracted energy from three sea states
are shown in Figure 6.3. The overall tracking performance of MPC is good, even
though the float angular velocity θ̇ has a few amplitude differences with the reference
velocity θ̇re f occasionally. But the tracking errors are small and acceptable between
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θ̇ and θ̇re f . Besides they share approximately same phase most of time. The signifi-
cance of this that a near-resonance operation for the PAWEC device has been achieved
along with good energy maximization. In other words, the PAWEC system follows the
incident waves by using the tracking MPC controller to reach its tracking mission. In
summary, although the MPC tracking system may lack some robustness, it yields very
small PAWEC tracking errors.
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Figure 6.4: Generated instantaneous power and PTO moment (three sea states).

The generated instantaneous power and PTO moment from three sea states are given in
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Figure 6.4. It is clear that the MPC approach proposed in this Chapter introduces very
few negative power PTO excursions. This offers a significant advantage for reducing
energy loss over currently discussed MPC methods, which has good advantages in
solving the bi-directional flow problem in a PTO system. Thereby reducing the energy
loss when the PTO system works in motor mode.

On the other hand, from the Figure 6.4, the input maximum limits of the PTO moment
are ±12Nm, shown as the red lines and the MPC control input is satisfied by the con-
straint conditions. In general, the MPC tracking performance can be improved when
the coefficient Rv is decreased, but this results in a large PTO moment. Conversely, the
control input can be small if a large Rv is selected, which reduces the MPC tracking
performance.

The proposed MPC tracking approach of this Chapter can be compared with Model-
following robust control methods (Chapter 5), and more comparisons will be given in
(Chapter 7).

6.6 Summary

This Chapter concentrates on the design of an MPC tracking controller based on the hi-
erarchical structure described in Chapter 1. The goal is to achieve energy maximization
extraction for a 1:20 scaled Wavestar-prototype device built in the WEC-Sim bench-
mark. The first part of the system structure comprises a Kalman filter to provide a
WEM signal, necessary for PAWEC control. An EKF is used to compute the instanta-
neous WEM amplitude and frequency for determining the required reference velocity.
The second part of the overall structure includes MPC tracking control design incor-
porating GP models. Two GP models are chosen to perform WEM prediction instead
of the familiar and simplistic AR prediction strategy. The future WEM and future
reference velocity, are both required in the MPC objective function for optimization
solving. The simulation results show the low-level MPC controller can provide good
velocity tracking performance with samll errors and enable the PAWEC system to reach
a near-resonance condition for good energy-maximization. The MPC tracking system
is able to deal with input contraint and is shown to generate very few negative power
excursions, avoiding significant bi-directional power flow in the PTO system.
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The MPC and model-following robust control approaches will be compared in Chapter
7 under irregular wave conditions, in terms of metrics such as the disturbance test-
ing, absorbed energy, extracted energy, extracted power, and the Wavestar model PTO
moment, etc.



Chapter 7

Comparison Study between MPC,
Robust Mixed LQR/H-infinity Control
and SMC for PAWEC Energy
Maximisation Control Analysis

7.1 Introduction

The aim of this chapter is to carry out a comparison study between the MPC and ro-
bust control approaches in order to give some discussions about the characteristics
of these methods on energy maximization and do robustness analysis for the scaled
Wavestar-like device modelled in WEC-Sim. Generally, MPC has been widely stud-
ied in the wave energy field (Faedo et al., 2017) for maximisation of energy capture
by the point absorber wave energy converters (PAWECs). As described in Chapter
6, the main purpose of basic MPC method is to maximize the absorbed mechanical
energy (Guerrero-Fernández et al., 2020) by solving an optimization problem. And
MPC could reach the optimal solution (Li and Belmont, 2014) for energy extraction
and deal with PAWEC system physical constraints elegantly. A significant number of
references in the PAWEC literature e.g. (Cretel et al., 2011; Soltani et al., 2014; Richter
et al., 2014) provide more covering the design of an MPC system.

The robust energy-maximizing control can be designed in a tracking control strategy,
based on a hierarchical structure (Fusco and Ringwood, 2014a) as mentioned in Chap-
ter 5, which guides the PAWEC system into a near-resonance operation for energy



7.2. Frequently used MPC design 108

maximization generation with strong robustness against the system uncertainty. Usu-
ally, there is a gap in discussing the MPC and robust control together. After all, lots
of researchers only did their work based on MPC but not in a tracking control way,
making its not straightforward to compare MPC and robust control design. However,
the MPC tracking strategy has been proposed in Chapter 6 of this thesis that creates a
bridge in doing a comparison study between MPC and robust control strategies.

The popular design of MPC used in wave energy field is derived in Section 7.2. It is
considered to select the average absorbed mechanical power as the control objective
and to do an optimization procedure for the purpose of energy maximization. Section
7.3 shows the comparison results between:

• Case 1: MPC only includes power term (no tracking purpose),

• Case 2: MPC has both power term and input penalty term (no tracking purpose),

• Case 3: MPC velocity tracking based on GP model,

• Case 4: Model-following mixed LQR/H∞ tracking control, and

• Case 5: Model-following sliding mode control.

According to some contents such as velocity tracking results between cases 3, 4, and
5, disturbance tests, absorbed energy, extracted energy, extracted power, PTO moment,
etc. Finally, the Summary is given in Section 7.4.

7.2 Frequently used MPC design

MPC formulation

The first step of MPC design is to start from the discretized system of the state space
model (3.26), as given by:

x(k+1) = Adx(k)+Bdu(k)+BdM̂ex(k)

y(k) =Cdx(k)
(7.1)

where M̂ex is the estimated excitation moment obtained by a Kalman filter with random
walk, and the details can be found in Chapter 6. u is the control input calculated from
the designed controller.
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The prediction model of Equation (7.1) can be built after iterations (Soltani et al.,
2014), as shown:

xN = Ωx(k)+ΦuN +ΦMex,N (7.2)

with xN =


x(k+1)
x(k+2)

· · ·
x(k+N)

 , Ω =


Ad
A2

d
· · ·
AN

d

 , uN =


u(k)

u(k+1)
· · ·

u(k+N −1)

 ,

Mex,N =


M̂ex(k)

M̂ex(k+1)
· · ·

M̂ex(k+N −1)

 , Φ =


Bd 0 0 · · · 0

AdBd Bd 0 · · · 0
...

...
... . . . ...

AN−1
d Bd AN−2

d Bd · · · AdBd Bd

.

where N is the selected prediction horizon, Mex,N is the predicted sequence of the M̂ex

provided by a Gaussian Process model through a short-term forecasting. More details
are given in Chapter 6.

Objective function

The absorbed mechanical energy Eabs by a PTO system can be calculated over a time
horizon Tl (Soltani et al., 2014) as follows:

Eabs =

∫ Tl

0
Pa(t)dt (7.3)

where Pa(t) is the instantaneous absorbed mechanical power, defined by:

Pa(t) =−MPTO(t)θ̇(t) = u(t)θ̇(t) (7.4)

The control objective of MPC can be set to maximize the Eabs (Guerrero-Fernández
et al., 2020) for the PAWEC system. It means that to minimise the average absorbed
mechanical power P̄a during a desired time interval Tl as there is a negative multiplying
factor in Pa.

Based on this, the optimization problem follows the form:

P̄a =
1
Tl

∫ Tl

0
Pa(t)dt (7.5)
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The integral in Equation (7.5) can be formulated into a discrete form (Soltani et al.,
2014) as:

P̄a ≈
Ts

Tl

k+Tl/Ts∑
i=k

xT (i)s1u(i) (7.6)

where Ts is the sampling time selected in the simulation, s1 = [0 1 0 0]T .

The MPC objective function can be defined as:

Js = xT
N S̄uN +uT

NRsuN (7.7)

where xT
N S̄uN is the power term and uT

NRsuN is the penalty term on the control input.

S̄ =


s1 0 · · · 0

0
N −1

N
s1 · · · 0

...
... . . . ...

0 0 · · · 1
N

s1

, Rs =


rs 0 · · · 0

0
N −1

N
rs · · · 0

...
... . . . ...

0 0 · · · 1
N

rs

.

On subsituting Equation (7.2) into the objective function (7.7) can have

Js = (Ωx(k)+ΦuN +ΦMex,N)
T S̄uN +uT

NRsuN (7.8)

Then the objective function can be converted into a quadratic form:

Js =
1
2

uT
NHsuN + f T

s uN (7.9)

where Hs = 2(ΦT S̄+Rs), f T
s = xT (k)ΩT S̄+MT

ex,NΦT S̄.

This means that the energy maximization problem for PAWEC system is transformed
into a QP optimization problem (Nocedal and Wright, 1999).

When removing the penalty term in Equation (7.7), the objective function becomes:

Js = xT
N S̄uN (7.10)

(7.10) only includes the power term and the matrix Hs will be changed with Hs = 2ΦT S̄.

Additionally, the PAWEC system has the control input constraint due to the limitation
of the PTO and it can be handled in an MPC optimization procedure at each sampling
instant (Soltani et al., 2014) according to the following description:

minimise
1
2

uT
NHsuN + f T

s uN

sub ject to uN,min ≤ u ≤ uN,max

(7.11)
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where uN,min = [umin umin · · ·umin]
T , uN,min ∈ RN and uN,max = [umax umax · · ·umax]

T ,
uN,max ∈RN .

The qpOASES QP solver is used to do the QP optimization (as used in Chapter 6).

7.3 Simulation results

A comparison study is conducted between the frequently used MPC design, the model-
following mixed LQR/H∞ control and SMC approaches (described in Chapter 5) and
MPC tracking method proposed in Chapter 6. The simulation results are expanded
around the below contents:

• MPC case 1 only includes power term (with no tracking purpose).

Js = xT
N S̄uN

• MPC case 2 has power term and input penalty term (with no tracking purpose).

Js = xT
N S̄uN +uT

NRsuN

• MPC velocity-tracking, based on GP model (Chapter 6).

• Model-following mixed LQR/H∞ tracking control (Chapter 5).

• Model-following sliding mode tracking control (Chapter 5).

The comparison metrics: velocity tracking results, disturbance test, absorbed energy,
extracted energy, extracted power, PTO moment, etc.

Test 1: Seastate 5

The absorbed mechanical energy Eabs corresponding to the five methods is shown in
Figure 7.1. The MPC case 1 produces the largest energy absorption approximately 77.8
J. The other four methods generate almost the same absorbed energy, around 50 J, and
the mixed LQR/H∞ control method provides the least absorbed energy about 47.5 J.
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Figure 7.1: Absorbed energy from all methods (Seastate 5).
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Figure 7.2: Velocity tracking results: (i) MPC, (ii) Mixed LQR/H∞ control and (iii)
Model-following SMC approaches (Seastate 5).

The simulation results for: (i) MPC velocity tracking, (ii) Mixed LQR/H∞ tracking
control and, (iii) SMC tracking are shown in Figure 7.2, where the MPC Case 1 and
MPC Case 2 do not include a tracking function.

It can be seen that all of the three tracking strategies are able to perform very good
tracking with low tracking phase errors, even if there are amplitude errors. In general,
the purpose of energy-maximising is largely satisfied when the velocity tracking is
achieved based on the hierarchical tracking strucuture (suboptimal solution), to reach a
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near-resonance condition and ensure the float angular velocity θ̇ remains close in phase
with the excitation moment Mex.
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Figure 7.3: Extracted energy from all methods (Seastate 5).

Consider the PTO system conversion efficiency Γ, the extracted energy Ee from all
five approaches is given in Figure 7.3. The MPC case 1 still has the largest extracted
energy 51.8 J compared with the other four methods since it is the optimal solution for
energy maximization. This is different from the MPC case 2 which has a penalty term
in objective function and has an extracted energy of about 45 J. Furthermore, it is clear
that the Ee from MPC velocity tracking method equals to 39.8 J, which is larger than
the Ee from model-following mixed LQR/H∞ control and model-following SMC.

The reason for this is that the MPC tracking approach only has a small amount of
negative power excursions in the extracted power, in contrast to mixed LQR/H∞ control
and SMC methods, as shown in Figure 7.4.



7.3. Simulation results 114

50 100 150 200

Time/s

-4

-2

0

2

4

6

8

10

E
x
tr

a
c
te

d
 P

o
w

e
r/

w

(a) MPC case1 extracted power.
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(b) MPC case 2 extracted power.
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(c) MPC velocity tracking extracted power.
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(d) Mixed LQR/H∞ control extracted power.
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(e) Sliding mode control extracted power.

Figure 7.4: Extracted power of all methods (Seastate 5).

The control input MPTO of all approches is given in Figure 7.5. It is clear that the
input constraint (red line) of the PAWEC PTO system is satisfied by all methods, under
Seastate 5!
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(a) MPC case 1 PTO moment.
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(b) MPC case 2 PTO moment.
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(c) MPC velocity tracking PTO moment. (d) Mixed LQR/H∞ control PTO moment.

(e) Sliding mode control PTO moment.

Figure 7.5: PTO moment of all methods (Seastate 5).

Regarding the robustness testing of each of the methods, the matched disturbance

Be ·dm =
1
Jt
(4sin(3t +

π

4
)− sin(2t +

π

3
)) used in Section 5.4 is added into the PAWEC

system to check its effects on extracted energy and velocity tracking results. Figure 7.6
gives the extracted energy with added matched disturbance corresponding to all meth-
ods. It is clear that the MPC Case 1 is affected largely by the matched disturbance and
gives rise to a non-convex problem due to its lack of robustness. Furthermore, the Ee

is even driven to be negative -28.7 J. Apart from this, MPC Case 2 is also significantly
influenced by the matched disturbance, and the Ee is decreased to 8.1 J. This falling
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phenomenon of Ee is similar to MPC Case 1 but Case 2 shows evidence of stronger ro-
bustness than Case 1. Additionally, the Ee from the MPC tracking strategy has dropped
somewhat to 24.4 J when compared with "no added matched disturbance" test shown in
Figure 7.3. However, both the model-following mixed LQR/H∞ control and SMC only
demonstrate low energy-loss between the no disturbance and the matched disturbance
tests, which means that these two robust methods shows fairly strong robustness.
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Figure 7.6: Extracted energy with added matched disturbance from all methods (Seast-
ate 5).
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Figure 7.7: MPC velocity tracking, Model-following mixed LQR/H∞ control and SMC
with matched disturbance (Seastate 5).
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The velocity tracking results with matched disturbance under Seastate 5 are given in
Figure 7.7. It can be seen that the MPC velocity tracking error becomes larger to some
extent, when the matched disturbance being added on the PAWEC device. The mixed
LQR/H∞ control and SMC have strong robustness with low tracking errors. But SMC
shows best velocity tracking performance.

Test 2: Seastate 6
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Figure 7.8: Absorbed energy from all methods (Seastate 6).

Figure 7.8 shows the absorbed energy Eabs for all five methods under Seastate 6. There
is no doubt that the MPC Case 1 still has the largest energy absorption 233.1 J. How-
ever, there are some changes in the ranking of Eabs under Seastate 6 compared with
the ranking of Seastate 5 in Figure 7.1. The Model-following SMC produces the sec-
ond largest Eabs of 184.9J. The Eabs from Model-following mixed LQR/H∞ control
becomes larger than for the MPC velocity tracking and MPC case 2 methods.
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Figure 7.9: Velocity tracking results: (i) MPC, (ii) Mixed LQR/H∞ control and (iii)
SMC approaches (Seastate 6).
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Figure 7.10: Extracted energy from all methods (Seastate 6).

The velocity tracking results of MPC, mixed LQR/H∞ control and SMC approaches
under Seastate 6 are shown in Figure 7.9. All of three methods are able to bring good
control performance with low tracking errors, but the tracking result gets a bit worse
compared with the simulation result under Seastate 5 in Figure 7.2. The reason for this
is the excitation moment Mex is an external moment, regarded as a large disturbance
onto the PAWEC device to do oscillation. The amplitude of incoming irregular waves
based on Seastate 6 is bigger than the amplitude of irregular waves from Seastate 5. In
other words, the Mex (external disturbance) generated by Seastate 6 is larger than the
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one produced by Seastate 5, to see the details in Chapter 4 the Mex estimation work.

Figure 7.10 gives the extracted energy Ee from all methods under Seastate 6. It is clear
that the MPC velocity tracking method has the largest Ee that approaches to 138.4J
and the MPC case 1 drops to second place in the ranking of Ee that equals to 135.8J.
In addition, the Ee of mixed LQR/H∞ control becomes larger than the SMC and MPC
case 2 which is another change with the Ee obtained from Seastate 5 in Figure 7.3.
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(a) MPC case 1 extracted power.
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(b) MPC case 2 extracted power.
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(c) MPC velocity tracking extracted power.
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(d) Mixed LQR/H∞ control extracted power.
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(e) Sliding mode control extracted power.

Figure 7.11: Extracted power of all methods (Seastate 6).

The extracted power of five methods is shown in Figure 7.11. It can be seen that only
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MPC velocity tracking and MPC case 2 methods have few negative power, which is a
good advantage in energy conversion in PTO system. On the contrary, the other three
methods, MPC case 1, model-following mixed LQR/H∞ control and SMC approaches
have lots of large negative power which is bad for PTO system. In this situation, the
massive bi-directional power flow will cause huge burden on PTO system and lead to
energy loss.
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(a) MPC case 1 PTO moment.
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(b) MPC case 2 PTO moment.
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(c) MPC velocity tracking PTO moment. (d) Mixed LQR/H∞ control PTO moment.

(e) Sliding mode control PTO moment.

Figure 7.12: PTO moment of all methods (Seastate 6).

The PTO moment (control input) of all strategies are given in Figure 7.12. It can be
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seen that three MPC methods have the advantages in coping with the input constraint
of PAWEC system. But the input limitation (red line) is not satisfied by the model-
following mixed LQR/H∞ control and SMC approaches.

Figure 7.13 gives the extracted energy Ee of all methods by adding the matched distur-
bance to WEC-Sim numerical model under Seastate 6. The Ee of MPC case 1 gets a
relatively large decline again but not serious like the Ee from Seastate 5. Correspond-
ingly, the Ee of MPC case 2 drops some but not large as Seastate 5 as well. Addition-
ally, the Ee of both mixed LQR/H∞ control and SMC approaches have a few decrease.
However, the MPC velocity tracking strategy can work properly under Seastate 6 with
the matched disturbance. This is different from the Seastate 5 matched disturbance
test.
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Figure 7.13: Extracted energy with added matched disturbance from all methods
(Seastate 6).

Figure 7.14 shows the velocity tracking results of MPC, mixed LQR/H∞ control and
SMC approaches with matched disturbance under Seastate 6. Actually, there are two
disturbance terms in WEC-Sim numerical model. One is the added matched distur-
bance and another is the Mex treated as the external disturbance. Here, it is different
from the velocity tracking result of Seastate 5. Only model-following mixed LQR/H∞

control can provide good tracking performance in Seastate 6 condition. The MPC ve-
locity tracking result gets a bit worse but it is still reasonable. However, there is a
serious problem appeared in SMC tracking result. The SMC can not always satisfy the
matching condition in sliding mode under Seastate 6 which produces large amplitude
Mex.
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Figure 7.14: MPC velocity tracking, Model-following mixed LQR/H∞ control and
SMC with matched disturbance (Seastate 6).

7.4 Summary

This Chapter provides a comparison study between the MPC and robust methods to
test the robustness of PAWEC control systems and analyse the energy maximization
extraction. Five cases are considered based on the frequently used MPC methods,
MPC velocity tracking based on GP model presented in this thesis Chapter 6, and
Model-following mixed LQR/H∞ control and SMC control proposed in this thesis
Chapter 5. In general, the common MPC approach brings an optimal solution but
it may lack robustness if the PAWEC system has large disturbance or uncertainty.
Both model-following mixed LQR/H∞ control and SMC are suboptimal solutions for
energy-maximising control design for PAWEC system. Furthermore, model-following
mixed LQR/H∞ control has applicability in Seastate 5 and 6, compared with SMC with
strong robustness. The SMC method is a method that can work well with best tracking
performace under Seastate 5 but it may need to be redefined in design under the large
amplitude incident waves like Seastate 6. In total, the MPC velocity tracking strategy
is the best one which has good robustness and largest energy production during the
disturbance tests under Seastate 5 and 6.



Chapter 8

Concluding Discussion and Future
Work

8.1 Concluding Discussion

Specific to the Aim and Objectives of this thesis, a 1:20 scaled Wavestar-like WEC
device in WEC-Sim benchmark (Tom et al., 2018) has been selected to design advanced
control strategies. The purpose is to maximize the energy conversion and robustness
enhancement (to modelling uncertainty). To date control systems have been usefully
employed in PAWEC research for improving the energy maximization objective and
reducing the damage by handling system physical constraints. Thereby, in terms of the
two themes of robustness and optimality, the model-following robust control strategies
(Chapter 5) and model-predictive tracking control method (Chapter 6) (Li and Patton,
2023a) are proposed, respectively based on a hierarchical tracking structure, with a
special two-level approach. The most significant contribution of this PhD study is to
compare and discuss these approaches, in Chapter 7. Although both robust control and
MPC are the most studied and important topics in the current wave energy community,
some issues about the combination of robustness and efficient power conversion remain
as unsolved issues in the literature.

Wave energy researchers tend to focus only on one aspect of MPC, generally its main
function of predictive control optimization. But a few researchers study the issues un-
der which MPC can be made robust to uncertainty. It is clear from the literature that
there is a utilization gap between MPC and robust control. Few studies have success-
fully brought MPC and robust control together to understand what can be involved in
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designing robust MPC systems (Zhan et al., 2017; Jama et al., 2018). However, one of
the frequently used MPC strategies (Soltani et al., 2014), whilst not considering track-
ing, nevertheless does choose the average absorbed mechanical power as its objective
function, to calculate the optimal PTO force by using quadratic programming opti-
mization. This thesis has shown that the tracking structure should be considered that
for most of standard robust control approaches if they are chosen to maximize energy
production. This also provides a powerful framework for developing robust MPC in
wave energy and PAWEC.

Inspired by the hierarchical tracking structure first proposed by (Fusco and Ringwood,
2014a), various control methods could be used with MPC being one. In order to make
a comparison with the use of MPC Chapter 5 describes two different robust control
methods to combine robustness with tracking control as follows:

• A mixed LQR/H∞ control (Zhu and Li, 2021a) and

• Sliding Mode Control (Lan et al., 2017b)

At the low hierarchical level these methods use the model-following tracking control
concept (Section 5.3). In the contribution in this thesis, the PAWEC system is forced to
follow a reference model and perform both position and velocity tracking robustly. A
near-resonance condition for the purpose of energy maximization can be reached when
the PAWEC tracking is achieved. Both of the model-following LQR/H∞ and SMC ap-
proaches have strong robustness, against the added matched disturbance (see Section
5.4 for definition). The robustness is manifest without much absorbed energy being lost
during the energy production under irregular waves. In this work SMC tracking shows
promise in bringing good robustness to the PAWEC device and hydrodynamic param-
eter uncertainty. The robustness is achieved by suppressing the affects induced by the
matched disturbance. This “matched disturbance robustness” is a well-known feature
and property of the sliding mode. Certainly, the LQR/H∞ tracking also demonstrates
good disturbance rejection performance. But these robust control approaches are un-
like the MPC methods that can solve the system control input and physical constraints
elegantly.

Again at the low-level (Chapter 6), the MPC is designed into a velocity tracking mode,
treated as a bridge to the comparison study between robust control and MPC methods.
Actually, the tracking form can give more freedom for the controller design and also
increase the robustness of the MPC system. Furthermore, two GP models are adopted
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to perform short-term forcasting to generate the predictions of the future WEM and
future reference velocity values. These are required in the objective function of the
model-predictive tracking control. The predictions of GP models present good learning
smoothness.

Considering the high-level part of the selected hierarchical structure, this must be con-
sidered as the preliminary work before doing the energy-maximising controller design.
An important function at this high-level is the WEM estimation and the determination
of the optimal reference signal. In Section 4.2, four robust methods are selected to
design the WEM estimators with simple and effective structure. The comparison study
demonstrates the robustness and response speed of both the UIO (Zhu and Li, 2021b)
and LO (Du et al., 2015). The robust designs are attempted, based on H∞ performance
which are limited due to the LMI feasibility problem that introduces a side effect in
calculating observer gain. The problem is that the LMI search could be infeasible, so
that the performance of the WEM estimation may not appear to be satisfactory. In con-
trast to using LMI, the proposed LO method using pole-placement (PP) design has the
simplest solution structure and shows very attractive estimation performance, which
may be a suitable approach for a number of PAWEC applications. The adaptive sliding
mode observer (ASMO) of (Lan et al., 2017a) is not only a nonlinear approach but pro-
vides the best WEM estimation performance, providing a potentially new strategy for
application problems involving PAWEC systems. Both LO with PP and the ASMO de-
signs are the new contributions tested on the a 1:20 scaled Wavestar-like WEC device,
and show promise for future studies based on real PAWEC applications.

In contrast to this the optimal reference generation is based on an EKF. The result in
Section 4.4 shows that the EKF can perform well in computing the estimated instanta-
neous amplitude and frequency of WEM, although it needs long convergence time and
lacks robustness. Some new methods for the optimal reference determination can be a
focus of future work.

The two-level system comparison results (Chapter 7) indicate that among all methods
considered, the frequently used MPC method (with no tracking purpose) can give an
optimal solution towards to absorbed energy, when considering irregular waves. How-
ever, the basic MPC method tends to generate large negative power when the objective
function does not include a penalty term to restrain the control input. If the penalty
term is considered, the generated negative power is reduced, but the absorbed energy
is also reduced. This shows up a certain degree of quadratic trade-off between control
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input restraint and absorbed energy. Furthermore, the frequently used MPC lacks ro-
bustness, when the PAWEC system involves the added matched disturbance, and also
tends to give rise to persistent negative energy.

Chapter 7 also indicates that the input constraint is satisfied by the MPC methods. On
the other hand, it is shown that the two robust tracking methods (LQR/H∞ and SMC)
generate significant negative power, which compromises the overall extracted energy.
However, the model-predictive tracking control only produces a small amount of neg-
ative power and demonstrates good energy conversion efficiency between absorbed
energy and extracted energy with/without the added matched disturbance arising in the
PAWEC system. Recall that the model-predictive tracking approach is designed by a
combination of the tracking structure scheme and the MPC methodology, which pro-
vides the PAWEC system with sufficient robustness, whilst extracting as much energy
as possible. So, the robustness of the MPC can be enhanced using the optimal velocity
tracking. Then optimality can be ensured by the MPC optimization procedure. Never-
theless, the two Gaussian Learning predictors (GP models) are needed in this model-
predictive tracking method that involves the prediction errors to the PAWEC control
system. Both basic MPC and MPC velocity tracking methods have considerable real-
time computation burdens, especially because of the QP optimization. In contrast the
robust tracking approaches demonstrate much faster real-time performance. Overall,
the MPC tracking system demonstrates the best solution in terms of expected LCoE,
among all control approaches in this thesis work.

8.2 Future work

• Optimal reference generation: As described in Chapter 4, the WEM signal
is assumed as a narrow-band process in a harmonic model form (4.23) and can
be further expressed to a single cyclical component (4.24), based on the Har-
vey’s structural model (Fusco and Ringwood, 2014a). Then the non-linear time-
varying model can be used in an EKF to estimate the instantaneous WEM am-
plitude and frequency, in order to calculate the optimal reference signal.

The EKF might be replaced by the other methods, which have shorter con-
vergence times and hopefully stronger robustness. Two other methods can be
considered to obtain (a) the WEM instantaneous amplitude and frequency and
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from this (b) calculate the optimal reference signal. These are: The Hilbert-
Huang transform (HHT) (Garcia-Rosa et al., 2017), Teager Energy Operator
(TEO) (Maragos et al., 1993). Another attractive possibility is to just choose
a Fourier pseudo-spectral method, to compute the optimal trajectories directly
(Auger et al., 2018).

• The improvement of reducing negative power and extracted energy: The
robust control methods should be redefined in order to reduce negative power
generated in PAWEC control system and extract much more energy from the
irregular waves. A logistic conceptual model (8.1) with suitable damping ratio ζ

and damped natural frequency ωn will be considered as a reference model, which
can cover all key physical features of the PAWEC system.

G(s) =
C(s)
R(s)

=
ω2

n s0

(s+ s0)(s2 +2ζ ωns+ω2
n )

(8.1)

Then, the model-following robust control methods will be improved in energy
production. In general, robust control is superior in coping with system dis-
turbances, unmodeled dynamics, and quickly varying parameters. Furthermore,
the model reference adaptive control (Nguyen and Nguyen, 2018) can be tested
based on it. Adaptive control has benefits in coping with some uncertainties or
slow-varying parameters.

• Robustness enhancing MPC: Tube-MPC method (Mayne et al., 2011) could
be considered to do velocity tracking work but with stronger robustness com-
pared with the MPC methods discussed in Chapter 7. The tube-MPC is a hot
research topic that has attracted attention of many researchers (Mesbah, 2016;
Lopez et al., 2019; Fleming et al., 2014) due to it has strong robustness com-
pared with the basic MPC methods. The main idea of tube-MPC (Langson et al.,
2004) is to keep the system actual state staying in an invariant (bounded) "tube"
around a desired trajectory. It ensures that the deviation remains bounded by
an ancillary feedback controller when the system involves modelling uncertainty
and disturbance.

• Energy-maximising control for PAWEC arrays: When the PAWECs are de-
ployed in large arrays (Peña-Sanchez, 2020), the LCoE per device will be re-
duced and the total cost of the generated electricity will also decrease. There-
fore, it would be better to consider the overall PAWEC array, and perform the
energy-maximising control work on it as a network of PAWECs. Certainly, the
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WEF/WEM estimation should be computed before the control. Relative to a
single PAWEC device application, the PAWEC arrays have much more complex
hydrodynamics (Penalba et al., 2017a) and should be considered carefully. In ad-
dition, the spatial propagation of waves and the interactions coupling (Yang et al.,
2022) between PAWEC devices need to be considered. The work developed in
this thesis can provide good input to work on PAWEC arrays.
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