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Abstract. Digital Twin (DT) technology has seen an explosion in popularity, with wind energy 

no exception. This is particularly true for Operations & Maintenance (O&M) applications. 

However, this expanded use has been accompanied by loose, conflicting, definitions that threaten 

to reduce the term to a buzzword and prevent the technology from meeting its full potential. A 

number of attempts have been made to better define and classify DTs, however, these either 

oversimplify the term or tighten criteria, leading to the exclusion of many DT applications. A 

new definition framework dubbed the Digital Twin Family Tree is therefore proposed. This 

widens “Digital Twin” to a general umbrella term for the technology, accompanied by specific 

definitions. DT Tags are also used to provide individualised characteristics for implementations. 

A sector-specific definition was devised for component and system monitoring and predictions 

in wind energy O&M dubbed a CS-DT and suitable DT Tags created. The proposed framework 

was used to review existing research in literature, demonstrating the potential for increased 

understanding, explainability, and accessibility of DTs for expert and non-expert stakeholders. 

1.  Introduction 

1.1.  Defining Digital Twins 

Digital Twin (DT) technology has seen an explosion in popularity [1], with wind energy no exception. 

Numerous implementations have been proposed, particularly for Operations and Maintenance (O&M) 

[2]. [3] provide one of the most commonly referred to DT definitions [4] through the lens of NASA and 

U.S. Air Force vehicles, stating that ‘A Digital Twin is an integrated multiphysics, multiscale, 

probabilistic simulation of an as-built vehicle or system that uses the best available physical models, 

sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin’. 

Attempts have been made since to improve DT definitions. [5] highlight an increasing trend towards 

the inclusion of DT functionalities and use-case-specific features within definitions from 2011 onwards. 

As an example of this, [1] categorised 30 DT definitions. Overall, the following definition of a DT was 

synthesised: ‘A set of adaptive models that emulate the behaviour of a physical system in a virtual 

system getting real time data to update itself along its life cycle. The DT replicates the physical system 

to predict failures and opportunities for changing, to prescribe real time actions for optimizing and/or 

mitigating unexpected events observing and evaluating the operating profile system’. However, this 

conflicts with the variety of DTs that exist. For example, supervisory DTs do not require predictive 

capabilities, highlighting the issue with trying to define a wide-ranging technology. 

https://www.sciencedirect.com/topics/computer-science/real-time-action
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Despite this increasing complexity, a notable trend in DT research is a lack of understanding 

surrounding the term. [6] highlight that there is still little consensus on what the term means or what 

constitutes a DT. This might suggest a more generalised definition could be useful. 

[7] postulate that ‘a digital twin is defined as a virtual representation of a physical asset enabled 

through data and simulators for real-time prediction, optimization, monitoring, controlling, and 

improved decision making’. A definition echoed by [6].  

However, generalised definitions risk reducing the term to a point where much of the meaning is lost. 

[8] describe DTs as an executable virtual model of a physical asset or system, drawing criticism for 

rebranding existing concepts [9]. This highlights the care needed in deciding defining features that 

ensure differentiation from other technologies. One solution may be that “Digital Twin” is better suited 

as a generalised umbrella term but with sector-specific DT implementations defined separately. 

1.2.  Classifying Digital Twins 

Frameworks have also been proposed to categorise differing approaches to DTs, which often vary with 

level of sophistication and application. One approach is categorisation based on core capabilities. The 

University of Sheffield’s Advanced Manufacturing Research Centre outlines 3 DT types based on 

abilities [10]; supervisory, which displays the live state of a real asset or process, interactive, which can 

take control of an asset to allow further monitoring or improve performance, and predictive, utilising 

provided data to generate predictions of a future assets state for more-informed decision making. 

DTs have also been categorised by maturity level. [11] present 3 levels. Partial, where minimal asset 

data sources are used, providing a DT capable of measuring key metrics and identifying correlation 

between data sources. Clone, all meaningful data sources are used, providing a DT capable of 

undertaking prototyping. Augmented, measured data sources from an asset are combined with other 

datasets, such as historical data taken from analytics and algorithms. 

DTs can also be categorised by their hierarchical position. [12] identified 3 unique positions. Unit level, 

a DT of an individual system. System level, using data from several unit level DTs to provide an 

overview of a wider system. System of a system (SoS) level uses data from multiple system level DTs 

to enable collaboration between different departments or institutions with differing goals. 

Other frameworks look to separate DT-based technologies on how closely they resemble an idealised 

DT. One prominent approach is the differentiation between Digital Model (DM), Digital Shadow (DS), 

and DT as described by [13]. The terms are distinguished from each other based on having either a 

manual or automatic method of data exchange between a model and a twinned asset. A DM comprises 

2 manual dataflows, therefore a change in either physical or virtual object has no direct effect on the 

other. A DS consists of an automatic dataflow from physical to virtual but manual in the reverse and 

therefore sees a change of state in a physical asset observed in the digital object but not vice versa. A 

DT is made of automated data flows in each direction and therefore a change of state in a real asset is 

observed in the digital version and vice versa.  

Classification frameworks can have contrasting characteristics. A predictive system DT that has a 

manual dataflow from the virtual model to the asset may be considered a Predictive DT [10] or a DM 

[13] depending on the framework used. Furthermore, to fully appreciate a DTs implementation it may 

require the use of multiple frameworks. Highlighting that a DT is supervisory, capable of prototyping, 

and forms part of a wider system level DT would require the use of 3 separate frameworks [10, 11, 12].  

Certain frameworks are also up to interpretation as to how they are applied, leaving room for 

misunderstanding and misuse. In defining DM/DS/DT how the term “automatic” is interpreted could 

lead to differing understandings of what constitutes both a DS and a DT, ranging from the digital object 

taking control of the physical object [13] to the triggering of manual reactions, such as the undertaking 

of maintenance activities [4]. [14] found that over half of research which claimed to utilise DTs was 

based on DM or DS concepts. This suggests either a high level of misconception as to what constitutes 

a DT or a range of interpretations for which the DM/DS/DT framework is unsuitable. 

In light of this, there have been proposals for classification frameworks that amalgamate and consider 

many different characteristics. [6] provide a particularly relevant example, presenting a 0-5 capability 
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scale for DTs in wind energy to consolidate DT definitions. 0 represents a standalone description of an 

asset that may not yet exist. 1 provides a live description of asset state. 2 expands on 1, providing 

additional diagnostic information useful for condition monitoring. 3. Includes predictive capabilities 

thus giving prognostic capabilities. 4 provides prescriptive recommendations using risk analysis and 

uncertainty as a basis. 5. introduces autonomous abilities, thus replacing human operator decision-

making. The scale proposed allows for clear intuitive levels based on whether a DT has reached that 

stage, with new capabilities unlocked as the scale progresses. Whilst this provides an accessible 

understanding of DT capabilities, this is not without drawbacks. The scale proposed requires 

generalisation and as such processes powering certain capabilities are not disclosed, making 2 DTs that 

have similar abilities but alternative methods appear the same.  

1.3.  Digital Twin Technologies and Applications For Wind Energy Operations and Maintenance 

O&M activities enable the continuous operation of a wind farm [4], with offshore O&M particularly 

challenging. Distance from the shore and hazardous weather conditions limit vessel access [15, 16]. This 

can result in costly delays and reduced generation [15]. DTs are one way of improving maintenance 

abilities, particularly given the high costs incurred [4], reflected in the increasing interest in O&M DTs. 

[2] outline 4 key areas of DT applications within offshore wind O&M; failure monitoring and 

remaining life prediction, safety and ecological management, O&M decision-making, and design 

optimisation. DT technology for failure monitoring and remaining life applications has seen particular 

interest, with much more limited research within the remaining 3. [17] proposed a physics-based DT for 

structural reliability monitoring of offshore wind substructures. [18] outlined a framework for predicting 

support structure failure utilising a mixture of data-driven and physics-based modelling. [19] designed 

a data-driven DT for predicting mooring line failure for floating offshore wind turbines. DTs have also 

been proposed for more generalised system monitoring, including power generation prediction [20, 21]. 

1.4.  Digital Twin Stakeholder Considerations 

It is considered that there are 2 primary groups when discussing DT definitions and classification; expert 

and non-expert stakeholders. For experts, the use of numerous definitions and classification schemes 

may be achievable but time-consuming. Furthermore, navigating the vast sea of publications, even from 

a sector-specific perspective [2], is challenging. Non-expert stakeholders may lack an understanding of 

what defines a DT, separates it from similar technologies, and the underlying methods used [6] making 

their involvement more difficult.  

Stakeholder involvement from experts and non-experts is likely to be required for DTs to reach their 

full potential, similar to many adjacent technologies. For example, explainability has become an 

increasingly hot topic in Machine Learning (ML), with stakeholder engagement helping to ensure 

robustness, comprehensibility, and future improvement [22].  

Frameworks have been devised that look to consolidate and simplify DT definitions and 

classification [6], however do so in a way that masks implementation-specific details. Whilst this aids 

in simplifying DT concepts, this may make deeper involvement in DT design and creation more difficult. 

Furthermore, the lack of detail may be unsatisfactory to DT experts when assessing implementations.  

1.5.  Research Justification and Contributions 

DT classification either requires multiple frameworks or all-encompassing definitions that risk masking 

differences in how different sectors, applications, and individual implementations can lead to very 

different DTs. It is considered that this may impede both expert and non-expert involvement in DT 

discussion and design. Given the unique challenges in O&M for wind energy, including the potential 

involvement of various stakeholders, it is considered that a definition and classification scheme better 

reflecting this area is needed. This paper's main contributions can be summarised as follows: 

The creation of a novel definition for DTs in wind energy O&M. Given the interest, this has been 

tailored to component and system monitoring and prediction in wind energy and achieved by considering 

DT as an umbrella term, allowing for a more well-defined, sector-specific definition dubbed a CS-DT.  
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The use of a Family Tree framework combining the above CS-DT definition with DT Tags, 

highlighting features unique to individual DT implementation. In doing so, DT classification schemes 

are combined. This is distinguished from existing methods by spanning from a top-level understanding 

to details concerning individual deployments, providing information useful to experts and non-experts. 

The framework aims to bolster the understanding of CS-DT implementations for experts and non-

experts, providing an aid in assessing the vast CS-DT literature that exists and increasing stakeholder 

involvement in implementations. Additionally, the framework aims to make the applicability and 

viability of CS-DTs easier to discern.  

2.  Redefining Digital Twins 

2.1.  Digital Twin Family Tree Overview 

This research looks to provide an all-encompassing umbrella term for DT technology, allowing for a 

sector-specific DT definition for component and system monitoring and prediction in wind energy. To 

complement this, DT Tags add implementation-specific detail (see Figure 1).  

 
Figure 1. Digital Twin Family Tree Framework 

2.2.  An Umbrella Term Digital Twin Definition 

An umbrella definition, based on existing definitions, reviews, and implementations has been proposed 

and looks to be inclusive whilst maintaining the technologies’ uniqueness. Notable omissions compared 

to other definitions include a lack of a direct link between an entity and its virtual representation, 

allowing the use of exclusively external data instead, and not necessitating live or automatic updates, so 

to be exclusive of manual data sources. This results in the following DT definition: 

A physical or virtual entity linked to a virtual representation which updates so to be reflective of 

entity changes resulting in a useful output.  

2.3.  Sector-Specific Digital Twin – Component and System Monitoring and Predictions 

The broader umbrella DT term allows for a sector-specific definition, devised for component and system 

monitoring and predictions, dubbed a CS-DT. A number of elements were considered for the CS-DT 

based on existing implementations. These include the use of automatically received data, such as 

Supervisory Control and Data Acquisition (SCADA) [18, 20], that allows for timely updates. This may 

be supplemented by manual updates, including service logs and manual testing, useful for failure 

detection [18]. Given the focus on wind farm-related components and systems, an emphasis is put on 

any twinned assets being physical commercial components, with a variety of virtual model types and 

complexities involved. Applications are commonly intended for direct action either to the twinned asset 

or its associated wider system [18, 19, 20] ranging from human-only [20] to full automation [16] actions. 

The above considerations result in the following CS-DT definition (illustrated in Figure 2): 
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A virtual representation of a commercial components(s) or system(s) required for wind farm 

operation generated through the use of a data link providing live updates on component changes that 

result in direct action to the twinned asset or the wider system it belongs to. 

 
Figure 2. CS-DT Elements 

2.4.  Digital Twin Tags 

These provide further identifying characteristics that make a DT unique in its implementation, giving 

key information and consolidating existing classification frameworks. These are informed by existing 

classification schemes and implementations considered to be CS-DTs [17, 18, 19, 20, 21, 23, 24] 

2.4.1.  Operational Updates. Describes how a CS-DT can receive data from a twinned entity. 

Considered to be via 2 main methods; Automatic (data is received without human input) and Mixed 

(data is received both automatically and via human input).  

2.4.2.  Intelligence Level. Indicates the intelligent capabilities of a CS-DT. This has been simplified to 

Monitoring (raw data displayed), Predictive (provides predictions of future asset state), and 

Prescriptive (provides courses of action based on predictions).  

2.4.3.  Intelligence Source. Identifies the source of intelligence level. Sources considered include Data-

Driven (ML models), Physics-Based (physics models), or Hybrid (combining ML and physics). 

2.4.4.  Validation Metric. The method of validation and associated scores (where applicable) for the 

primary goal of the CS-DT. For example, the validation of intelligence source models, such as Mean 

Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). 

2.4.5.  Action Type. How actions resulting from a CS-DT are undertaken. Considered to be Automatic 

(no human input), Manual (human input) or Mixed (both automatic and manual actions undertaken).  

2.4.6.  Hierarchy Position. Consideration of the wider system a CS-DT may belong to [12]. Can be 

considered at Unit Level (individual DT), System Level (wider overview using multiple Unit Level 

DTs) and System of a System (SoS) Level (collaboration enabled using multiple System Level DT). 

2.4.7.  Deployment Stage. Stage of CS-DT development and deployment. Those considered are 

Theoretical Framework (exists as a framework only), Deployed Test-Data (implemented but using a 

test dataset and structure), and Deployed Real-World (implemented using data and structure as they 

would be for a real-world deployment). 

2.4.8.  Link Type. Designates the source of incoming data. Those considered include Direct (data 

received from the twinned asset), External (data from a separate source), or Mixed (using both sources).  
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Wind Energy Operations and Maintenance Framework Implementation 

2.5.  Case Study Application 1 

The proposed Digital Twin Family Tree framework has been applied to 2 case studies to demonstrate 

its potential for aiding the understanding of academic literature and increasing stakeholder engagement.  

In case study 1 a DT  is developed to predict wind speed and power generation [21]. Live wind speed 

forecasts (provided by an external source) are upscaled to give forecasted wind turbine hub-height wind 

speeds utilising a k-Nearest Neighbour (kNN) regression model. A second kNN model then predicts 

power generation using these hub-height wind speeds. The DT is tested using historical data and a live 

full deployment is demonstrated. The application of the proposed framework is shown in Figure 3.  

The CS-DT definition raises that this implementation is aimed at wind energy O&M for components 

and/or systems and characterises it as having a direct, tangible, impact on the twinned asset. 

Furthermore, the DT Tags provide a concise understanding of how this specific CS-DT operates. For 

example, identifying that external data sources are used, with ML providing intelligent capabilities. This 

may make the process of sorting through literature more effective. Furthermore, the framework enables 

greater general stakeholder involvement, by lowering the barrier to understanding the complexity of the 

system. For example, understanding that a data-driven model is used may raise ideas that physics or 

hybrid approaches could be tested instead. Additionally, knowledge of a real-world and validated 

deployment may increase confidence in the CS-DTs viability from an O&M industry perspective. 

 
Figure 3. Case Study 1 Framework Implementation 

2.6.  Case Study Application 2  

Case study 2 follows a proposed DT framework for monitoring offshore wind support structures [18]. 

The system utilises a mixture of sensor, non-destructive testing, and service data to model and predict 

potential degradation using data-driven and physics-based models. Bayesian networks predict structural 
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fatigue cracking, aiding the development of a custom task plan tailored to the size of damage, with an 

intelligent decision module providing recommendations. Application of the definition framework is 

shown in Figure 4. Given that the DT and CS-DT definitions remain the same these have been omitted. 

 Whilst both case studies cover the implementation of a CS-DT, the proposed definition framework 

highlights there are several differences. Case study 2 utilises a direct link, meaning data is received from 

the wind turbine itself, and uses a mixture of automatic and human inputs. Furthermore, both machine 

learning and physics are used for predictions, which is expanded further through prescriptive 

capabilities. Case study 2 is also shown to be only in an early development stage and not validated as a 

result. Knowledge of these differences may be of use when deciding which CS-DT is of use or in 

developing improvements for both academic and industrial O&M research and development.  

 
Figure 4. Case Study 2 Framework Implementation 

2.7.  Comparative Assessment 

The Digital Twin Family Tree framework has been applied to select CS-DT implementations, covering 

wind energy O&M. Table 1 highlights a condensed list of CS-DT Tags generated through this. Select 

alternative classification schemes (as highlighted within the introduction section of this paper) have also 

been applied to these CS-DTs within Table 2.  

 

Table 1. Application of Digital Twin Tags 

Application Operational 

Updates 

Intelligence 

Level/Source 

Validation 

Metric 

Action 

Type 

Hierarchy 

Position 

Deploy 

Stage 

Link 

Type 

Support Structures [18] Mixed 
Prescriptive/ 

Hybrid 
N/A Manual Unit Framework Mixed 

Gearbox Drivetrain [23] Automatic 
Predictive/ 

Physics 
N/A Manual Unit Real-World Direct 

Support Structures [17] Automatic 
Predictive/ 

Physics 
N/A Manual Unit Test-Data Direct 

Mooring Lines [19] Automatic 
Predictive/ 

ML 

MAE 

≈15 
Manual Unit Test-Data Direct 

Power Generation [21] Automatic 
Predictive/ 

ML 

RMSE 

169 - 435 
Manual Unit Real-World External 

Power Generation [20] Automatic 
Predictive/ 

ML 

MAE 

264 – 295  
Manual Unit Test-Data Direct 

Power Generation [24] Automatic 
Predictive/ 

Physics 

MAPE 

7.7% 
Manual Unit Real-World Direct 
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Table 2. Comparison of Existing Digital Twin Classification Frameworks  

Application [13] [12] [10] [11] [6] 

Support Structures [18] DS/DT Unit 
Monitoring/ 

Predictive 

Augmented Level 4 

Gearbox Drivetrain [23] DS/DT Unit Predictive Clone Level 3 

Support Structures [17] DS/DT Unit Predictive Clone Level 3 

Mooring Lines [19] DS/DT Unit Predictive Clone Level 3 

Power Generation [21] N/A Unit N/A Partial Level 3 

Power Generation [20] DS/DT Unit Predictive Partial Level 3 

Power Generation [24] DS/DT Unit 
Monitoring/ 

Predictive 

Clone Level 3 

3.  Discussion 

DT discussion has suffered from a lack of understanding of what constitutes a DT [6]. Whilst other 

classification frameworks within wind energy have looked to identify unique characteristics or unify 

classification through generalisation, the proposed Digital Twin Family Definition framework provides 

a more comprehensive overview. The proposed framework was applied to 2 case studies, highlighting 

the potential usefulness by identifying individual features and differences between implementations.  

For case study 1 the proposed framework highlights that this is a DT and more specifically a CS-DT 

(providing definitions for these) and identifies that this specific implementation receives automatic 

operational updates, and has predictive abilities powered by data-driven ML models which result in 

manual human action being undertaken on the asset. Furthermore, this is an individual unit level DT 

and has been tested using a real-world scenario that has been validated and uses data external to the 

asset. When comparing this to the alternative classification schemes [13] and [10] would not identify 

this as a DT, with [12] only identifying that this is a unit level DT. [11] would identify this as a partial 

DT due to its limited use of data. [6] would classify this as a Level 3 DT, providing monitoring 

capabilities, as well as predictive capabilities giving prognostic capabilities. It is considered that the 

inclusion of a specific definition for CS-DTs and the use of DT Tags helps to distinguish the sector-

specific application of CS-DTs from more general approaches and provides a much more detailed 

understanding of individual implementations than the alternative classification schemes tested. Case 

study 2 showed how the framework makes discerning between different implementations easier, 

providing details that may be useful in deciding on which approach to use or ways to potentially improve 

upon proposed or existing CS-DT implementations when considering wind energy O&M.  

Currently, the lack of understanding as to what constitutes a DT, both from experts and non-experts, 

risks stifling wind energy O&M DT development both in academia and industry [6]. It is therefore hoped 

that in defining and categorising CS-DTs whilst retaining knowledge of specific implementation that 

the proposed framework will empower both expert and non-expert stakeholders to have greater input in 

the design and improvement of wind energy O&M DT technologies and implementations. For experts, 

the proposed framework should make literature more easily accessible, allowing quicker and more 

effective understanding of individual CS-DT implementations and potential limitations. Non-expert 

stakeholders also benefit by having a greater understanding of what the DT implementation aims to 

achieve and how it does so through the DT and CS-DT definitions. Furthermore, DT Tags provide an 

understanding on an individual basis of how capabilities are achieved and the current state of 

development, lowering the barrier to involvement in CS-DT development. As highlighted within the 

case studies, the framework also provides details helpful to both academia and industry in determining 

the applicability and viability of a DT when considering wind energy O&M, including models used, 

current development stage, and validation of models.   

However, it is acknowledged that increasing the level of detail may overwhelm a stakeholder, risking 

alienation rather than empowerment. It may be that the use of classification frameworks should be 

altered depending on the intended audience. For example, the use of the proposed framework may be 
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more suited to groups likely to be involved in DT development, with broader audiences benefitting from 

a more simplified approach, such as that given by [6]. The usefulness of the DT Tags identified for 

individual implementation may also vary depending on the stakeholder.  

Another major hurdle is in ensuring the adoption of the proposed framework. This is a challenge 

faced by the majority of classifications and definitions highlighted and it is perhaps telling that none of 

the existing DT classifications highlighted within this paper have been utilised within the academic DT 

implementations reviewed. The solution to this is likely larger than any one paper (or several) can 

provide and may be rooted in the same issues that have resulted in a lack of unity in terms of definitions, 

standards, and communication protocols [5].  

Future work should look to validate the proposed definition framework and provide numerical 

quantification of its usefulness. This includes validation of the umbrella DT and sector-specific CS-DT 

definitions, the DT Tags proposed, and identification of alternative Tags. Furthermore, the framework 

should be tested against a wider sub-set of DTs including differing sectors related to wind energy.   

4.  Conclusion 
 

Digital Twin (DT) technology has seen an explosion in popularity, bringing with it a range of, 

definitions, classification schemes, and a lack of clarity as to what makes the technology unique. This 

risks wind energy O&M DTs not meeting their potential. Definitions and classification schemes can 

often conflict and miss unique differences between sector-specific and individual DT implementations. 

This can make it hard for expert practitioners to navigate through the huge breadth of literature and 

exclude non-expert stakeholders, whose contributions ensure robust DT development and improvement. 

This research has therefore proposed a Digital Twin Family Tree framework. This comprises a broad 

umbrella term for DT technology, allowing sector-specific DT definitions differentiated using new 

nomenclature. In addition, DT Tags add implementation-specific detail, differentiating individual 

applications and looks to unify existing classification frameworks.    

The proposed framework was applied to component and system monitoring and predictions in wind 

energy Operations and Maintenance (O&M) via the creation of a CS-DT, and suitable DT Tags. Through 

the use of case studies, these were demonstrated to be able to better distinguish between CS-DT 

implementations than alternative classification frameworks. In part, due to the addition of 

implementation-specific information. It is hoped that in doing so CS-DT implementations are easier to 

understand, communicable, and inclusive to expert and non-expert stakeholders who are more 

empowered in CS-DT development. Furthermore, the proposed framework provides details helpful to 

both in determining the applicability and viability of a DT when considering wind energy O&M, 

including models used, current development stage, and validation of models. 

Future work should look to validate the proposed definition framework with both experts and non- 

to provide numerical quantification of its usefulness. This could look to validate the umbrella DT and 

sector-specific CS-DT definitions proposed, the usefulness of the DT Tags, and identify alternative Tags 

that may be of use. In addition to this, the framework should be tested against a wider sub-set of DT 

applications including differing sectors related to wind energy.   
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