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A B S T R A C T

KM3NeT/ARCA is a Cherenkov neutrino telescope under construction in the Mediterranean sea, optimised
for the detection of astrophysical neutrinos with energies above ∼1 TeV. In this work, using Monte Carlo
simulations including all-flavour neutrinos, the integrated and differential sensitivities for KM3NeT/ARCA are
presented considering the case of a diffuse neutrino flux as well as extended and point-like neutrino sources.
This analysis is applied to Starburst Galaxies demonstrating that the detector has the capability of tracing TeV
neutrinos from these sources. Remarkably, after eight years, a hard power-law spectrum from the nearby Small
Magellanic Cloud can be constrained. The sensitivity and discovery potential for NGC 1068 is also evaluated
showing that KM3NeT/ARCA will discriminate between different astrophysical components of the measured
neutrino flux after 3 years of data taking.
𝑛
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1. Introduction

The KM3NeT research infrastructure [1] is comprised of two deep-
sea Cherenkov neutrino telescopes under construction in the Mediter-
ranean Sea: ARCA (Astroparticle Research with Cosmics in the Abyss)
located 3500 m below the sea level, off shore the coast of Capo Passero
(Sicily, Italy) and ORCA (Oscillation Research with Cosmics in the
Abyss) installed at a sea-bottom depth of ∼2500 m off shore Toulon
(France). ARCA will have an instrumented volume of about 1 km3 and
ts geometry is optimised to detect high-energy astrophysical neutrinos
bove ∼1 TeV, while ORCA is designed to study GeV neutrino physics
nalysing oscillation patterns of atmospheric neutrinos. The detection
rinciple for neutrinos1 in KM3NeT is based on the observation of
he Cherenkov light induced in the sea water by secondary charged
articles produced in the interaction of neutrinos inside or in the
urroundings of the detector. Given the excellent optical seawater
roperties, the experiment will reach unprecedented angular resolution
n the identification of neutrino sources.

In this paper, the detection performance of the full ARCA telescope,
oth for a diffuse neutrino flux and individual sources, are explored.
sing Monte Carlo simulations for all neutrino flavours, the energy-
ependent 90% confidence level (CL) sensitivity for ARCA is calculated,
xploiting both track-like and shower-like events. Track-like (referred
o as tracks) events are mainly due to charged current (CC) muon
eutrino interactions; shower-like (referred to as showers) events are
ostly due to neutral current and electron neutrinos charged current

nteractions.
For the track-like events, only upgoing events are considered, using

he Earth as a shield to reduce the atmospheric muon contamination.
hower-like events are selected from the whole sky, using a contain-
ent requirement in the fiducial volume of the detector in order

o limit the contamination from atmospheric muons and neutrinos.
his selected sample is used to test if ARCA is able to identify TeV
eutrinos from Starburst Galaxies (SBGs), either as a contribution to the
iffuse flux or as emission from individual sources. SBGs are galaxies
xperiencing intense phases of star formation activity, which leads to
n increased rate of supernova explosions. This enhanced activity is
xpected to accelerate cosmic rays up to ∼PeV energies and copiously
roduce gamma-rays and neutrinos [2–4]. In the diffuse flux analysis,
he SBG diffuse emission up to a redshift of ∼4 is considered [2]. In

the individual source analysis, the Small Magellanic Cloud (SMC), the
Circinus Galaxy [3] and NGC1068 [5] have been analysed.

The paper is organised as follows: in Section 2, the event simulation
and selection are outlined. In Section 3, the statistical analysis frame-
work is presented. In particular, in Section 3.1, the definition of the
sensitivity is discussed, while in Section 3.2, the differential limits are
introduced and compared with the integrated limits.

1 In this paper, the word neutrino is used to refer to both neutrinos and
ntineutrinos.
3

∫

2. Event simulation and selection

Neutrino event interactions in the proximity of the ARCA detector
are generated through the gSeaGen package [6]. The atmospheric muon
flux is simulated using the MUPAGE code [7]. Monte Carlo simula-
tions continue propagating charged particles emerging from neutrino
interactions and atmospheric muon tracks through the active volume of
the detector and reproducing the response of the front end electronics.
The simulated data stream is filtered and reconstructed with the same
algorithms used for real data. For this analysis, both upgoing tracks
and all-sky showers samples are used, following the event selection
discussed in [8]. For the final selection, two dedicated boosted decision
trees are trained in order to reject mis-reconstructed events in each
sample. The neutrino purity of the two final samples is 99% for tracks
and 61% for showers. Moreover, the selection preserves 95% of the sig-
nal neutrinos for tracks and 70% of the signal neutrinos for showers [8].
The final background distribution accounts for atmospheric neutrinos
and muons.

3. Analysis framework

3.1. Sensitivity definition

In this paper, a binned maximum likelihood ratio method is used
to evaluate the ARCA sensitivity. Following the formalism and the
notation of [9], the likelihood function is defined as

L =
∏

𝑖
𝑃 (𝑛𝑖, 𝜇𝑖) (1)

with𝜇𝑖 = 𝜆 ⋅ 𝜇𝑖
𝑠 + 𝜇𝑖

𝑏

where 𝑃 (𝑛, 𝜇) is the Poisson probability distribution (PDF) of observing
events with mean value 𝜇, 𝜇𝑠 is the expected number of signal

events, while 𝜇𝑏 is the expected number of background events. The
ndex 𝑖 runs over bins of reconstructed variables. For the following, the
vents are binned in reconstructed energy for the diffuse flux analysis
nd reconstructed energy and angular distance of the events to the
ource for the point-like analysis (see below for further details). The
ignal strength 𝜆 is left as a free normalisation parameter. Data samples
re simulated by means of pseudo-experiments (PEs) generation. The
rocedure consists of randomly generating events according to PDFs of
he signal and the background and then evaluating the test statistic (TS)

for each PE. The TS is defined as

TS =
L (𝜆̃)

L (𝜆 = 0)
(2)

here 𝜆̃ is the signal strength value which maximises the likelihood for
given PE. The 90% CL sensitivity is defined as the signal strength (𝜆90)

or which 90% of the signal is above the median of the background-only
istribution. Namely,
+∞

𝑑(TS|𝜆90) dTS = 90% (3)

TSm
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where TSm is the median distribution in the null hypothesis (only
background) and 𝑑(TS|𝜆90) is the PDF distribution of the TS for a
given 𝜆90 value. Generally, 𝜆90 is referred to as Model Rejection Factor
(MRF), because, when signal simulations are performed according to a
theoretical model, a MRF ≤ 1 indicates an effective 90% CL constraint
on that model. On the other hand, the model discovery potential (MDP),
also called the discovery flux, is defined as the minimum flux needed
for a discovery with 5𝜎 significance level in 50% of the cases.

∫

+∞

TS5𝜎
𝑑(TS|𝜆5𝜎) dTS = 50% (4)

where TS5𝜎 = 2.85 ⋅ 10−7 is the TS threshold corresponding to a
5𝜎 significance. This value is calculated using the one-sided Gaussian
approximation [10]. The final sensitivity is defined as

𝜙90(𝐸) = 𝜆90𝜙𝑠(𝐸) (5)

hile the discovery flux as

5𝜎 (𝐸) = 𝜆5𝜎𝜙𝑠(𝐸) (6)

here 𝜙𝑠(𝐸) is the signal flux injected in the simulations corresponding
o 𝜆 = 1. Typically, the injected signal spectrum 𝜙𝑠(𝐸) is modelled as a

power-law 𝐸−𝛾 , resulting in sensitivity and MDP profiles mirroring the
shape of the injected spectrum. In fact, Eqs. (5) and (6) provide results
depending solely on the spectral shape and are entirely independent
of the specific scaling or normalisation of the injected signal. Such
expectations are also referred to as energy-integrated expectations,
see [8].

3.2. Differential sensitivity and discovery flux

The differential sensitivity and discovery flux (in general, referred
to as ‘differential limits’) correspond to the performance of a de-
tector for a given energy range [9]. In other words, they represent
the minimum differential signal neutrino flux that the detector can
either constrain or discover. They are only mildly model-dependent
and represent important instrument response functions. In order to
evaluate them, the signal is divided in bins of logarithm of true energy,
injecting an 𝐸−2 spectrum within each bin. The width of the bins is
chosen to be half decade in energy.2 Since the sensitivity is inversely
proportional to the number of signal events 𝑛𝑠 provided by the injected
spectrum [11], there is a strict connection between differential and
integrated sensitivities. In particular,

𝜆90 ∝ n−1s = 1
∑

i nis
∝ 1

∑

i(𝜆
i
90)

−1
(7)

where 𝜆90 is the integrated MRF, i runs over the number of energy bins
nd 𝜆𝑖90 is the MRF for each energy bin of the signal.

The integrated MRF, as shown in Eq. (7), is always smaller than the
ifferential MRF. In fact, in differential limits, each individual energy
in is treated as independent, assuming a zero signal flux outside the
in. This results in the same amount of background events within
ach bin, leading to worse limits. The integrated sensitivity exploits
he energy dependence of the flux to distinguish between the signal
nd the background, while the differential sensitivity provides the
eneric differential flux which the detector can discriminate, leading to
more stringent requirement. On the other hand, the differential limits
etter highlight the energy range where the detector is most sensitive,
specially for different event samples (tracks and showers).

In the following, these quantities are computed and discussed in the
ontext of the sensitivity of ARCA to neutrino emission from starburst
alaxies.

2 Injecting softer spectra such as 𝐸−2.1−𝐸−2.2 changes the overall sensitivity
f ∼2−3% leaving the results unchanged.
4

f

4. Diffuse analysis

The 90% CL differential sensitivity for a diffuse neutrino flux both
for the upgoing tracks (orange dashed line) and all-sky showers (red
dashed–dotted line) is shown in Fig. 1. For comparison, the 1 𝜎 bands
around the diffuse neutrino flux from SBGs predicted by [2] from
SBGs are also reported. Predictions shown in the left (right) panel are
obtained through a multi-component fit of the extragalactic gamma-ray
background measured by Fermi-LAT [12] and the 7.5 yr HESE neutrino
flux [13] (6 yr shower neutrino flux [14]) measured by IceCube (see [2]
for further details).

The sensitivities refer to 10 years of data collected by the ARCA
detector for one single flavour of neutrinos. For neutrino energies below
100 TeV, the sensitivity is predominantly driven by purely upgoing
events (𝜃 ≤ 80◦), where 𝜃 is the reconstructed zenith angle of the
tracks and 𝜃 = 0◦ corresponds to a vertical upgoing track. For energies
exceeding 100 TeV, the sensitivity is dominated by horizontal events
(80◦ < 𝜃 < 100◦) due to neutrino absorption in the Earth. This results
in a minimum of the sensitivity around 1 PeV. The minimum of the
sensitivity for showers is at ≃100 TeV because the event containment
significantly reduces the amount of observed signal above this energy.
Due to a reduced background rate, the shower sensitivity is better
than the one for tracks for E𝜈 ≲ 100 TeV. For E𝜈 ≳ 100 TeV, the
ensitivity is dominated by the tracks, because of a larger effective
olume for track-like events as the energy increases. After 10 years of
peration, ARCA will probe the neutrino emission from SBGs, either
onfirming or constraining their contribution to the diffuse neutrino
lux around ∼100 TeV. The sensitivities shown in Fig. 1 suggest that
RCA will also improve the characterisation of the diffuse neutrino flux
rovided by IceCube [13,14], thus providing valuable information re-
arding other astrophysical sources contributing to the diffuse neutrino
lux such as gamma-ray opaque sources [15].

. Point-like SBG analysis

ARCA is expected to have an excellent angular resolution (≲ 0.2◦ for
racks and E𝜈 ≥ 10 TeV see [8], and therefore an enhanced sensitivity
or point-like and extended sources. The likelihood function takes into
ccount both the reconstructed energy (Erec) and the angular distance
etween the nominal position of the source and the reconstructed
irection of the event within an angle 𝛼. The range [10, 108] GeV and
0, 5◦] ([0, 15◦]) for tracks (showers) are respectively considered for the
econstructed energy and 𝛼. In the following, the evaluation of the
ifferential limits is performed considering the position of three local
BGs in order to test the ability of ARCA to trace their star-forming
ctivity through neutrino emission. Specifically, the Small Magellanic
loud and the Circinus Galaxy are studied, because their expected
eutrino fluxes should be high enough to match ARCA sensitivity after
6 years of operation [3]. The case of NGC 1068, whose neutrino
mission has been measured by IceCube at 4.2𝜎 significance with a
eutrino flux normalisation 𝜙𝜈𝜇+𝜈̄𝜇 = 5.0 × 10−11 TeV−1 cm−2 s−1 at
𝜈 = 1 TeV [5], is also considered.

.1. Small magellanic cloud

The Small Magellanic Cloud is a local star-forming galaxy at a
istance of ∼60 kpc [16], characterised by a stable and diffuse gamma-
ay emission, driven by its star-forming activity [17]. Its expected
eutrino emission has been estimated using a one-zone model tuned
o its gamma-ray spectrum by [3]. The capability of ARCA to test this
odel is evaluated by simulating the SMC as an extended source with
radius 𝑟 = 0.5◦, consistent with its angular extension measured by the
ermi-LAT Collaboration [17].

The 90% CL differential sensitivity and the 5𝜎 differential discovery
lux for the SMC, considering 10 years of ARCA operation, are shown
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Fig. 1. 90% CL differential sensitivity to a diffuse neutrino flux for the sample of upgoing tracks (dashed orange) and of all-sky showers (dashed–dotted red). On the left, the
sensitivities are compared to the theoretical 1𝜎 band prediction for SBGs neutrino as obtained in [2] through a multi-component fit of the extragalactic gamma-ray background
(EGB) measured by Fermi-LAT [12], and the 7.5 yr HESE neutrino flux measured by IceCube [13]. On the right, the KM3NeT/ARCA expectations are compared to the blue band
which corresponds to the 1𝜎 SBG neutrino expectations from [2] obtained by a multi-component fit of the EGB measured by Fermi-LAT [12] and the 6-yr shower neutrino flux
measured by IceCube [14].
Fig. 2. Left: 90% differential sensitivity (orange dashed line) and the 5𝜎 differential discovery flux (red dashed–dotted line) of ARCA after 10 years of operation for one neutrino
flavour compared with the 1𝜎 SBG neutrino model (blue band) from [3]. The energy-integrated sensitivity (tracks+showers) for the best-fit spectrum of the source (considering
10 years of operation) is also reported. Right: energy-integrated MRF (best fit flux) as a function of time for different event samples. The blue line refers to 𝜈𝜇 CC events, orange
to the all-flavour tracks, and green to tracks+showers.
in the left panel of Fig. 2 and compared with the 1𝜎 neutrino expecta-
tions from [3]. The track+shower energy-integrated sensitivity is also
reported for the best-fit spectrum of the source which can be described
by a power-law with an exponential cutoff ∼E−2.1 ⋅ e(−E∕500 TeV). The
cutoff at 500 TeV comes from the assumption of maximal proton
energy ≃10 PeV. In the right panel of Fig. 2, The energy-integrated
MRF is shown as a function of time. Three different event samples
are considered: 𝜈𝜇 in CC, all-flavour tracks (𝜈𝜇 CC interactions and 𝜈𝜏
in CC interactions where the 𝜏 decays into a muon) and finally all-
flavour tracks + showers. The horizontal threshold line (MRF = 1)
is superimposed for comparison. Although the detector is not sensi-
tive to discriminate the flux in single true energy signal bins, the
integrated spectrum can be constrained after ∼8 years, combining the
information from the track-like and shower-like sample. The samples
provide different results due to a diverse amount of events (signal and
background) contained in each sample. Therefore, this will test the
model proposed by [3]. It is important to stress that this source, having
a low star formation rate, might have a sizeable contamination from
leptonic point-like sources, such as pulsar wind nebulae, in its gamma-
ray spectrum, leading to a smaller neutrino spectrum than the one
provided in [3]. This will allow for a crucial test of the neutrino content
of the source. If the neutrino emission is limited in a smaller region than
the entire galaxy, the sensitivity improves, as discussed in Appendix A.
5

5.2. NGC 1068

NGC 1068 is a source situated at ∼10–14 Mpc from the Milky
Way [17]. It is classified as a Starburst and as a type II Seyfert galaxy,
characterised by a star formation rate of ∼23 M⊙ yr−1 and by the
presence of a starburst ring [18]. Its Seyfert activity is located mainly
inside its active nucleus [17,19], and its hot corona [17,18,20–23].
The ALMA telescope [18,24,25] has also detected a powerful radio jet
and four parsec-scale blobs in the jet head, which may represent sites
for cosmic ray acceleration. Furthermore, a hint of an ultra-fast outflow
in the core of the source has been reported by [26] analysing absorp-
tion lines in the X-ray band. Recently, the IceCube Collaboration has
reported an excess of 79+22−20 astrophysical neutrinos from the direction of
NGC 1068, with an overall significance of 4.2𝜎 above the background-
only hypothesis [5]. The measured neutrino flux normalisation is at
least a factor 10 above the measured gamma-ray flux [17,27], rather
than the typical factor of about 2 expected from hadronic emission in
transparent sources.

Both AGN and SBG activities have been used to explain the origin of
such a high neutrino flux. However, the SBG-related emission produces
a neutrino flux approximately two orders of magnitude below the Ice-
Cube measurements [3,28]. On the other hand, AGN-related emissions
can produce a greater contribution to observed neutrino flux [29–31].
At the moment, the favoured scenario seems a considerable neutrino
emission related to the magnetised hot corona activity [21].
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Fig. 3. Left: 90% CL differential sensitivity (orange dashed line) and 5𝜎 differential discovery flux (red dashed–dotted line) and the energy-integrated 5𝜎 discovery for an 𝐸−3.2

spectrum using the tracks+showers sample (dark red line). The expectations are compared with the IceCube-measured 2𝜎 region for the spectrum [5] (blue band) and the theoretical
neutrino predictions from SBG activity according to [3] (grey band). Right: Energy-integrated 5𝜎 discovery flux and 90% CL sensitivity as functions of the operation time based
on the combined track+shower sample. The bands correspond to the uncertainty of the flux measured by [5]. After ∼3 years, KM3NeT/ARCA is expected to confirm the spectrum
measured by IceCube.
Fig. 4. Left: 90% CL track differential sensitivity (dashed orange line), 5𝜎 track differential discovery flux (dashed–dotted red line) for 10 years of data taking with the ARCA
etector, compared with the 1𝜎 SBG neutrino flux predictions from [3] (blue band). Also shown is the energy-integrated 90% CL sensitivity for 𝐸−2.3 ⋅ e−E∕500 TeV, corresponding
o the best-fit neutrino spectrum from SBG activity. Right: The MRF as a function of observation time for the best-fit spectrum of the source (dashed–dotted blue line, all-flavour
racks), for the highest possible flux (1𝜎) (dashed orange line, all-flavour tracks) and for the highest possible flux considering tracks and showers (green line).
The time-integrated expectations for ARCA are shown in Fig. 3.
In the left panel of Fig. 3, the 90% CL differential sensitivity and the

𝜎 discovery flux for 10 years of data-taking for ARCA are compared
ith the IceCube 2𝜎 region [5] (blue band). The obtained differential

imits show that ARCA can probe a neutrino flux of 𝐸2𝜙𝜈𝜇+𝜈̄𝜇 ∼ 5 ⋅
10−8 GeV cm−2 s−1 and of 𝐸2𝜙𝜈𝜇+𝜈̄𝜇 ∼ 10−9 GeV cm−2 s−1 at 1 TeV and
100 TeV, respectively. The energy-integrated 5𝜎 discovery for a 𝐸−3.2

spectrum and the expected SBG neutrino spectral energy distribution
evaluated according to [3] are also shown for comparison.

In the right panel of Fig. 3, the energy-integrated discovery flux and
MRF are reported as functions of observation time and compared with
the discovery threshold corresponding to MDP = 1. The bands refers to
the uncertainty of the flux measured by [5].

The ARCA detector is expected to confirm the flux reported as a
best fit by IceCube after only ∼3 years of data taking and to better
disentangling the emission from AGN-related components from the
SBG-related one.

5.3. Circinus galaxy

Circinus is a SBG located ∼4 Mpc from the Milky Way [16] at a
declination 𝛿 = −65.2◦ [32], where the ARCA detector is expected to
have full visibility [10]. Circinus is classified as a Seyfert II galaxy [33],
showing both AGN activity and a hot corona [21,34,35]. The neutrino
flux emission predicted by the hot corona model can reach a flux level
of 𝐸2𝜙 ≃ 10−8 GeV cm−2 s−1 [21] above E ∼ 1 TeV.
6

𝜈𝜇+𝜈̄𝜇 𝜈
In the left panel of Fig. 4, the 90% CL differential sensitivity and
the 5𝜎 differential discovery flux are compared with the 1𝜎 neutrino
expectations from SBG activity [3]. The differential limits indicate that
a flux of the order of 𝐸2𝜙𝜈𝜇+𝜈̄𝜇 ≃ 10−9 GeV cm−2 s−1 can be probed in
the energy range 30−100 TeV. Therefore, a neutrino flux connected to
the AGN activity can be searched for with ARCA, which may lead to
the discovery of a hot corona emission like in NGC 1068. The energy-
integrated sensitivity for the best-fit SBG flux (E−2.3 ⋅ e(−E∕500 TeV)) is
also reported. In the right panel of Fig. 4, the MRF is presented as a
function of observation time for different cases: the best-fit flux of the
source analysed with all-flavours tracks and the highest possible flux
(1𝜎) analysed with all-flavour tracks and all-flavour tracks + showers.
The obtained sensitivity shows that the latter can be constrained after
∼20 years of observations.

6. Impact of systematic uncertainties

In this section, a brief discussion on the systematic uncertainties
associated with the ARCA sensitivity is presented. Monte Carlo simu-
lations used in this work consider the detector geometry, calibration,
water optical and background characteristics discussed in [8]. Any
deviation from these values might affect either the detector response,
such as the energy and angular resolution, or the background event
rate, leading to a change into the sensitivity. Ref. [1] shows that the
most significant factors impacting the sensitivity are a 25% uncertainty
on the conventional atmospheric neutrino flux and a 10% uncertainty
on the effective area (which changes the energy resolution of ∼5−10%).
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The resulting uncertainty on the sensitivity from these effects can
be conservatively estimated by using the fact that, in background-
dominated data, MRF ∝

√

nback∕ns, where nback is the expected number
f background events and ns is the expected number of signal events
rovided by the input spectrum [11]. Since both the numbers of events
signal and background) are proportional to the effective area, a varia-
ion of 10% leads to a 4.6% uncertainty on the sensitivity. Furthermore,
onservatively assuming that the background sample is dominated
y atmospheric neutrinos, an uncertainty of 25% on the background
ate leads to a 12.5% uncertainty on the sensitivity. Regarding the
ncertainty of the discovery flux, Ref. [10] has shown that the 25%
ncertainty on the atmospheric neutrino flux leads to a +15% and
5% uncertainty. Therefore, it is expected that for the SMC, the time

equired to achieve a 90% CL constraint varies within 8.0+2.2−1.7, years,
hereas for the highest possible flux from the Circinus galaxy, it is
0 ± 5, years. In contrast, the discovery of the 𝐸−3.2 spectrum observed
y IceCube in the direction of NGC 1068 yields an estimated time of
.0+1.0−0.3, yr.

. Final remarks and conclusions

In this paper, the expected differential sensitivity for the ARCA
etector is presented for the first time for a diffuse neutrino flux and
ndividual neutrino sources. A binned maximum likelihood formalism
s applied to evaluate the 90% CL differential sensitivity and the 5𝜎 dif-
erential discovery flux, by binning the signal flux in true energy bins of
alf-decade widths. The differential limits are shown to be mostly signal
odel-independent and complementary to the energy-integrated limits

nd provide crucial information regarding the energy ranges where the
etector is more sensitive to neutrino signals. They are evaluated using
oth upgoing track-like and all-sky contained shower-like events.

The results show that ARCA will probe the shape of the diffuse flux
or 𝐸 ≲ 100 TeV, constraining the role of sources such as SBGs and
omplementing the IceCube’s observations of the neutrino sky.

The likelihood formalism is also applied to local SBG sources,
ollowing the flux predictions provided in [3]. After 8 years of data
aking, the Small Magellanic Cloud can be observed as a 90% CL
xcess in the energy-integrated analysis, proving that SBGs are guar-
nteed neutrino emitters. ARCA expectations for NGC 1068 have been
valuated indicating that ARCA will need only ∼3 years for discov-
ring this source with 5𝜎 significance. This will better disentangle
he AGN-related contributions from the SBG-related one, strengthening
ceCube observations. Finally, the differential limits for the Circinus
alaxy are evaluated, showing that the detector can probe its potential
GN-related emission activity additional to the expected SBG neutrino

lux.
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Appendix A. Impact of extension to the differential sensitivity

The differential sensitivity at the declination of the Small Magellanic
Cloud after 10 years of operation of the ARCA detector (for the tracks)
is shown in Fig. A.5 considering a point-like source and an extended
source with 𝑟 = 0.5◦. The differential sensitivity of the extended source
worsens by ∼30% with respect to the point-like source case. Therefore,
in case the neutrino emission for SBGs is concentrated within their
nuclei, the sensitivity is expected to be close to the one expected for
point-like sources and the time required for a 90% CL excess might
reduce with the one presented in the main text.
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Fig. A.5. Comparison between the 90% CL differential sensitivity for a point-like source (orange dashed line) and for an extended source with an extension of 𝑟 = 0.5◦ (blue
ashed–dotted line), considering 10 years of data-taking at the declination of the SMC.
Fig. B.6. Comparison between point-like 90% CL differential sensitivity for several declinations after 10 years of operation of the ARCA detector. The blue dashed–dotted line
refers to 𝛿 = −73◦, the orange dashed line to 𝛿 = −65◦ and the green line to 𝛿 = −0.01◦.
ppendix B. Sensitivity dependence on declination

The comparison between the differential sensitivities after 10 years
f operation of ARCA is shown in Fig. B.6 for three declinations:
= −73◦, 𝛿 = −65.3◦ and finally 𝛿 = −0.01◦. These declinations

orrespond to the positions of the SMC, Circinus Galaxy, and NGC 1068,
espectively. The sensitivities for 𝛿 = −73◦ and 𝛿 = −65◦ are very close

as the declination bands are also near. At high energy the sensitivity
deteriorates faster for 𝛿 = −73◦ due to absorption from the Earth. The
ensitivity at 𝛿 = −0.01◦ is better at high energies due to a higher
ignal rate, but it is worse than the others between 10−300 TeV due
o a higher background rate. In fact, 𝛿 = −0.01◦, the sources are only
artially below the horizon (see for instance [10] for the ARCA detector
isibility as a function of declination).
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