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Abstract

Machine learning (ML) methods have been implemented in radiotherapy to aid virtual specific-plan
verification protocols, predicting gamma passing rates (GPR) based on calculated modulation
complexity metrics because of their direct relation to dose deliverability. Nevertheless, these metrics
might not comprehensively represent the modulation complexity, and automatically extracted
features from alternative predictors associated with modulation complexity are needed. For this
reason, three convolutional neural networks (CNN) based models were trained to predict GPR values
(regression and classification), using respectively three predictors: (1) the modulation maps (MM)
from the multi-leaf collimator, (2) the relative monitor units per control point profile (MUcp), and (3)
the composite dose image (CDI) used for portal dosimetry, from 1024 anonymized prostate plans.
The models’ performance was assessed for classification and regression by the area under the receiver
operator characteristic curve (AUC_ROC) and Spearman’s correlation coefficient (r). Finally, four
hybrid models were designed using all possible combinations of the three predictors. The prediction
performance for the CNN-models using single predictors (MM, MUcp, and CDI) were
AUC_ROC=0.84+£0.03,0.77 £ 0.07,0.75 £ 0.04, and r = 0.6, 0.5, 0.7. Contrastingly, the hybrid
models (MM + MUcp, MM + CDI, MUcp+CDI, MM + MUcp+CDI) performance were
AUC_ROC =0.94+0.03,0.85 %+ 0.06, 0.89 £ 0.06,0.91 £ 0.03,and r = 0.7, 0.5, 0.6, 0.7. The MP,
MUcp, and CDI are suitable predictors for dose deliverability models implementing ML methods.
Additionally, hybrid models are susceptible to improving their prediction performance, including two
or more input predictors.

Introduction

Artificial intelligence (AI) methods have been applied in radiotherapy, supporting the contouring of the target
and organs at risk volumes (Lustberg et al 2018, Meyer et al 2018, Sahiner et al 2019, el Naqa and Das 2020), the
prediction of clinical outcomes (el Naqa et al 2009, J et al 2015, Nguyen et al 2017), the dose distribution
predictions (Campbell et al 2017, Nguyen et al 2017, Liu et al 2019), synthetic image reconstructions (Han 2017,
Trullo etal 2017, Wolterink et al 2017, Zhao et al 2017, Xiang et al 2018), and the dose deliverability prediction
(Tomorietal 2018, Ono et al 2019), among others (Workshop on unsupervised, transfer Learning PB-I,
undefined 2012, Cha et al 2016, Yan et al 2016, Ibragimov et al 2017, Hesamian et al 2019). Certainly,

in the past six years, machine learning (ML) methods dedicated to quality assurance (QA) predictions of
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intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatments have
increasingly been studied (Hussein et al 2017, Chan et al 2020a, Osman and Maalej 2021). The most common
ML models implemented in this matter are Poisson regression (Valdes et al 2016,2017, Liet al 2019), decision
trees-based models (e.g. random forest or gradient boosting models) (Lam et al 2019, Hirashima et al 2020),
support vector machine (Valdes et al 2016, Granville et al 2019), and artificial neural networks or convolutional
neural networks (CNN) (Interian et al 2018, Tomori et al 2018, 2020). The CNN-based models, which were
being less explored in QA predictions, are characterized commonly by convolution plus pooling layers arranged
consecutively, ending with fully connected layers and a Softmax activated dense layer for classification or a Linear
activated dense layer for regression (Payer et al 2016). The convolution operations intend to detect patterns from
the input images using specific filters and reducing their dimensions. Then, these newly detected features are
processed by the pooling layers, weighting the found features and their nearby values to be the input of the next
convolutional-pooling layer arrangement, filtering intricated ‘hidden’ features that will potentially be associated
with the predicted output.

From the specific-plan verification perspective, models dedicated to QA prediction were implemented
generally to detect potential treatment errors (Ezzell e al 2009, Miften et al 2018) and predict gamma passing rate
(GPR) values (Low et al 1998). The GPRs account for the dosimetric regions in agreement with the gamma index
analysis between the calculated and the measured dose distributions (Low et al 1998, Hussein et al 2013). In turn,
the gamma index is a metric that evaluates the coincidence between both dose distributions, calculating the dose
difference (DD) and the distance to agreement (DTA) (Hussein et al 2013). Commonly, a verified treatment is
suitable for delivery if the GPR is higher than one reference value, selecting the DD /DTA criteria defined in each
institution and per the expert recommendations (Miften et al 2018). For instance, a specific treatment might be
considered appropriate if its GPR is equal to or higher than 98% based on 3%/2 mm criteria. Nevertheless,
although this metric has been studied and implemented widely, some gaps have been identified in detecting
errors with clinical impact or retrieving information needed to detect specific discrepancies regarding treatment
parameters (Zhen et al 2011, Hussein et al 2017, Park et al 2018). Hence, the GPR evaluation and the modelled
predictions should be considered complementary tests to other assessment protocols (e.g. dose-volume
histogram changes evaluation) rather than one exclusive verification method.

Consequently, a useful GPR prediction model based on ML methods should be able to provide additional
information to complement and explain the expected dose deliverability evaluation results, featuring the
predominant predictors and achieving a more robust evaluation of the treatment parameters. Similarly, it might
be beneficial to track possible ‘problematic’ treatment features, as suggested by Park et al (Park eral 2015,
Carlson et al 2016), McNivell et al (McNiven et al 2010), Petroccia et al (Petroccia et al 2019), and Chiavassa et al
(Chiavassa et al 2019), using modulation complexity metrics and plan parameters. However, the reported
models using automatic-extracted features methods (e.g. CNN-based models) are based mainly on dose
distributions (Osman and Maalej 2021), and predictor features associated with the plan parameters cannot be
extracted. In contrast, other input features, such as modulation maps (MM) given by the multi-leaf collimator
(MLC) trajectories per control points (CP), gantry speed variations, or monitor units (MU) variations profiles,
have not been explored, and it might help to complement the dose deliverability evaluation because their direct
relation to specific treatment conditions.

In terms of the studied features for GPR predictions using ML models, classification or regression solutions
have been proposed based on IMRT beam fluencies (Interian et al 2018, Hirashima et al 2020), planar dose
images plus organs at risk volumes and total MU values (Tomori et al 2018, 2020), radiomic features from the
dose distribution images (Nyflot et al 2018, Hirashima et al 2020), and various calculated modulation complexity
metrics (Valdes et al 2016, Ono et al 2019, Chan et al 2020a). In fact, benefits on prediction performance have
been reported when more than one input feature category is implemented (i.e. hybrid datasets or hybrid models)
(Tomori et al 2018, Hirashima et al 2020). However, considering that complexity metrics and features related to
MLC movements are the most relevant features for GPR predictions (Park et al 2018, Lam et al 2019, Park et al
2019, Wall and Fontenot 2020), it is necessary to contemplate the MM and the MU per CP (MUcp) variations as
potential GPR predictors, implementing automatic-feature extraction methods and avoiding in this way the use
of conventional complexity formulas (McNiven et al 2010, Masi et al 2013, Tamura et al 2020) that might limit
the amount of information extracted.

Considering the abovementioned, this study aims to explore features directly related to treatment unit
parameters to predict GPR values based on CNN models, contributing to the inclusion and evaluation of
additional treatment parameters that might facilitate the designs of more robust dose deliverability evaluation
protocols. For this reason, the primary objective of this study was to evaluate the potential utility of MM and
MUGcp as input features for GPR predictions. Consequently, since our GPR values were calculated using
electronic portal imaging devices (EPID) measurements, we decided to include the calculated composite dose
image (CDI) as a third evaluated input feature (i.e. dosimetric input feature). The second objective was to verify
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Figure 1. Workflow of the present study, including the (1) dataset creation, (2) the corresponding designed main models (M_1,M_2,
and M_3) plus their optimization and stability evaluation, (3) the design of the assembled hybrid models, (4) the prediction
performance evaluation, for the training and testing sub-datasets, and (5) the verification of activated features.

whether concatenated models presented an improved GPR prediction performance or not. Furthermore, we
aimed to evaluate the model stability in terms of the quality of the learned features extracted by each model.

Methods

Workflow

The five-step workflow followed in this study is illustrated in figure 1. (I) From 1024 DICOM-RT files, the MM,
MUcp profiles, and CDI were retrieved and classified to form three specific datasets representing each feature
category. (II) An independent CNN model was designed for each input dataset to predict GPRs (classification
and regression). The architecture optimization, the hyper-parameter tunning, and stability tests were performed
with TensorFlow (Dillon et al 2017). (III) In addition, four hybrid models based on all possible previous models’
combinations were proposed to verify if the GPR prediction improves concatenating two or more models. (IV)
Next, the ROC-AUC and the accuracy were calculated to evaluate the prediction performance of classification
models, and the MAE, RMSE, and Spearman correlation coefficients were calculated for regression models. (V)
Finally, the activation maps for randomly chosen plans were extracted to verify the relevance of the trained
features.

Dataset

Atotal of 1024 anonymized DICOM-RT files from 746 prostate plans, retrospectively treated in our institution,
were retrieved to extract the MM, the MUcp, and the CDI features by Python scripting (Quintero 2020). The
treatments were planned with Eclipse version 15.6 (Varian Medical Systems, Palo Alto, CA), 2 degrees per CP
configuration, and 6 MV beam energy in two Varian treatment units (TrueBeam and Halcyon-v2) available in
our institution with the same EPID model (aS1200) and calibrated under the same reference conditions. Both
treatment units have 5 mm of nominal resolution at the isocentre with Millennium 120 MLC (TrueBeam) and
dual-layer MLC (Halcyon-v2) models and a maximum leaf speed of 25 mm s~ ' and 50 mm s, respectively.
Furthermore, the dataset was divided into 80% for training and validation sub-datasets (80%,/20% in turn,
N=2819) and 20% for the testing sub-dataset (N = 205), as it is illustrated in figure 2. The treatment plan
conditions are summarised in table 1.

The GPRs were calculated from gamma analysis evaluation (Low et al 1998) based on EPID measurements
and a global 2% dose and 1 mm distance differences criteria (2%/1 mm). For classification models, the VMAT
dose distributions with a GPR > 98% were labelled as ‘pass’ (IN = 49%); otherwise, they were labelled as fail
(N=51%). This 2%/1 mm reference value was chosen considering both treatment units and one evaluation
threshold able to discriminate potential errors that might affect the planned dose distributions, in accordance
with the AAPM-TG 218 recommendations (Miften et al 2018). However, this value also promoted the
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Figure 2. Distribution of the number of plans (counts) for (a) all GPR values with the GPR criteria of 98% (dotted red line), and (b) the
representation of all sub-dataset splits. Plans labelled as ‘fail” were represented with [0] and plans labelled as ‘pass’ were represented
with (Lustberg etal 2018).

Table 1. Summary of planning conditions for prostate dataset considering.

Treatmentunit  Energymode  Numberofarcs  Dose per fraction[Gy] =~ Numberofplans ~ Number ofinputs %

TrueBeam 6 MV FF 1 2 85 85 8.3 46.6
2.7 70 70 6.8
3 236 236 23.0
2 2 43 86 8.4
Halcyon 6 MV FFF 1 3 77 77 7.5 53.4
2 3 235 470 45.9

Abbreviations: Flattening filter, FF. Flattening filter free, FFF.

best-balanced conditions in GPR terms when the datasets were divided into sub-datasets (figure 2(b)), avoiding
unreliable classification modelling and overfitting effects (Chen et al 2020). As it is registered in the
supplementary material 1.1, most measured plans evaluated with 3% /3 mm, 3%,/2 mm, 2%/3 mm and 2%/

2 mm criteria presented GPR values of 100%, generating highly unbalanced datasets.

Input features

The MM input feature from a single VMAT-arc is a two-dimensional image created with all MLC positions
per cp (figure 3(a)). The leaf number indicated on the y-axis includes both MLC banks (four in the case of
Halcyon-v2), and the displacements were normalized to take values from zero to one. Additionally, to
optimize the model’s ‘learning process,’ the static leaves were removed, keeping just the active ones during the
treatment (figure 3(b)).

The MUcp is one-dimensional data containing all MU contributions per cp during one VMAT-arc trajectory,
normalized from zero to one based on the total MU values (figure 3(c)). It is extracted from the dose
contribution coefficient within the DICOM-RT tag [300A,010C] labelled
CumulativeDoseReferenceCoefficient.

The CDI is a two-dimensional image created with the superposition of all calculated dose fluencies during the
VMAT-arc trajectory over a gantry perpendicular common plane. It is calculated by the portal dosimetry
image prediction algorithm (Berger et al 2006, Esch et al 2013) integrated into Eclipse (figure 2(d)) and is used
to be compared to the dose measured by the EPID to perform the gamma analysis. For modelling purposes,
the CDIs were normalized from zero to one.

Models
The designed models for MM, MUcp, and CDI features were notedasM_1, M_2,and M_3, respectively. An r or
c character was included at the end of the notation to differentiate between regression and classification models
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Figure 3. Representation of the three features used in this study. (a) The full modulation map (MM) and (b) the edited MM removing
the static leaves. (¢) The monitor units per control point (MUcp) profile and its representation in polar coordinates. (d) Composite
dose image (CDI) calculated by the portal dosimetry tools in the treatment planning system.

(e.g-M_Ir for regression and M_ 1c for classification). Additionally, four hybrid models were created from the
three main previous models and were notedasM_12, M_13, M_23, and M_123, indicating the included
concatenated models with their indexed notation. Furthermore, five-fold cross-validation was applied and
‘Horizontal Flip” was the only data augmentation explored in this study to ensure that all input features keep
accurate physical representation within training modelling. Accordingly, all models implemented in this study
were based on CNN architectures and were designed using the most straightforward possible architectures,
establishing the minimum optimal number of CNN-Maxpool layers and filters for each type of input category.
This direction might help to control overfitting events, track specific features from each input increasing the
model reliability, and reduce the predictions predominated by random features with no physical context
(Chauhan et al 2018, Chen et al 2020, Kimura et al 2020).

After the models were designed and optimized, the three main models, M_1¢, M_2¢,and M_3c were
modified, including drop-out layers after each convolution/max-pooling layer arrangement to evaluate their
performance stability as the drop-out rate increases systematically. This test is proposed to verify the minimum
number of nodes needed to extract features that correlate to GPRs and simultaneously evaluate the contribution
of the random extracted features created by the convolutions.

Evaluation

The prediction performance for regression models were evaluated measuring the mean absolute error (MAE),
the root mean squared error (RMSE), and the Spearman’s correlation coefficient (r) between the measured and
the predicted GPR values. High, moderate, and lower correlations were defined for r < 0.4,0.4 < r < 0.7,and
r> 0.7 values, respectively. Furthermore, the classification model performance was assessed calculating the area
under the receiver operating characteristic curve (ROC_AUC), accuracy, specificity, and sensitivity (table 2).

Activation maps

The activation maps of six plans from the testing datasets were generated to verify if the trained features
correspond to regions of interest associated with dose deliverability (e.g. demanding hardware conditions) that
might help in further decision support tools implementations. Three cases were randomly selected from the
correctly classified plans labelled as ‘Pass’, and three plans correctly labelled as “fail”.
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Table 2. Evaluation metrics implemented in this study.

Model Prediction Metric Equation
Regression MAE MAE = Y J(y; — yl/n
RMSE RMSE = /> (s — Y/ n
r —
Classification Accuracy A = (TP + TN)/(TP + TN + FP + FN)

Specificity (Sp) Sp = TN/ (IN + FP)
Sensitivity (Se) Se = TP /(TP + FN)
ROC_AUC —

Abbreviation: MAE, mean absolute error. RMSE, root mean square error. yi, actual value.
yp, predicted value. n, number of observations. TP, true positives. TN, true negatives. FP,
false positives. FN, false negatives. r, Spearman’s correlation coefficient. ROC_AUC, area
under the receiver operating characteristic curve. A, accuracy. Sp, specificity. Se,
sensitivity, also known as Recall.

Results

Model architecture

The M_1,M_2,and M_3 models were designed independently using HParam tool in TensorBoard, optimizing
for each model the number of layers, number of filters, kernel size, drop-out rate, and activation functions. A
brief representation of the resulting models’ architecture is displayed in figure 4 and a detailed description is
available in the supplementary material 1.2.

Architecture stability

The results for the model stability test are represented in figure 5. The models M_1,M_2,and M_3 presented
more stability with up to 50% activated nodes (Drop-Out rate of 0.5) of each convolution layer, indicating that
the remaining extracted features are still enough for GPR predictions. These results are consistent with the
original models’ performances, however, is it clear that M_2 is more susceptible to reduce the accuracy
compared to M_1, which represent a more robust prediction based on the remaining features.
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Figure 5. Model stability test of ROC_AUC and accuracy for models M_1¢, M_2c¢,and M_3c.

Modelling performance
The modelling classification and regression performances for all models were summarised in table 3, and in
figures 6and 7.

The activation maps for the classified ‘passing’ and ‘failing’ plans are summarised in figures 8 and 9,
respectively. For MM, passing plans activated static leaf regions while failing plans detected specific regions
associated with demanding variations of leaf positions. For MUcp profiles, no distinctive regions were detected.
Finally, for CDI, the high dose regions were identified in both failing and passing scenarios. The information of
the other plans is available in supplementary material 1.3.

Discussion

Our study investigated the suitability of MM, MUcp, and CDI for GPR predictions implementing ML models.
We used these three input features to explore new treatment-plan information apart from the already studied
dose distributions and reported complexity metrics (McNiven et al 2010, Masi et al 2013, Chiavassa et al 2019,
Tamura et al 2020). Indeed, the MM and MUcp can be considered high-dimensional modulation complexity
features directly related to the treatment unit performance, which correlates to the dose deliverability (Park et al
2015, Chiavassa et al 2019, Park et al 2019). Hence, we intended to predict GPRs based on practical physical
aspects involved in the treatment delivery, avoiding calculating limited complexity metrics from empirical
equations. Furthermore, we also evaluated the CDI as an additional predictor feature because the GPR values in
this study were calculated from EPID measurements, and these dose images might contain information
associated with demanding linac conditions (Agnew et al 2014, Miri et al 2016, Lam et al 2019). In addition to
this exploratory study, we also evaluated and confirmed the potential benefit of including more than one kind of
treatment feature within the GPR prediction process (figure 6). Certainly, we believe that a GPR prediction
model should consider all possible physical aspects involved in the treatment simultaneously, whether
dosimetric or mechanic features, to achieve a more robust performance based on all variables that intervene in
each treatment plan delivery. Considering the above, the goal of this study was not to propose the more efficient
and complex CNN-based models but to (1) implement straightforward architecture models to evaluate the
potential utility of MM, MUcp, and CDI features in GPR predictions, (2) verify if concatenated models increase
the GPR prediction performance, and (3) asses the quality of the learned features extracted by each model in
GPR predictions.

This study is the first reported evaluation of the MM, MUcp, and CDI as potential GPR predictors using ML
methods (Chan et al 2020a, Osman and Maalej 2021). Previous works have implemented regression models
based on modulation complexity metrics and dosimetric parameters, reporting mean prediction errors between
2.2% and 4.5% (Valdes et al 2016, Lam et al 2019, Li et al 2019, Kimura et al 2020). Similarly, MAE values
between 0.74 and 4.2, RMSE = 1.54-5.6, and r = 0.38—0.73 have been reported from models using: one VGG-16
adapted architecture model based on 2D IMRT fluencies (Interian et al 2018); one CNN-based hybrid model
based on planar (sagittal) dose images, volumes data, and MU values (Tomori et al 2018); one gradient-boosting
model based on radiomic features, clinical parameters, and modulation complexity metrics (Hirashima et al
2020); and one support vector machine based on complexity metrics and plan parameters (Wall and
Fontenot 2020). Likewise, using the same input features, reported classification models presented ROC_AUC
values between 0.7 and 0.88 (Granville et al 2019, Hirashima et al 2020). In contrast, this study’s MAE, RMSE, r,
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Table 3. Evaluation metrics results for classification and regression models.

Metric M_1 M_2 M_3 M_12 M_13 M_23 M_123

ROC_AUC Val. 0.91£0.01 0.81£0.05 0.78 £0.03 0.95+0.01 0.89 +0.04 0.93£0.01 0.93 +0.02
Classification Test 0.84+£0.03 0.77 £0.07 0.75£0.04 0.94+0.03 0.85£0.06 0.89£0.06 0.91£0.03
Accuracy Val. 0.83+0.09 0.68 £0.04 0.71£0.07 0.87£0.10 0.914+0.02 0.82£0.13 0.87 £0.02
Test 0.81+0.03 0.66 £0.10 0.68 +0.03 0.83 £0.04 0.90 +0.02 0.78 £0.05 0.88 +0.03
MAE [%] Val. 1.11+£0.33 2.02+0.23 1.09£0.29 1.05£0.81 1.03£0.12 1.40£0.12 1.12+£0.13
Regression Test 1.4140.23 2.31£0.43 1.124+0.23 1.08 +0.32 1.414+0.29 1.81 £0.46 1.7140.11
Val. 2.13£0.01 2.66£0.01 2.05£0.01 2.02+£0.01 3.02+£0.01 2.11£0.02 2.41+£0.12
RMSE [%] Test 2.61£0.03 3.01+0.02 2.11£0.03 2.71+0.33 3.11+£0.12 3.07£0.05 3.16 £0.08

r Val. 0.62 0.46 0.65 0.66 0.53 0.58 0.68

spear corT. Test 0.61 0.33 0.61 0.58 0.42 0.49 0.59

Abbreviations. ROC_AUCG, area under the receiver operating characteristic curve. MAE, mean absolute error. RMSE, root mean square error.
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Figure 6. ROC plots and ROC_AUC values of the main models (M_1¢, M_2¢, and M_3), and the hybrid models (M_12¢, M_13c,
M_23c¢, M_123c¢) for validation (figures 6(a), (b)) and testing sub-datasets (figures 6(c), (d)).
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Figure 7. Regression results for the models M_1r, M_2r, M _3r, and M_13r with a 3% deviation (dotted green lines) from the ideal
GPR distribution represented by the red line.
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and ROC_AUC values presented comparable results for all models (table 3), demonstrating the potential
benefits of these features for GPRs prediction. Indeed, for model classification, the models designed in this study
demonstrated outstanding performance with similar or higher ROC_AUC values than the reported studies.
However, while many published models did not report the model performance with the validation tests (Chan
et al 2020a, Osman and Maalej 2021), the results obtained in this study using the validation dataset are also
comparable (ROC_AUC values 0f0.84 £+ 0.01,0.77 = 0.05,and 0.75 £ 0.03 for M_1,M_2,and M_3
respectively). These results demonstrate the present models’ suitability since the validation results are one of the
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Figure 8. The activation maps of model M_1, M_2, and M_3 applied to features extracted from the ‘passing’ plan Plan_3. (a)
Activation map from model M_1 applied to the modulation map. (b) Leaf trajectories corresponding to the activated regions,
highlighting in red the control points of interest. (c) Activated regions, in red, from model M_2 applied to the respective MUcp profile.
(d) Activation map from model M_3 applied to the CDI.
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Figure 9. The activation maps of model M_1, M_2,and M_3 applied to features extracted from the ‘failing’ plan Plan_181. (a)
Activation map from model M_1 applied to the modulation map. (b) Leaf trajectories corresponding to the activated regions,
highlighting in red the control points of interest. (c) Activated regions, in red, from model M_2 applied to the respective MUcp profile.
(d) Activation map from model M_3 applied to the CDI.

main approaches to verify the model generalization and the overfitting level; consequently, it is usual that these
values are lower than those obtained by the training-testing dataset.

Following the already reported works (Tomori et al 2018, Hirashima et al 2020) and the discussion regarding
model evaluation, we also confirm the improving effects of concatenating models using more than one feature
category, especially from the validation dataset point of view, combining MM and CDI for model M_13 having
ROC_AUC value 0f0.91 £ 0.02 (figures 6, 7). However, the general improvement effects of concatenated
models are still a field not completely explored and should be evaluated independently in each case because of
the different origins and dimensions of the predictor features (Shin etal 2016, Lietal 2017). Furthermore,
although the benefits of concatenating various multi-scale features have been reported, even in radiotherapy
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(Hirashima et al 2020, Tomori et al 2020), concatenating too many features might compromise the model’s
performance and the training model (Li et al 2017). However, using concatenated models and controlling the
different types of inputs might represent a technical advantage in mitigating premature or suboptimal gradient
optimization (Tomori ef al 2018), plus the benefit of implementing additional treatment plan features that
describe treatment plan parameters related to dose deliverability during the same control points.

From the dataset conformation point of view, it is important to notice that the GPRs and modulation metrics
ranges are susceptible to change between treatment units and anatomic regions (Wall and Fontenot 2020, 2021,
Jin et al 2015). Thus, the previously reported models trained with their respective datasets (having a
heterogeneous number of anatomic regions, beam energies, treatment units, and unbalanced GPR values) might
potentially experience low data generalization and overfitting events (Payer et al 2016, Chen et al 2020), heading
suboptimal predictions. Therefore, we deem that our datasets were designed using treatment plans for one single
pathology (prostate), planned for two different treatment units (46.6% TB and 53.4% Halcyon, table 1), and
ensuring that the passing and failing plans contribute equally to the dataset. Furthermore, with this dataset
design and adopting the most straightforward CNN architectures, we intended that the extracted features by the
CNNs correspond mainly to specific treatment conditions and, in turn, be able to associate physical or
mechanical aspects to the final prediction. Consequently, we only explore horizontal flip for data augmentation.
This rationale, from a practical point of view, might procure more robust models since the predicting process is
highly focused on features with a real physical meaning and does not rely completely on random weighted
feature extractions. Eventually (with further studies), tools like activation maps (Payer et al 2016) might be used
to narrow specific treatment moments susceptible to contributing to a ‘fail’ or lower GPR prediction, or to assist
onboard adaptative therapy strategies. Accordingly, similar insights will be beneficial to develop ML solutions
from a closer medical physics perspective, contemplating potential strategies to evaluate the model’s reliability
and consistency of in-house or commercial models dedicated to dose deliverability predictions. In this study, we
proposed to evaluate the architecture model stability and the relevance of the ‘learned’ (extracted) features in the
prediction performance, increasing systematically drop-out rates after each CNN layer (figure 5). With this
method, we implicitly estimated for each model (1) the proportion of the minimum active nodes (i.e. remaining
features) to maintain comparable prediction performances, and subsequently, (2) the potential random features
extracted by the model that not necessarily contributes to the prediction.

From the model interpretability point of view, the reported CNN-based models dedicated to GPR
predictions (Tomori et al 2018, 2020) do not offer straightforward ways to retrieve or identify the features
associated with the predictions (Feng et al 2018, Chan et al 2020b), limiting the understanding and evaluation of
the model quality because they were developed using dose distribution regions as predictors (Osman and
Maalej 2021). These inputs do not provide enough explanatory parameters for plan deliverability analysis;
hence, ML models considering high dimensional treatment parameters are also needed to contemplate the
utility of retrieving the activation maps pinpointing specific hardware or dosimetric aspects that might influence
the dose deliverability in a particular treatment moment (i.e. control point). Accordingly, and considering the
mentioned utility of activation maps, figures 8 and 9 are a clear representation of the retrieved plan information
associated with the prediction. However, despite the failing and passing activation maps localized distinctive
regions, mainly for MM, further studies are needed to verify that these highlighted changes in MLC position
represent actual demanding hardware scenarios that might compromise the dose deliverability. Furthermore,
this information might potentially support the setting of hardware tolerance limits for MLC trajectories or
configuring TPS tools associated with the MLC sequencing algorithms (Varian Medical Systems 2018).

The GPR evaluation is widely used as a deliverability metric and is one of the worldwide standard tests for
specific treatment verification (Miften et al 2018). However, it has been thoroughly questioned because of its
arguable sensitivity to reflect or discriminate plan errors with potential clinical implications (Hussein et al 2017).
Nevertheless, this study, rather than predicting just on metric, shows the promising opportunity to explore more
treatment-associated parameters that can be part of an integral evaluation method of dose deliverability
evaluation. We consider that this evaluation does not have to be enclosed by one single metric; hence, ML-based
models in this matter will have to explore how to include new treatment parameters to predict relevant features
contributing to a multiple-factors analysis to decide if the deliverability of a specific plan is acceptable or not.
Additionally, we note that ML-based applications within treatment verification protocols are not intended to
replace the quality assurance evaluation. Instead, ML models are recommended as part of decision-making tools
to ease the evaluation workflow and reduce the number of dose measurements from suboptimal plans.

We acknowledge that this study was performed with limitations also identified in previously reported works.
First, the dataset size is a fundamental factor related to ML model performance, especially for CNN-based
models (Tomori etal 2018, 2020). However, considering that our dataset size is similar to or higher than others
reported, our principal aim was to explore the suitability of three treatment features, and our results were
consistent, encouraging further investigations. Similarly, we acknowledge that the extracted datasets were based
on treatment plan information from one institution, and external verifications will be necessary to perform
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further validations. Finally, we acknowledge that further studies are necessary to explore and evaluate the effects
of including the intrinsic uncertainty of the dose detectors, the dose calculation, and mainly the uncertainty
from the model itself (el Naga and Murphy 2015, Avanzo et al 2020, el Naqa and Das 2020). We consider that
including different sources of uncertainty in ML algorithm design is an essential field to be explored, which
might increase the model’s robustness and reliability, mainly if it is intended to be implemented in practice.

In summary, with this research, we aimed to contribute to three main gaps within the ML models predicting
dose deliverability using CNN-based models. First, the implementation of new treatment features, especially
with potential physical factors traceable by the activation maps. Also, the use of multiple feature inputs to
increase the prediction performance. And finally, to opening the discussion about how to develop and
understand ML applications in radiotherapy that might help to design new strategies to evaluate dose
deliverability.

Conclusions

The MP, MUcp, and CDI are convenient features for dose deliverability predictive models implementing ML
methods. Additionally, hybrid models including two or more input features are susceptible to improving the
prediction performance compared to models with single features. Besides, decision-making strategies based on
ML models might help to support new methodologies to evaluate dose deliverability within the patient-specific
treatment verification protocols.

ORCID iDs

Paulo Quintero ® https://orcid.org/0000-0001-6574-1828
Craig Moore ® https://orcid.org/0000-0001-7409-8387
Andrew Beavis @ https: /orcid.org/0000-0002-2519-0205

References

Agnew A, Agnew CE, Grattan M W D, Hounsell A R and McGarry C K 2014 Monitoring daily MLC positional errors using trajectory log files
and EPID measurements for IMRT and VMAT deliveries Phys. Med. Biol. 59 N49-N63

Avanzo M et al 2020 Machine and deep learning methods for radiomics Med. Phys. 47 e185-¢202

Berger L, Frangois P, Gaboriaud G and Rosenwald J-C 2006 Performance optimization of the Varian aS500 EPID system J Appl Clin Med
Phys.7105-14

Campbell W, Olsen L A, Miften M, Goodman K A, Schefter T and Jones B L 2017 Using machine learning to predict physician-approved
dose distributions for pancreatic SBRT Int. J. Radiat. Oncol.”Biol."Phys. 99 S174 Eposter Session

CarlsonJ N K, Park J M, Park S-Y, Park JM I, Choi Y and Ye S-J 2016 A machine learning approach to the accurate prediction of multi-leaf
collimator positional errors Phys. Med. Biol. 61 251431

Cha K H, Hadjiiski L, Samala R K, Chan H-P, Caoili EM and Cohan R H 2016 Urinary bladder segmentation in CT urography using deep-
learning convolutional neural network and level sets Med. Phys. 43 1882-96

Chan M F, Witztum A and Valdes G 2020a Integration of Al and machine learning in radiotherapy QA Front Artif Intell. 3 76-84

Chan M F, Witztum A and Valdes G 2020b Integration of Al and machine learning in radiotherapy QA Front Artif Intell. 3 76—84

Chauhan R, Ghanshala KK and Joshi R C 2018 Convolutional neural network (CNN) for image detection and recognition ICSCCC 2018 -
Ist Int. Conf. on Secure Cyber Computing and Communications (Institute of Electrical and Electronics Engineers Inc.) pp 278-82

ChenR C, Dewi C, Huang S W and Caraka R E 2020 Selecting critical features for data classification based on machine learning methods J Big
Data71-26

Chiavassa S, Bessieres I, Edouard M, Mathot M and Moignier A 2019 Complexity metrics for IMRT and VMAT plans: a review of current
literature and applications Br. J. Radiol. 9220190270

Dillon ]V etal 2017 TensorFlow Distributions [cited 2022 Sep 24]; Available from: https://arxiv.org/abs/1711.10604v1

el Nagal, Bradley ] D, Lindsay P E, Hope A J and Deasy ] O 2009 Predicting radiotherapy outcomes using statistical learning techniques Phys.
Med. Biol. 54 S9-30

el NagaIand Das S 2020 The role of machine and deep learning in modern medical physics Med. Phys. 47 e125-6

el NaqaIand Murphy M ] 2015 What Is Machine Learning? Machine Learning in Radiation Oncology (Cham: Springer) pp 3—11

Esch A, van, Huyskens D P, Hirschi L, Scheib S and Baltes C 2013 Optimized Varian aSi portal dosimetry: development of datasets for
collective use J Appl Clin Med Phys. 14 82-99

Ezzell G A et al 2009 IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119
Med. Phys. 36 535973

Feng M, Valdes G, Dixit N and Solberg T D 2018 Machine learning in radiation oncology: opportunities, requirements, and needs Front
Oncol 8 1-7

Granville D A, Sutherland J G, Belec ] G and la Russa D ] 2019 Predicting VMAT patient-specific QA results using a support vector classifier
trained on treatment plan characteristics and linac QC metrics Phys. Med. Biol. 64 095017

Han X 2017 MR-based synthetic CT generation using a deep convolutional neural network method Med. Phys. 44 1408—19

Hesamian M H, Jia W, He X and Kennedy P 2019 Deep learning techniques for medical image segmentation: achievements and challenges J
Digit Imaging 32 582-96

Hirashima H et al 2020 Improvement of prediction and classification performance for gamma passing rate by using plan complexity and
dosiomics features Radiother. Oncol. 153 250-57

12


https://orcid.org/0000-0001-6574-1828
https://orcid.org/0000-0001-6574-1828
https://orcid.org/0000-0001-6574-1828
https://orcid.org/0000-0001-6574-1828
https://orcid.org/0000-0001-7409-8387
https://orcid.org/0000-0001-7409-8387
https://orcid.org/0000-0001-7409-8387
https://orcid.org/0000-0001-7409-8387
https://orcid.org/0000-0002-2519-0205
https://orcid.org/0000-0002-2519-0205
https://orcid.org/0000-0002-2519-0205
https://orcid.org/0000-0002-2519-0205
https://doi.org/10.1088/0031-9155/59/9/N49
https://doi.org/10.1002/mp.13678
https://doi.org/10.1120/jacmp.v7i1.2158
https://doi.org/10.1120/jacmp.v7i1.2158
https://doi.org/10.1120/jacmp.v7i1.2158
https://doi.org/10.1016/j.ijrobp.2017.06.438
https://doi.org/10.1088/0031-9155/61/6/2514
https://doi.org/10.1088/0031-9155/61/6/2514
https://doi.org/10.1088/0031-9155/61/6/2514
https://doi.org/10.1118/1.4944498
https://doi.org/10.1118/1.4944498
https://doi.org/10.1118/1.4944498
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.3389/frai.2020.577620
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/10.1259/bjr.20190270
https://arxiv.org/abs/1711.10604v1
https://doi.org/10.1088/0031-9155/54/18/S02
https://doi.org/10.1088/0031-9155/54/18/S02
https://doi.org/10.1088/0031-9155/54/18/S02
https://doi.org/10.1002/mp.14088
https://doi.org/10.1002/mp.14088
https://doi.org/10.1002/mp.14088
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1120/jacmp.v14i6.4286
https://doi.org/10.1120/jacmp.v14i6.4286
https://doi.org/10.1120/jacmp.v14i6.4286
https://doi.org/10.1118/1.3238104
https://doi.org/10.1118/1.3238104
https://doi.org/10.1118/1.3238104
https://doi.org/10.3389/fonc.2018.00110
https://doi.org/10.3389/fonc.2018.00110
https://doi.org/10.3389/fonc.2018.00110
https://doi.org/10.1088/1361-6560/ab142e
https://doi.org/10.1002/mp.12155
https://doi.org/10.1002/mp.12155
https://doi.org/10.1002/mp.12155
https://doi.org/10.1007/s10278-019-00227-x
https://doi.org/10.1007/s10278-019-00227-x
https://doi.org/10.1007/s10278-019-00227-x
https://doi.org/10.1016/j.radonc.2020.07.031
https://doi.org/10.1016/j.radonc.2020.07.031
https://doi.org/10.1016/j.radonc.2020.07.031

10P Publishing

Phys. Med. Biol. 67 (2022) 245001 P Quintero et al

Hussein M, Clark C H and Nisbet A 2017 Challenges in calculation of the gamma index in radiotherapy—Towards good practice Phys. Med.
36 1-11 Elsevier

Hussein M, Rowshanfarzad P, Ebert M A, Nisbet A and Clark C H2013 A comparison of the gamma index analysis in various commercial
IMRT/VMAT QA systems Radiother. Oncol. 109 370—6 Elsevier

Ibragimov B, Toesca D A S, Chang D T, Koong A C and Xing L 2017 Deep learning-based autosegmentation of portal vein for prediction of
central liver toxicity after SBRT Int. J. Radiat. Oncol.”Biol. ‘Phys. 99 E672

Interian Y et al 2018 Deep nets versus expert designed features in medical physics: An IMRT QA case study Med. Phys. 45 2672-80

JK,RS,JFand S B 2015 Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective Int. J. Radiat.
Oncol. Biol. Phys. 93 1127-35

JinX, Yan H, Han C, Zhou Y, YiJ and Xie C 2015 Correlation between gamma index passing rate and clinical dosimetric difference for pre-
treatment 2D and 3D volumetric modulated arc therapy dosimetric verification Br. J. Radiol. 88 20140577

Kimura Y, Kadoya N, Tomori S, Oku Y and Jingu K 2020 Error detection using a convolutional neural network with dose difference maps in
patient-specific quality assurance for volumetric modulated arc therapy Phys. Med. Phys. Med. 73 5764

Lam D et al 2019 Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning Med. Phys. 46 4666—75

LiY, Zhang T, Liu Zand Hu H 2017 A Concatenating Framework of Shortcut Convolutional Neural Networks (https://doi.org/10.48550/
arXiv.1710.00974)

LiJ etal 2019 Machine learning for patient-specific quality assurance of VMAT: prediction and classification accuracy Int. J. Radiat. Oncol.
Biol. Phys. 105 893-902

LiuZ etal 2019 A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy Med. Phys. 46 1972-83

Low D A, Harms W B, Mutic S and Purdy ] A 1998 A technique for the quantitative evaluation of dose distributions Med. Phys. 25 65661

Lustberg T et al 2018 Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer Radiother. Oncol. 126 3127

MasiL, Doro R, Favuzza V, Cipressi S and Livi L 2013 Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc
therapy Med. Phys. 40 071718

McNiven AL, Sharpe M B and Purdie T G 2010 A new metric for assessing IMRT modulation complexity and plan deliverability Med. Phys.
37505-15

Meyer P, Noblet V, Mazzara C and Lallement A 2018 Survey on deep learning for radiotherapy Comput. Biol. Med. 98 12646

Miften M et al 2018 Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task
Group No. 218 Med Phys. 45 ¢53-83

Miri N, Keller P, Zwan B J and Greer P 2016 EPID-based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF
beams J. Appl. Clin. Med. Phys. 17 292-304

Nguyen D et al 2017 A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient
anatomy using deep learning [cited 2019 Dec 16]; Available from: http://arxiv.org/abs/1709.09233

Nyflot M J, Thammasorn P, Wootton L S, Ford E C and Chaovalitwongse W A 2018 Deep learning for patient-specific quality assurance:
identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks Med. Phys.
[cited 2019 Dec 16];mp.13338. Available from: 46 45664

Ono T et al 2019 Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning Med. Phys. 46
3823-32

Osman A FI and Maalej N M 2021 Applications of machine and deep learning to patient-specific IMRT/VMAT quality assurance J. Appl.
Clin. Med. Phys. 2220-36

Park J M, Kim J and Park S 2019 Modulation indices and plan delivery accuracy of volumetric modulated arc therapy J. Appl. Clin. Med. Phys.
2012-22

ParkJM, KimJ I, Park SY, Oh D H and Kim S T 2018 Reliability of the gamma index analysis as a verification method of volumetric
modulated arc therapy plans Radiat. Oncol. 13 1-14

Park J M, Park S-Y and Kim H 2015 Modulation index for VMAT considering both mechanical and dose calculation uncertainties Phys.
Med. Biol. 60 7101-25

Payer C, Stern D, Bischof H and Urschler M 2016 Regressing Heatmaps for Multiple Landmark Localization Using CNNs (Cham: Springer)
pp230-8

Petroccia HM et al 2019 Spine SBRT with halcyon plan quality, modulation complexity, delivery accuracy, and speed Front Oncol. 9 319-327

Quintero P 2020 pquinterome/MCS-calculation: Calculating the MCS for VMAT based on:” Masiet al. : Plan parameters and VMAT
dosimetric accuracy - 2013’. Github. [cited 2020 Jul 27]. Available from: https://github.com/pquinterome/MCS-calculation

Sahiner B et al 2019 Deep learning in medical imaging and radiation therapy Med. Phys. 46 ¢1-36

Shin H-C et al 2016 Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and
transfer learning IEEE Trans. Med. Imaging 35 1285-98

Tamura M, Matsumoto K, Otsuka M and Monzen H 2020 Plan complexity quantification of dual-layer multi-leaf collimator for volumetric
modulated arc therapy with Halcyon linac Phys. Eng. Sci. Med. 43 94757

Tomori S et al 2018 A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance Med. Phys. 45
4055-65

Tomori S etal 2020 Systematic method for a deep learning-based prediction model for gamma evaluation in patient-specific quality
assurance of volumetric modulated arc therapy Med. Phys. 48 1003—18

Trullo R, Petitjean C, Nie D, Shen D and Ruan S 2017 Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative
Deep Architectures (Cham: Springer) pp 21-9

Valdes G etal 2017 Clinical decision support of radiotherapy treatment planning: a data-driven machine learning strategy for patient-
specific dosimetric decision making Radiother. Oncol. 125 392-7

Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M and Solberg T D 2016 A mathematical framework for virtual IMRT QA using
machine learning Med Phys. AAPM - Am. Assoc. Phys. Med. 43 432334

2018 TPS New Features Workbook v15.6Varian Medical Systems - Manual User

Wall P D H and Fontenot ] D 2020 Application and comparison of machine learning models for predicting quality assurance outcomes in
radiation therapy treatment planning Inform Med. Unlocked. 18 112

Wall P D H and Fontenot ] D 2021 Quality assurance-based optimization (QAO): Towards improving patient-specific quality assurance in
volumetric modulated arc therapy plans using machine learning Phys Med. 87 136—43

Workshop on unsupervised, transfer Learning PB-I, undefined 2012 Learning PB-I workshop on unsupervised and transfer, 2012
undefined. Autoencoders, unsupervised learning, and deep architectures. jmlr.org. [cited 2019 Oct 20]; Available from:http://jmlr.
org/proceedings/papers/v27/baldil2a/baldil2a.pdf

13


https://doi.org/10.1016/j.ejmp.2017.03.001
https://doi.org/10.1016/j.ejmp.2017.03.001
https://doi.org/10.1016/j.ejmp.2017.03.001
https://doi.org/10.1016/j.radonc.2013.08.048
https://doi.org/10.1016/j.radonc.2013.08.048
https://doi.org/10.1016/j.radonc.2013.08.048
https://doi.org/10.1016/j.ijrobp.2017.06.2221
https://doi.org/10.1002/mp.12890
https://doi.org/10.1002/mp.12890
https://doi.org/10.1002/mp.12890
https://doi.org/10.1016/j.ijrobp.2015.07.2286
https://doi.org/10.1016/j.ijrobp.2015.07.2286
https://doi.org/10.1016/j.ijrobp.2015.07.2286
https://doi.org/10.1259/bjr.20140577
https://doi.org/10.1016/j.ejmp.2020.03.022
https://doi.org/10.1016/j.ejmp.2020.03.022
https://doi.org/10.1016/j.ejmp.2020.03.022
https://doi.org/10.1002/mp.13752
https://doi.org/10.1002/mp.13752
https://doi.org/10.1002/mp.13752
https://doi.org/10.48550/arXiv.1710.00974
https://doi.org/10.48550/arXiv.1710.00974
https://doi.org/10.1016/j.ijrobp.2019.07.049
https://doi.org/10.1016/j.ijrobp.2019.07.049
https://doi.org/10.1016/j.ijrobp.2019.07.049
https://doi.org/10.1002/mp.13490
https://doi.org/10.1002/mp.13490
https://doi.org/10.1002/mp.13490
https://doi.org/10.1118/1.598248
https://doi.org/10.1118/1.598248
https://doi.org/10.1118/1.598248
https://doi.org/10.1016/j.radonc.2017.11.012
https://doi.org/10.1016/j.radonc.2017.11.012
https://doi.org/10.1016/j.radonc.2017.11.012
https://doi.org/10.1118/1.4810969
https://doi.org/10.1118/1.3276775
https://doi.org/10.1118/1.3276775
https://doi.org/10.1118/1.3276775
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1002/mp.12810
https://doi.org/10.1002/mp.12810
https://doi.org/10.1002/mp.12810
https://doi.org/10.1120/jacmp.v17i6.6336
https://doi.org/10.1120/jacmp.v17i6.6336
https://doi.org/10.1120/jacmp.v17i6.6336
http://arxiv.org/abs/1709.09233
https://doi.org/10.1002/mp.13338
https://doi.org/10.1002/mp.13338
https://doi.org/10.1002/mp.13338
https://doi.org/10.1002/mp.13669
https://doi.org/10.1002/mp.13669
https://doi.org/10.1002/mp.13669
https://doi.org/10.1002/mp.13669
https://doi.org/10.1002/acm2.13375
https://doi.org/10.1002/acm2.13375
https://doi.org/10.1002/acm2.13375
https://doi.org/10.1002/acm2.12589
https://doi.org/10.1002/acm2.12589
https://doi.org/10.1002/acm2.12589
https://doi.org/10.1186/s13014-018-1123-x
https://doi.org/10.1186/s13014-018-1123-x
https://doi.org/10.1186/s13014-018-1123-x
https://doi.org/10.1088/0031-9155/60/18/7101
https://doi.org/10.1088/0031-9155/60/18/7101
https://doi.org/10.1088/0031-9155/60/18/7101
https://doi.org/10.1007/978-3-319-46723-8_27
https://doi.org/10.1007/978-3-319-46723-8_27
https://doi.org/10.1007/978-3-319-46723-8_27
https://doi.org/10.3389/fonc.2019.00319
https://doi.org/10.3389/fonc.2019.00319
https://doi.org/10.3389/fonc.2019.00319
https://github.com/pquinterome/MCS-calculation
https://doi.org/10.1002/mp.13264
https://doi.org/10.1002/mp.13264
https://doi.org/10.1002/mp.13264
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1007/s13246-020-00891-2
https://doi.org/10.1007/s13246-020-00891-2
https://doi.org/10.1007/s13246-020-00891-2
https://doi.org/10.1002/mp.13112
https://doi.org/10.1002/mp.13112
https://doi.org/10.1002/mp.13112
https://doi.org/10.1002/mp.13112
https://doi.org/10.1002/mp.14682
https://doi.org/10.1002/mp.14682
https://doi.org/10.1002/mp.14682
https://doi.org/10.1007/978-3-319-67558-9_3
https://doi.org/10.1007/978-3-319-67558-9_3
https://doi.org/10.1007/978-3-319-67558-9_3
https://doi.org/10.1016/j.radonc.2017.10.014
https://doi.org/10.1016/j.radonc.2017.10.014
https://doi.org/10.1016/j.radonc.2017.10.014
https://doi.org/10.1118/1.4953835
https://doi.org/10.1118/1.4953835
https://doi.org/10.1118/1.4953835
https://doi.org/10.1016/j.imu.2020.100292
https://doi.org/10.1016/j.imu.2020.100292
https://doi.org/10.1016/j.imu.2020.100292
https://doi.org/10.1016/j.ejmp.2021.03.017
https://doi.org/10.1016/j.ejmp.2021.03.017
https://doi.org/10.1016/j.ejmp.2021.03.017
http://jmlr.org/proceedings/papers/v27/baldi12a/baldi12a.pdf
http://jmlr.org/proceedings/papers/v27/baldi12a/baldi12a.pdf

10P Publishing

Phys. Med. Biol. 67 (2022) 245001 P Quintero et al

Wolterink ] M, Dinkla A M, Savenije M HF, Seevinck P R, van den Berg CA T and I§gum 1 2017 Deep MR to CT Synthesis Using Unpaired
Data (Cham: Springer) pp 14-23

Xiang L eral 2018 Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image Med. Image
Anal. 47 31-44

Yan Z et al 2016 Multi-Instance deep learning: discover discriminative local anatomies for bodypart recognition IEEE Trans. Med. Imaging
351332-43

Zhao C, Carass A, Lee ], He Y and Prince J L 2017 Whole Brain Segmentation and Labeling from CT Using Synthetic MR Images
(Cham: Springer) pp 291-8

Zhen H, Nelms B E and Tomé W A 2011 Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA
Med. Phys. 38 5477-89

14


https://doi.org/10.1007/978-3-319-68127-6_2
https://doi.org/10.1007/978-3-319-68127-6_2
https://doi.org/10.1007/978-3-319-68127-6_2
https://doi.org/10.1016/j.media.2018.03.011
https://doi.org/10.1016/j.media.2018.03.011
https://doi.org/10.1016/j.media.2018.03.011
https://doi.org/10.1109/TMI.2016.2524985
https://doi.org/10.1109/TMI.2016.2524985
https://doi.org/10.1109/TMI.2016.2524985
https://doi.org/10.1007/978-3-319-67389-9_34
https://doi.org/10.1007/978-3-319-67389-9_34
https://doi.org/10.1007/978-3-319-67389-9_34
https://doi.org/10.1118/1.3633904
https://doi.org/10.1118/1.3633904
https://doi.org/10.1118/1.3633904

	Introduction
	Methods
	Workflow
	Dataset
	Input features
	Models
	Evaluation
	Activation maps

	Results
	Model architecture
	Architecture stability
	Modelling performance

	Discussion
	Conclusions
	References



