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The majority of biological rates are known to exhibit temperature
dependence. Here I reveal a direct link between temperature and
ecologically relevant rates such as swimming speeds in Archaea,
Bacteria, and Eukaryotes as well as fluid-pumping and filtration
rates in many metazoans, and show that this relationship is driven
by movement rates of cilia and flagella. I develop models of the
temperature dependence of cilial and flagellar movement rates
and evaluate these with an extensive compilation of data from the
literature. The model captures the temperature dependence of
viscosity and provides a mechanistic and biologically interpretable
explanation for the temperature dependence of a range of ecolog-
ically relevant processes; it also reveals a clear dependence on both
reaction rate-like processes and the physics of the environment. The
incorporation of viscosity allows further insight into the effects of
environmental temperature variation and of processes, such as dis-
ease, that affect the viscosity of blood or other body fluids.

biological fluid dynamics | Arrhenius

Eukaryotic cilia and prokaryotic flagella are whip- or cork-
screw-like cellular organelles responsible for a wide range of

biological functions (Fig. 1A). The temperature dependence of
processes driven by these organelles has been recognized for well
over a century (1) and can be seen in unicells and both poikilo-
and homeothermic metazoa. What has been less commonly
noted is the dependence of cilial and flagellar movement on the
viscosity of the medium in which they operate.
When an object such as a cilium moves in a fluid, it experi-

ences an external load (drag) that depends on the fluid’s vis-
cosity. In systems operating at low Reynolds (Re) numbers (Re =
ρlv/μ, where ρ is fluid density, l a length scale, v velocity, and μ
dynamic viscosity), this viscous drag dominates the dynamics of
movement because the product l × v (inertia) is small compared
with μ (viscosity). Temperature determines the kinetic energy of
molecules, driving the well-known response of reaction rates, but
the kinetic energy of molecules in liquids also determines their
ability to move with respect to one another, thus leading to the
negative relationship between temperature and viscosity seen in
most liquids. Though several studies have shown the impor-
tance of temperature-dependent viscosity to individual systems
(2–5), the effect has largely been ignored, and cannot be de-
scribed directly by Arrhenius kinetics. Models based on
Arrhenius kinetics attribute changes in fitness with temperature
to an exponential increase in chemical reaction rates with
temperature (6).
Explaining the mechanics of temperature dependence of bi-

ological processes is key to deciphering organismal performance
and interactions in a changing climate. However, despite con-
siderable interest in the mechanics of cilial and flagellar move-
ment, previously developed models have not incorporated
important physicochemical effects of temperature that are
known to influence cilial and flagellar movement rates, such as
the viscosity–temperature relationship of the fluids in which they
operate. Thus, the use of Arrhenius kinetics as a mechanistic
description of the relationship between biological rates and

temperature may not always be appropriate. Arrhenius kinetics
are useful, particularly when incorporated into larger predictive
frameworks, such as the metabolic theory of ecology (7–9), but
alternative models are capable of providing additional un-
derstanding of the processes specific to particular systems (10).
Here I report results from a model where cilial and flagellar

responses to external load are determined by the dynamic stiff-
ness of the molecular motors driving these organelles (e.g., dy-
nein), and demonstrate that core functional relationships
between temperature and biological rates linked to flagellar
movement can be derived from purely physical effects. I develop
a model of beat frequency for cilia and flagella to examine their
temperature dependence in terms of both reaction rates and
physics of the environment. For brevity, I describe the model
mainly as it relates to a eukaryotic cilium, but the full derivation
and those for rotating Archaeal and Bacterial flagella (where
torque plays the role of stiffness) are provided in SI Appendix.
The starting point for the model is the force balance of

a moving cilium. By assuming that the power (rate of energy
transfer) available to a cilium is proportional to that required to
produce a given cilial beat frequency, it is possible to derive a set
of simple expressions for beat frequency given the physical
relationships outlined in Fig. 1B (SI Appendix, Eqs. S12 and
S13). The key points of this model are that it includes the effect
of temperature on the viscosity of both the cell contents, and the
external medium against which the cilium acts, and includes
a linear term relating external viscosity to the stiffness of the
cilium. For a rotating prokaryotic flagellum, this stiffness term is
equivalent to the torque in the system.
The power available for cilial motion is dependent on a supply

of energy characterized by the concentration of energy transfer
molecules (for Eukaryotes, usually ATP) and their rate of de-
livery to the molecular motors (dynein) comprising the ciliary
axoneme (a central mechanical organelle). The rate at which the
molecular motors hydrolyze ATP and the number of these
motors (proportional to ciliary length) (11) also determine
available power. Under simplifying assumptions (SI Appendix),
delivery and hydrolysis of ATP can be described by a tempera-
ture-dependent diffusion process. For bacteria, the transport of
ions across the cell membrane drives rotation of the flagellum
and is driven by diffusion and an electrochemical gradient, again
described through a temperature-dependent process. In contrast,
the power required to drive a cilium at a given rate depends
essentially on its length, the local drag coefficients of the cilium
as it moves, and the frequency at which it does so. Here, the drag
experienced by the cilial rod will be viscosity (and so temperature)
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dependent. To these terms must be added the power required to
overcome the stiffness of the cilial rod, which includes terms for
the Young’s modulus of the cilium and the wavelength of the wave
passing along it (12). Evidence suggests that the stiffness of sys-
tems built from molecular motors such as dynein varies directly
with external load (13–15), which in this case will be determined
by the external fluid viscosity. Cytoplasmic dynein takes smaller,
but more powerful, steps under load (16), and the stiffness of
sperm increases with binding of dynein (17), suggesting that in-
creased load results in lower translation speeds and greater
numbers of bound molecules per unit time. Sznitman et al. (18)
report a linear relationship between Young’s modulus and ex-
ternal viscosity in Caenorhabditis elegans, suggesting a similar
gearing in muscular systems. For rotational motors, the torque
generated is proportional to the rotational drag of the cell body
(19), which is linearly dependent on viscosity. In both these cases,
raised viscosity increases the power required for a given movement

through both increased external load and internal resistance to
movement (e.g., stiffness or torque).

Explaining Temperature–Frequency Scaling
An initial test of the model is that it accurately describes the
response of cilia and flagellar beat frequencies (and rotational
frequencies in archaeal and bacterial flagella) to experimental
manipulation of viscosity (30 datasets; Fig. 2 A and C). Akaike
information criterion differences (ΔAIC) indicate that previous
predictions (20) of a simple scaling of beat frequency to fluid
viscosity (μf) for sperm tails as μ−0:5f are not supported (aggregate
ΔAIC = 16.5, where positive values support the current model).
Rather, scaling of frequency with viscosity takes the form
f ∝

ffiffiffiffiffiffiffiffiffiffiffiffi
μf + c

p
=

ffiffiffiffiffiμf
p (∝ ci=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μf + cj

p
for prokaryotes), where ƒ is fre-

quency and ci,j are constants.
I next compare statistical fits of my model to data from a range

of bacterial and eukaryotic taxa against those for an Arrhenius
model. Using 17 datasets data from the literature, ΔAIC indicate
that there is support (aggregate ΔAIC = 5.9) for selecting my
model over an Arrhenius model to explain the scaling of fre-
quency with temperature (Fig. 2 B, D, and E). Here, Arrhenius
kinetics suggest a scaling where f ∝ e−1=T , whereas that of the
current model is f ∝

ffiffiffiffi
T

p
e−T (∝

ffiffiffiffiffiffiffiffiffiffiffi
T + c

p
  e−T for bacteria). How-

ever, the point here is not that my model is better, but that it
provides a mechanistic explanation of the temperature dependency
with parameters that have a real biological interpretation. In this
light, a more appropriate criterion is that my model is able to ex-
plain the data equally as well as the Arrhenius model; this is sup-
ported by the aggregate mean ΔAIC falling within a ±10 range
around zero, indicating support for both models.
In generalizing the temperature response and quantifying the

effect of load on frequency, the model provides a simple for-
mulation based on biologically meaningful variables. By linking
temperature-dependent molecular kinetics directly to cilial and
flagellar movement rates, it is now possible to provide a mecha-
nistic link between temperature change and a key biological rate.
By incorporating load dependence of dynein force output and
stiffness (and rotational torque in prokaryotes), the response of
the molecular engines involved both to changes in temperature
and in their external media can be better understood. The
implications of this load dependence are that we see that vis-
cosity plays a role in the temperature responses commonly
recorded across taxa. With this insight we can posit a central
scaling relationship between temperature and frequency
driven by physical processes, about which further regulation of
frequency by neural or chemical stimuli can occur, but which
may limit the range of their control.
Understanding the relationships among temperature, fluid

viscosity, and cilial beat frequencies has direct application to the
experimental methods used to probe cilial mechanics (many
of which studies provided the data used here). The core of
eukaryotic flagella and cilia is the axoneme, a central rod-like
structural and mechanical organelle that bends in response to
dynein-generated shear. Separating and attributing the effects of
temperature to viscosity and reaction rate-driven components
will enable a better understanding of dynein and axoneme me-
chanics. A clearer understanding of the interactions between
biochemical and mechanical effects of temperature change also
has bearing on the rheology of mucus secretions. For example,
given the impairment of ciliary motility in mammalian re-
spiratory tracts when breathing cold air, and the implications for
seasonal respiratory infections (21), we might expect some tun-
ing of mucosal secretion toward shear thinning (22) to reduce
energy costs. In a similar vein, despite considerable study (23),
exploration of the consequences of fever responses in mammals
seem never to have included the impact of increased body
temperature on mucociliary transport.
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Fig. 1. Flagellar and cilial distribution and model outline. (A) The distribu-
tion of cilia and flagella and their function on the tree of life. The phylo-
genetic tree and inner ring illustrate the three major branches of Archaea,
Eukaryotes, and Bacteria. Sequential rings indicate the presence (dark), re-
stricted appearance (pale), or absence (white) of cilia or flagella used for
locomotion (inner), reproduction, development, and feeding (outer). The
outer ring indicates phylogenetic groupings. Data sources are cited in SI
Appendix, Table S1. (B) Graphical representation of the physical relation-
ships described by my model. Increasing temperature can be seen to lead to
increased reaction rates, but also to a decrease in the viscosity of environ-
mental and cellular fluids. The dashed line indicates a minor effect not
considered by the model.
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Linking the Microscale to the Macroscale
Given the roles of cilia and flagella in motility and fluid trans-
port, the microscale processes described here are pivotal to
macroscale processes. Resistive force theory (24) for flagellar
motion predicts a linear relation between motile cell velocity and
beat frequency (and rotational frequency in prokaryotes) (25),
indicating that the locomotion of the majority of low Reynolds-
number swimmers should scale with temperature in the same
way as does beat frequency. To investigate this, I conducted
a meta-analysis of 15 datasets, which shows that beat (Eukar-
yotes, n = 11 datasets and nine species) and rotational (Bacteria,
n = 4 datasets and three species) frequencies correlate strongly
and linearly with swimming speeds (fixed-effect estimate of r =
0.80; Fig. 3). Thus, swimming speeds of bacteria, protozoan
parasites, and metazoan gametes depend directly on the fre-
quency (rotational or beat) of their cilia or flagella.
On the basis of the linear relationship between swimming

speed and beat/rotational frequencies, it seems highly likely that
the same dependency will exist in other processes driven by cilia:
fluid flow rates are linearly related to beat frequency in frog
esophageal cilia (26) and in magnetic biomimetic cilia (27), and
several lines of theory suggest such a relationship (28). In the
metazoa mucus transport (29), fluid pumping in groups such as
sponges, molluscs, and other marine invertebrates (30), and the
nodal flows involved in left/right asymmetries in vertebrates (31),
are all driven by ciliary movement.
To test if macroscale processes could be driven by biophysical

responses to temperature, I compared model fits for data on
filtration rates of metazoan animals and swimming speeds of
prokaryotes (Bacteria and Archaea) and metazoan gametes. For
38 datasets from the literature, ΔAIC indicate that there is little
difference in support (aggregate ΔAIC = 1.3; Fig. 4 B, D, and E)
between an Arrhenius model and the current model to explain
the scaling of rates with temperature. Previous models (32) have
linked wave parameters to swimming speed in bacteria to predict
(μf + constant)−1 scaling with viscosity, whereas Roberts (28)
derived a μf

−0.5 scaling for ciliate microorganisms. The theoretical

prediction of Roberts was used here for comparison with the similar
scaling predicted for individual flagella, but is similarly not sup-
ported (n = 31, aggregate ΔAIC = 7.2). Though the predicted μ−0:5f
scaling is not supported, the relationships predicted by the current
model presented here can be described very approximately by other
power laws, providing an explanation for the range of exponents
recently reported for scaling of rates with viscosity in a range of
aquatic organisms (33).
Linking microscale temperature dependency to larger pro-

cesses puts theories built on Arrhenius-like relationships on
a firmer methodological and predictive footing. Measurable bi-
ological rates such as swimming, pumping, and filtration provide
a suite of ecologically relevant phenomena that are driven by
comprehensible sets of temperature-dependent subprocesses.
Understanding the temperature dependence of molecular motors
will pave the way to understanding the effects of circadial and in-
flammatory temperature variation on the motility of mammalian
cells and of motile pathogens such as trypanosomatids (e.g.,
Leishmania and Trypanosoma) or bacteria (e.g., Salmonella and
Helicobacter). In an ecological context, differential swimming
responses of predator and prey can lead to measurable benefits
to motile bacteria (34, 35), suggesting substantial adaptive and
ecological significance (36).

Biological Interpretations
The model presented here provides a mechanistic link between
the scaling of flagellar frequencies with viscosity and the recor-
ded scaling of these parameters with temperature. The model
suggests that the intrinsic properties of molecular motors such as
dynein determine the response to external load, which itself
translates into temperature–rate relationships when load (vis-
cosity) varies with temperature. Such an interpretation suggests
that temperature effects are dominated by impacts on the supply
of energy (e.g., diffusion of ATP, reaction rates, enzyme effi-
ciencies), but that there is also a contribution from the physical
properties of the medium in the form of the viscosity of the
external fluid and of the cell. A simple conceptualization is that
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Fig. 2. Examples of data and model fits for flagellar rotational frequency of the bacterium Escherichia coli (Upper) and the cilial beat frequency of the
bivalve Mytilus edulis (Lower). (A and C) Response to viscosity, log spaced. (B and D) Response to temperature. Solid lines are fits for my model, dashed for
a function based on scaling as μ−0:5f (blue) or on the Arrhenius equation (red). Within each panel, symbol shapes indicate different datasets. Open symbols
indicate data from individual cells, filled symbols data from experimental means. (E) Frequency of ΔAIC for model fits to data from the literature relating
temperature to frequency response (SI Appendix). Positive ΔAIC indicates support for my model, negative for the Arrhenius equation. The shaded area
indicates the ±10 ΔAIC region where both models might be supported. The dashed line is a normal distribution based on the mean and SD of the ΔAIC values,
with an aggregate mean ΔAIC of 5.9. Citations for datasets are given in SI Appendix, Tables S4–S7.
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the main impact of temperature on ciliary-derived biological
rates is to set the balance between available power (through
changes to cytoplasmic viscosity, diffusion, and reaction rates)
and power required to overcome external loads (external fluid
viscosity). The presence of viscous loads on molecular transport
has rarely been addressed, but given the similarities of dynein
with other eukaryotic molecular motors, such as actin and my-
osin, the model should also be applicable to both cellular motility
and intracellular transport mechanisms. The slowing of move-
ment and metabolism at high pressure in organisms living in the
ocean depths (37) should also be amenable to study using this
system. Hydrostatic pressure is a force acting on cellular com-
ponents and thus can be incorporated simply as an additional
component to viscous drag.

Few data on the contribution of viscosity effects to tempera-
ture-dependent changes in flagellar-beat frequency exist, but one
estimate for the mussel data (2) used in Fig. 2 is ∼80%. For cilia-
driven swimming speeds, estimates range from 40% to 100% of
the effect of temperature as attributable to viscosity. However,
viscosity change is expected to be less easily acclimated to than,
for instance, temperature-dependent changes in enzyme effi-
ciency (38), and so the true value may lie close to the lower end
of these estimates.
Though the data collated here was collected under controlled

conditions, there are implications for changes in viscosity under
natural conditions. Seawater viscosity more than doubles from
tropical to arctic temperatures (at a salinity of 30‰, μ = 0.86
mPa·s at 30 °C and 1.88 mPa·s at 0 °C). The nonlinear relationship
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between temperature and viscosity (SI Appendix, Fig. S1A) means
that a given temperature change at 20 °C will not have the same
effect on viscosity as the same change at 10°, but as an example for
a 12 °C annual variation in temperate seas, the change from 6 °C to
18 °C reduces both dynamic and kinematic viscosity by 27%.
Though within complex multicellular organisms, temperature
can be homeostatically controlled, there is still variation. For
instance, mammalian ependymal cilia in the ventricular system
are exposed to cerebrospinal fluid of increased viscosity in certain
pathological conditions such as bacterial meningitis (39) and,
although comparisons are complicated by the viscoelasticity of
biological fluids, the effective viscosity of mammalian cervical
mucus through which sperm must swim has been estimated at
0.2 Pa·s, 200× that of water (40).
We can interpret the temperature–rate relationships revealed

here as near-Arrhenius scaling, with the corollary that activation
energy (E) has a physical analog in the viscosity–temperature
relationships of the cell and external medium and temperature
dependence of diffusion rates or chemiosmotic potentials. In
particular, my model can provide an additional explanation for
some of the recently documented (41) widespread variation in
activation energy for biological rates modeled with the
Arrhenius equation. My model accounts for variation in bi-
ologically interpretable parameters such as wavelength, ATP
concentration, or flagellum length, which would be attributed
to variation in E using the Arrhenius equation. These results
provide another indication that the Arrhenius formulation can
sometimes be an oversimplification of the complexity un-
derlying the temperature dependence of biological rates and
ecological processes.
These results show that consideration of both biochemical

and mechanical effects of temperature change can provide
a universal scaling mechanism for functionally convergent
organelles found in all three domains of life. Such a mecha-
nistic understanding should greatly improve our ability to
predict changes in physiological performance in the face of
temperature variation.

Methods
I searched the literature for studies that measured the intraspecific response
of flagellar or cilial beat (or rotational) frequency to temperature and/or
viscosity. I also searched for studies on the swimming or filtration rate re-
sponse of ciliated or flagellated organisms. Only datasets where four or more
temperature or viscosity measurements were available after any trimming
(see below) were used. I found 273 data sources. Where tabulated data were
unavailable, data points were extracted directly from published figures using
GraphClick. In its current form, the model cannot account for temperature-
related decreases in rates such as those due to enzyme denaturation or high-
temperature stresses. Where responses to temperature were unimodal, the
data were restricted to those measurements up to and including the maxi-
mum value to give amonotonic response. This process yielded 17 intraspecific
cilial or flagellar temperature responses, 39 swimming or filtration tem-
perature responses, and 30 and 31 viscosity responses, for a total of 1,518 data
points. The data reported in this paper are tabulated in SI Appendix, Tables
S1–S11.

All statistical analysis and model fitting was carried out in R (42). Models
were fitted with nonlinear least-squares regression (package minpack.lm)
using a modification of the Levenberg–Marquardt algorithm (function
nlsLM). For the temperature version of my model (SI Appendix, Eqs. S12 and
S22), the parameter (x + y) was constrained between −0.023 and −0.120, the
maximum being the estimate of x for pure water, whereas the minimum is
the maximum plus the highest 95% confidence interval of the y estimates
(−0.0961; SI Appendix, Table S1) for cell contents from nine datasets on the
response of cell viscosity to temperature. Apart from the prokaryote tem-
perature model where constant cx was constrained as 0 ≤ cx ≤ (minimum
temperature for data) to prevent square roots of negative numbers, all
other fitting constants were constrained to be real and positive.

Model fit was assessed using the AIC estimated for the fitted nonlinear
least-squares model and the fitted Arrhenius model (frequency vs. temper-
ature; SI Appendix, Eqs. S12, S21, and S30) or power function (frequency vs.
viscosity; SI Appendix, Eqs. S13 and S22).
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