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A R T I C L E I N F O A B S T R A C T
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The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the 
Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass 
spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals 
are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino 
sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles 
originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals 
that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition 
electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once 
finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing 
one of the more complex networks in the world in terms of operation and synchronization. The embedded 
software running in the acquisition nodes has been designed to provide a framework that will operate with 
different hardware versions and functionalities. The hardware will not be accessible once in operation, which 
complicates the embedded software architecture. The embedded software provides a set of tools to facilitate 
remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper 
presents the architecture and the techniques, methods and implementation of the embedded software running in 
the acquisition nodes of the KM3NeT neutrino telescopes.

Program summary

Program title: Embedded software for the KM3NeT CLB
CPC Library link to program files: https://doi .org /10 .17632 /s847hpsns4 .1
Licensing provisions: GNU General Public License 3
Programming language: C
Nature of problem: The challenge for the embedded software in the KM3NeT neutrino telescope lies in 
orchestrating the Digital Optical Modules (DOMs) to achieve the synchronized data acquisition of the incoming 
optical signals. The DOMs are the crucial component responsible for capturing neutrino interactions deep 
underwater. The embedded software must configure and precisely time the operation of each DOM. Any 
deviation or timing mismatch could compromise data integrity, undermining the scientific value of the 
experiment. Therefore, the embedded software plays a critical role in coordinating, synchronizing, and operating 
these modules, ensuring they work in unison to capture and process neutrino signals accurately, ultimately 
advancing our understanding of fundamental particles in the Universe.
Solution method: The embedded software on the DOMs provides a solution based on a C-based bare-metal 
application, operating without a real-time embedded OS. It is loaded into the RAM during FPGA configuration, 
consuming less than 256 kB of RAM. The software architecture comprises two layers: system software and 
application. The former offers OS-like features, including a multitasking scheduler, firmware updates, peripheral 
drivers, a UDP-based network stack, and error handling utilities. The application layer contains a state 
machine ensuring consistent program states. It is navigated via slow control events, including external inputs 
and autonomous responses. Subsystems within the application code control specific acquisition electronics 
components via the associated driver abstractions.
Additional comments including restrictions and unusual features: Due to the operation conditions of the neutrino 
telescope, where access is restricted, the embedded software implements a fail-safe procedure to reconfigure the 
firmware where the embedded software runs. 
1. Introduction

The KM3NeT Collaboration is currently installing a research infras-
tructure at the bottom of the Mediterranean Sea [1]. The infrastructure 
comprises two neutrino detectors: Astroparticle Research with Cosmics 
in the Abyss (ARCA) [2] and Oscillation Research with Cosmics in the 
Abyss (ORCA) [3]. ARCA has been designed for the detection of neu-
trinos of astrophysical origin with energies from ∼100 GeV to PeV 
scale, and is located 100 km off the southern tip of Sicily, Italy, at a 
depth of about 3500 m. ORCA, which is optimized for studying funda-
mental properties of neutrinos, is located about 40 km south of the 
coast of Toulon, France, at a depth of about 2450 m. The neutrino 
detectors instrument very large detection volumes of seawater with 
three-dimensional arrays of light detectors, the Digital Optical Modules 
(DOMs) [4,5], to detect Cherenkov light, which is induced in the seawa-
ter by charged particles generated in neutrino interactions (see Fig. 1). 
The DOM, a pressure-resistant glass sphere which houses 31 PhotoMul-
tiplier Tubes (PMTs), includes the acquisition electronics [6–10], whose 
main acquisition board is the Central Logic Board (CLB) [11,12], sup-
plied by its auxiliary power board [13]. The DOMs are distributed along 
vertical lines, called Detection Units (DUs), each hosting 18 DOMs. At 
the bottom of the DU, a base module is installed which provides power 
3

to the DU as well as communication. In ARCA, the vertical spacing be-
tween DOMs is 36 m, while in ORCA it is 9 m. A thin backbone with 
fiber optics for communication and copper wires for power, runs along 
the full DU. The DUs are anchored to the seafloor, with a spacing of 
about 90 m in ARCA, and 20 m in ORCA, in a regular lattice organized 
in Building Blocks composed of 115 DUs. Specific instrumentation is 
installed in the so-called Calibration Unit, of which a few units will be 
deployed. In order to facilitate and speed up the deployment of the DUs, 
a custom system has been developed by KM3NeT. The DU is rolled up 
in a small, re-usable spherical launching vehicle, and, once deployed in 
the seafloor, the string unfurls to its full length with the buoyant launch-
ing vehicle rolling up to the surface [14]. Currently, almost 40 DUs 
have been deployed and are taking data [15]. The PMT signals are con-
verted into Low Voltage Differential Signals (LVDS)1 by the PMT base 
boards. The LVDS duration is equal to the time the PMT signal exceeds 
a preconfigured threshold, called Time over Threshold (ToT). The LVDS 
signals are conducted to the CLB by an aggregation board called Signal 
Collection Board (SCB). The resolution of the reconstructed neutrino 
trajectory in the detector depends on the accurate measurement of the 
arrival time of the light on the optical sensors as well as the precise de-
termination of the position of the sensors. Precision of one nanosecond 
1 https://www .t10 .org /ftp /t10 /document .95 /95 -268r0 .pdf.

https://doi.org/10.17632/s847hpsns4.1
https://www.t10.org/ftp/t10/document.95/95-268r0.pdf
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Fig. 1. Artist view of KM3NeT. The illustration is not to scale. The sunlight at 
the bottom of the sea is only for artistic purposes as it will not reach the depths 
at which the KM3NeT telescopes are installed.

on the arrival time and better than 20 cm on the position of the light 
sensors is mandatory in order to achieve the required reconstruction 
performance in the detector. Therefore, time and position calibration 
of the telescopes are critical [6]. The synchronization of the DOM is 
performed in the Field Programmable Gate Array (FPGA) of the CLB by 
means of the White Rabbit protocol [16,17], which allows for data com-
munication and synchronization using the 1 Gbps optical link available. 
The identification number of the temperature sensor controlled by the 
White Rabbit protocol is used to generate a unique Medium Access Con-
trol (MAC). The optical network architecture is based on a broadcast 
optical downlink, while the uplinks are independent communication 
channels [18]. The optical network architecture of the telescope has 
evolved to point-to-point connections, requiring a modification of the 
embedded software. The principle behind the acquisition in KM3NeT 
is the all-data-to-shore concept, which follows the same principle as in 
the ANTARES experiment [19]. Through this concept, all PMT signals 
are sent to the control station on the shore, where the triggering pro-
cess is carried out on a processor farm. The arrival time and the ToT of 
the LVDS signals coming from the PMT bases are determined, with one 
nanosecond resolution, by the Time to Digital Converters (TDCs) [20]
implemented in the FPGA of the CLB. The acquisition data is organized 
in time frames, which are denominated timeslices, with a default dura-
tion of 100 ms. The TDCs timestamp the arrival time with the number of 
nanoseconds after the start of the timeslice. In a later stage, a gateware 
state machine [21] packs the TDC data into jumbo frames (Ethernet 
frames with more than 1500 bytes of payload, the limit set by the 
IEEE 802.3 standard), relating the timestamp to the UTC time of the 
start of timeslice. Once completed, the jumbo frames are routed to the 
specific port of the IPMUX (IP Multiplexer), from where they are sent 
to the shore station via the White Rabbit PTP Core. The detectors are 
conducted by the Detector Manager [22]. This system implements the 
general Control Unit state machine of the detector, which is responsible 
for setting the input parameters for all DOMs and drives the embedded-
software replica state machine managing the DOMs. 

The embedded software provides the framework to operate the ac-
quisition system at the DOM in synchronization with all other DOMs. 
The first generation of the KM3NeT firmware was in development since 
2012 and was deployed at the beginning of 2016. Since 2019, the Next 
Generation (NG) Firmware is under development, implementing many 
improvements with respect to the first generation, both in project se-
mantics and program architecture.

The scope and goals of the embedded software are presented in 
Section 2. The hardware environment where the embedded software 
runs in KM3NeT is introduced in Section 3. A description of the CLB 
firmware and the main processor where the embedded software runs is 
given in Sections 4 and 5. Section 6 is dedicated to the architecture of 
the embedded software. The kernel and the hardware abstraction layer 
4

are presented in Section 7, while the network stack is presented in Sec-
Computer Physics Communications 296 (2024) 109036

tion 8. The application implementation is detailed in Section 9, while 
the conclusions are discussed in Section 10.

2. Scope and goals

The FPGA contains two embedded processors, one LatticeMico32 
(LM32)2 that incorporates the White Rabbit core and a second LM32 
added in the KM3NeT logic. The White Rabbit LM32 software has been 
developed by the White Rabbit Collaboration while the KM3NeT Collab-
oration has developed the embedded software adapted to the detector 
network topology. The second LM32 controls the DOM. The main tasks 
performed by embedded software are:

• initialize, control, and monitor the hardware;
• execute the commands sent by the shore station;
• align the execution of the program with the Detector Manager Con-

trol Unit;
• send diagnostic information back to shore;
• apply firmware updates.

The embedded software will be used in more than 6000 nodes. 
The KM3NeT telescopes are a heterogeneous detector and there is 
not a single firmware version for all its modules. The firmware com-
prises three main different aspects that have to be taken into ac-
count:

1. The hardware-specific FPGA bit-file for the different versions of the 
CLB (v2 or v4). In addition to the version modifications, there are 
minor hardware modifications in the sensors that should be taken 
into account during operation.

2. The White Rabbit embedded software for either a KM3NeT custom 
version or standard White Rabbit.

3. The CLB application software can be either DOM, DU-Base, Cali-
bration Unit-Base or Golden. The last one is a fail-safe image to be 
used only at start-up. The DU-Base software is a modification to al-
low the use of the CLB in the Base module of the DUs, where it 
acts as the controller node of the DU. In a similar way, the CLB is 
used in the Calibration Unit. A flavor of the CLB software is used 
to control and monitor the status of the CU.

The embedded software has to be able to deal with future modifi-
cations on the hardware, changes in the network architecture and new 
applications, while providing a global functionality to the whole detec-
tor in a seamless way. One of the main constraints in KM3NeT is that 
the detector is not accessible for maintenance. The embedded software 
has been designed to provide a set of tools with the sufficient level of re-
liability to be able to recover hung-up nodes and with enough flexibility 
to diagnose non-functional elements. Power and cost budget limitations 
have been other criteria for the design of the embedded software and 
the hardware resources to operate it.

3. KM3NeT acquisition electronics

In this section, the different acquisition boards which are controlled 
by the KM3NeT embedded software are detailed.

3.1. PMT base board

The PMT base board is responsible for both the generation of the 
high voltage required by the PMT and the digitization of the PMT sig-
nals [23,24]. Before being digitized, the PMT signal is amplified in a 
preamplifier. One of the main components of the PMT base board is 

2 https://www .latticesemi .com /en /Products /DesignSoftwareAndIP /

IntellectualProperty /IPCore /IPCores02 /LatticeMico32 .aspx.

https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
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a comparator, which provides a high-level logic signal when the PMT 
output exceeds the comparator limit, which is set via Inter-Integrated 
Circuit (I2C)3 by the embedded software. The High Voltage (HV), which 
is remotely configured via I2C, is generated independently on each of 
the PMT base boards. This allows the individual gain of the PMTs to be 
adjusted to equalize the response to photons and provide a ToT value 
of around 26 ns for the detection of a single photoelectron. The HV 
value can be remotely adjusted in a range from −1500 to −700 V. The 
output of the voltage multiplier circuit is used to power the PMT dyn-
odes.

3.2. Signal collection board

The Signal Collection Board (SCB) is the board that collects the LVDS 
signals coming from the PMT base boards, and conducts them to the 
TDCs implemented in the CLB. The SCB also transfers the I2C commands 
from the CLB to the PMT base boards to monitor and control the PMTs. 
An I2C controllable complex programmable logic device reads the cur-
rent sensors and can disable the digital clock to eliminate possible 
interferences on the PMT signals. The acoustic sensor is also connected 
to the CLB through one of the SCB.

3.3. Power board

The power board provides power to the entire DOM, including 
PMTs, acquisition electronics and instrumentation. The DOM is pow-
ered by an external 12 V that is input to power board inside the DOM. 
Different regulated voltages (1, 1.8, 2.5, two 3.3, and 5 V) are generated 
from this input using DC/DC converters. In addition, the Power Board 
provides another output, configurable via I2C, which can be set from 0 
to 30 V the nanobeacon [25], a time calibration device housed in the 
DOM. One of the functions of the power board is to provide the start-
up sequence of the FPGA voltages. For this purpose, the Power Board 
incorporates a sequencer that provides the desired voltage sequence. 
Another feature includes a hysteresis loop that prevents instabilities 
during start-up. The power board regulators are activated only when 
the input voltage exceeds 11 V, while they are deactivated when the 
input value falls below 9.5 V. This prevents fluctuations in the power 
board regulators.

3.4. Central logic board

The Central Logic Board (CLB) is the main electronic board of the 
KM3NeT acquisition system. The latest version of the CLB is shown 
in Fig. 2. The main component of the CLB is an FPGA from the Xil-
inx Kintex-7 family, chosen for its relatively low power consumption, 
less than 4 W in normal operation, and for being cost effective in re-
lation to its speed. Other relevant components are a flash memory, 
which communicates via Serial Peripheral Interface (SPI)4 with the 
FPGA and stores four of the FPGA images together with the CLB con-
figuration parameters; voltage controlled oscillators, which provide the 
clock signals needed for the White Rabbit protocol; and two “press-fit” 
connectors, which provide a solid mechanical and electrical connec-
tion between the CLB and the SCBs. The PMT base generates LVDS 
signals after processing the electrical pulses from the PMT. The SCBs 
receive these signals and forward them to the CLB, where they are dig-
itized (i.e. timestamped) by the TDCs implemented in the FPGA with 
a resolution of 1 ns. After collecting timestamps of all PMT base LVDS 
inputs, the data acquired by the TDCs are sent to the shore control 
station for further processing and storage. The CLB also incorporates 
a compass and an inclinometer, three temperature sensors, and a hu-
midity sensor. In addition, it provides a connection for the nanobeacon 

3 https://i2c .info /i2c -bus -specification.
4 https://www .analog .com /en /analog -dialogue /articles /introduction -to -spi -
5

interface .html.
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Fig. 2. The latest version of the CLB(v4). The embedded software runs on the 
FPGA. The most important elements of the CLB, apart from the FPGA, are the 
optical transceiver, the SCB connectors, the White Rabbit oscillator system, and 
the instrumentation.

and for the piezo acoustic sensor. The control of the CLB is achieved 
through one of the processors embedded in the FPGA programmable 
logic.

4. CLB firmware

The firmware runs on the CLB FPGA and its main components are:

• two embedded LM32 processors: one inside the White Rabbit PTP 
core that implements the White Rabbit protocol; the second one 
controls and monitors the CLB;

• the TDCs, which digitize the PMT signals that arrive at the CLB;
• the IPMUX, which collects the data from the TDCs and the moni-

toring data generated by the LM32, and sends them via Ethernet to 
the shore control station;

• the multiboot core, which allows the secure remote configuration 
of the FPGA firmware.

The architecture of the firmware is displayed in Fig. 3.

5. LatticeMico32 soft processor

A soft processor was chosen for the control of the CLB. The two 
main reasons for this choice are the possibility to integrate it tightly 
with the acquisition firmware, and the increased reliability. The de-
crease of speed with regard to physical processors was not a critical 
point.

Since the WR collaboration selected the LM32 [26] to be imple-
mented in their White Rabbit PTP core, it was decided to select the 
same processor for implementing KM3NeT specific control and moni-
toring. The LM32 IP core has been developed by Lattice Semiconductor 
and it is available under a free IP license. It has a 32-bit Harvard-RISC 
architecture with a reduced set of instructions and separated instruction 
and data buses, with a unique address space. The LM32 implements a 
totally bypassed and interlocked pipeline of six stages, and the arith-
metic operations are done register to register. The architecture of the 
LM32 is shown in Fig. 4. Using the same model of soft processor simpli-
fies both code development and maintenance. The LM32 is open source, 
it can be ported to FPGAs of different vendors and it is well documented 
with an existing tool chain. It also allows JTAG access, which is used in 

KM3NeT to provide debugging support and communications with a flex-

https://i2c.info/i2c-bus-specification
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
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Fig. 3. Block diagram of the CLB. Optics, acoustics, instrumentation, front-end firmware and all the interfaces are shown.
ible bus, such as Wishbone.5 Another advantage, critical in KM3NeT, is 
the use of few FPGA resources. An LM32 uses around 2000 logic cells 
of the XC7K160T FPGA, about 1.3% of the total logic cells [27].

5.1. Wishbone bus protocol

The LM32 uses the Wishbone Bus protocol [28]. The Wishbone Bus 
definition has been done by the OpenCores organization on an open-
source basis, being B4 the latest version released and the one used in 
KM3NeT. Wishbone Bus provides a robust and portable bus standard, al-
lowing for the connectivity with various IP cores. It connects the LM32 
with its peripherals. In particular, two Cross Bar Switches (CBS) are 
used. The first one allows for connecting with the White Rabbit PTP 
core. The dual memory port and the second CBS give access to all the 
peripherals and all the acquisition IP cores. The CBS contains a parallel 
Wishbone Bus used by the Message Signalled Interrupt system to trig-
ger interrupts or exchange short messages. An example of the Hardware 
Description Language (HDL) implementation of Wishbone Bus is found 
in Listing 1 and Listing 2 where the slave HDL code for the Wishbone 
register access and the register map, are presented.

5.2. Peripherals and acquisition IP cores

The LM32 controls a set of peripherals and acquisition IP cores. In 
order to do so, a map of addresses is generated. The peripherals and IP 
cores connected to the LM32 are the following:
6

5 https://cdn .opencores .org /downloads /wbspec _b4 .pdf.
• General Purpose Input Output (GPIO): 16 GPIOs are available for 
various tasks, including enabling power rails for sensors and man-
aging a watchdog. While debug boards allow control over LEDs and 
switches, these components are not included in mass-production.

• Timer: A timer is available for the peripherals. Several counting 
modes are available as well as a prescaler.

• Universal Asynchronous Receiver-Transmitter (UART): Two UARTs 
have been included in the acquisition system. Via WB, it is possible 
to set the baud rate, the number of data bits as the parity.

• Serial Peripheral Interface (SPI): The SPI is used to access the SPI 
flash memories, where the FPGA images, the configuration param-
eters and the debug logs are stored.

• I2C: Five I2C buses are used. The configuration and readout of the 
sensors housed in the CLB, as well as the configuration of the PMT 
bases, are done via I2C.

• TDCs: The TDCs sample the signals from the bases of the PMTs. 
They are implemented, one per PMT, in the FPGA of the CLB. A 
TDC channel measures both the arrival time of the pulse and the 
ToT, using the time provided by the White Rabbit core. The core 
of the TDCs produces 48 bits per event. The eight most significant 
bits are used for the identification of the PMTs, the next 32 encode 
the arrival time of the event with respect to the timeslice start and 
the last 8 bits encode duration. The events are sent to the state 
machine which also organizes the acquisition of TDCs in timeslices. 
The FPGA clock system is derived from a 25 MHz quartz oscillator. 
The clock signal is transferred to a digital Phase-Locked Loop (PLL) 
that generates the 62.5 MHz system frequency. The White Rabbit 
protocol adjusts the phase and frequency of the system clock speed 

from the FPGA to the reference master clock. Finally, the adjusted 

https://cdn.opencores.org/downloads/wbspec_b4.pdf
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Fig. 4. Architecture of the LM32 soft processor where the embedded software runs.
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entity tdc_master_top

- ...
port (

- wishbone signals (for reading)
- master clock input
wb_clk_i:in std_logic;

- lower address bits
wb_adr_i:in std_logic_vector(2 downto 0);

- Databus input
wb_dat_o:out std_logic_vector(31 downto 0);

- Write enable input
- ......

);

end entity tdc_master_top;

Listing 1: Details of the definition of the wishbone register access in the 
TDC HDL top code.

clock is injected into the FPGA PLL to generate the two 250 MHz 
clocks, identical but shifted 90 degrees in phase. The input of the 
TDCs is oversampled to one nanosecond using the rising and falling 
edges of the two 250 MHz clocks.

• TDC State Machine: The core of the state machine orchestrates the 
data acquisition of the CLB. It is responsible for generating the peri-
odic start of the timeslice signal. This signal is synchronized to the 
start of the UTC second and is repeated at the beginning of each 
period. The acquisition synchronizes to the timeslice start signal 
and the acquired data are segmented and temporally referenced 
with respect to it. The state machine is responsible for collecting 
the acquired data and concatenating them to the UTC time of the 
timeslice start, called super time. Once processed, the acquired data 
are distributed to the IPMUX. The data is sliced into frames in such 
a way that it can be packed into jumbo frames. A header is pre-
pared with metadata such as the package identifier and the run 
number.

• IP/UDP Packet Buffer Stream Selector: The packets created by the 
state machine are sent to one of the input ports of the IPMUX, 
which acts as a selector for the packet buffer. The IPMUX has differ-
7

ent input ports for several data sources: TDCs, acoustic acquisition, 
begin

if (wb_clk_i'event and wb_clk_i='1') then
case wb_adr_i is
-enable channels
when "001" => wb_dat_o <= rtdc1;

-Veto value
when "010" => wb_dat_o <= rtdc2;

-enable veto
when "011" => wb_dat_o <= rtdc3;

-enable multihit
when "100" => wb_dat_o <= rtdc4;

-almost_full_offset

when "101" => wb_dat_o <= rtdc5;

-min ToT
when "110" => wb_dat_o <= rtdc6;

- ....
end case;

end if;

end process assign_dato;

Listing 2: Details of the register mapping. Write access case.

monitoring, and slow control channels from the LM32. The IPMUX 
adds a UDP header for each data packet from these sources before 
transferring them to the White Rabbit core endpoint, via which 
they are sent to the shore control station. The data type (optical, 
acoustic, or monitoring) is determined at the shore station by the 
port origin. The IPMUX is a Wishbone Bus slave of the LM32, so it 
can be configured remotely.

• Multiboot: When the FPGA is started, it configures itself by load-
ing the first valid image found while scanning the SPI mem-
ory. Up to four images can be saved in the flash memory, re-
serving enough space for storage of CLB configuration parame-
ters.

• Nanobeacon: The nanobeacon trigger signal is generated in the 
FPGA. It can be configured to change the period, the number 
of flashes per timeslice, as well as start time of the trigger. All 
these parameters are set by the embedded software via Wishbone 

Bus.
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6. Software architecture

The embedded software running on the CLB is a C-based bare metal 
application and thus uses no real-time embedded operating system. The 
embedded software application is loaded into the RAM of the KM3NeT-
specific LM32 at FPGA configuration. The application requires less than 
256 kB of RAM, including heap and stack. The software architecture 
consists of two top-level layers: system software and application. The 
system software layer is the same for each kind of firmware image. 
This layer contains OS-like features, such as a simple cooperative mul-
titasking scheduler, a firmware update unit, various peripheral drivers, 
a UDP-based network stack, and support utilities for logging and error 
handling. The application layer contains a software state machine, slow 
control command handling, debug shell command implementation, and 
the KM3NeT core application code composed of a number of subsys-
tems.

The state machine defines the state of the application and drives 
the application. Implementing the application software as a state ma-
chine ensures that the program will always be in an unambiguous and 
consistent state. The state machine can be navigated by issuing events 
over slow control from an external driver such as the Control Unit [22]. 
Additionally, some events are issued autonomously by the embedded 
software, such as on error occurrence or during system start-up. Appli-
cation code can be attached to state machine transitions or to periodic 
timer events. As previously mentioned, the application code is grouped 
into subsystems. A subsystem is a unit of code and data responsible for 
the operation of a specific part of the acquisition electronics. It con-
trols hardware peripherals, through the associated driver abstraction. 
The following subsystems are defined:

• System: application function not specific to other subsystems.
• Optics: control of PMTs and TDCs (only in DOM firmware).
• Acoustics: acoustic sensor control and Audio Engineering Society 

(AES) protocol handling.
• Instrumentation: sensor readout, generally over the I2C bus (tem-

perature, humidity, etc.).
• Networking: IPMUX control and White Rabbit monitoring.
• Base: DU-Base module control (only in DU-Base firmware).
• Calibration Unit Base: CU-Base module control (only in CU-Base 

firmware).

By registering C-functions to state transitions, a subsystem can con-
trol the hardware at specific points in the state-machine graph. For 
example, the start event moves the state machine from Ready to Run-
ning. In this transition, the data-acquisition hardware is enabled to 
start data taking. The CLB slow control from remote is implemented by 
means of a custom protocol, on top of UDP. The slow-control protocol 
consists of three layers. The highest layer is called the Message layer 
and binds to C-functions at the application level. Messages have a type, 
e.g. retrieve firmware version or state-machine event, but also a class, be-
ing either Command, Reply, Event or Error. The combination of type 
and class specifies the format and interpretation of the message pay-
load. Slow-control messages are the primary method for remote control 
and have functions for moving the software state machine, requesting 
the status, and many others. Messages are bundled together at the Mes-
sage Container Format (MCF) layer, binding multiple messages into a 
single payload for efficiency. The lowest slow-control layer is Simple 
Retransmission Protocol (SRP) and is responsible for transmission con-
trol. It implements a simple packet-based retransmission scheme where 
the packet contains an identifier ordinal which must be acknowledged 
within a specific time window and is otherwise retransmitted.

6.1. Image types and multi-stage boot

The SPI flash contains up to four FPGA images. The first image is the 
8

Golden image which should not be changed unless absolutely required. 
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The Golden image is always the first image to load, and its primary 
purpose is to start the run-time image. For this reason, the Golden image 
is a small image, containing only the basic necessities for booting the 
second image, which could either be the DOM, Base, or Calibration Base 
image. The Golden image can also update the firmware on any of the 
other locations. The Golden image waits for 30 seconds after obtaining 
an IP address such that the default boot procedure can be aborted in 
case of failures on the other images.

While generally the second image is started from the Golden image, 
the CLB can be configured to automatically start the third or fourth im-
age. The persistent storage layout, including the FPGA images, is shown 
in Fig. 5. While CLB v2 [29] contained a single SPI flash chip for stor-
age and images, the CLB v4 [30] features two flash chips for better 
separation of responsibilities and improved robustness. In addition, the 
Golden image is protected against accidental overwrite by using the SPI 
flash block protection features, and requires a password to unlock.

6.2. Build environment and procedure

Project improvements include the usage of modern development 
methodologies and tools such as control version repositories (Global 
Information Tracker (GIT) with sub-modules), Continuous Integration/-
Continuous Deployment (CI/CD) and Docker containers. These tools 
and methodologies are used for a consistent and reusable build envi-
ronment.

The main repository contains software, gateware and hardware files. 
The software directory contains the software sources and build files 
to generate the software binaries for different applications (DOM, DU-
Base, CU-Base and Golden) and hardware versions (CLB v2 and v4). 
Additionally, it can execute unit tests and build software documenta-
tion. A special branch of the White Rabbit PTP core, maintained by 
KM3NeT, is included as a submodule within the software directory. 
This branch contains the broadcast version of the White Rabbit PTP 
core [18,31]. The gateware directory consists of scripts and sources 
used to build FPGA images for different hardware versions (CLB v2 
and v4). Since the White Rabbit PTP core is a crucial component of 
the KM3NeT firmware, the White Rabbit gateware GIT repository is in-
cluded as a submodule, and the HDL files within it are utilized in the 
gateware design.

The root directory houses the super-build script, responsible for 
orchestrating the gateware and software sub-builds and merging the 
resulting binaries into distinct firmware images aligned with specific 
applications and hardware versions.

CMake is used as the primary build tool. The entire project can be 
built inside Gitlab-CI/CD, using a KM3NeT-specific Docker container. 
Docker containers allow for isolating and simplifying the creation of 
environments that contain all the libraries, dependencies and binaries 
to execute programs. In KM3NeT, the containers facilitate the process 
of compiling the LM32 code used by the CLBs.

There are two contexts: First generation, based on the SVN reposi-
tory with ISE Xilinx tools and LM32 compiler tool chain; Next genera-
tion, based on the GIT repository with Vivado tools and LM32 compiler 
tool chain.

The creation process of the toolset is based on the Makefile to com-
pile recent tool versions. The container can be created in three different 
ways:

• Ultrafast: using the Docker container image with CentOS 7 and all 
the default libraries,

• Fast: using the prebuilt toolchain with CentOS 7,
• Complete: personalized toolchain.

6.3. Layering

A high-level stack of the layers of the embedded software running 

on the KM3NeT-specific processor is presented in Fig. 6. The application 
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Fig. 5. Persistent storage layout, containing both FPGA images and other persistent storage, grouped by CLB hardware version.
Fig. 6. High-level stack of the software operational on the KM3NeT specific 
LM32. The application and the system software layers are shown.

layer performs user-specific functions. In the KM3NeT case, this primar-
ily concerns executing commands from the shore station and controlling 
the detector hardware through the system software layer-provided ser-
vices. This layer manages functions like the system start-up, hardware 
control and resource allocation. However, while the system software 
layer serves to facilitate, it does not define the application itself. It is 
the responsibility of the application layer to control the system software 
layer in order to provide specific functionalities. In the next Sections, 
each of these functions will be explained in more detail.

7. Kernel

The kernel is responsible for OS-like functions such as system start-
up, scheduling, and resource management. It also contains the hardware 
abstraction layer including drivers for all controlled peripherals.

7.1. Start-up

The LM32 does not contain an interrupt vector table. Instead, it 
assumes that interrupt handlers are present at specific offsets in the 
memory, spaced 8 instruction words apart, starting from address 0. The 
reset handler is the first interrupt handler and is located at memory 
address 0, which is also the first instruction that the LM32 executes 
9

after a power-up or a reset. A C file contains the interrupt handlers 
and support code. It also contains code for initializing the C-code vari-
ables and jumping to the main function. A second file contains the 
LM32-specific functions, such as requesting the cycle counter, and dis-
abling/enabling Interrupt Requests (IRQs). In addition, it also contains 
the IRQ handler code, responsible for handling all IRQs and execut-
ing the peripheral-level IRQs. A third file contains the main function, 
which initializes the system integrity checks, basic system bus con-
trollers, such as UART, I2C and SPI controllers, and OS services, such 
as persistent logging and the firmware update system. A call is made to 
the application-specific initialization before handing over responsibility 
to the scheduler.

7.2. Scheduler

The KM3NeT embedded software does not use a real-time operating 
system. Instead, it uses a simple cooperative scheduler. This scheduler 
can be provided with tasks which take the form of a function pointer. 
The function signature can have no return value and no argument. On 
registration, the scheduler assigns an identifier to the task, which can 
be used to refer to it. A task can be scheduled to run on request and/or 
periodically. On registration, a task may be set as high-priority, indicat-
ing that this task should be executed before any normal-priority task, 
as multiple tasks may be pending for execution at a given time. The 
scheduler is not preemptive, and once a task is started, it must run to 
completion, thus a task may stall the scheduler. All tasks must therefore 
limit their execution time and implement a timeout scheme when wait-
ing for resources. Once the embedded software start-up is completed, 
the non-returning function schdExec() is called which executes the 
scheduler internal main loop. Besides scheduled tasks, the scheduler 
can also be provided with idle tasks. These tasks are executed repeat-
edly as long as there are no scheduled tasks pending for execution. One 
important idle task is the software integrity check function. This is a 
best-effort code corruption detection function running a 32-bit Cyclic 
Redundancy Check on the code and on constants. It also implements a 
stack-overflow detection through memory markers.

Another important function of the scheduler is to off-load IRQ han-
dling to the main loop. Where possible, an IRQ only incites the sched-
uler to run a specific task in the main loop. This limits the required 
critical sections and reduces code complexity. As the scheduler is coop-
erative, the incited task will need to wait until currently running tasks 
complete, before the IRQ task can be run. This is different from pre-
emptive schedulers, where the IRQ could trigger a high-priority task 
which can temporarily suspend the currently running thread. For this 
reason, IRQ handling tasks are generally put in the high-priority group, 

allowing as quick as possible handling of the incited task.
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if (dev->CMDSTS & I2C_STS_ARBLOST)

{

return errSet(E_BUS, "i2c_err", I2C_ERR_ARB_LOST);
}

Listing 3: Error handling code for the I2C arbitration lost condition.

if (!sfTxRx(dev, dta, dta, 1 + len))

{

return errTrace("sf_reg", reg);
}

Listing 4: Adding the serial flash register address to the error generated 
inside sfRead.

7.3. Error handling

Most errors that can occur during run-time are handled using the er-
ror module. The convention of fallible functions is to return a Boolean 
value indicating whether the operation was successful (True) or failed 
(False). In addition, this function is expected to set a global error code 
using the errSet(ERROR_CODE, ...) pre-processor macro, much 
like errno is used in the POSIX standard [32]. The macro adds the 
line and unit file to the error for increased traceability, and also al-
lows for additional contextual arguments. For example the code from 
the I2C driver responsible for handling the arbitration lost condition is 
shown in Listing 3. This condition occurs when the bus master loses 
control over the bus. Though the general error is a bus error, indicated 
by E_BUS, additional context is added by specifying the I2C specific 
error code I2C_ERR_ARB_LOST.

The error module also supports adding context after the error has 
been generated. In this way, the context can be added at multiple lev-
els. Listing 4 shows a snippet of code from the serial flash driver in 
which additional context is added to an error condition. At the appli-
cation level, the error including the context information is logged, and 
generally, the application is moved to a safe state in which the error 
can be retrieved and the application reset. This procedure is discussed 
in Section 9.2.

7.4. Firmware update

Users can update any of the four firmware images located in the 
SPI flash remotely, and any of the CLB firmware images has the ability 
to update the system. To update the Golden image, an additional un-
lock command is required, removing the hardware protections in place. 
Note that in most cases updating of the Golden image is not needed, and 
is discouraged. Furthermore, overwriting any existing image is only al-
lowed if there is at least one more valid image present in the flash 
memory. If during programming there is a power failure this safe guard 
ensures at least one loadable image is available as fallback.

Before updating, the firmware-update application checks hardware 
and application compatibility. To prevent a partially updated image 
from being read by the FPGA configuration state machine, writing of the 
image is executed in a specific order. First, the location of the FPGA sync 
header is cleared. In case a previous FPGA image was present, it will 
no longer be recognized by the FPGA reconfiguration state machine. 
Then, the FPGA image is written page by page from back to front. This 
causes the sync header to be the last page written. By following this 
approach, power loss during flashing will not result in the configuration 
state machine reading a partial image, thereby mitigating the risk of 
rendering the FPGA inoperable. Consequently, the configuration state 
machine will continue its search until it locates a valid image, which 
10

will then be loaded.
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7.5. Inter-process communication

The KM3NeT design contains two processor cores, introduced in sec-
tion 4. In order to facilitate communication between them, a hardware 
mailbox implementation is present. This mailbox ensures a synchro-
nized communication by implementing a small dual-port RAM memory, 
mapped to both cores. A protocol is implemented as a memory-mapped 
C structure defined in a header shared between the two applications, 
each running on a core.

The C structure consists of a status section, in which the White Rab-
bit PTP core can write information such as state and sensor data. The 
second section contains a command/reply framework. For this frame-
work, the KM3NeT core initiates requests to the White Rabbit PTP core 
by loading a command into the shared structure. The White Rabbit core 
executes the command and sets a reply into the structure. Finally, it 
clears the command field, acknowledging the command has been han-
dled.

For instance, this command/reply semantic is employed to modify 
the auto-negotiation mode. Additionally, it is utilized for wavelength 
tuning, enabling the adjustment of the transceiver’s wavelength.

7.6. Hardware abstraction layer

The platform layer contains a hardware abstraction sub-layer 
marked Drivers in Fig. 6. This layer offers a high-level API for on-
and off-FPGA peripherals. On-FPGA peripherals include the DAQ de-
vices such as the TDCs, and AES, but also the SPI and I2C master bus 
controllers. Off-FPGA component support includes environmental and 
compass sensors.

For some functions of the embedded software, there are interfaces 
known as modules. These modules combine multiple low-level drivers 
into a unit specialized on an aspect of the CLB. For example, the power

module provides annotated access to the supply rail sensors, controls 
the voltage to the LED beacon, and toggles the external sensor power 
rails. The module accesses various I2C peripherals and GPIO peripherals 
to perform its function.

8. Network stack

KM3NeT contains an in-house developed small-footprint UDP/IP 
stack, called ministack, responsible for handling all the slow control 
communications. To limit software complexity and memory require-
ments, no TCP/IP is used. To compensate for the lack of delivery guar-
antee of UDP, a simple reliability layer use SRP, has been added on 
top of UDP. This protocol allows for retransmission of lost packets. On 
top of SRP, the MCF may bundle multiple messages using MSG format 
for increased protocol efficiency. The three facilitating packet protocol 
formats are shown in Fig. 7 and are explained in sections 8.3 and 8.4. 

8.1. White Rabbit MAC/IPMUX interface

Incoming Ethernet packets from the detector network are routed 
through the White Rabbit MAC fabric. A hardware-level packet filter 
processes each packet and flags it according to a simple program loaded 
into the filter. A packet may be dropped, routed to the PTP core for tim-
ing processing, or sent onward to the IPMUX. The IPMUX then puts the 
received packet into a software-readable FIFO and provides an inter-
rupt to the software to signal that a packet is ready. Additionally, there 
is an out-going FIFO used by the software to send out-going network 
packets.

8.2. Ministack

The ministack is a lightweight UDP stack developed in-house. In ad-
dition to its role in parsing and formatting UDP packets to and from the 

IPMUX, the software also incluses a BOOTP handler for IP acquisition, 
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Fig. 7. The UDP-based CLB network stack consisting of three facilitating packet types.
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ARP functionality for MAC address resolution and provisioning, and 
ICMP support for responding to ping packets. The UDP packet content 
is forwarded to the higher layer, which in this case is the SRP protocol.

8.3. Simple retransmission protocol

SRP implements a simple packet-based re-transmission scheme 
where each packet contains an identifier ordinal (s-id) which must 
be acknowledged by the remote side by replying with an SRP message 
having the s-id filled in either the ack0 or ack1 field (See Fig. 7). This 
must occur within a 200 ms window and is otherwise re-transmitted. If 
no acknowledgment is received, the message is sent again with a small 
delay between each attempt, up to a maximum of 6 times, after which 
it is deemed lost. An SRP reply may in addition also contain a new SRP 
message; this is indicated by bits in the flags field.

8.4. Message container format

The MCF packet bundles multiple application-level messages to-
gether but also adds meta-data to each message. When created, each 
MCF message contains the system up-time in milliseconds in the base 
time field. Up to 64 messages (MSG packets) may be bundled in one 
MCF packet. Each message contains the creation time (base time+
Δtime), a class, type, length (len) and message-id (m-id), as layed-
out in Fig. 7. The class + type identifies the format and meaning 
of the application-level data. A class encodes the transaction mode of 
the message which may be command, reply, event or error. The 
type identifies the message function. For example, to retrieve the sys-
tem build data and revision, the remote side sends a message of class
command with type SYS_DATEREV and no payload. The CLB will reply 
with a message of class reply (when successful) and the same type. 
This time the payload is the build date and software revision. Only the
error class has always a fixed encoding regardless of the type, con-
taining the error code and contextual information about the error. The
event class is a special message which does not expect a reply, and 
may be broadcast. Each message has a message identifier (m-id). This 
identifier allows tracking of command/reply transactions. The reply to 
a command must contain the same message identifier. This allows the 
binding of a reply to an earlier send command, facilitating up to 64 
transactions to be in progress at any time for a specific CLB.

9. Application implementation

9.1. Process variables

Process variables are a set of remotely-accessible variables for 
process control. In this case, the process to control is the CLB-
embedded application. All variables are defined in a JSON5 file 
(variables.json5). A custom generic template-rendering applica-
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tion, written in python (jinja2runner.py), is used to render the 
{

group : "ACS",

name : "ACOU_RES",

idx : 3,

type : "U8",

access: "RW",

tags : "C",

enum : {

"12_BITS": { value: 0, desc: "12 bit resolution" },

"16_BITS": { value: 1, desc: "16 bit resolution" },

"24_BITS": { value: 2, desc: "24 bit resolution 
(default)"↪

}

},

reset : "24_BITS",

desc : "Acoustic data resolution"
}

Listing 5: Snippet of the variables.json5 file defining the acoustic 
resolution options. The template rendering application uses this file to 
generate the C files needed by the embedded software.

variable definition file to an output file in a specific format depending 
on the provided Jinja2 [33] template as illustrated in Fig. 8. 

The variables.json5 file consists of a list of variable definitions 
as shown in Listing 5. All variables belonging to a group are loosely re-
lated to the subsystem they are part of. A qualified variable name is 
composed of a short group name and the variable name itself. In the 
case of Listing 5, the complete naming would be acs.acou_res or
ACS_ACOU_RES depending on the code generation template. Further-
more, each variable has an index idx (1 … 63), which becomes part of 
the variable identification number. Each variable has external access 
options, either read-write, read-only or write-only (coded respectively 
as, RW, R or W), and a type. Integer variable types are a combination 
of either ‘I’, for signed or ‘U’, for unsigned, and the number of bits 
(8, 16, 32 or 64). Other supported types are bool for Booleans and
f32 for IEEE-754 32-bit floating point values. A tags string contains a 
number of single characters, each indicating an additional option: C for 
configurable, D for deprecated and F for fallible. A variable marked as 
configurable can not be modified once the system has passed the con-
figure event. Deprecated marks a variable as no longer in use, though 
generally backward compatibility is supported for a number of versions. 
Fallible variables are variables which require an explicit validity tag, as 
their value may not be valid. Generally, this flag is used for external 
sensors for which readout could fail. The last option for each variable 
is the count (not shown in Listing 5) which indicates the number of el-
ements in this variable. When count > 0 this creates an array instead of 
a scalar. Only single-dimensional arrays are supported.

Optionally, an enumeration can be added to a variable using the
enum keyword, indicating the possible named values for this variable. 
The reset keyword indicates the value of the variable upon reset, and

desc adds a description to the variable. During the code generation, 
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Fig. 8. Illustration of the process for generating C-files and documentation files from the source variable definition file.

Fig. 9. Variable ID composition, including a summary of the sub-fields inside the identifier. The three sub-fields are group, type and option. The group sub-field 
refers to the system to which the variable belongs. The type sub-field defines the data type and size of the variable. The option sub-field specifies the access right to 
the variable. The count sub-field specifies the number of scalar element in the variable.
the description is generally added as a comment. For each variable, a 
unique value is derived from some of the elements of the variable def-
inition (Fig. 9). The advantage of this approach is that the application 
can determine the properties, such size and type, of any variable, even 
through the variable may be unknown. The size 𝑠 can be determined 
for variable ID 𝑣id using

𝑠(𝑣id) = 2𝑣id[17..16](𝑣id[11..0] + 1) (1)

where 𝑣id[𝑚..𝑛] provides the unsigned integer value of bits 𝑚..𝑛 inside 
the provided variable ID, shifted such that 𝑛 is the least significant bit. 
By convention the least significant two bits of the type field, when 
raised to the power of 2, provide the size of the component type in 
bytes. When a process variable describes an array its maximum size is 
4096 (count = 4095) and the minimum is 1 (count = 0). In the latter 
case, the process variable is deemed to a scalar, thus arrays of a size 
less than 2 can not be encoded.

The variables.json5 file is exported in a separate shared

repository for sharing between various projects. The file is also used 
to generate a Doxygen reference, included in the firmware documenta-
tion.

For the embedded software, vars.c and vars.h are generated con-
verting the JSON description into structures for direct access inside the 
embedded software. An example can be seen in Listing 6 where the 
generated structure defining the acoustics subsystem is shown, part of
vars.h. 

For all fallible variables, an additional structure is generated to 
which the validity of the variable can be set. On reset, the validity of all 
fallible variables is set to false.

In the embedded code, process variables can be accessed using 
their structures. For example, acs.acou_chan provides access to 
12

the acoustic channel settings and can be set with plain C code, e.g. 
acs.acou_chan = ACS_ACOU_CHAN_TWO These structures are al-
ways readable and writable by the embedded software.

9.1.1. Remote access and monitoring

In addition to these structures accessible from the embedded code, 
the code generation also creates meta-data and a look-up table for re-
mote access. The meta-data are used by the access.c/access.h to 
provide high-level functions and allow variable introspection. Together 
with the buffer module, it allows for the serialization and deserializa-
tion of any process variable.

A remote client can read, write and subscribe to variables using the
MSG_CLB_GET_VARS2, MSG_CLB_SET_VARS2 and MSG_CLB_SUB_
VARSRATE2 message types respectively.

For some variables, such as sensor data, it is important to receive 
frequent updates. For this reason, there is a subscription system, allow-
ing periodic transmission of a subset of the process variables. When 
subscribed, each variable is sent using the EVT_CLB_UPDATE_VARS2
event with the configured interval, spanning from 1 to 127 s with a 
granularity of one second.

Whether variables are queried or sent using the subscription system, 
the format of the sent data is the same as shown in Fig. 10. The variable 
list contains a sequence of ID, flags, and value. The flags byte is used 
to communicate the valid state. For variables which are not fallible, the 
flags are always set to valid.

9.2. Software state machine

The application layer of the CLB has been implemented as a state 
machine (shown in Fig. 11). The state machine receives events, either 
internally generated, or from remote, and executes the code belonging 
to the associated state transition. When started, the state machine is 
in the Undefined state and the internal boot event is automatically 

issued. When successful, it will cause the system to enter the Idle state. 



Computer Physics Communications 296 (2024) 109036S. Aiello, A. Albert, S. Alves Garre et al.

Fig. 10. Format of variables returned either when using MSG_CLB_GET_VARS2 command or inside the EVT_CLB_UPDATE_VARS2 event (top), and when set using
MSG_CLB_SET_VARS2 (bottom).

Fig. 11. Block scheme of the software state machine. A description of the state machine is reported in the text.
Any critical error during the boot event transition will cause the issue 
of the fatal event, and will cause the system transition to the Fatal
state, which can only be left through a system power cycle or FPGA 
reconfiguration.

The events and states of the state machine are defined in statema-

chine.json5, and are used to generate the code required to run the 
state machine. Code can be executed on state entry, state exit, and state 
transition. 

9.3. Subsystems

The application code is grouped into subsystems. A subsystem is a 
unit of code and data responsible for a specific aspect of CLB operation. 
It controls the hardware peripherals associated with this aspect, gener-
ally on state machine events. Additionally it provides a comprehensive 
interface to through slow control commands and process variables. The 
different subsystems have been are described in Section 6.

For example, on the start event the state machine moves from Ready

to Running. On this transition the System subsystem enables the data 
acquisition hardware to start data taking.

9.4. Typical operation

The shore-located Detector Manager (DM), responsible for control-
13

ling the entire experiment, knows three high-level states: Off, On and 
Run. These states correspond to CLB states Idle, StandBy and Run-

ning, respectively (Fig. 11). Generally, the detector is taking physics 
data and will be in the Run state. This means the DM will move each 
CLB to the Running state regardless of the state it is found in. A run 
typically lasts for several hours, after which the DM stops the acquisi-
tion by moving all CLBs to the StandBy state and then to Ready and
Running again for the next run. In the last transition, the new run con-
figuration [22] is applied to all the CLBs under control.

After start-up, if there are no errors, the CLB will be in the Idle

state. Assuming the DM is not in Off state, it will send an init event 
to the CLB, causing the CLB to transition and calling the associated init 
functions in each subsystem. This will initialize the hardware required 
for data acquisition. If successful, the CLB will enter the StandBy

state. If the DM is in the Run state it will configure the CLB by first 
writing the configurable process variables, and then by issuing the
configure event. This event will cause the CLB subsystems bound 
to this event to check the prerequisites running and configure required 
hardware. If successful, the CLB will be in the Ready state, which is 
only transitional from the DM perspective. The DM will immediately 
issue a start event, causing the CLB to enable the hardware state 
machine, initiating data taking and moving the CLB to the Running

state.
When a run has ended, the DM will issue a stop event to all CLBs. 

When a new run is started, the CLB will be configured again, and will 

be brought into a running state as described previously. This sequence 
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// -------------------------
// Definitions for subsystem Acoustics
// -------------------------
#define ACS_ACOU_CHAN 0x40207000

//!< Enable both acoustic channels
#define ACS_ACOU_CHAN_BOTH 0

//!< Enable only channel 1 (default)
#define ACS_ACOU_CHAN_ONE 1

//!< Enable only channel 2
#define ACS_ACOU_CHAN_TWO 2

#define ACS_ACOU_RES 0x40307000

//!< 12 bit resolution
#define ACS_ACOU_RES_12_BITS 0

//!< 16 bit resolution
#define ACS_ACOU_RES_16_BITS 1

//!< 24 bit resolution (default)
#define ACS_ACOU_RES_24_BITS 2

//! Structure defining all process variables for subsystem 
Acoustics.↪

struct acs_s

{

/** Acoustics channel config */
uint8_t acou_chan;

/** Acoustic data resolution */
uint8_t acou_res;

};

typedef struct acs_s acs_t;

//! Provides access to all process variables of subsystem 
Acoustics.↪

extern acs_t acs;

Listing 6: Snippet of the generated code of vars.h defining the acoustic 
structure. This code is automatically generated by the template render 
application.

{ state : "StandBy",

entrystub : true,

ordinal : 2,

transits :

{ "reset" : "Idle",

"configure" : "PreReq_Mac"

}

}

Listing 7: Definition of the stand-by state, one of the ten states of the 
embedded software state-machine.

repeats during normal detector operation. The detector generally is only 
brought to Off during maintenance.

10. Conclusions

The embedded software of the KM3NeT acquisition electronics has 
been presented. In particular, the architecture of the embedded soft-
ware has been described as well as the tools and methods for building 
the environment, and for generating the process variables. The embed-
ded software has been successfully operated in DOMs and DU-Bases of 
almost 40 deployed DUs, with more than 20000 photomultipliers in-
stalled. It is also being operated in the tests of the last version of the 
CLB (v4) and the tests of new optical network architecture based on 
14

standard White Rabbit.
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