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A B S T R A C T

Machine intelligence has the potential to play a significant role in diagnosing, managing, and guiding
the treatment of disease, which supports the rising demands on healthcare to provide rapid and accurate
interpretation of clinical data. The global pandemic caused by the Severe Acute Respiratory Syndrome
Coronavirus (SARSCoV-2) exposed a need for rapid clinical data interpretation in response to an unprecedented
burden on the healthcare system. A new healthcare challenge has arisen – post-COVID syndrome or ‘long
COVID’. Symptoms of the post-COVID syndrome can persist for months following infection with SARS-CoV-2,
often characterised by fatigue, breathlessness, dizziness, and pain. Despite this additional healthcare burden, no
tests can diagnose, monitor, or determine the efficacy of treatments/interventions to support recovery. In this
paper, an array of machine-learning algorithms is trained to evaluate and detect COVID-19-associated changes
to lung tissue from X-ray images. X-ray images are classified from open sources into three categories: COVID-
19 patients, patients with pneumonia, and unaffected otherwise healthy individuals using existing Machine
Learning (ML) and pre-trained deep learning models. Prioritising models with the fewest false positives and
false negatives assessed the performance of different models in detecting COVID-19-associated lung tissue.
In addition, image pre-processing, data augmentation, and hyperparameter tuning are used to achieve the
best accuracy in the models. Different ML models, including K Nearest Neighbour (KNN), and decision trees
(DT), as well as transfer learning models such as Convolutional Neural Network (CNN), Visual Geometry
Group (VGG-16, VGG-19), ResNet50, DenseNet201, Xception, and InceptionV3, were tested to evaluate the
performance of these models for X-ray images classification. The comparative analysis indicates that VGG-19
with augmentation performed best among the ten algorithms with a training accuracy of 99%, testing accuracy
of 98%, and precision of 90% for COVID-19, 90% for normal, and 100% for pneumonia. This higher accuracy
for detecting COVID-19-associated lung changes on X-ray may be further developed to stratify patients suffering
from post-COVID syndrome. This may enable future intervention studies to determine the efficacy of treatments
or better track patients’ prognoses to be optimised.
. Introduction

In 2019, an outbreak of pneumonia initially spread in Wuhan city
n China and the infectious agent was later named SARS-CoV-2 by
he World Health Organization (WHO). SARS-CoV-2 is an enveloped
irus with a positive sense, single-stranded ribonucleic acid (RNA)
enome [1]. The virus predominantly affects the human respiratory
ystem and is transferred readily from one person to another through
oughing, sneezing and physical contact [2]. It can spread through
ouching or exposure to contaminated surfaces as the virus can survive
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for several days depending upon the surface and environment [3].
Primary symptoms of this disease include fever, dry cough, loss of taste
and smell, sore throat, and muscle pain [4]. Despite significant research
efforts to identify, characterise and limit mortality associated with
COVID-19 infections, a new challenge has arisen regarding the longer-
term impact of viral infections. Post-COVID syndrome (PCS) also known
as ‘long-COVID’ has been estimated to affect 45% of COVID-19 infection
survivors [5]. According to government statistics an estimated 2 million
people self-reported experiencing ongoing symptoms of COVID or ‘long-
COVID’ with 48% of these individuals reporting shortness of breath as
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a symptom [6]. In their meta-analysis, they identified fatigue, breath-
lessness, and myalgia as the most experienced symptoms by examining
pooled prevalence from 194 studies of patients with PCS. Furthermore,
the authors identified that of all clinical investigations undertaken
within the studies included, abnormalities were most identified by X-
ray and Computerised Tomography (CT). The full potential of chest
X-rays to identify and characterise changes in PCS has yet to be fully
explored. However, the ability to rapidly detect, identify and stratify
COVID-19-associated lung changes in PCS has the potential to aid
diagnosis and treatment monitoring.

ML plays an essential role in the healthcare sector, especially in
identifying diseases, and outbreaks and preventing diseases [7,8]. It
can support rapidly evolving information to assist public health experts
in making complex decisions. ML has been used extensively in the
health sector to identify diseases and diagnose illnesses such as lung
cancer, cervical cancer, breast cancer, and many more through medical
images [9,10]. Chen et al. [11] consider ML a helpful tool, especially
with the growing pressure on limited time and health resources, by
improving the efficiency and effectiveness of human efforts to combat
this pandemic. Wootton et al. [12] consider X-ray images sensitive and
essential tools for diagnosing lung diseases. However, the underlying
limitations such as difficulty in data collection, lack of multi-model
assessment, delays in realising benefits, poor internal validations, and
data privacy make X-ray images complex for diagnosis [13]. Also, in
recent years, data science has been used to analyse health-related data
to identify diseases using various deep learning, data mining, and ML
approaches. ML is considered one of the required fields in ML. It is the
process of selecting the right algorithms that can learn from previous
datasets and help to predict unseen data is always challenging [14].
Furthermore, with the use of deep learning, ML enables computers to
learn from experiences by allowing computational models consisting of
multiple processing layers to comprehend a representation of data with
various abstraction layers such as facial recognition, drug discovery,
and speech recognition [15]. In other words, deep learning models can
classify abnormalities and have been reported to aid doctors or radi-
ologists in achieving expert-level diagnostic expertise and predictive
analytics [16,17]. In this context, chest X-rays have become one of the
most accessible and cost-effective tools for triage patients [18].

As early detection of COVID-19 is vital during the pandemic, ac-
cess to healthcare is very necessary. However, the lack of test kits,
hospital beds, and required resources in hospitals hinders healthcare
access [19]. Subsequently, it is difficult to track and test the infection
in developing countries due to insufficient test kits, lack of skilled
human resources, and other prejudices [20]. This raises the chances of
transmission leading to the volume of infected people spike. Thus, it is
necessary to diagnose the infection at an early stage to prevent further
transmission. This paper aims to determine how effectively COVID-19-
associated lung changes can be detected from chest X-ray images using
ML algorithms as well as identifying the best algorithm for detecting
these changes. Comparative analysis among 10 different algorithms:
Decision Tree, K-Nearest Neighbour (KNN), Support Vector Machine
(SVM), Convolutional Neural Network (CNN), Visual Geometry Group
(VGG-16, VGG-19), DenseNet201, Resnet50, InceptionV3 and Xception
are applied to build to explore image classifier for X-ray image with
higher accuracy. In the comparative analysis, 10 ML models classified
the X-ray image into COVID-19 patients, patients with pneumonia
and unaffected otherwise healthy individuals. In addition, data aug-
mentation is implemented to train these models. By doing so, the
research aims to pinpoint effective models that can alleviate the strain
on healthcare systems and ultimately save lives, particularly in the
context of diseases like COVID-19. As a result, there has been improved
performance of certain algorithms that previously were suboptimal
in other tests and hence the enhancement in model accuracy. This
comparative analysis will help enable future interventions to explore
the effectiveness of treatments or better track the prognoses of the long
COVID patients to be optimised. The comparative results have shown
2

that VGG-19 with data augmentation achieved the best performance
with a training accuracy of 99% and testing accuracy of 98%. The
model achieved a precision of 90% for COVID-19, 90% for normal and
100% for pneumonia. Importantly, establishing the most appropriate
model for detecting COVID-19-associated changes is a fundamental
first step in establishing a decision aid to help detect and monitor the
treatment of patients with PCS. Also, the development of an algorithm
capable of accurately distinguishing between healthy pneumonia or
COVID-19-associated lung damage is of significant value in detecting or
monitoring the prevalence or treatment. In addition, this comparative
analysis also reveals some of the challenges such as data collection
methods and quality along with the consistency challenges which can
be part of consideration in similar directions.

The rest of the paper is organised as follows. A thorough review
of the use of different algorithms is discussed in Section 2. The com-
putational model-building methodology is presented in Section 3. The
results of different ML algorithms are presented in Section 4. Finally,
the discussion and conclusions are presented in Section 5.

2. Detection of COVID-19 from X-ray images using different ML
models

This section reviews different earlier approaches that have been
applied for COVID-19 detection from X-ray images. These approaches
are divided into three different categories: multi-model, CNN and Deep
Learning approaches.

2.1. Multi-model approaches

ML models have been used extensively in the health sector for
identifying diseases and diagnosis of illnesses such as lung cancer,
cervical cancer, breast cancer, and others using medical images [9].
After the COVID-19 pandemic, various machine learning, deep learning
and hybrid learning models were used to help identify diseases. For
example, Racic et al. [10] use a model to perceive whether chest X-
ray changes can be detected and classify images based on pneumonia.
Similarly, Ahmed et al. [21] use five ML models such as decision
tree, random forest, neural network (NN), naive Bayes, logistic re-
gression, and k-nearest neighbour learning (KNN) where NN classifier
yielding the most effective results when detecting COVID-19-associated
pneumonia with a score of 97%. Similarly, Khan et al. [22] use pre-
processing, feature extraction and histogram of oriented gradients in
their ML model to detect COVID-19-infected patients. In the study, out
of five ML algorithms, SVM provides promising results with an accuracy
of 96%.

2.2. Convolution neural network approaches

CNN appears as an alternative approach to traditional ML algo-
rithms for image-based classification problems. Ahmed et al. [21], used
CNN models with rich filter families and the weight-sharing feature
extractor SqueezeNet. This study indicated the utility of CNN features
and NN classifiers that can obtain the highest detection of COVID-
19 cases from X-ray images. Furthermore, highly accurate models
were found to help interpret the screening and detection of COVID-19
quickly and accurately [23]. Similarly, the result of the study by Karar
et al. [24] shows that CNN model accuracy was up to 90% in identifying
COVID-19 cases using deep learning for X-ray image detection. CNN has
been used in various medical diagnoses with promising results [25]. For
example, Mohammad-Rahimi et al. [26] identify CNN, long short-term
memory (LSTM), generative adversarial networks (GAN), and residual
neural network, out of which the CNN method achieved 99% accuracy
while classifying COVID-19 patients from other causes of pneumonia
used on chest X-ray images. Likewise, Hafeez et al. [27] work for
detecting COVID-19-associated changes from X-ray images. The study
proposes a CNN model for binary (Normal and COVID), and multiclass
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images (Normal, COVID, and Virus Bacteria), the model performed an
accuracy of 97% for detecting normal, 89% for COVID and 84% for
pneumonia respectively.

To identify an alternative approach for RT-PCR (Reverse Transcrip-
tion Polymerase Chain Reaction) tests, Redie et al. [28] proposed a
modified CNN, that can detect COVID-19 using over 10,000 X-ray
images, including both binary and multiclass X-ray images. With image
pre-processing, the model performs at 99.53% accuracy for binary
class and 94.18% for multiclass. Furthermore, Chaddad et al. [29]
applied different CNN-based techniques with pre-trained models to
identify COVID-19 in X-ray images where the model stood out with
an impressive accuracy of 99.09% in accurately classifying COVID-19.
In a similar study conducted by Haritha et al. [30], a transfer learning
from pre-trained GoogleNet, one of the CNN architectures and named
InceptionV1. In the study, they used open sources of X-ray images and
achieved a testing accuracy of 98.5%.

2.3. Deep learning approaches

In recent years, Deep learning (DL) approaches have appeared as
widely used approaches for image-based classification tasks. Kumar
et al. [31] classified COVID-19 using chest X-rays, VGG-16, VGG-
19, ResNet50, and InceptionV3 models with a modified deep-learning
architecture. The accuracy achieved was 98.61% for modified-VGG-
16, 97.22% for modified-VGG-19, 95.13% for modified-ResNet50, and
99.31% for InceptionV3. These modifications involved incorporating a
new-age architecture by introducing features such as average pooling
and dense layers, dropout, and activation functions. Consequently,
InceptionV3 demonstrated better image classification compared to any
other model. Another study by Asif et al. [32] introduced a model
based on Deep Convolutional Neural Network (DCNN), specifically
InceptionV3, using transfer learning to enhance the accuracy of de-
tection. The study involved analysing three types of images, includ-
ing 864 COVID-19 cases, 1345 instances of viral pneumonia, and
1341 normal chest X-ray images. The DCNN-based InceptionV3 model
demonstrated a classification accuracy exceeding 97%. Another study
by Chen et al. [33] uses Transfer Learning and assessed various mod-
els, including VGG-16, VGG-19, Inception-V3, Inception-ResNet, Xcep-
tion, ResNet152-V2, and DenseNet201, using pre-processing and image
segmentation. Among these models, VGG-16 stood out by achieving
superior performance, with an accuracy of 98% after 10 epochs. Sim-
ilarly, Taresh et al. [34] introduced pre-trained CNN models, includ-
ing InceptionV3, Xception, InceptionResNetV2, MobileNet, VGG-16,
DenseNet169, NasNetLarge, and DenseNet121. These models had vary-
ing selections of frozen layers and a different number of trainable
convolution blocks. VGG-16 outperformed all other models in achieving
accuracy, F1 score, precision, specificity, and sensitivity of 98.72%,
97.59%, 96.43%, 98.70%, and 98.78%, respectively.

Nonetheless, with a similar approach to the imbalance dataset, a
study by Elagili et al. [35] conducted a study utilising CNN-based trans-
fer learning from chest X-rays with three classes: normal, pneumonia,
and COVID-19. They employed pre-trained VGG-16 and DenseNet121,
and the latter demonstrated higher accuracy. The DenseNet121 pre-
trained model achieved an accuracy of 94%, surpassing the 89%
achieved by VGG-16. Performance metrics indicated that DenseNet121
achieved an overall accuracy of 94%, with precision, recall, and F-score
values of 91%, 95%, and 93%, respectively. Another study by Monga
et al. [36] employed transfer learning with multiclass chest X-ray
images to classify three categories: COVID-19, pneumonia, and normal.
They utilised deep learning classifiers including DenseNet201, Xcep-
tion, ResNet50V2, VGG-16, VGG-19, and InceptionResNetV2. Model
comparisons involved image pre-processing, including rescaling and
normalisation. The evaluation based on accuracy, precision, and recall
as performance parameters revealed that DenseNet201 emerged as the
most effective deep learning model, achieving an accuracy of 82.2%.
3

A comparative study by Alshehri et al. [37] which incorporated both
X-ray and computed tomography (CT) scan images and various mod-
els such as CoreNet, InceptionV3, InceptionResNetV2, MobileNetV2,
NASNetMobile, VGG-16, VGG-19, and Xception. The CT scan images
yielded superior results compared to X-ray images, and among the
diverse models tested, Xception demonstrated superior performance.
Similarly, an experiment conducted by Mane et al. [38] aimed to
classify CNN designs from scratch using four transfer learning models
(Inception, Xception, ResNet, and VGG-19), and the study found that
the Xception model achieved a higher accuracy of 94.8% compared to
the others. Sakib et al. [39] proposed a deep transfer learning-based
framework utilising a pre-trained network (ResNet-50). The model ex-
hibited a performance of 96% accuracy, with precision, recall, F1-score,
and specificity all reaching 1.00. Another study by Sethy et al. [40]
aimed to identify infected individuals using X-ray images by employing
ResNet50 along with the SVM model. This approach showed outstand-
ing performance, achieving an accuracy of 95.38%, outperforming
other models such as AlexNet, GoogleNet, ResNet18, VGG-16, VGG-19,
InceptionV3, XceptionNet, and InceptionResNetV2.

Additionally, Gouda et al. [41] proposed two distinct approaches.
The first involves image pre-processing, incorporating normalisation
and resizing for chest X-ray images, while the second utilises augmenta-
tion for constructing ML models. Their study revealed that the modified
ResNet50 exhibited superior performance, achieving an overall accu-
racy of 99.63%. Seeking more precise and reliable outcomes. Alam
et al. [42] advocated for VGG-19 with histogram-oriented gradient in
comparison to traditional ML models such as ANN (Artificial Neural
Network), KNN, and SVM. VGG-19 demonstrated a high accuracy of
98.36% compared to other models. Awan et al. [43] utilised the Apache
Spark approach in a comprehensive data framework, applying it to
deep learning models like InceptionV3, ResNet50, and VGG-19. This
method demonstrated notable performance, with the ResNet50 model
achieving an accuracy of 98.55%, and the VGG-19 model also achieving
a comparable accuracy of 98.55%.

2.4. Overview of previous studies

Overall, different study findings are summarised in Table 1 high-
lighting the prevalent use of deep learning models, with only a few
incorporating traditional ML models. The overarching goal across most
studies is the accurate and rapid detection of COVID-19 in an acces-
sible manner. A common trend emerges, indicating a preference for
DL models, which are widely acknowledged for their superior perfor-
mance. Transfer learning models such as VGG-16, VGG-19, ResNet50,
DenseNet, Inception, Xception, Alex, and Google Net are frequently
employed in X-ray image datasets, as indicated in the table. Many
studies emphasise the reliability of using chest X-ray images as a tool
for COVID-19 detection, underscoring its potential utility for doctors
and radiographers.

3. Methodology: Machine learning algorithms

ML aims to enable computers to learn without being programmed
and is designed to understand complex problems as ML can provide
high performance in detecting COVID-19-associated changes [14]. In
this study, at first, images related to COVID-19 and viral pneumonia
and normal X-rays are collected and hence different ML algorithms
are applied to build classifiers to identify COVID-19, Pneumonia and
normal X-ray images and compare with their performance.

3.1. Data collection and description

The dataset has been used from the following two open-source
Kaggle chest X-ray images, including X-ray images of COVID-19 and
viral pneumonia and normal X-rays. The dataset from the Kaggle
COVID-19 radiography database (https://www.kaggle.com/datasets/

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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Table 1
Performance summary of different ML models for COVID-19 X-ray Classification.

Author Model employed Train dataset Test dataset Accuracy Precision Recall F1-Score AUC

Ahmed et al. [21] NN – – 97.24% 97% 98% 97% 100%
Khan et al. [22] SVM 1760 440 96% 95% 98% 96% –
Hemdan et al. [24] VGG-19 40 10 90% 83% 100% 91% 70%
Hafeez et al. [27] CNN 149 37 89% 91% 97% 95% 55%
Redie et al. [28] CNN 8000 2000 94.13% 82% 83% 89% –
Kumar et al. [31] Modified VGG-16 576 144 98.61% 97% 97% 97% –
Asif et al. [32] InceptionV3 2840 710 97% – – – –
Chen et al. [33] VGG-16 95% 95.48% 95.41% 95.41% –
Taresh et al. [34] VGG-16 3575 311 98.28% 97.59% 98.78% 98.72% 98%
Elagili et al. [35] DenseNet121 1789 449 97% – – – –
Monga et al. [36] DenseNet201 612 90 82.20% 81% 100% 90% –
Alshehri et al. [37] Xception 1278 320 84% – 91% – –
Mane et al. [38] Xception 13 639 1514 94.80% – – – –
Sethy et al. [40] ResNet50+SVM – – 95.38% 93% 97% 95% –
Alam et al. [42] HOG and CNN 1979 3111 98.36% – – – 100%
Awan et al. [43] Resnet50,VGG-19Inception 856 207 98.50% 99% 99% 99% 99%
tawsifurrahman/covid19-radiography-database) contains 3616 COVID-
19 images, 10,192 normal and 6012 lung opacity (non-COVID) in-
fected lungs, and 1345 viral pneumonia images. Similarly, Chest X-ray
images (https://www.kaggle.com/datasets/paultimothymooney/chest-
xray-pneumonia) contain 5863 images dataset with pneumonia, normal
and bacterial pneumonia. Out of which, 2561 images depict bacterial
pneumonia, 1345 images show viral pneumonia and 1341 are normal
images.

3.2. K-nearest neighbour (KNN)

KNN is used to train and classify the dataset based on similarity and
distance measures. This classifier is a nonparametric learning algorithm
that requires an integer k to determine the number of neighbours. When
k is equal to 1, the nearest neighbours determine the sample class [44].
The main aim of KNN is to calculate the distance and find the closest
neighbour. Furthermore, each object votes for the class and the most
voted for the class will be the outcome. As depicted in Eq. (1), KNN
computes the distance between the target sample and the features of
other samples. Eventually, the target samples are classified based on
the highest frequency within the KNN-derived neighbourhood. KNN
increases neighbourhood size selection via the introduction of the
generalised mean distance-based k Nearest Neighbour [89].

𝑑 (𝑥, 𝑦) =
√

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (1)

3.3. Support vector machine (SVM)

SVM is a supervised learning method that creates a hyperplane in
a multidimensional space separated by different classes that minimise
any error. The SVM finds the maximum marginal hyperplane which
divides the datasets into categories of positive and negative [45,46].
SVM shows proficiency in non-linear classification through the deploy-
ment of kernel tricks. This involves implicitly changing input data into a
higher-dimensional feature space, accomplished by presenting margins
between the two classes. The advantages of using the SVM model come
with speed, efficiency, and accuracy [47].

3.4. Decision Tree (DT)

A Decision Tree (DT) is a supervised machine-learning method
to address classification problems. The structure of a decision tree
includes nodes, with each branch indicating the test outcome and each
node containing a class label. Nodes within the decision tree play a piv-
otal role in decision-making, encompassing root nodes, internal nodes,
and child nodes. Branches emanate from nodes, representing potential
outcomes and involving the splitting of input variables linked to the
target. Moreover, DT enable the prediction of an object by considering
4

collective observations, including the potential consequences of a series
of decisions [48]. DT excel in discerning meaningful information from
extensive raw text datasets and effectively handling unwanted noise.

3.5. Deep learning (DL)

DL models have been popular with excellent performance, espe-
cially in the medical image data field such as retina images, chest X-ray
images or brain MRI images [49]. There are multiple benefits of using
deep learning models such as maximum unstructured data utilisation,
elimination of the need for feature engineering, high-quality results,
cost-effectiveness, and the need for data labelling [50]. However, it is
important to note that applications in the medical sector are sensitive,
so high accuracy with an efficient model is needed. Therefore, DL has
a high potential to be used in X-ray image applications as it can learn
robust and accurate features. In the DL model, CNN is one popular
approach for analysing images among various deep learning methods.
It has made remarkable achievements in the medical field because
it automatically extracts translationally invariant features using the
convolution of the input images and filter [51]. Different algorithms
and architectures of DL are used in this study as follows.

3.5.1. Convolutional neural network (CNN)
According to Racic et al. [10], CNN helps learn essential features

like recognising the shape and edges of the Image, and pre-trained
models benefit from the knowledge acquired in learning primary ele-
ments of the images from the database of the existing image. A detailed
description of the architecture is provided below.

1. Convolutional Layer: The layer is responsible for extracting fea-
tures and patterns by recognising input images. Images are
passed through a filter consisting of feature maps and kernels,
and the size of the kernel filter layers is either 3 × 3 or 5 × 5.

2. Pooling Layer: The layer extracts combinations of features from
CNN which are invariant to translational shifts and minor distor-
tions. It helps to reduce overfitting and regulate the complexity
of the model by feature map with uniform features. There are
different dimensions of pooling layers, such as 2X2 or global
average pooling.

3. Fully connected layer: This is a crucial layer of CNN where
the input features are extracted from different stages of the
network and are compared and analysed with the output of all
preceding layers. Fully connected layers are used to connect the
rectified linear unit (ReLU) with the SoftMax activation function
to predict the output images in the last layer of CNN.

4. Activation function: The activation function transforms the
weighted sum to one node for a layer and uses it for the acti-
vation node for the input. The primary purpose of this function
is to help in learning the feature patterns. There are various

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
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Fig. 1. The basic architecture for CNN [52].
Fig. 2. The basic architecture of VGG-16 [53].
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activation functions such as sigmoid, SoftMax, max out, SWISH,
and ReLU.

5. Batch normalisation: This helps every layer of the network to
learn independently and is used to normalise the output of
previous layers, which helps in the internal covariance shift in
feature maps. It helps prevent overfitting in the model and makes
the model more efficient.

6. Dropout: It is used to regularise the CNN network by skipping
some connection with a particular random probability that gen-
erates several thinned network architectures. These thin layers
are taken as an approximation of all proposed networks.

. Flatten Layers: It converts the pooled feature map to a one-dimensi-
nal array as an input to the next layer in the form of a single-long
eature vector. Then it relates to a deep neural network to create fully
onnected layers. The architecture of the CNN is presented below in
ig. 1.

.5.2. Visual geometry group (VGG)
VGG explores the effect of increasing the depth of the convolutional

etwork on its accuracy [53]. Due to their small convolution filters
f size 3X3 show significant improvement. However, due to their vast
etwork, they consume more time.

a) VGG-16
VGG-16 is deep with 16 weight layers, including 13 convolutional

ayers with a filter size of 3 × 3 and fully connected layers. The
onfigurations of fully connected layers in VGG-16 are equivalent to
tride, and the padding of all CNN layers is fixed to 1 pixel [30]. The
rchitecture of VGG-16 is shown in Fig. 2. The main advantage of
sing VGG-16 architecture is that it generalises well to other datasets.
owever, it is slow in training and needs more space for running the
odels, which makes this model ineffective [54].

b) VGG-19
 e

5

VGG-19 has filters of 3 × 3 and a stride of 1 designed to achieve
igh accuracy in large-scale image recognition applications [55]. VGG-
9 has a depth of convolution/max-pooling and fully connected layers
ith 19 layers in the base model using the SoftMax activationfunction.
he architecture of VGG-19 is shown in Fig. 3. VGG-19 is a viral method
or image classification due to the use of multiple 3 ×3 filters in each
onvolutional layer [56].

.5.3. Resnet 50
One well-known model that performs better in medical image detec-

ion is ResNet [57]. ResNet identifies shortcut connections and skips
ne or more layers in the network, which helps the network provide
direct path to the early layers and make gradient updates for those

ayers much easier, as shown in Fig. 4. The architecture of the ResNet50
odel consists of 50 layers and uses ImageNet, which consists of more

han 20 thousand categories created for image recognition competi-
ions [58,59]. The benefit of this model is that it adds more layers
hat solve the problem of vanishing or exploding gradient degradation
roblem by skipping the connections that act as gradients allowing the
radient to flow undisturbed [60].

.5.4. DenseNet201
Dense Convolutional Network (DenseNet) architecture offers 201-

ayer densely connected convolutional concrete of all feature maps from
revious layers, as shown in Fig. 5. All the feature maps propagate
o the last layers and are connected to the newly generated feature
aps [62]. So, the DenseNet inputs the feature and helps to reuse

he feature and prevent exploding or gradient vanishing to a certain
xtent [63]. However, the limitation of using this model is that ex-
essive connections decrease the networks’ computation and parameter
fficiency and make them vulnerable to overfitting [64].

https://www.sciencedirect.com/topics/engineering/activation-function
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Fig. 3. The basic architecture of VGG19 [56].
Fig. 4. Residual learning: a building block [61].

.5.5. InceptionV3
The InceptionV3 model is an improved version of inception such

s label smoothing [60]. As shown in Fig. 6, InceptionV3 7 × 7
onvolution and propagating label information on the network allows
or propagating label information lower down the network. The main
enefit of using InceptionV3 is its 24 million parameters, which give
etter accuracy to the ImageNet dataset [65].

.5.6. Xception
The Xception network is the modified version of the inception with

2.9 million parameters [67]. With more parameters and deep archi-
ecture, Xception models help to solve many image classification and
bject detection problems [24]. The layout of the Xception architecture
sed in this study is shown in Fig. 7. There are three blocks in the
odel, the first block is the entry flow where the data goes, then the
ata is passed to the middle and is repeated eight times, and lastly, the
ast is the exit flow. As the model is lighter and has a smaller number
f connections, it is robust and more vital compared to the Inception
odel [54].

.6. Transfer learning with convolutional neural network

According to Lytras et al. [69], Transfer Learning (TL) refers to a
rocess where a model trained on one problem is used in some way
elated to a second problem. TL is mainly used for image recognition
nd helps build a new model with fewer image datasets [43,57]. One
f the significant drawbacks of training the medical images is the
ack of sufficient data, so using transfer learning allows for processing
ess data [34,59]. This study uses TL, comparative testing of several
odels namely, CNN, VGG-16/VGG-19, Resnet 50, DensNet201, Incep-

ionV3 and Xception with and without augmentation. The main aim of
his comparison is to identify whether each model tested can detect
OVID-19 from the multiclass comprising of COVID-19, pneumonia,
nd normal image datasets.

.7. Data augmentation

Deep learning models have deep network structures with many
arameters, which requires a dataset with a large sample. However,
6

the number of images in this study has been limited. To overcome this
limitation, data augmentation has been applied which is a technique
that eliminates the limited dataset insufficiency by increasing image
data with the use of existing images [70]. Data Augmentation gives the
data size enlightenment in training data making the dataset compatible
for better prediction of the deep learning model [71,72]. Besides, data
augmentation can also reduce the overfitting of the model by increasing
its accuracy [73,74]. Furthermore, it helps to manage the data by
enhancing the augmentation quality and producing an updated version
of images [75]. In this study, data augmentation has been applied using
an image data generator including rotation, cropping, zooming, and
flipping. The Image was rotated with a range of 10, with a width shift
range of 0.1, height shift range of 0.1, zoom range of 0.1, horizontal
flip True, and fill mode as nearest during the augmentation of the data.

3.8. Additional model considerations: Overfitting and hyperparameter tun-
ing

Overfitting in ML is a situation when ML models memorise the
training dataset without learning important features, trends, or bound-
aries [70]. Overfitting can be seen when the error in the validation
dataset is higher than in the training dataset, and as a result, the
performance is poor for unseen data. For example, it is difficult to
acquire medical image data due to concerns about patient confiden-
tiality and the cost of getting high-quality images. Another problem in
deep learning is that its architecture requires a large amount of training
data. Due to data shortages, lack of quality images and uneven datasets,
especially in the medical sector, cause either low-performing models or
overfitting [76]. In this study, for the experiment’s multi-classification
of COVID-19, pneumonia, normal X-ray images with batch sizes from
10 and 32 were used. Using Adam optimiser with weight as ImageNet,
cross-entropy learning rates=0.0001 with epochs 10 up to 100 epochs
were used to identify the best-performing models. Data augmentation is
also with rotation range = 10, width shift range = 0.1, height shift range
= 0.1, zoom range = 0.1, horizontal flip = True and fill mode = nearest.
A total of 6000 training images were generated using augmentation.

As performance measures for the classification of the models, the
model accuracy curve, model loss curve and confusion matrix are also
used. A confusion matrix has been used in this study to visualise the
prediction. The confusion matrix consists of four terms: True Positive
(TP) when the model classifies the diseased person as a disease; True
Negative (TN), when a model classifies a non-diseased person as non-
diseased; False Positive (FP) as positive even if the person does not have
any disease, also known as type 1 error; False-negative (FN) person
does not have the disease but is predicted as a person having a disease,
also known as Type II error. The confusion matrix helps visualise the
models’ class predicted [77]. Besides that, statistical measure precision,
recall, F1 score, and area under the curve (AUC) accuracy are also used.
This study will identify the most widely used metrics for evaluation
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Fig. 5. Structure diagram of the DenseNet201 model [64].
Fig. 6. Structure diagram of the InceptionV3 model [66].
Fig. 7. Structure diagram of the InceptionV3 model [68].
for multi-classification in each class COVID-19, normal and viral pneu-
monia. This study used to assess performance using four metrics used
7

here to evaluate the model’s accuracy, precision, recall, and F1-score.
as explained in the paragraph below.
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Table 2
Classification of accuracy for training, testing and validation.

Classifier Without augmentation With augmentation

Training Validation Test Training Validation Test

Loss Accuracy Loss Accuracy Accuracy Loss Accuracy Loss Accuracy Accuracy

CNN 0.11 96% 0.18 93% 92% 0.34 0.90 0.53 90 90%
VGG-16 4.91 99% 0.06 98% 98% 1.98 99% 0.12 97% 97%
VGG-19 1.54 99% 0.19 97% 97% 4.63 99% 0.11 98% 98%
DenseNet201, 5.4 98% 0.32 96% 95% 0.005 96% 0.3 95% 94%
Resnet50, 0.28 90% 0.32 86% 86% 0.36 91% 0.29 90% 90%
InceptionV3 0.13 91% 4.00 93% 90% 0.07 99% 0.48 93% 92%
Xception 2.08 92% 0.54 93% 91% 0.41 98% 4.8 93% 92%
3.9. Receiver operating characteristics (ROC) and area under the curve
(AUC)

The ROC and AUC curves plot the true positive rate with the false-
positive rate. The Area’s high value under the curve demonstrates that
the model performs well in the test data set. ROC is a probability curve
and AUC represents the degree or measure of separability and helps
identify how much the model can distinguish between classes. The
higher the AUC, the better the model predicts [78].

4. Results analysis

4.1. Data pre-processing

In this study, datasets consisted of COVID-19 (3016), pneumonia
(3016) and normal (3016), with a total of 9048 X-ray images have been
used. All three datasets were combined and created in a CSV followed
by random shuffling to ensure equal and random representation. As
the data were added from multiple sources, the quality of images
was widely varied, blurred, low intensity and less clear in the border
and edges. As a result, this could lead to inaccurate diagnosis of the
disease [79]. Therefore, pre-processing helps reduce and remove the ef-
fects on the performance of the models caused by data inconsistency by
increasing the model’s accuracy [80]. Also, resizing and enhancement
are used to classify the disease in X-rays, and CT scans in COVID-19
diagnosis to enhance the image quality. The original shape of the image
is in the shape 299,299,3. However different models’ architecture
needs different shapes such as Xception and InceptionV3 architecture
expects an image size of 299×299×3, whereas DenseNet201 archi-
tecture expects an input size of 224×224×3 (Asif et al. 2022). So,
to address the architecture used in this model, the image data shape
has been converted to a 224×224×3 shape. Histogram equalisation
(HE) provides contrast enhancement in consumer electronics, medical
image processing, image matching and searching, speech recognition,
and texture synthesis. This approach is popular and widely used due to
its simplicity and effectiveness [81], In this study, the set-up parameters
of the filter were used for pre-processing. The Image was normalised by
a factor of 1/255 and converted into pre-processed images. After that,
the dataset was divided into training, validation, and test datasets to
train the models, check model performance and overfitting and test to
determine how the dataset classifies the images from trained models.
Finally, unseen data has been used to test further to identify whether
models predict accurately or not. Data augmentation has been used to
mitigate the image insufficiency problem and to prevent the overfitting
of the model. In addition, a total of 6000 images have been augmented
through rotating, cropping, zooming, and flipping.

4.2. Model building: X-ray image classifier

This study used transfer learning models such as CNN VGG-16, VGG-
19, Resnet50, DenseNet201, InceptionV3, and Xception. In addition,
traditional ML models such as KNN, SVM and DT were used. In the
implementation of these models, feature extraction of the image was
performed in terms of pixel values in the image matrix, which has been
8

set as 224 × 224, and flattens the RGB (Red, Green and Blue) pixel
intensities into a single list of numbers. All the experiments were con-
ducted with and without augmentation. Among the KNN, SVM and DT,
KNN has shown the highest accuracy for both without augmentation
and with augmentation with accuracy of 88% and 89% respectively.
Whereas the SVM and DT have accuracies of 81% and 76% without
data augmentation and 80% and 78% with augmentation respectively.
Among these three models, data augmentation increased the accuracy
level for the KNN and SVN models but decreased for the DT model.
For each of the transfer learning models. The model has been trained
from 10 to 100 epochs using a categorical cross-entropy loss function.
ImageNet with Adam optimiser with learning rates 0.0001, batch size
10 to 32 and SoftMax as an activation function were used. The image
generator from Keres was used for data augmentation. Dropout 0.5 was
applied in the fully connected layers to avoid overfitting in the model.
Among the datasets, 70% of images were used as the training data,
15% of images were used as the validation data and the rest 15% of
the images were used as test datasets to train all models, comprising
KNN, SVM, DT, CNN, VGG-16, VGG-19, DenseNet201, InceptionV3,
Xception and Resnet50. In addition, images were resized to 224 × 224.
The performance measures after the experiment results from all these
models are summarised in Table 2 with the corresponding scores.

From the Table 2 data, it can be observed that the VGG-16 appeared
as the highly accurate model with training 99% accuracy with 4.91
loss in the training dataset, 98% validation accuracy with 0.06 loss
and 98% test accuracy when the models were trained, validated, and
tested without augmentation. Another model that performed better
without an augmented dataset is VGG-19 with 99% training accuracy,
97% validation accuracy and 97% test accuracy. The DT algorithm
appeared as the model with the lowest training accuracy of 76%. When
the dataset is enriched with augmented data, the VGG-19 model has
the best model with 99% accuracy with a 4.63 loss in the training
dataset and 98% validation accuracy with a 0.11 loss and 98% test
accuracy. On the other hand, the training accuracy of VGG-16 remains
99% but validation accuracy and test accuracies dropped to 97%. With
augmented data, the performance of DenseNet201 decreases by 2% in
training, and by 1% in validation and test accuracy. The performance
of Resnet50 is less than other deep learning models, but with the
augmented data the accuracy has increased by 1% in training accuracy
and by 4% in validation and test accuracy. When comparing traditional
ML with deep learning, the deep learning models performed better
than conventional ML models. However, among the traditional machine
learning algorithms, KNN performed better compared to the other two
models. With the augmentation of ML models, only the KNN models’
accuracy increased by 1%, whereas the DT’s accuracy increased by 2%,
and the SVM models’ accuracy decreased by 2%.

VGG-16 without augmentation and VGG-19 with augmentation are
visualised in Fig. 8. VGG-16 possesses a loss of 4.91 for 100 epochs
with 98% accuracy. In the case of VGG-19, the model performs with
99% accuracy and a loss of 4.63 for 100 epochs. Accuracy for non-
augmented data does not fluctuate and remains as it is after 20 epochs,
and loss decreases from 10 epochs and remains stable. However, the

validation loss starts increasing slightly after 40 epochs. There is a high
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luctuation in accuracy and loss function for augmented data. Over-
ll, while comparing the loss function between two highly performed
odels, it seems VGG-19 with augmentation has a slightly lower loss

ompared to VGG-16.
In a further comparative analysis, confusion matrices were drawn

o measure the model’s performance using test data as shown in Fig. 9.
he confusion matrix from CNN, VGG-16, VGG-19, DenseNet201, In-
eptionV3, Xception and Resnet50 with and without augmentation is
resented. Out of a total of 1357 test images, 452 included COVID-19,
52 were normal, and 453 were pneumonia (see Fig. 9).

VGG-19 with the augmentation model classifies 442 COVID-19 cases
orrectly and misclassifies 10 cases as normal whereas this model
lassifies has the highest accuracy for pneumonia cases with only 2
rong classification. However, in the case of VGG-16, out of 452
OVID-19 images, it only classified 439 as COVID-19 and misclassified
as normal and 4 as pneumonia. While classifying pneumonia X-ray

mages, DenseNet201, without an augmentation model, classified 452
mages correctly and misclassified 1 image as COVID-19. Similarly,
GG-16 without augmentation performed better in predicting normal

mages. Out of 452 X-ray images, it predicted 445 with the correct class
nd misclassified 7 as normal. From the above confusion matrix, it can
lso be observed that VGG-19 with augmentation performs better for
OVID-19, DenseNet201 without augmentation classified pneumonia
etter and VGG-16 with augmentation classified as normal without mis-
lassifying any images. Overall, VGG-19 performs better in classifying
he images with inaccuracies compared to others.

A further comparative analysis was conducted to identify how the
odels would classify three categories of X-ray images using sensitivity,

1 score and accuracy value. The corresponding results of each model
re shown in Table 3. In Table 3, C states COVID-19, 𝑁 normal and

pneumonia. It shows that VGG-19 with augmentation performed
etter with a 98% AUC score, with the precision for COVID-19 being
7%, normal being 97% and pneumonia at 99%. Recall for COVID-
9 is 98%, normal with 97% and 99% for pneumonia and the F1
core for COVID-19 images is 98%, normal image with 97% and 100%
or pneumonia images. Similarly, VGG-16 without augmentation had
7% accuracy, the precision for COVID-19 97%, normal with 97% and

9% for pneumonia. Recall for COVID-19 achieved 98%, normal 97% s

9

nd 99% for pneumonia. Likewise, the F1 score for COVID-19 is 97%,
ormal 97%, and for pneumonia, 99%. Also, with a 96% AUC score,
enseNet201 performs better than all CNN, InceptionV3, Resnet50 and
ception. The precision for COVID-19 is 96%, for normal, 94% and
9% for pneumonia. Recall for COVID-19 is 95%, normal 95%, and
or pneumonia, 99%. F1 score for COVID-19 is 95%, normal 94% and
neumonia 99%. Overall, with high recall from VGG-16 and VGG-19
ithout augmentation performs better with a higher accuracy of 98%.

In addition, the Receiver Operating Characteristics Curve (ROC) and
UC for all the models used in this study were analysed as shown in
igs. 10 and 11. Fig. 10 shows ROC and AUC curve performance with-
ut augmentation, and Fig. 11 illustrates the graph of the augmented
mages dataset. VGG-16 performs better in non-augmented images with
n accuracy of 98%, and VGG-19 performs better in an augmented
ataset with an accuracy of 98%. Further to test the model, using CNN,
GG-16, VGG-19, DenseNet201, Resnet50, InceptionV3 and Xception,
0 new unseen image datasets without pre-processing were tested to
dentify how the models perform with unseen data. Both augmented
nd non-augmented models were used. After the training to visualise
ow the model performed, a confusion matrix was created as shown in
ig. 12.

Analysing the confusion matrix from, Fig. 12, shows that VGG-19
ith augmentation predicted most of the classes correctly. Out of 10
OVID-19 images, the model predicts 9 X-ray images to its correct class
nd 1 misclassified as unaffected or otherwise healthy. However, in the
ase of pneumonia, all the X-ray images are predicted accurately. Out
f all models, VGG-19 with augmentation was able to predict COVID-
9 along with other classes with the least false positives and false
egatives.

From Table 4, result analyses show that VGG-19 with data aug-
entation achieved the best performance with a 96% AUC score. The
odel achieved a precision of 90% for COVID-19, 90% for normal and
00% for pneumonia. Recall for COVID-19 and unaffected individuals
s 90% and 100% for pneumonia. Similarly, the F1 score for COVID-
9 and unaffected individuals is 90%, and 100% for pneumonia. The
econd-highest performing models are VGG-16 and VGG-19, with 93%.
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Fig. 9. (a-m). Visualising Confusion Matrix for predicting each class.
Table 3
Performance metrics for test data.
10
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Fig. 9. (continued).

Fig. 10. ROC and AUC curve performance without augmentation (%).
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Fig. 11. ROC and AUC curve performance with augmentation (%).
Fig. 12. (a-m). Visualising Confusion Matrix for predicting each class.
Table 4
Performance metrics for unseen data.
12
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Fig. 12. (continued).

13



S. Hamal, B.K. Mishra, R. Baldock et al. Decision Analytics Journal 11 (2024) 100460
5. Discussion and conclusion

This paper evaluated a range of ML models to determine whether
COVID-19-associated lung changes could be classified from X-ray im-
ages and a distinction made between COVID-19, Pneumonia, and un-
affected otherwise healthy individuals. The experimental results iden-
tified VGG-19 with data augmentation as the best-performing algo-
rithm among ten tested ML models. The precision achieved 98% for
COVID-19 and unaffected otherwise healthy individuals and 100% for
pneumonia. Similarly, the recall (sensitivity) for COVID-19 is 98%,
unaffected 97% and 99% for pneumonia. Lastly, the F1 score is 98%
for COVID-19 unaffected 97% and 99% for pneumonia. The overall
AUC score of the model was 96%. Hence using VGG-19, presented
in this paper with image pre-processing, tuning and augmentation
performs the best model when compared to any deep learning mod-
els. In the performance evaluation metric, recall identifies the actual
positive cases of whether the person has COVID-19 or not, and high
precision indicates a low false-positive rate and high recall indicates a
low false negative. Thus, VGG-19 with augmentation exhibits the best
precision, F1 score and accuracy. When compared with other similar
studies such as Makris et al.’s [82] deep learning models, VGG-16 and
VGG-19 where they have the highest accuracy of 95%, the presented
model in this study appeared as a highly accurate model with a test
accuracy of 98%. This comparative study also reveals that deep learn-
ing models have a powerful learning ability with feature extraction,
which can improve image classification. Although deep learning theory
has achieved higher accuracy for detecting image classification, it has
problems such as excessive gradient propagation path and overfitting.
These limitations had been overcome using data augmentation through
rotating, flipping or injecting noise into image data or by improving the
architecture in the deep network. Similarly, using various image data
pre-processing techniques has improved the quality of the image and
prevented bias in the data.

5.1. Limitations, assumptions and future directions

Despite promising results, the proposed methods need to be tested
clinically to identify the robustness of the model. However, more
importantly, the presented work helps in establishing the most ap-
propriate model for detecting COVID-19-associated changes and is a
fundamental first step in establishing a decision aid to help detect and
monitor the treatment of patients with PCS. Besides, this study also
reveals some of the challenges and strategies with data collection meth-
ods, quality and consistency which need to be considered in similar
research works. As future work, to refine the model and improve perfor-
mance, multiple feature extraction, segmentation, and cross-validation
can be utilised. Besides that, this study is solely based on publicly
available data, which has a direct impact on the quality of consistency
as imaging techniques between hospitals/counties/countries vary and
can influence the performance of the algorithm. Finally, to check the
reliability of the model, it needs to be tested with a large dataset with a
diverse group and on a larger scale. In addition, in the future, a clinical
decision aid designed to classify COVID-19-associated lung changes on
X-rays for patients with PCS could be developed. It may be appropriate
to adopt or adapt scoring systems used for other medical conditions
affecting lung tissues with changes visible by X-ray to provide an
indicator of the extent of lung damage. For example, the Northern Score
or the Chrispin-Norman score to quantitatively assess the radiological
features of lung changes in Cystic Fibrosis patients – a genetic condition
for which routine chest X-ray imaging is undertaken to monitor the
disease [83]. Importantly, the ability to score the extent of lung tissue
changes in PCS would permit better stratification of patient groups and
allow more accurate monitoring of response to treatments. Moreover,
this would prompt a switch from a classification problem to one requir-
ing regression to calculate scores reflecting the extent of lung tissue

change. Significant challenges remain with this approach as it would

14
require either expert annotation of the existing dataset with the scoring
system or collection and collation of a new dataset with assigned scores.
One key advantage of the latter is that the time post-infection could
also be captured with repeated measures (X-ray images) being taken of
patients through the course of PCS. Ultimately, we believe that ML will
streamline medical care and aid the development of future treatments
for patients suffering from long-term chronic conditions. Besides, in
future, it could also explore to classify the extent of damage and
changes over time of the long COVID. Exploration of these challenges
will be helpful in future research directions to the long COVID-19
diagnosis system.
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