
Computer Physics Communications 296 (2024) 109036

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Embedded software of the KM3NeT central logic board ✩,✩✩

S. Aiello a, A. Albert b,bd, S. Alves Garre c, Z. Aly d, A. Ambrosone f ,e, F. Ameli g, M. Andre h,
E. Androutsou i, M. Anghinolfi j, M. Anguita k , L. Aphecetche l, M. Ardid m, S. Ardid m,
H. Atmani n, J. Aublin o, C. Bagatelas i, L. Bailly-Salins p, Z. Bardačová r,q, B. Baret o,
S. Basegmez du Pree s, Y. Becherini o, M. Bendahman n,o, F. Benfenati u,t , M. Benhassi v,e,
D.M. Benoit w, E. Berbee s, V. Bertin d, V. van Beveren s,∗, S. Biagi x, M. Boettcher y,
J. Boumaaza n, M. Bouta z, M. Bouwhuis s, C. Bozza aa,e, R.M. Bozza f ,e, H. Brânzaş ab,
F. Bretaudeau l, R. Bruijn ac,s, J. Brunner d, R. Bruno a, E. Buis ad,s, R. Buompane v,e, J. Busto d,
B. Caiffi j, D. Calvo c, S. Campion g,ae, A. Capone g,ae, F. Carenini u,t , V. Carretero c, T. Cartraud o,
P. Castaldi af ,t , V. Cecchini c, S. Celli g,ae, L. Cerisy d, M. Chabab ag, M. Chadolias ah, A. Chen ai,
S. Cherubini aj,x, T. Chiarusi t , M. Circella ak , R. Cocimano x, J.A.B. Coelho o, A. Coleiro o,
R. Coniglione x, P. Coyle d, A. Creusot o, A. Cruz al, G. Cuttone x, R. Dallier l, Y. Darras ah,
A. De Benedittis e, B. De Martino d, V. Decoene l, R. Del Burgo e, L.S. Di Mauro x, I. Di Palma g,ae,
A.F. Díaz k , D. Diego-Tortosa x, C. Distefano x, A. Domi ac,s, C. Donzaud o, D. Dornic d, M. Dörr am,
E. Drakopoulou i, D. Drouhin b,bd, R. Dvornický r , T. Eberl ah, E. Eckerová r,q, A. Eddymaoui n,
T. van Eeden s, M. Eff ah, D. van Eijk s, I. El Bojaddaini z, S. El Hedri o, A. Enzenhöfer d,
G. Ferrara x, M.D. Filipović an, F. Filippini u,t , L.A. Fusco aa, O. Gabella ao, J. Gabriel ap,
S. Gagliardini g, T. Gal ah, J. García Méndez m, A. Garcia Soto c, C. Gatius Oliver s,
N. Geißelbrecht ah, H. Ghaddari z, L. Gialanella e,v, B.K. Gibson w, E. Giorgio x, A. Girardi g,
I. Goos o, D. Goupilliere p, S.R. Gozzini c, R. Gracia ah, K. Graf ah, C. Guidi aq,j, B. Guillon p,
M. Gutiérrez ar , H. van Haren as, A. Heijboer s, A. Hekalo am, L. Hennig ah, J.J. Hernández-Rey c,
F. Huang d, W. Idrissi Ibnsalih e, G. Illuminati u,t , C.W. James al, P. Jansweijer s, M. de Jong at,s,
P. de Jong ac,s, B.J. Jung s, P. Kalaczyński au,be, O. Kalekin ah, U.F. Katz ah,
N.R. Khan Chowdhury c, A. Khatun r , G. Kistauri aw,av, C. Kopper ah, A. Kouchner ax,o,
V. Kulikovskiy j, R. Kvatadze aw, M. Labalme p, R. Lahmann ah, G. Larosa x, C. Lastoria d,
A. Lazo c, S. Le Stum d, G. Lehaut p, E. Leonora a, N. Lessing c, G. Levi u,t , M. Lindsey Clark o,
F. Longhitano a, J. Majumdar s, L. Malerba j, F. Mamedov q, J. Mańczak c, A. Manfreda e,
M. Marconi aq,j, A. Margiotta u,t , A. Marinelli e,f , C. Markou i, L. Martin l, J.A. Martínez-Mora m,
F. Marzaioli v,e, M. Mastrodicasa ae,g, S. Mastroianni e, S. Miccichè x, G. Miele f ,e, P. Migliozzi e,
E. Migneco x, S. Minutoli j, M.L. Mitsou e, C.M. Mollo e, L. Morales-Gallegos v,e,
C. Morley-Wong al, A. Mosbrugger ah, A. Moussa z, I. Mozun Mateo az,ay, R. Muller s,
M.R. Musone e,v, M. Musumeci x, L. Nauta s, S. Navas ar , A. Nayerhoda ak , C.A. Nicolau g,
B. Nkosi ai, B. Ó Fearraigh ac,s, V. Oliviero f ,e, A. Orlando x, E. Oukacha o, J. Palacios González c,
G. Papalashvili av, E.J. Pastor Gomez c, A.M. Păun ab, G.E. Păvălaş ab, S. Peña Martínez o,

✩ The review of this paper was arranged by Prof. Z. Was.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding authors.
Available online 6 December 2023
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open acces
nc/4.0/).

E-mail addresses: km3net-pc@km3net.de, v.van.beveren@nikhef.nl (V. van Bever

https://doi.org/10.1016/j.cpc.2023.109036
Received 5 August 2023; Received in revised form 21 November 2023; Accepted 27
s article under the CC BY-NC license (http://creativecommons.org/licenses/by-

en), real@ific.uv.es (D. Real).

 November 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:km3net-pc@km3net.de
mailto:v.van.beveren@nikhef.nl
mailto:real@ific.uv.es
https://doi.org/10.1016/j.cpc.2023.109036
https://doi.org/10.1016/j.cpc.2023.109036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.109036&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

o,
, U
be
nc
Sca
ne
 A
T

i i,
nn
la
ap

rán,

i, 80

i Mo

ic de

10,

a, S
rerie

 Zon

000

in, C
40/

lina
rlan

, 401

 vial

Sout

, Mo

ni P

ethe

ugli

.O.B

Phys

Sout

a 64

stra

1797

 Céd

, Fra

pain

, the

fric

p. Di

ße 7,

 4, W
S. Aiello, A. Albert, S. Alves Garre et al.

M. Perrin-Terrin d, J. Perronnel p, V. Pestel az, R. Pestes
T. Pradier b, S. Pulvirenti x, G. Quéméner p, C. Quirozm

S. Razzaque ba, I.C. Rea e, D. Real c,∗,S. Reck ah, G. Ricco
A. Saina c, F. Salesa Greus c, D.F.E. Samtleben at,s, A. Sá
C. Santonastaso bb,e, D. Santonocito x, P. Sapienza x, Y.
M.F. Schneider ah, J. Schumann ah, H.M. Schutte y, J. Se
R. Shanidze av, Y. Shitov q, F. Šimkovic r , A. Simonelli e,
B. Spisso e, M. Spurio u,t , D. Stavropoulos i, I. Štekl q, M.
H. Thiersen y, I. Tosta e Melo a,aj, B. Trocme o, S. Tsagkl
A. Vacheret p, V. Valsecchi x, V. Van Elewyck ax,o, G. Va
F. Vazquez de Sola s, C. Verilhac o, A. Veutro g,ae, S. Vio
J. Wilms bc, E. de Wolf ac,s, H. Yepes-Ramirez m, G. Zarp
D. Zito x, J.D. Zornoza c, J. Zúñiga c, N. Zywucka y

a INFN, Sezione di Catania, Via Santa Sofia 64, Catania, 95123, Italy
b Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
c IFIC - Instituto de Física Corpuscular (CSIC - Universitat de València), c/Catedrático José Belt
d Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
e INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia ed. G, Napol
f Università di Napoli “Federico II”, Dip. Scienze Fisiche “E. Pancini”, Complesso Universitario d
g INFN, Sezione di Roma, Piazzale Aldo Moro 2, Roma, 00185, Italy
h Universitat Politècnica de Catalunya, Laboratori d’Aplicacions Bioacústiques, Centre Tecnològ

Geltrú, 08800, Spain
i NCSR Demokritos, Institute of Nuclear and Particle Physics, Ag. Paraskevi Attikis, Athens, 153
j INFN, Sezione di Genova, Via Dodecaneso 33, Genova, 16146, Italy
k University of Granada, Dept. of Computer Architecture and Technology/CITIC, 18071 Granad
l Subatech, IMT Atlantique, IN2P3-CNRS, Université de Nantes, 4 rue Alfred Kastler - La Chant
m Universitat Politècnica de València, Instituto de Investigación para la Gestión Integrada de las
n University Mohammed V in Rabat, Faculty of Sciences, 4 av. Ibn Battouta, B.P. 1014, R.P. 10
o Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
p LPC CAEN, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, 6 boulevard Maréchal Ju
q Czech Technical University in Prague, Institute of Experimental and Applied Physics, Husova 2
r Comenius University in Bratislava, Department of Nuclear Physics and Biophysics, Mlynska do
s Nikhef, National Institute for Subatomic Physics, PO Box 41882, Amsterdam, 1009 DB, Nethe
t INFN, Sezione di Bologna, v.le C. Berti-Pichat, 6/2, Bologna, 40127, Italy
u Università di Bologna, Dipartimento di Fisica e Astronomia, v.le C. Berti-Pichat, 6/2, Bologna
v Università degli Studi della Campania “Luigi Vanvitelli”, Dipartimento di Matematica e Fisica,
w E. A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX, United Kingdom
x INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, Catania, 95123, Italy
y North-West University, Centre for Space Research, Private Bag X6001, Potchefstroom, 2520,
z University Mohammed I, Faculty of Sciences, BV Mohammed VI, B.P. 717, R.P. 60000 Oujda
aa Università di Salerno e INFN Gruppo Collegato di Salerno, Dipartimento di Fisica, Via Giovan
ab ISS, Atomistilor 409, Măgurele, RO-077125, Romania
ac University of Amsterdam, Institute of Physics/IHEF, PO Box 94216, Amsterdam, 1090 GE, N
ad TNO, Technical Sciences, PO Box 155, Delft, 2600 AD, Netherlands
ae Università La Sapienza, Dipartimento di Fisica, Piazzale Aldo Moro 2, Roma, 00185, Italy
af Università di Bologna, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “G
ag Cadi Ayyad University, Physics Department, Faculty of Science Semlalia, Av. My Abdellah, P
ah Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen Centre for Astroparticle
ai University of the Witwatersrand, School of Physics, Private Bag 3, Johannesburg, Wits 2050,
aj Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Via Santa Sofi
ak INFN, Sezione di Bari, via Orabona, 4, Bari, 70125, Italy
al International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Au
am University Würzburg, Emil-Fischer-Straße 31, Würzburg, 97074, Germany
an Western Sydney University, School of Computing, Engineering and Mathematics, Locked Bag
ao Laboratoire Univers et Particules de Montpellier, Place Eugène Bataillon - CC 72, Montpellier
ap IN2P3, LPC, Campus des Cézeaux 24, avenue des Landais BP 80026, Aubière Cedex, 63171
aq Università di Genova, Via Dodecaneso 33, Genova, 16146, Italy
ar University of Granada, Dpto. de Física Teórica y del Cosmos & C.A.F.P.E., 18071 Granada, S
as NIOZ (Royal Netherlands Institute for Sea Research), PO Box 59, Den Burg, Texel, 1790 AB
at Leiden University, Leiden Institute of Physics, PO Box 9504, Leiden, 2300 RA, Netherlands
au National Centre for Nuclear Research, 02-093 Warsaw, Poland
av Tbilisi State University, Department of Physics, 3, Chavchavadze Ave., Tbilisi, 0179, Georgia
aw The University of Georgia, Institute of Physics, Kostava str. 77, Tbilisi, 0171, Georgia
ax Institut Universitaire de France, 1 rue Descartes, Paris, 75005, France
ay IN2P3, 3, Rue Michel-Ange, Paris 16, 75794, France
az LPC, Campus des Cézeaux 24, avenue des Landais BP 80026, Aubière Cedex, 63171, France
ba University of Johannesburg, Department Physics, PO Box 524, Auckland Park, 2006, South A
bb Università degli Studi della Campania “Luigi Vanvitelli”, CAPACITY, Laboratorio CIRCE - Di

Strada, 81020, Italy
bc Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Remeis Sternwarte, Sternwartstra
bd Université de Haute Alsace, rue des Frères Lumière, 68093 Mulhouse Cedex, France
be AstroCeNT, Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Rektorska
2

Computer Physics Communications 296 (2024) 109036

P. Piattelli x, C. Poirè aa, V. Popa ab,
. Rahaman c, N. Randazzo a,
ne x, J. Robinson y, A. Romanov aq,j,
hez Losa c,ak , M. Sanguineti aq,j,
rpetta aa, J. Schnabel ah,
ca s, B. Setter ah, I. Sgura ak ,
. Sinopoulou a, M.V. Smirnov ah,
aiuti aq,j, Y. Tayalati n, H. Tedjditi j,
 V. Tsourapis i, E. Tzamariudaki i,
oye d, G. Vasileiadis ao,
x, D. Vivolo v,e, H. Warnhofer ah,
is i, S. Zavatarelli j, A. Zegarelli g,ae,

 2, 46980 Paterna, Valencia, Spain

126, Italy

nte S. Angelo, Via Cintia ed. G, Napoli, 80126, Italy

 Vilanova i la Geltrú, Avda. Rambla Exposició, s/n, Vilanova i la

Greece

pain

, Nantes, BP 20722 44307, France

as Costeras, C/ Paranimf, 1, Gandia, 46730, Spain

 Rabat, Morocco

aen, 14050, France

5, Prague, 110 00, Czech Republic

F1, Bratislava, 842 48, Slovak Republic

ds

27, Italy

e Lincoln 5, Caserta, 81100, Italy

h Africa

rocco

aolo II 132, Fisciano, 84084, Italy

rlands

elmo Marconi”, Via dell’Università 50, Cesena, 47521, Italy

. 2390, Marrakech, 40000, Morocco

ics, Nikolaus-Fiebiger-Straße 2, 91058 Erlangen, Germany

h Africa

, Catania, 95123, Italy

lia

, Penrith, NSW 2751, Australia

ex 05, 34095, France

nce

Netherlands

a

 Matematica e Fisica - Viale Carlo III di Borbone 153, San Nicola La

 96049 Bamberg, Germany

arsaw, 00-614, Poland

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

A R T I C L E I N F O A B S T R A C T

Keywords:

Embedded software
Neutrino detectors
Synchronization networks

The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the
Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass
spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals
are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino
sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles
originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals
that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition
electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once
finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing
one of the more complex networks in the world in terms of operation and synchronization. The embedded
software running in the acquisition nodes has been designed to provide a framework that will operate with
different hardware versions and functionalities. The hardware will not be accessible once in operation, which
complicates the embedded software architecture. The embedded software provides a set of tools to facilitate
remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper
presents the architecture and the techniques, methods and implementation of the embedded software running in
the acquisition nodes of the KM3NeT neutrino telescopes.

Program summary

Program title: Embedded software for the KM3NeT CLB
CPC Library link to program files: https://doi .org /10 .17632 /s847hpsns4 .1
Licensing provisions: GNU General Public License 3
Programming language: C
Nature of problem: The challenge for the embedded software in the KM3NeT neutrino telescope lies in
orchestrating the Digital Optical Modules (DOMs) to achieve the synchronized data acquisition of the incoming
optical signals. The DOMs are the crucial component responsible for capturing neutrino interactions deep
underwater. The embedded software must configure and precisely time the operation of each DOM. Any
deviation or timing mismatch could compromise data integrity, undermining the scientific value of the
experiment. Therefore, the embedded software plays a critical role in coordinating, synchronizing, and operating
these modules, ensuring they work in unison to capture and process neutrino signals accurately, ultimately
advancing our understanding of fundamental particles in the Universe.
Solution method: The embedded software on the DOMs provides a solution based on a C-based bare-metal
application, operating without a real-time embedded OS. It is loaded into the RAM during FPGA configuration,
consuming less than 256 kB of RAM. The software architecture comprises two layers: system software and
application. The former offers OS-like features, including a multitasking scheduler, firmware updates, peripheral
drivers, a UDP-based network stack, and error handling utilities. The application layer contains a state
machine ensuring consistent program states. It is navigated via slow control events, including external inputs
and autonomous responses. Subsystems within the application code control specific acquisition electronics
components via the associated driver abstractions.
Additional comments including restrictions and unusual features: Due to the operation conditions of the neutrino
telescope, where access is restricted, the embedded software implements a fail-safe procedure to reconfigure the
firmware where the embedded software runs.
1. Introduction

The KM3NeT Collaboration is currently installing a research infras-
tructure at the bottom of the Mediterranean Sea [1]. The infrastructure
comprises two neutrino detectors: Astroparticle Research with Cosmics
in the Abyss (ARCA) [2] and Oscillation Research with Cosmics in the
Abyss (ORCA) [3]. ARCA has been designed for the detection of neu-
trinos of astrophysical origin with energies from ∼100 GeV to PeV
scale, and is located 100 km off the southern tip of Sicily, Italy, at a
depth of about 3500 m. ORCA, which is optimized for studying funda-
mental properties of neutrinos, is located about 40 km south of the
coast of Toulon, France, at a depth of about 2450 m. The neutrino
detectors instrument very large detection volumes of seawater with
three-dimensional arrays of light detectors, the Digital Optical Modules
(DOMs) [4,5], to detect Cherenkov light, which is induced in the seawa-
ter by charged particles generated in neutrino interactions (see Fig. 1).
The DOM, a pressure-resistant glass sphere which houses 31 PhotoMul-
tiplier Tubes (PMTs), includes the acquisition electronics [6–10], whose
main acquisition board is the Central Logic Board (CLB) [11,12], sup-
plied by its auxiliary power board [13]. The DOMs are distributed along
vertical lines, called Detection Units (DUs), each hosting 18 DOMs. At
the bottom of the DU, a base module is installed which provides power
3

to the DU as well as communication. In ARCA, the vertical spacing be-
tween DOMs is 36 m, while in ORCA it is 9 m. A thin backbone with
fiber optics for communication and copper wires for power, runs along
the full DU. The DUs are anchored to the seafloor, with a spacing of
about 90 m in ARCA, and 20 m in ORCA, in a regular lattice organized
in Building Blocks composed of 115 DUs. Specific instrumentation is
installed in the so-called Calibration Unit, of which a few units will be
deployed. In order to facilitate and speed up the deployment of the DUs,
a custom system has been developed by KM3NeT. The DU is rolled up
in a small, re-usable spherical launching vehicle, and, once deployed in
the seafloor, the string unfurls to its full length with the buoyant launch-
ing vehicle rolling up to the surface [14]. Currently, almost 40 DUs
have been deployed and are taking data [15]. The PMT signals are con-
verted into Low Voltage Differential Signals (LVDS)1 by the PMT base
boards. The LVDS duration is equal to the time the PMT signal exceeds
a preconfigured threshold, called Time over Threshold (ToT). The LVDS
signals are conducted to the CLB by an aggregation board called Signal
Collection Board (SCB). The resolution of the reconstructed neutrino
trajectory in the detector depends on the accurate measurement of the
arrival time of the light on the optical sensors as well as the precise de-
termination of the position of the sensors. Precision of one nanosecond
1 https://www .t10 .org /ftp /t10 /document .95 /95 -268r0 .pdf.

https://doi.org/10.17632/s847hpsns4.1
https://www.t10.org/ftp/t10/document.95/95-268r0.pdf

S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 1. Artist view of KM3NeT. The illustration is not to scale. The sunlight at
the bottom of the sea is only for artistic purposes as it will not reach the depths
at which the KM3NeT telescopes are installed.

on the arrival time and better than 20 cm on the position of the light
sensors is mandatory in order to achieve the required reconstruction
performance in the detector. Therefore, time and position calibration
of the telescopes are critical [6]. The synchronization of the DOM is
performed in the Field Programmable Gate Array (FPGA) of the CLB by
means of the White Rabbit protocol [16,17], which allows for data com-
munication and synchronization using the 1 Gbps optical link available.
The identification number of the temperature sensor controlled by the
White Rabbit protocol is used to generate a unique Medium Access Con-
trol (MAC). The optical network architecture is based on a broadcast
optical downlink, while the uplinks are independent communication
channels [18]. The optical network architecture of the telescope has
evolved to point-to-point connections, requiring a modification of the
embedded software. The principle behind the acquisition in KM3NeT
is the all-data-to-shore concept, which follows the same principle as in
the ANTARES experiment [19]. Through this concept, all PMT signals
are sent to the control station on the shore, where the triggering pro-
cess is carried out on a processor farm. The arrival time and the ToT of
the LVDS signals coming from the PMT bases are determined, with one
nanosecond resolution, by the Time to Digital Converters (TDCs) [20]
implemented in the FPGA of the CLB. The acquisition data is organized
in time frames, which are denominated timeslices, with a default dura-
tion of 100 ms. The TDCs timestamp the arrival time with the number of
nanoseconds after the start of the timeslice. In a later stage, a gateware
state machine [21] packs the TDC data into jumbo frames (Ethernet
frames with more than 1500 bytes of payload, the limit set by the
IEEE 802.3 standard), relating the timestamp to the UTC time of the
start of timeslice. Once completed, the jumbo frames are routed to the
specific port of the IPMUX (IP Multiplexer), from where they are sent
to the shore station via the White Rabbit PTP Core. The detectors are
conducted by the Detector Manager [22]. This system implements the
general Control Unit state machine of the detector, which is responsible
for setting the input parameters for all DOMs and drives the embedded-
software replica state machine managing the DOMs.

The embedded software provides the framework to operate the ac-
quisition system at the DOM in synchronization with all other DOMs.
The first generation of the KM3NeT firmware was in development since
2012 and was deployed at the beginning of 2016. Since 2019, the Next
Generation (NG) Firmware is under development, implementing many
improvements with respect to the first generation, both in project se-
mantics and program architecture.

The scope and goals of the embedded software are presented in
Section 2. The hardware environment where the embedded software
runs in KM3NeT is introduced in Section 3. A description of the CLB
firmware and the main processor where the embedded software runs is
given in Sections 4 and 5. Section 6 is dedicated to the architecture of
the embedded software. The kernel and the hardware abstraction layer
4

are presented in Section 7, while the network stack is presented in Sec-
Computer Physics Communications 296 (2024) 109036

tion 8. The application implementation is detailed in Section 9, while
the conclusions are discussed in Section 10.

2. Scope and goals

The FPGA contains two embedded processors, one LatticeMico32
(LM32)2 that incorporates the White Rabbit core and a second LM32
added in the KM3NeT logic. The White Rabbit LM32 software has been
developed by the White Rabbit Collaboration while the KM3NeT Collab-
oration has developed the embedded software adapted to the detector
network topology. The second LM32 controls the DOM. The main tasks
performed by embedded software are:

• initialize, control, and monitor the hardware;
• execute the commands sent by the shore station;
• align the execution of the program with the Detector Manager Con-

trol Unit;
• send diagnostic information back to shore;
• apply firmware updates.

The embedded software will be used in more than 6000 nodes.
The KM3NeT telescopes are a heterogeneous detector and there is
not a single firmware version for all its modules. The firmware com-
prises three main different aspects that have to be taken into ac-
count:

1. The hardware-specific FPGA bit-file for the different versions of the
CLB (v2 or v4). In addition to the version modifications, there are
minor hardware modifications in the sensors that should be taken
into account during operation.

2. The White Rabbit embedded software for either a KM3NeT custom
version or standard White Rabbit.

3. The CLB application software can be either DOM, DU-Base, Cali-
bration Unit-Base or Golden. The last one is a fail-safe image to be
used only at start-up. The DU-Base software is a modification to al-
low the use of the CLB in the Base module of the DUs, where it
acts as the controller node of the DU. In a similar way, the CLB is
used in the Calibration Unit. A flavor of the CLB software is used
to control and monitor the status of the CU.

The embedded software has to be able to deal with future modifi-
cations on the hardware, changes in the network architecture and new
applications, while providing a global functionality to the whole detec-
tor in a seamless way. One of the main constraints in KM3NeT is that
the detector is not accessible for maintenance. The embedded software
has been designed to provide a set of tools with the sufficient level of re-
liability to be able to recover hung-up nodes and with enough flexibility
to diagnose non-functional elements. Power and cost budget limitations
have been other criteria for the design of the embedded software and
the hardware resources to operate it.

3. KM3NeT acquisition electronics

In this section, the different acquisition boards which are controlled
by the KM3NeT embedded software are detailed.

3.1. PMT base board

The PMT base board is responsible for both the generation of the
high voltage required by the PMT and the digitization of the PMT sig-
nals [23,24]. Before being digitized, the PMT signal is amplified in a
preamplifier. One of the main components of the PMT base board is

2 https://www .latticesemi .com /en /Products /DesignSoftwareAndIP /

IntellectualProperty /IPCore /IPCores02 /LatticeMico32 .aspx.

https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx

S. Aiello, A. Albert, S. Alves Garre et al.

a comparator, which provides a high-level logic signal when the PMT
output exceeds the comparator limit, which is set via Inter-Integrated
Circuit (I2C)3 by the embedded software. The High Voltage (HV), which
is remotely configured via I2C, is generated independently on each of
the PMT base boards. This allows the individual gain of the PMTs to be
adjusted to equalize the response to photons and provide a ToT value
of around 26 ns for the detection of a single photoelectron. The HV
value can be remotely adjusted in a range from −1500 to −700 V. The
output of the voltage multiplier circuit is used to power the PMT dyn-
odes.

3.2. Signal collection board

The Signal Collection Board (SCB) is the board that collects the LVDS
signals coming from the PMT base boards, and conducts them to the
TDCs implemented in the CLB. The SCB also transfers the I2C commands
from the CLB to the PMT base boards to monitor and control the PMTs.
An I2C controllable complex programmable logic device reads the cur-
rent sensors and can disable the digital clock to eliminate possible
interferences on the PMT signals. The acoustic sensor is also connected
to the CLB through one of the SCB.

3.3. Power board

The power board provides power to the entire DOM, including
PMTs, acquisition electronics and instrumentation. The DOM is pow-
ered by an external 12 V that is input to power board inside the DOM.
Different regulated voltages (1, 1.8, 2.5, two 3.3, and 5 V) are generated
from this input using DC/DC converters. In addition, the Power Board
provides another output, configurable via I2C, which can be set from 0
to 30 V the nanobeacon [25], a time calibration device housed in the
DOM. One of the functions of the power board is to provide the start-
up sequence of the FPGA voltages. For this purpose, the Power Board
incorporates a sequencer that provides the desired voltage sequence.
Another feature includes a hysteresis loop that prevents instabilities
during start-up. The power board regulators are activated only when
the input voltage exceeds 11 V, while they are deactivated when the
input value falls below 9.5 V. This prevents fluctuations in the power
board regulators.

3.4. Central logic board

The Central Logic Board (CLB) is the main electronic board of the
KM3NeT acquisition system. The latest version of the CLB is shown
in Fig. 2. The main component of the CLB is an FPGA from the Xil-
inx Kintex-7 family, chosen for its relatively low power consumption,
less than 4 W in normal operation, and for being cost effective in re-
lation to its speed. Other relevant components are a flash memory,
which communicates via Serial Peripheral Interface (SPI)4 with the
FPGA and stores four of the FPGA images together with the CLB con-
figuration parameters; voltage controlled oscillators, which provide the
clock signals needed for the White Rabbit protocol; and two “press-fit”
connectors, which provide a solid mechanical and electrical connec-
tion between the CLB and the SCBs. The PMT base generates LVDS
signals after processing the electrical pulses from the PMT. The SCBs
receive these signals and forward them to the CLB, where they are dig-
itized (i.e. timestamped) by the TDCs implemented in the FPGA with
a resolution of 1 ns. After collecting timestamps of all PMT base LVDS
inputs, the data acquired by the TDCs are sent to the shore control
station for further processing and storage. The CLB also incorporates
a compass and an inclinometer, three temperature sensors, and a hu-
midity sensor. In addition, it provides a connection for the nanobeacon

3 https://i2c .info /i2c -bus -specification.
4 https://www .analog .com /en /analog -dialogue /articles /introduction -to -spi -
5

interface .html.
Computer Physics Communications 296 (2024) 109036

Fig. 2. The latest version of the CLB(v4). The embedded software runs on the
FPGA. The most important elements of the CLB, apart from the FPGA, are the
optical transceiver, the SCB connectors, the White Rabbit oscillator system, and
the instrumentation.

and for the piezo acoustic sensor. The control of the CLB is achieved
through one of the processors embedded in the FPGA programmable
logic.

4. CLB firmware

The firmware runs on the CLB FPGA and its main components are:

• two embedded LM32 processors: one inside the White Rabbit PTP
core that implements the White Rabbit protocol; the second one
controls and monitors the CLB;

• the TDCs, which digitize the PMT signals that arrive at the CLB;
• the IPMUX, which collects the data from the TDCs and the moni-

toring data generated by the LM32, and sends them via Ethernet to
the shore control station;

• the multiboot core, which allows the secure remote configuration
of the FPGA firmware.

The architecture of the firmware is displayed in Fig. 3.

5. LatticeMico32 soft processor

A soft processor was chosen for the control of the CLB. The two
main reasons for this choice are the possibility to integrate it tightly
with the acquisition firmware, and the increased reliability. The de-
crease of speed with regard to physical processors was not a critical
point.

Since the WR collaboration selected the LM32 [26] to be imple-
mented in their White Rabbit PTP core, it was decided to select the
same processor for implementing KM3NeT specific control and moni-
toring. The LM32 IP core has been developed by Lattice Semiconductor
and it is available under a free IP license. It has a 32-bit Harvard-RISC
architecture with a reduced set of instructions and separated instruction
and data buses, with a unique address space. The LM32 implements a
totally bypassed and interlocked pipeline of six stages, and the arith-
metic operations are done register to register. The architecture of the
LM32 is shown in Fig. 4. Using the same model of soft processor simpli-
fies both code development and maintenance. The LM32 is open source,
it can be ported to FPGAs of different vendors and it is well documented
with an existing tool chain. It also allows JTAG access, which is used in

KM3NeT to provide debugging support and communications with a flex-

https://i2c.info/i2c-bus-specification
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 3. Block diagram of the CLB. Optics, acoustics, instrumentation, front-end firmware and all the interfaces are shown.
ible bus, such as Wishbone.5 Another advantage, critical in KM3NeT, is
the use of few FPGA resources. An LM32 uses around 2000 logic cells
of the XC7K160T FPGA, about 1.3% of the total logic cells [27].

5.1. Wishbone bus protocol

The LM32 uses the Wishbone Bus protocol [28]. The Wishbone Bus
definition has been done by the OpenCores organization on an open-
source basis, being B4 the latest version released and the one used in
KM3NeT. Wishbone Bus provides a robust and portable bus standard, al-
lowing for the connectivity with various IP cores. It connects the LM32
with its peripherals. In particular, two Cross Bar Switches (CBS) are
used. The first one allows for connecting with the White Rabbit PTP
core. The dual memory port and the second CBS give access to all the
peripherals and all the acquisition IP cores. The CBS contains a parallel
Wishbone Bus used by the Message Signalled Interrupt system to trig-
ger interrupts or exchange short messages. An example of the Hardware
Description Language (HDL) implementation of Wishbone Bus is found
in Listing 1 and Listing 2 where the slave HDL code for the Wishbone
register access and the register map, are presented.

5.2. Peripherals and acquisition IP cores

The LM32 controls a set of peripherals and acquisition IP cores. In
order to do so, a map of addresses is generated. The peripherals and IP
cores connected to the LM32 are the following:
6

5 https://cdn .opencores .org /downloads /wbspec _b4 .pdf.
• General Purpose Input Output (GPIO): 16 GPIOs are available for
various tasks, including enabling power rails for sensors and man-
aging a watchdog. While debug boards allow control over LEDs and
switches, these components are not included in mass-production.

• Timer: A timer is available for the peripherals. Several counting
modes are available as well as a prescaler.

• Universal Asynchronous Receiver-Transmitter (UART): Two UARTs
have been included in the acquisition system. Via WB, it is possible
to set the baud rate, the number of data bits as the parity.

• Serial Peripheral Interface (SPI): The SPI is used to access the SPI
flash memories, where the FPGA images, the configuration param-
eters and the debug logs are stored.

• I2C: Five I2C buses are used. The configuration and readout of the
sensors housed in the CLB, as well as the configuration of the PMT
bases, are done via I2C.

• TDCs: The TDCs sample the signals from the bases of the PMTs.
They are implemented, one per PMT, in the FPGA of the CLB. A
TDC channel measures both the arrival time of the pulse and the
ToT, using the time provided by the White Rabbit core. The core
of the TDCs produces 48 bits per event. The eight most significant
bits are used for the identification of the PMTs, the next 32 encode
the arrival time of the event with respect to the timeslice start and
the last 8 bits encode duration. The events are sent to the state
machine which also organizes the acquisition of TDCs in timeslices.
The FPGA clock system is derived from a 25 MHz quartz oscillator.
The clock signal is transferred to a digital Phase-Locked Loop (PLL)
that generates the 62.5 MHz system frequency. The White Rabbit
protocol adjusts the phase and frequency of the system clock speed

from the FPGA to the reference master clock. Finally, the adjusted

https://cdn.opencores.org/downloads/wbspec_b4.pdf

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 4. Architecture of the LM32 soft processor where the embedded software runs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
entity tdc_master_top

- ...
port (

- wishbone signals (for reading)
- master clock input
wb_clk_i:in std_logic;

- lower address bits
wb_adr_i:in std_logic_vector(2 downto 0);

- Databus input
wb_dat_o:out std_logic_vector(31 downto 0);

- Write enable input
-

);

end entity tdc_master_top;

Listing 1: Details of the definition of the wishbone register access in the
TDC HDL top code.

clock is injected into the FPGA PLL to generate the two 250 MHz
clocks, identical but shifted 90 degrees in phase. The input of the
TDCs is oversampled to one nanosecond using the rising and falling
edges of the two 250 MHz clocks.

• TDC State Machine: The core of the state machine orchestrates the
data acquisition of the CLB. It is responsible for generating the peri-
odic start of the timeslice signal. This signal is synchronized to the
start of the UTC second and is repeated at the beginning of each
period. The acquisition synchronizes to the timeslice start signal
and the acquired data are segmented and temporally referenced
with respect to it. The state machine is responsible for collecting
the acquired data and concatenating them to the UTC time of the
timeslice start, called super time. Once processed, the acquired data
are distributed to the IPMUX. The data is sliced into frames in such
a way that it can be packed into jumbo frames. A header is pre-
pared with metadata such as the package identifier and the run
number.

• IP/UDP Packet Buffer Stream Selector: The packets created by the
state machine are sent to one of the input ports of the IPMUX,
which acts as a selector for the packet buffer. The IPMUX has differ-
7

ent input ports for several data sources: TDCs, acoustic acquisition,
begin

if (wb_clk_i'event and wb_clk_i='1') then
case wb_adr_i is
-enable channels
when "001" => wb_dat_o <= rtdc1;

-Veto value
when "010" => wb_dat_o <= rtdc2;

-enable veto
when "011" => wb_dat_o <= rtdc3;

-enable multihit
when "100" => wb_dat_o <= rtdc4;

-almost_full_offset

when "101" => wb_dat_o <= rtdc5;

-min ToT
when "110" => wb_dat_o <= rtdc6;

-
end case;

end if;

end process assign_dato;

Listing 2: Details of the register mapping. Write access case.

monitoring, and slow control channels from the LM32. The IPMUX
adds a UDP header for each data packet from these sources before
transferring them to the White Rabbit core endpoint, via which
they are sent to the shore control station. The data type (optical,
acoustic, or monitoring) is determined at the shore station by the
port origin. The IPMUX is a Wishbone Bus slave of the LM32, so it
can be configured remotely.

• Multiboot: When the FPGA is started, it configures itself by load-
ing the first valid image found while scanning the SPI mem-
ory. Up to four images can be saved in the flash memory, re-
serving enough space for storage of CLB configuration parame-
ters.

• Nanobeacon: The nanobeacon trigger signal is generated in the
FPGA. It can be configured to change the period, the number
of flashes per timeslice, as well as start time of the trigger. All
these parameters are set by the embedded software via Wishbone

Bus.

S. Aiello, A. Albert, S. Alves Garre et al.

6. Software architecture

The embedded software running on the CLB is a C-based bare metal
application and thus uses no real-time embedded operating system. The
embedded software application is loaded into the RAM of the KM3NeT-
specific LM32 at FPGA configuration. The application requires less than
256 kB of RAM, including heap and stack. The software architecture
consists of two top-level layers: system software and application. The
system software layer is the same for each kind of firmware image.
This layer contains OS-like features, such as a simple cooperative mul-
titasking scheduler, a firmware update unit, various peripheral drivers,
a UDP-based network stack, and support utilities for logging and error
handling. The application layer contains a software state machine, slow
control command handling, debug shell command implementation, and
the KM3NeT core application code composed of a number of subsys-
tems.

The state machine defines the state of the application and drives
the application. Implementing the application software as a state ma-
chine ensures that the program will always be in an unambiguous and
consistent state. The state machine can be navigated by issuing events
over slow control from an external driver such as the Control Unit [22].
Additionally, some events are issued autonomously by the embedded
software, such as on error occurrence or during system start-up. Appli-
cation code can be attached to state machine transitions or to periodic
timer events. As previously mentioned, the application code is grouped
into subsystems. A subsystem is a unit of code and data responsible for
the operation of a specific part of the acquisition electronics. It con-
trols hardware peripherals, through the associated driver abstraction.
The following subsystems are defined:

• System: application function not specific to other subsystems.
• Optics: control of PMTs and TDCs (only in DOM firmware).
• Acoustics: acoustic sensor control and Audio Engineering Society

(AES) protocol handling.
• Instrumentation: sensor readout, generally over the I2C bus (tem-

perature, humidity, etc.).
• Networking: IPMUX control and White Rabbit monitoring.
• Base: DU-Base module control (only in DU-Base firmware).
• Calibration Unit Base: CU-Base module control (only in CU-Base

firmware).

By registering C-functions to state transitions, a subsystem can con-
trol the hardware at specific points in the state-machine graph. For
example, the start event moves the state machine from Ready to Run-
ning. In this transition, the data-acquisition hardware is enabled to
start data taking. The CLB slow control from remote is implemented by
means of a custom protocol, on top of UDP. The slow-control protocol
consists of three layers. The highest layer is called the Message layer
and binds to C-functions at the application level. Messages have a type,
e.g. retrieve firmware version or state-machine event, but also a class, be-
ing either Command, Reply, Event or Error. The combination of type
and class specifies the format and interpretation of the message pay-
load. Slow-control messages are the primary method for remote control
and have functions for moving the software state machine, requesting
the status, and many others. Messages are bundled together at the Mes-
sage Container Format (MCF) layer, binding multiple messages into a
single payload for efficiency. The lowest slow-control layer is Simple
Retransmission Protocol (SRP) and is responsible for transmission con-
trol. It implements a simple packet-based retransmission scheme where
the packet contains an identifier ordinal which must be acknowledged
within a specific time window and is otherwise retransmitted.

6.1. Image types and multi-stage boot

The SPI flash contains up to four FPGA images. The first image is the
8

Golden image which should not be changed unless absolutely required.
Computer Physics Communications 296 (2024) 109036

The Golden image is always the first image to load, and its primary
purpose is to start the run-time image. For this reason, the Golden image
is a small image, containing only the basic necessities for booting the
second image, which could either be the DOM, Base, or Calibration Base
image. The Golden image can also update the firmware on any of the
other locations. The Golden image waits for 30 seconds after obtaining
an IP address such that the default boot procedure can be aborted in
case of failures on the other images.

While generally the second image is started from the Golden image,
the CLB can be configured to automatically start the third or fourth im-
age. The persistent storage layout, including the FPGA images, is shown
in Fig. 5. While CLB v2 [29] contained a single SPI flash chip for stor-
age and images, the CLB v4 [30] features two flash chips for better
separation of responsibilities and improved robustness. In addition, the
Golden image is protected against accidental overwrite by using the SPI
flash block protection features, and requires a password to unlock.

6.2. Build environment and procedure

Project improvements include the usage of modern development
methodologies and tools such as control version repositories (Global
Information Tracker (GIT) with sub-modules), Continuous Integration/-
Continuous Deployment (CI/CD) and Docker containers. These tools
and methodologies are used for a consistent and reusable build envi-
ronment.

The main repository contains software, gateware and hardware files.
The software directory contains the software sources and build files
to generate the software binaries for different applications (DOM, DU-
Base, CU-Base and Golden) and hardware versions (CLB v2 and v4).
Additionally, it can execute unit tests and build software documenta-
tion. A special branch of the White Rabbit PTP core, maintained by
KM3NeT, is included as a submodule within the software directory.
This branch contains the broadcast version of the White Rabbit PTP
core [18,31]. The gateware directory consists of scripts and sources
used to build FPGA images for different hardware versions (CLB v2
and v4). Since the White Rabbit PTP core is a crucial component of
the KM3NeT firmware, the White Rabbit gateware GIT repository is in-
cluded as a submodule, and the HDL files within it are utilized in the
gateware design.

The root directory houses the super-build script, responsible for
orchestrating the gateware and software sub-builds and merging the
resulting binaries into distinct firmware images aligned with specific
applications and hardware versions.

CMake is used as the primary build tool. The entire project can be
built inside Gitlab-CI/CD, using a KM3NeT-specific Docker container.
Docker containers allow for isolating and simplifying the creation of
environments that contain all the libraries, dependencies and binaries
to execute programs. In KM3NeT, the containers facilitate the process
of compiling the LM32 code used by the CLBs.

There are two contexts: First generation, based on the SVN reposi-
tory with ISE Xilinx tools and LM32 compiler tool chain; Next genera-
tion, based on the GIT repository with Vivado tools and LM32 compiler
tool chain.

The creation process of the toolset is based on the Makefile to com-
pile recent tool versions. The container can be created in three different
ways:

• Ultrafast: using the Docker container image with CentOS 7 and all
the default libraries,

• Fast: using the prebuilt toolchain with CentOS 7,
• Complete: personalized toolchain.

6.3. Layering

A high-level stack of the layers of the embedded software running

on the KM3NeT-specific processor is presented in Fig. 6. The application

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 5. Persistent storage layout, containing both FPGA images and other persistent storage, grouped by CLB hardware version.
Fig. 6. High-level stack of the software operational on the KM3NeT specific
LM32. The application and the system software layers are shown.

layer performs user-specific functions. In the KM3NeT case, this primar-
ily concerns executing commands from the shore station and controlling
the detector hardware through the system software layer-provided ser-
vices. This layer manages functions like the system start-up, hardware
control and resource allocation. However, while the system software
layer serves to facilitate, it does not define the application itself. It is
the responsibility of the application layer to control the system software
layer in order to provide specific functionalities. In the next Sections,
each of these functions will be explained in more detail.

7. Kernel

The kernel is responsible for OS-like functions such as system start-
up, scheduling, and resource management. It also contains the hardware
abstraction layer including drivers for all controlled peripherals.

7.1. Start-up

The LM32 does not contain an interrupt vector table. Instead, it
assumes that interrupt handlers are present at specific offsets in the
memory, spaced 8 instruction words apart, starting from address 0. The
reset handler is the first interrupt handler and is located at memory
address 0, which is also the first instruction that the LM32 executes
9

after a power-up or a reset. A C file contains the interrupt handlers
and support code. It also contains code for initializing the C-code vari-
ables and jumping to the main function. A second file contains the
LM32-specific functions, such as requesting the cycle counter, and dis-
abling/enabling Interrupt Requests (IRQs). In addition, it also contains
the IRQ handler code, responsible for handling all IRQs and execut-
ing the peripheral-level IRQs. A third file contains the main function,
which initializes the system integrity checks, basic system bus con-
trollers, such as UART, I2C and SPI controllers, and OS services, such
as persistent logging and the firmware update system. A call is made to
the application-specific initialization before handing over responsibility
to the scheduler.

7.2. Scheduler

The KM3NeT embedded software does not use a real-time operating
system. Instead, it uses a simple cooperative scheduler. This scheduler
can be provided with tasks which take the form of a function pointer.
The function signature can have no return value and no argument. On
registration, the scheduler assigns an identifier to the task, which can
be used to refer to it. A task can be scheduled to run on request and/or
periodically. On registration, a task may be set as high-priority, indicat-
ing that this task should be executed before any normal-priority task,
as multiple tasks may be pending for execution at a given time. The
scheduler is not preemptive, and once a task is started, it must run to
completion, thus a task may stall the scheduler. All tasks must therefore
limit their execution time and implement a timeout scheme when wait-
ing for resources. Once the embedded software start-up is completed,
the non-returning function schdExec() is called which executes the
scheduler internal main loop. Besides scheduled tasks, the scheduler
can also be provided with idle tasks. These tasks are executed repeat-
edly as long as there are no scheduled tasks pending for execution. One
important idle task is the software integrity check function. This is a
best-effort code corruption detection function running a 32-bit Cyclic
Redundancy Check on the code and on constants. It also implements a
stack-overflow detection through memory markers.

Another important function of the scheduler is to off-load IRQ han-
dling to the main loop. Where possible, an IRQ only incites the sched-
uler to run a specific task in the main loop. This limits the required
critical sections and reduces code complexity. As the scheduler is coop-
erative, the incited task will need to wait until currently running tasks
complete, before the IRQ task can be run. This is different from pre-
emptive schedulers, where the IRQ could trigger a high-priority task
which can temporarily suspend the currently running thread. For this
reason, IRQ handling tasks are generally put in the high-priority group,

allowing as quick as possible handling of the incited task.

1
2
3
4

1
2
3
4

S. Aiello, A. Albert, S. Alves Garre et al.

if (dev->CMDSTS & I2C_STS_ARBLOST)

{

return errSet(E_BUS, "i2c_err", I2C_ERR_ARB_LOST);
}

Listing 3: Error handling code for the I2C arbitration lost condition.

if (!sfTxRx(dev, dta, dta, 1 + len))

{

return errTrace("sf_reg", reg);
}

Listing 4: Adding the serial flash register address to the error generated
inside sfRead.

7.3. Error handling

Most errors that can occur during run-time are handled using the er-
ror module. The convention of fallible functions is to return a Boolean
value indicating whether the operation was successful (True) or failed
(False). In addition, this function is expected to set a global error code
using the errSet(ERROR_CODE, ...) pre-processor macro, much
like errno is used in the POSIX standard [32]. The macro adds the
line and unit file to the error for increased traceability, and also al-
lows for additional contextual arguments. For example the code from
the I2C driver responsible for handling the arbitration lost condition is
shown in Listing 3. This condition occurs when the bus master loses
control over the bus. Though the general error is a bus error, indicated
by E_BUS, additional context is added by specifying the I2C specific
error code I2C_ERR_ARB_LOST.

The error module also supports adding context after the error has
been generated. In this way, the context can be added at multiple lev-
els. Listing 4 shows a snippet of code from the serial flash driver in
which additional context is added to an error condition. At the appli-
cation level, the error including the context information is logged, and
generally, the application is moved to a safe state in which the error
can be retrieved and the application reset. This procedure is discussed
in Section 9.2.

7.4. Firmware update

Users can update any of the four firmware images located in the
SPI flash remotely, and any of the CLB firmware images has the ability
to update the system. To update the Golden image, an additional un-
lock command is required, removing the hardware protections in place.
Note that in most cases updating of the Golden image is not needed, and
is discouraged. Furthermore, overwriting any existing image is only al-
lowed if there is at least one more valid image present in the flash
memory. If during programming there is a power failure this safe guard
ensures at least one loadable image is available as fallback.

Before updating, the firmware-update application checks hardware
and application compatibility. To prevent a partially updated image
from being read by the FPGA configuration state machine, writing of the
image is executed in a specific order. First, the location of the FPGA sync
header is cleared. In case a previous FPGA image was present, it will
no longer be recognized by the FPGA reconfiguration state machine.
Then, the FPGA image is written page by page from back to front. This
causes the sync header to be the last page written. By following this
approach, power loss during flashing will not result in the configuration
state machine reading a partial image, thereby mitigating the risk of
rendering the FPGA inoperable. Consequently, the configuration state
machine will continue its search until it locates a valid image, which
10

will then be loaded.
Computer Physics Communications 296 (2024) 109036

7.5. Inter-process communication

The KM3NeT design contains two processor cores, introduced in sec-
tion 4. In order to facilitate communication between them, a hardware
mailbox implementation is present. This mailbox ensures a synchro-
nized communication by implementing a small dual-port RAM memory,
mapped to both cores. A protocol is implemented as a memory-mapped
C structure defined in a header shared between the two applications,
each running on a core.

The C structure consists of a status section, in which the White Rab-
bit PTP core can write information such as state and sensor data. The
second section contains a command/reply framework. For this frame-
work, the KM3NeT core initiates requests to the White Rabbit PTP core
by loading a command into the shared structure. The White Rabbit core
executes the command and sets a reply into the structure. Finally, it
clears the command field, acknowledging the command has been han-
dled.

For instance, this command/reply semantic is employed to modify
the auto-negotiation mode. Additionally, it is utilized for wavelength
tuning, enabling the adjustment of the transceiver’s wavelength.

7.6. Hardware abstraction layer

The platform layer contains a hardware abstraction sub-layer
marked Drivers in Fig. 6. This layer offers a high-level API for on-
and off-FPGA peripherals. On-FPGA peripherals include the DAQ de-
vices such as the TDCs, and AES, but also the SPI and I2C master bus
controllers. Off-FPGA component support includes environmental and
compass sensors.

For some functions of the embedded software, there are interfaces
known as modules. These modules combine multiple low-level drivers
into a unit specialized on an aspect of the CLB. For example, the power

module provides annotated access to the supply rail sensors, controls
the voltage to the LED beacon, and toggles the external sensor power
rails. The module accesses various I2C peripherals and GPIO peripherals
to perform its function.

8. Network stack

KM3NeT contains an in-house developed small-footprint UDP/IP
stack, called ministack, responsible for handling all the slow control
communications. To limit software complexity and memory require-
ments, no TCP/IP is used. To compensate for the lack of delivery guar-
antee of UDP, a simple reliability layer use SRP, has been added on
top of UDP. This protocol allows for retransmission of lost packets. On
top of SRP, the MCF may bundle multiple messages using MSG format
for increased protocol efficiency. The three facilitating packet protocol
formats are shown in Fig. 7 and are explained in sections 8.3 and 8.4.

8.1. White Rabbit MAC/IPMUX interface

Incoming Ethernet packets from the detector network are routed
through the White Rabbit MAC fabric. A hardware-level packet filter
processes each packet and flags it according to a simple program loaded
into the filter. A packet may be dropped, routed to the PTP core for tim-
ing processing, or sent onward to the IPMUX. The IPMUX then puts the
received packet into a software-readable FIFO and provides an inter-
rupt to the software to signal that a packet is ready. Additionally, there
is an out-going FIFO used by the software to send out-going network
packets.

8.2. Ministack

The ministack is a lightweight UDP stack developed in-house. In ad-
dition to its role in parsing and formatting UDP packets to and from the

IPMUX, the software also incluses a BOOTP handler for IP acquisition,

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 7. The UDP-based CLB network stack consisting of three facilitating packet types.

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
ARP functionality for MAC address resolution and provisioning, and
ICMP support for responding to ping packets. The UDP packet content
is forwarded to the higher layer, which in this case is the SRP protocol.

8.3. Simple retransmission protocol

SRP implements a simple packet-based re-transmission scheme
where each packet contains an identifier ordinal (s-id) which must
be acknowledged by the remote side by replying with an SRP message
having the s-id filled in either the ack0 or ack1 field (See Fig. 7). This
must occur within a 200 ms window and is otherwise re-transmitted. If
no acknowledgment is received, the message is sent again with a small
delay between each attempt, up to a maximum of 6 times, after which
it is deemed lost. An SRP reply may in addition also contain a new SRP
message; this is indicated by bits in the flags field.

8.4. Message container format

The MCF packet bundles multiple application-level messages to-
gether but also adds meta-data to each message. When created, each
MCF message contains the system up-time in milliseconds in the base
time field. Up to 64 messages (MSG packets) may be bundled in one
MCF packet. Each message contains the creation time (base time+
Δtime), a class, type, length (len) and message-id (m-id), as layed-
out in Fig. 7. The class + type identifies the format and meaning
of the application-level data. A class encodes the transaction mode of
the message which may be command, reply, event or error. The
type identifies the message function. For example, to retrieve the sys-
tem build data and revision, the remote side sends a message of class
command with type SYS_DATEREV and no payload. The CLB will reply
with a message of class reply (when successful) and the same type.
This time the payload is the build date and software revision. Only the
error class has always a fixed encoding regardless of the type, con-
taining the error code and contextual information about the error. The
event class is a special message which does not expect a reply, and
may be broadcast. Each message has a message identifier (m-id). This
identifier allows tracking of command/reply transactions. The reply to
a command must contain the same message identifier. This allows the
binding of a reply to an earlier send command, facilitating up to 64
transactions to be in progress at any time for a specific CLB.

9. Application implementation

9.1. Process variables

Process variables are a set of remotely-accessible variables for
process control. In this case, the process to control is the CLB-
embedded application. All variables are defined in a JSON5 file
(variables.json5). A custom generic template-rendering applica-
11

tion, written in python (jinja2runner.py), is used to render the
{

group : "ACS",

name : "ACOU_RES",

idx : 3,

type : "U8",

access: "RW",

tags : "C",

enum : {

"12_BITS": { value: 0, desc: "12 bit resolution" },

"16_BITS": { value: 1, desc: "16 bit resolution" },

"24_BITS": { value: 2, desc: "24 bit resolution
(default)"↪

}

},

reset : "24_BITS",

desc : "Acoustic data resolution"
}

Listing 5: Snippet of the variables.json5 file defining the acoustic
resolution options. The template rendering application uses this file to
generate the C files needed by the embedded software.

variable definition file to an output file in a specific format depending
on the provided Jinja2 [33] template as illustrated in Fig. 8.

The variables.json5 file consists of a list of variable definitions
as shown in Listing 5. All variables belonging to a group are loosely re-
lated to the subsystem they are part of. A qualified variable name is
composed of a short group name and the variable name itself. In the
case of Listing 5, the complete naming would be acs.acou_res or
ACS_ACOU_RES depending on the code generation template. Further-
more, each variable has an index idx (1 … 63), which becomes part of
the variable identification number. Each variable has external access
options, either read-write, read-only or write-only (coded respectively
as, RW, R or W), and a type. Integer variable types are a combination
of either ‘I’, for signed or ‘U’, for unsigned, and the number of bits
(8, 16, 32 or 64). Other supported types are bool for Booleans and
f32 for IEEE-754 32-bit floating point values. A tags string contains a
number of single characters, each indicating an additional option: C for
configurable, D for deprecated and F for fallible. A variable marked as
configurable can not be modified once the system has passed the con-
figure event. Deprecated marks a variable as no longer in use, though
generally backward compatibility is supported for a number of versions.
Fallible variables are variables which require an explicit validity tag, as
their value may not be valid. Generally, this flag is used for external
sensors for which readout could fail. The last option for each variable
is the count (not shown in Listing 5) which indicates the number of el-
ements in this variable. When count > 0 this creates an array instead of
a scalar. Only single-dimensional arrays are supported.

Optionally, an enumeration can be added to a variable using the
enum keyword, indicating the possible named values for this variable.
The reset keyword indicates the value of the variable upon reset, and

desc adds a description to the variable. During the code generation,

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 8. Illustration of the process for generating C-files and documentation files from the source variable definition file.

Fig. 9. Variable ID composition, including a summary of the sub-fields inside the identifier. The three sub-fields are group, type and option. The group sub-field
refers to the system to which the variable belongs. The type sub-field defines the data type and size of the variable. The option sub-field specifies the access right to
the variable. The count sub-field specifies the number of scalar element in the variable.
the description is generally added as a comment. For each variable, a
unique value is derived from some of the elements of the variable def-
inition (Fig. 9). The advantage of this approach is that the application
can determine the properties, such size and type, of any variable, even
through the variable may be unknown. The size 𝑠 can be determined
for variable ID 𝑣id using

𝑠(𝑣id) = 2𝑣id[17..16](𝑣id[11..0] + 1) (1)

where 𝑣id[𝑚..𝑛] provides the unsigned integer value of bits 𝑚..𝑛 inside
the provided variable ID, shifted such that 𝑛 is the least significant bit.
By convention the least significant two bits of the type field, when
raised to the power of 2, provide the size of the component type in
bytes. When a process variable describes an array its maximum size is
4096 (count = 4095) and the minimum is 1 (count = 0). In the latter
case, the process variable is deemed to a scalar, thus arrays of a size
less than 2 can not be encoded.

The variables.json5 file is exported in a separate shared

repository for sharing between various projects. The file is also used
to generate a Doxygen reference, included in the firmware documenta-
tion.

For the embedded software, vars.c and vars.h are generated con-
verting the JSON description into structures for direct access inside the
embedded software. An example can be seen in Listing 6 where the
generated structure defining the acoustics subsystem is shown, part of
vars.h.

For all fallible variables, an additional structure is generated to
which the validity of the variable can be set. On reset, the validity of all
fallible variables is set to false.

In the embedded code, process variables can be accessed using
their structures. For example, acs.acou_chan provides access to
12

the acoustic channel settings and can be set with plain C code, e.g.
acs.acou_chan = ACS_ACOU_CHAN_TWO These structures are al-
ways readable and writable by the embedded software.

9.1.1. Remote access and monitoring

In addition to these structures accessible from the embedded code,
the code generation also creates meta-data and a look-up table for re-
mote access. The meta-data are used by the access.c/access.h to
provide high-level functions and allow variable introspection. Together
with the buffer module, it allows for the serialization and deserializa-
tion of any process variable.

A remote client can read, write and subscribe to variables using the
MSG_CLB_GET_VARS2, MSG_CLB_SET_VARS2 and MSG_CLB_SUB_
VARSRATE2 message types respectively.

For some variables, such as sensor data, it is important to receive
frequent updates. For this reason, there is a subscription system, allow-
ing periodic transmission of a subset of the process variables. When
subscribed, each variable is sent using the EVT_CLB_UPDATE_VARS2
event with the configured interval, spanning from 1 to 127 s with a
granularity of one second.

Whether variables are queried or sent using the subscription system,
the format of the sent data is the same as shown in Fig. 10. The variable
list contains a sequence of ID, flags, and value. The flags byte is used
to communicate the valid state. For variables which are not fallible, the
flags are always set to valid.

9.2. Software state machine

The application layer of the CLB has been implemented as a state
machine (shown in Fig. 11). The state machine receives events, either
internally generated, or from remote, and executes the code belonging
to the associated state transition. When started, the state machine is
in the Undefined state and the internal boot event is automatically

issued. When successful, it will cause the system to enter the Idle state.

Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 10. Format of variables returned either when using MSG_CLB_GET_VARS2 command or inside the EVT_CLB_UPDATE_VARS2 event (top), and when set using
MSG_CLB_SET_VARS2 (bottom).

Fig. 11. Block scheme of the software state machine. A description of the state machine is reported in the text.
Any critical error during the boot event transition will cause the issue
of the fatal event, and will cause the system transition to the Fatal
state, which can only be left through a system power cycle or FPGA
reconfiguration.

The events and states of the state machine are defined in statema-

chine.json5, and are used to generate the code required to run the
state machine. Code can be executed on state entry, state exit, and state
transition.

9.3. Subsystems

The application code is grouped into subsystems. A subsystem is a
unit of code and data responsible for a specific aspect of CLB operation.
It controls the hardware peripherals associated with this aspect, gener-
ally on state machine events. Additionally it provides a comprehensive
interface to through slow control commands and process variables. The
different subsystems have been are described in Section 6.

For example, on the start event the state machine moves from Ready

to Running. On this transition the System subsystem enables the data
acquisition hardware to start data taking.

9.4. Typical operation

The shore-located Detector Manager (DM), responsible for control-
13

ling the entire experiment, knows three high-level states: Off, On and
Run. These states correspond to CLB states Idle, StandBy and Run-

ning, respectively (Fig. 11). Generally, the detector is taking physics
data and will be in the Run state. This means the DM will move each
CLB to the Running state regardless of the state it is found in. A run
typically lasts for several hours, after which the DM stops the acquisi-
tion by moving all CLBs to the StandBy state and then to Ready and
Running again for the next run. In the last transition, the new run con-
figuration [22] is applied to all the CLBs under control.

After start-up, if there are no errors, the CLB will be in the Idle

state. Assuming the DM is not in Off state, it will send an init event
to the CLB, causing the CLB to transition and calling the associated init
functions in each subsystem. This will initialize the hardware required
for data acquisition. If successful, the CLB will enter the StandBy

state. If the DM is in the Run state it will configure the CLB by first
writing the configurable process variables, and then by issuing the
configure event. This event will cause the CLB subsystems bound
to this event to check the prerequisites running and configure required
hardware. If successful, the CLB will be in the Ready state, which is
only transitional from the DM perspective. The DM will immediately
issue a start event, causing the CLB to enable the hardware state
machine, initiating data taking and moving the CLB to the Running

state.
When a run has ended, the DM will issue a stop event to all CLBs.

When a new run is started, the CLB will be configured again, and will

be brought into a running state as described previously. This sequence

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34

35

1
2
3
4
5
6
7
8

S. Aiello, A. Albert, S. Alves Garre et al.

// -------------------------
// Definitions for subsystem Acoustics
// -------------------------
#define ACS_ACOU_CHAN 0x40207000

//!< Enable both acoustic channels
#define ACS_ACOU_CHAN_BOTH 0

//!< Enable only channel 1 (default)
#define ACS_ACOU_CHAN_ONE 1

//!< Enable only channel 2
#define ACS_ACOU_CHAN_TWO 2

#define ACS_ACOU_RES 0x40307000

//!< 12 bit resolution
#define ACS_ACOU_RES_12_BITS 0

//!< 16 bit resolution
#define ACS_ACOU_RES_16_BITS 1

//!< 24 bit resolution (default)
#define ACS_ACOU_RES_24_BITS 2

//! Structure defining all process variables for subsystem
Acoustics.↪

struct acs_s

{

/** Acoustics channel config */
uint8_t acou_chan;

/** Acoustic data resolution */
uint8_t acou_res;

};

typedef struct acs_s acs_t;

//! Provides access to all process variables of subsystem
Acoustics.↪

extern acs_t acs;

Listing 6: Snippet of the generated code of vars.h defining the acoustic
structure. This code is automatically generated by the template render
application.

{ state : "StandBy",

entrystub : true,

ordinal : 2,

transits :

{ "reset" : "Idle",

"configure" : "PreReq_Mac"

}

}

Listing 7: Definition of the stand-by state, one of the ten states of the
embedded software state-machine.

repeats during normal detector operation. The detector generally is only
brought to Off during maintenance.

10. Conclusions

The embedded software of the KM3NeT acquisition electronics has
been presented. In particular, the architecture of the embedded soft-
ware has been described as well as the tools and methods for building
the environment, and for generating the process variables. The embed-
ded software has been successfully operated in DOMs and DU-Bases of
almost 40 deployed DUs, with more than 20000 photomultipliers in-
stalled. It is also being operated in the tests of the last version of the
CLB (v4) and the tests of new optical network architecture based on
14

standard White Rabbit.
Computer Physics Communications 296 (2024) 109036

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors acknowledge the financial support of the funding agen-
cies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020),
Centre National de la Recherche Scientifique (CNRS), Commission eu-
ropéenne (FEDER fund and Marie Curie Program), Labex UnivEarthS
(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Île-de-France Re-
gion, France; Shota Rustaveli National Science Foundation of Georgia
(SRNSFG, FR-22-13708), Georgia; The General Secretariat of Research
and Innovation (GSRI), Greece Istituto Nazionale di Fisica Nucleare
(INFN), Ministero dell’Università e della Ricerca (MIUR), PRIN 2017
program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Edu-
cation, Scientific Research and Innovation, Morocco, and the Arab Fund
for Economic and Social Development, Kuwait; Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The Na-
tional Science Centre, Poland (2021/41/N/ST2/01177); The grant “As-
troCeNT: Particle Astrophysics Science and Technology Centre”, carried
out within the International Research Agendas programme of the Foun-
dation for Polish Science financed by the European Union under the
European Regional Development Fund; National Authority for Scien-
tific Research (ANCS), Romania; Grants PID2021-124591NB-C41, -C42,
-C43 funded by MCIN/AEI/ 10.13039/501100011033 and, as appropri-
ate, by “ERDF A way of making Europe”, by the “European Union” or by
the “European Union NextGenerationEU/PRTR”, Programa de Planes
Complementarios I+D+I (refs. ASFAE/2022/023, ASFAE/2022/014),
Programa Prometeo (PROMETEO/2020/019) and GenT (refs. CIDE-
GENT/2018/034, /2019/043, /2020/049. /2021/23) of the Generalitat
Valenciana, Junta de Andalucía (ref. SOMM17/6104/UGR, P18-FR-
5057), EU: MSC program (ref. 101025085), Programa María Zam-
brano (Spanish Ministry of Universities, funded by the European
Union, NextGenerationEU), Spain; The European Union’s Horizon 2020
Research and Innovation Programme (ChETEC-INFRA - Project no.
101008324).

References

[1] S. Adrián-Martínez, et al., KM3NeT Collaboration, Letter of Intent for KM3NeT 2.0,
J. Phys. G: Nucl. Part. Phys. 43 (8) (2016) 084001, https://doi .org /10 .1088 /0954 -
3899 /43 /8 /084001.

[2] S. Biagi [KM3NeT Collaboration], KM3NeT/ARCA: Status of construction and recent
physics results, EPJ Web Conf. 280 (2023) 01004, https://doi .org /10 .1051 /epjconf /
202328001004.

[3] S. Aiello, et al., Determining the neutrino mass ordering and oscillation parameters
with KM3NeT/ORCA, Eur. Phys. J. C 82 (1) (2022) 26, https://doi .org /10 .1140 /
epjc /s10052 -021 -09893 -0.

[4] S. Adrián-Martínez, et al., KM3NeT Collaboration, Deep sea tests of a prototype
of the KM3NeT digital optical module, Eur. Phys. J. C 74 (2014) 3056, https://
doi .org /10 .1140 /epjc /s10052 -014 -3056 -3.

[5] S. Aiello, et al., KM3NeT Collaboration, The KM3NeT multi-PMT optical module,
J. Instrum. 17 (2022) P0703, https://doi .org /10 .1088 /1748 -0221 /17 /07 /P07038.

[6] D. Real, D. Calvo, Digital optical module electronics of KM3NeT, Phys. Part. Nucl.
47 (2016) 918–925, https://doi .org /10 .1134 /S1063779616060216.

[7] S. Aiello, et al., KM3NeT Collaboration, KM3NeT Digital Optical Module electronics:
hardware, firmware and software, J. Astron. Telesc. Instrum. Syst. 5 (4) (2019)
046001, https://doi .org /10 .1117 /1 .JATIS .5 .4 .046001.

[8] D. Real, KM3NeT Digital Optical Module electronics, EPJ Web of Conferences,
vol. 116, 2016.

[9] D. Real, The electronics readout and data acquisition system of the KM3NeT neu-
trino telescope node, AIP Conf. Proc. 1630 (2016) 102–105.

[10] D. Real, Status of the DOM electronics, J. Instrum. (2021) C10009, https://doi .org /

10 .1088 /1748 -0221 /16 /10 /C10009.

https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1051/epjconf/202328001004
https://doi.org/10.1051/epjconf/202328001004
https://doi.org/10.1140/epjc/s10052-021-09893-0
https://doi.org/10.1140/epjc/s10052-021-09893-0
https://doi.org/10.1140/epjc/s10052-014-3056-3
https://doi.org/10.1140/epjc/s10052-014-3056-3
https://doi.org/10.1088/1748-0221/17/07/P07038
https://doi.org/10.1134/S1063779616060216
https://doi.org/10.1117/1.JATIS.5.4.046001
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB3DC60BEA88389A982C94D078E0B2244s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB3DC60BEA88389A982C94D078E0B2244s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib6EC54FCFF4E73FF78C584ECEB3842A74s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib6EC54FCFF4E73FF78C584ECEB3842A74s1
https://doi.org/10.1088/1748-0221/16/10/C10009
https://doi.org/10.1088/1748-0221/16/10/C10009

S. Aiello, A. Albert, S. Alves Garre et al.

[11] D. Calvo, et al., Sub-nanosecond synchronization node for high-energy astrophysics:
The KM3NeT White Rabbit Node, Nucl. Instrum. Methods A 958 (2019).

[12] D. Real, et al., KM3NeT acquisition: The new version of the Central Logic Board
and its related Power Board, with highlights and evolution of the Control Unit,
J. Instrum. 15 (2020) C03024.

[13] A. Belias, Design and development of the Power Supply Board within the Digital
Optical Module in KM3NeT, PoS TIPP2014, Proceeding to the 3th TIPP, Amsterdam,
2014 (2014) 188.

[14] S. Aiello, et al., KM3NeT Collaboration, Deep-sea deployment of the KM3NeT neu-
trino telescope detection units by self-unrolling, J. Instrum. 15 (2020) P11027,
https://doi .org /10 .1088 /1748 -0221 /15 /11 /P11027.

[15] M. Ageron, et al., KM3NeT Collaboration, Dependence of atmospheric muon flux on
seawater depth measured with the first KM3NeT detection units, J. Eur. Phys. C 80
(2020) 99, https://doi .org /10 .1140 /epjc /s10052 -020 -7629 -z.

[16] J. Serrano, et al., The White Rabbit Project, in: Proc. 12th Int. Conf. on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS’09), Kobe, Japan, Oct.
2009, TUC004, pp. 93–95.

[17] M. Lipinski, et al., White Rabbit: a PTP application for robust sub-nanosecond
synchronization, in: 2011 IEEE International Symposium on Precision Clock Syn-
chronization for Measurement, Control and Communication, 2011, pp. 25–30.

[18] S. Aiello, et al., KM3NeT broadcast optical data transport system, J. Instrum. 18
(2023) T02001, https://doi .org /10 .1088 /1748 -0221 /18 /02 /T02001.

[19] M. Ageron, et al., KM3NeT Collaboration, ANTARES: the first undersea neutrino
telescope, Nucl. Instrum. Methods A 656 (1) (2011) 11–38, https://doi .org /10 .
1016 /j .nima .2011 .06 .103.

[20] D. Calvo, D. Real, High resolution time to digital converter for the KM3NeT neutrino
telescope, J. Instrum. (10) (2015) C01015, https://doi .org /10 .1088 /1748 -0221 /10 /
01 /C01015.

[21] S. Aiello, et al., KM3NeT Collaboration, Architecture and performance of the
KM3NeT front-end firmware, J. Astron. Telesc. Instrum. Syst. 7 (1) (2021) 016001,
https://doi .org /10 .1117 /1 .JATIS .7 .1 .016001.
15
Computer Physics Communications 296 (2024) 109036

[22] S. Aiello, et al., KM3NeT Collaboration, The Control Unit of the KM3NeT Data Ac-
quisition System, Comput. Phys. Commun. 256 (2021) 107433, https://doi .org /10 .
1016 /j .cpc .2020 .107433.

[23] P. Timmer, et al., Very low power, high voltage base for a Photo Multiplier Tube
for the KM3NeT deep sea neutrino telescope, J. Instrum. 5 (2010) C12049, https://
doi .org /10 .1088 /1748 -0221 /5 /12 /C12049.

[24] D. Gajanana, et al., ASIC design in the KM3NeT detector, J. Instrum. 8 (2013)
C02030, https://doi .org /10 .1088 /1748 -0221 /8 /02 /C02030.

[25] S. Aiello, et al., KM3NeT Collaboration, Nanobeacon: A time calibration device for
the KM3NeT neutrino telescope, https://doi .org /10 .1016 /j .nima .2022 .167132.

[26] Lattice Semiconductor, LM32-Processor Reference Manual, Jul. 2016 [Online].
Available: LM32 Reference Manual.

[27] W. Terpstra, The Case for Soft-CPUs in Accelerator Control Systems, in: Proc. of the
International Conference on Accelerator and Large Experimental Physics Control
Systems ICALEPCS, Oct. 2011, pp. 1252–1255.

[28] Opencores, Wishbone B4 System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores, OpenCores, Tech. Rep., 2010 [Online]. Available: Wishbone B4.

[29] D. Calvo, D. Real, Status of the central logic board (CLB) of the KM3NeT neutrino
telescope, J. Instrum. 10 (2015) C12027, https://doi .org /10 .1088 /1748 -0221 /10 /
12 /C12027.

[30] D. Real, et al., KM3NeT acquisition: the new version of the Central Logic Board
and its related Power Board, with highlights and evolution of the Control Unit,
J. Instrum. 15 (2020) C03024, https://doi .org /10 .1088 /1748 -0221 /15 /03 /C03024.

[31] R. Coniglione, et al., KM3NeT Time Calibration, PoS ICRC (2021) 868, https://
doi .org /10 .22323 /1 .358 .0868.

[32] ISO, Portable Operating System Interface (POSIX®) Base Specifications, 2021 [On-
line]. Available: ISO 9945 standard.

[33] Pallets, Jinja2 template engine for Python, https://palletsprojects .com /p /jinja,
2023. (Accessed 23 July 2023).

http://refhub.elsevier.com/S0010-4655(23)00381-8/bibD17039F0184A3EADD01829684A2BD0BAs1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibD17039F0184A3EADD01829684A2BD0BAs1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib7715CD4D085384AC33CBC0657D52F8D6s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib7715CD4D085384AC33CBC0657D52F8D6s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib7715CD4D085384AC33CBC0657D52F8D6s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibF09883B57B33D3D33C39BBC8DD3B2BE2s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibF09883B57B33D3D33C39BBC8DD3B2BE2s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibF09883B57B33D3D33C39BBC8DD3B2BE2s1
https://doi.org/10.1088/1748-0221/15/11/P11027
https://doi.org/10.1140/epjc/s10052-020-7629-z
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB3794E69B175AD4FED35EAFD5CD14218s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB3794E69B175AD4FED35EAFD5CD14218s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB3794E69B175AD4FED35EAFD5CD14218s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibFB65234928AFFDEF17DBE26D81B34863s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibFB65234928AFFDEF17DBE26D81B34863s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibFB65234928AFFDEF17DBE26D81B34863s1
https://doi.org/10.1088/1748-0221/18/02/T02001
https://doi.org/10.1016/j.nima.2011.06.103
https://doi.org/10.1016/j.nima.2011.06.103
https://doi.org/10.1088/1748-0221/10/01/C01015
https://doi.org/10.1088/1748-0221/10/01/C01015
https://doi.org/10.1117/1.JATIS.7.1.016001
https://doi.org/10.1016/j.cpc.2020.107433
https://doi.org/10.1016/j.cpc.2020.107433
https://doi.org/10.1088/1748-0221/5/12/C12049
https://doi.org/10.1088/1748-0221/5/12/C12049
https://doi.org/10.1088/1748-0221/8/02/C02030
https://doi.org/10.1016/j.nima.2022.167132
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB44BDB727C29343D38A20F3F5DCEBE86s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB44BDB727C29343D38A20F3F5DCEBE86s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib10E5A1443919E9B6A4927BF95CF04D06s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib10E5A1443919E9B6A4927BF95CF04D06s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib10E5A1443919E9B6A4927BF95CF04D06s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB07DB5B9040C045F90EA14AA5175C87Es1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bibB07DB5B9040C045F90EA14AA5175C87Es1
https://doi.org/10.1088/1748-0221/10/12/C12027
https://doi.org/10.1088/1748-0221/10/12/C12027
https://doi.org/10.1088/1748-0221/15/03/C03024
https://doi.org/10.22323/1.358.0868
https://doi.org/10.22323/1.358.0868
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib990B9C081CF58581146899E1B76B5535s1
http://refhub.elsevier.com/S0010-4655(23)00381-8/bib990B9C081CF58581146899E1B76B5535s1
https://palletsprojects.com/p/jinja

	Embedded software of the KM3NeT central logic board
	1 Introduction
	2 Scope and goals
	3 KM3NeT acquisition electronics
	3.1 PMT base board
	3.2 Signal collection board
	3.3 Power board
	3.4 Central logic board

	4 CLB firmware
	5 LatticeMico32 soft processor
	5.1 Wishbone bus protocol
	5.2 Peripherals and acquisition IP cores

	6 Software architecture
	6.1 Image types and multi-stage boot
	6.2 Build environment and procedure
	6.3 Layering

	7 Kernel
	7.1 Start-up
	7.2 Scheduler
	7.3 Error handling
	7.4 Firmware update
	7.5 Inter-process communication
	7.6 Hardware abstraction layer

	8 Network stack
	8.1 White Rabbit MAC/IPMUX interface
	8.2 Ministack
	8.3 Simple retransmission protocol
	8.4 Message container format

	9 Application implementation
	9.1 Process variables
	9.1.1 Remote access and monitoring

	9.2 Software state machine
	9.3 Subsystems
	9.4 Typical operation

	10 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

