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ABSTRACT The underlying principles of inverted pendulums are widely applied to develop stabilization 

control strategies for under-actuated robotic systems in various applications. This article methodically designs 

an adaptive fractional-order linear quadratic regulator to optimize the position regulation and disturbance 

compensation ability of an inverted-pendulum-like robot. The proposed adaptive controller is realized by 

employing fractional-order differentiation operators in the baseline linear-quadratic-regulator. These 

fractional orders are adaptively modulated via an error-phase-based online adaptation law. The AFO 

modulation supplements the controller’s agility to efficiently steer the input trajectory as the state error’s 

phase changes, aiding the closed-loop system in robustly rejecting the external perturbations while 

maintaining a time-optimal behavior. The said propositions are verified by conducting customized 

experimental trials on the Quanser rotary pendulum platform. The proposed adaptive controller reduces the 

system’s transient recovery time by 35.8%, overshoots by 35.1%, control-energy expenditure by 37.2%, and 

offsets by 38.2% under transient disturbances, in comparison to the baseline linear quadratic regulator. The 

experimental data validates the superior time optimality and disturbance compensation of the proposed 

control law. 

INDEX TERMS Adaptive control, error phase, fractional order control, LQR, rotary inverted pendulum. 

I. INTRODUCTION 

Rotary inverted pendulums (RIPs) are a classic control 

problem in robotics and control theory [1]. They serve as a 

benchmark platform for developing and verifying control 

procedures for underactuated systems that must balance an 

unstable object or maintain an upright position against 

bounded disturbances [2]. The RIP control principles are 

useful for designing robots that need to be kinematically 

stable, responsive to setpoint changes, adaptable to exogenous 

disturbances, and capable of performing precise motion 

control tasks in various environments [3]. Some common uses 

of RIP in robotic applications are the stabilization of self-

balancing robots [4], locomotion of bipedal exoskeletons [5], 

and control of aerial robots [6], etc. The open-loop instability, 

nonlinear characteristics, and underactuated configuration of 

the RIP-type robots make it challenging to stabilize them 

under exogenous disturbances [7].  

 

A. LITERATURE REVIEW 

The scientific literature proposes numerous control procedures 

to address the said problem [8]. The inflexibility of the 

proportional-integral-derivative controllers prevents them 

from effectively rejecting the random disturbances [9]. Model-

free neural and fuzzy controllers are typically computationally 

expensive owing to their reliance on large amounts of training 

data and qualitative rules [10, 11]. The sliding-mode 

controllers are highly robust against disturbances [12]. 

However, their inherent switching behavior disrupts the 

control activity, which naturally injects chattering into the 

state response [13]. This phenomenon eventually leads to 

performance degradation, mechanical wear, and actuator 

saturation [14]. The higher-order sliding-mode controllers 

(HOSMCs) can effectively reduce chattering in under-

actuated systems as proposed in [15, 16]. However, they rely 

upon complex algorithms to compute the higher-order state 
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derivatives, which can be problematic in systems with limited 

computational abilities [16]. Moreover, the estimated higher-

order state derivatives can be highly sensitive to measurement 

noise, and thus require auxiliary filters to avoid degraded 

performance [17]. Despite yielding optimal control decisions, 

the nominal linear quadratic regulator (LQR) lacks resilience 

in mitigating the effect of identification errors, parametric 

uncertainties, and model variations [18]. The adaptive LQR 

variants that employ a well-postulated self-tuning nonlinear 

function to dynamically adjust the state and control weighting 

coefficients tend to increase the flexibility of the controller 

design [19]. However, pre-configuring the shapes and the 

limits of the self-tuning functions is a laborious task [20]. The 

susceptibility of the model predictive controllers to noise and 

model mismatch reduces their ability to respond to long 

drifting disturbances. [21]. The model-reference adaptive 

controllers require a well-identified reference model to yield 

an optimum control effort [22]. 

The fractional order (FO) control combines the principles of 

fractional calculus with the control theory by allocating FOs 

to the differentiation as well as operators in the nominal 

control scheme [23]. The afore-stated fractional operators 

introduce new parameters in the control scheme, which 

reasonably enhances the controller’s agility to effectively 

handle exogenous disturbances in nonlinear dynamical 

systems [24]. Recently, the utilization of complex-order LQR 

controllers has gained a lot of traction [25]. These controllers 

are constructed in such a manner that complex orders (COs) 

replace the real-numbered FOs of differentiation/integration 

operators of the control law [26]. Despite increasing the 

controller’s adaptability, the CO controllers introduce a 

multitude of parameters that require offline tuning [27]. 

B. NOVEL CONTRIBUTIONS 

This article formulates a novel phase-based adaptive 

fractional-order LQR (AFO-LQR) for an inverted-pendulum-

type robot to improve the controller’s time optimality and 

robustness against disturbances. Indeed, the traditional LQR is 

formulated based on the system’s linearized state space model, 

and thus, it is not a high-performance controller on its own as 

it is susceptible to performance degradation under the 

influence of identification errors and modeling uncertainties. 

It is selected as the baseline controller because it is a full-state 

feedback controller that minimizes an energy-like quadratic 

performance index to yield an optimum set of compensator 

gains that deliver optimal control decisions while preserving 

the system’s asymptotic convergence as long as the necessary 

stability conditions are met (discussed in Section II(B)). To 

enhance the disturbance rejection capacity of this optimal and 

stable controller, the differential operators of LQR are 

replaced with self-adjusting FO operators in this work. The 

said FOs are dynamically adjusted via a pre-calibrated phase-

based modulator to avoid performance limitations and 

compromises imposed by fixed FOs. This augmentation 

supplements the LQR’s self-learning capability, which 

increases its adaptability to flexibly manipulate the damping 

control activity as the operating conditions change. The key 

contributions of this article are listed below: 

• Constitution of the adaptive FO-LQR law.  

• Formulation of a phase-based modulator to online adapt 

the controller’s FOs using pre-configured hyperbolic 

tangent functions (HTFs). 

• Verification of the adaptive FO-LQR law by conducting 

hardware experiments on the Quanser RIP setup [1]. 

The phase-based modulator autonomously modulates the FOs 

of the FO-LQR between –1 and +1 in response to the system’s 

state-error-phase, which dynamically re-structures the control 

law to predominantly exhibit derivative action as the response 

deviates from the setpoint and integral action as it converges. 

Consequently, the system delivers rapid reference tracking 

concurrent with robust dampening against large transients 

while reducing the control requirements. The employment of 

HTF ensures a smooth transition of the FOs and, hence, the 

control structure as the error phase changes.  

An online adaptive controller that undertakes to self-adjust the 

FOs between –1 and +1 to mutate the FO-LQR for RIP-type 

robots from a derivative-type to an integral-type control law, 

as the error phase changes, has not yet been implemented in 

the academic literature. Hence, the article attempts to realize 

the prescribed novel concept.  

C. RELATIVE BENEFITS  

The proposed control law addresses the gaps and limitations 

associated with the state-of-the-art controllers discussed in 

Section I(A). Unlike the model-free linear controllers 

discussed above, the proposed scheme exhibits an 

asymptotically stable control behavior. The proposed 

arrangement synergistically combines the beneficial features 

of the integral and derivative control operators in the PID 

controllers by smoothly sliding between the integral and 

derivative control regions as the error phase conditions vary. 

This smooth commutation also prevents high chattering 

induced by the hard limits imposed by the conventional SMC 

reaching law. The optimal controller gains are delivered by the 

LQ optimization, where the FOs are adapted online between –

1 and +1 using HTFs. Unlike HOSMCs, the FO of the 

derivative operator does not exceed +1. Hence, the estimation 

of higher-order derivatives is avoided, which grants the 

controller immunity against sensor noise. Similarly, the FO of 

the derivative operator does not go below –1, which prevents 

the controller from actuator saturation caused by the integral 

wind-up. The FOs can be easily estimated using the 

computational resources available. Unlike the model-free 

neuro-fuzzy controllers, the proposed adaptation scheme does 

not require large sets of fuzzy rules or training data. They can 

be simply realized using algebraic equations that can be solved 

in a single step. This prevents putting excessive computation 

burden on the embedded processor. 

The proposed AFO-LQR scheme also improves considerably 

upon the conventional fixed FO-LQR law as well as the CO-
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PID control law used for RIP systems proposed in [25]. 

Firstly, the FO- or CO-PID controllers increase the LQ 

controller’s design flexibility, however, the accurate selection 

of an optimal set of FOs is a very laborious task. The proposed 

scheme uses HTFs to obviate the necessity to tune the fixed 

fractional or complex orders offline. Secondly, fixed fractional 

(or complex) orders cannot adjust to changing conditions or 

dynamics within the system. This lack of flexibility can lead 

to suboptimal performance in environments where errors vary 

rapidly over time. Consequently, the systems may exhibit 

higher overshoots and longer settling times compared to 

adaptive counterparts that can continuously tune their 

parameters. This eventually leads to potential control energy 

wastage and increased control costs. The proposed controllers 

equipped with adaptive FOs address all the aforementioned 

problems, by demonstrating enhanced robustness and better 

handling of disturbances and uncertainties. 

The remainder of the article is structured as described here: the 

RIP’s dynamics and the nominal LQR linked with it are 

discussed in Section II. The AFO-LQR is constituted in 

Section III. The outcomes of experimental trials are examined 

in Section IV. Section V presents the formal conclusion. 

II. SYSTEM DESCRIPTION 

The RIP is a pendulum mounted on a rotating base containing 

a DC servo motor-driven rotary joint that supports a horizontal 

arm, as shown in Fig. 1 [1]. The energy controller actuates the 

motor to rotate the arm. This rotation swings up the unactuated 

vertical pendulum rod until it inverts itself. Once inverted, the 

state feedback controller continues to balance the rod 

vertically by dynamically re-adjusting the motor’s control 

input. The instantaneous positions of the rod and arm are 

referred to as 𝜃 and 𝛼, respectively. The positions and 

velocities of each link are measured via two encoders, which 

are installed with the pendulum’s pivot and the shaft of the 

motor, respectively. 

 

 

FIGURE 1.  Simplified diagram of an RIP platform [1]. 

 

A. MATHEMATICAL MODELING 

The RIP’s linear equations of motion are derived via the Euler-

Lagrange technique, as shown below [28]. 

�̈� =
1

𝑊
(𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 + 𝑀𝑝𝑟2)𝜃 −

𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

𝑅𝑚
�̇� +

𝑟𝑀𝑝𝑙𝑝𝐾𝑡

𝑅𝑚
𝑉𝑚)     (5) 

�̈� =
1

𝑊
(𝑟𝑀𝑝

2𝑙𝑝
2𝑔𝜃 −

(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝐾𝑡𝐾𝑚

𝑅𝑚
�̇� +

(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝐾𝑡

𝑅𝑚
𝑉𝑚)   (6) 

such that, 𝑊 = 𝐽𝑒𝐽𝑝 + 𝑀𝑝𝑟2𝐽𝑝 + 𝑀𝑝𝑙𝑝
2𝐽𝑒 

Table I describes the modeling parameters indicated in (1) and 

(2), [19]. In state space, a linear system is described as, 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡), 𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡)   (7) 

where, 𝑨 is the system matrix, 𝑩 is the input matrix, 𝑪 is the 

output matrix, 𝑫 is the feed-forward matrix, and 𝑦(𝑡) is the 

output vector. The system’s model is presented in the block 

diagram in Fig. 2. The control input as well as the state vector 

of the RIP system are provided in (8), [7, 29]. 

𝑢(𝑡) = 𝑉𝑚(𝑡),    𝑥(𝑡) = [𝛼(𝑡) 𝜃(𝑡) �̇�(𝑡) �̇�(𝑡)]𝑇   (8) 

The state space matrices of the RIP are given by (9), [29].  

𝑨 = [

0 0 1   0
0 0 0   1
0
0

𝑎1

𝑎3

𝑎2 0
𝑎4 0

] , 𝑩 = [

0
0
𝑏1

𝑏2

], 

  𝑪 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] ,            𝑫 = [

0
0
0
0

]                    (9) 

where, 𝑎1 =
𝑟𝑀𝑝

2𝑙𝑝
2𝑔

𝑊
, 𝑎2 =

−𝐾𝑡𝐾𝑚(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)

𝑊𝑅𝑚
, 

                      𝑎3 =
𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 + 𝑀𝑝𝑟2)

𝑊
, 𝑎4 =

−𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

𝑊𝑅𝑚
, 

                       𝑏1 =
𝐾𝑡(𝐽𝑝 + 𝑀𝑝𝑙𝑝

2)

𝑊𝑅𝑚
, 𝑏2 =

𝑟𝑀𝑝𝑙𝑝𝐾𝑡

𝑊𝑅𝑚
. 

  
TABLE I 

MODEL SPECIFICATIONS OF THE QUANSER RIP [19] 

Symbol Parameter details Value Unit 

𝑅𝑚 DC motor’s resistance 3.30 Ω 

𝐿𝑚 DC motor’s inductance 47.0 mH 

𝐾𝑡 DC motor’s torque constant 0.028 Nm/A 

𝐾𝑚 Motor’s back EMF constant 0.028 Vs/rad 

𝐽𝑒 Shaft’s moment-of-inertia 0.000123 kgm2 

𝑟 Rotational arm’s length 0.083 m 

𝑀𝑎𝑟𝑚 Rotational arm’s mass 0.028 kg 

𝑀𝑝 Pendulum’s mass 0.027 kg 

𝑙𝑝 Pendulum’s center-of-mass 0.153 m 

𝐿𝑝 Pendulum’s length 0.191 m 

𝐽𝑝 Pendulum’s moment-of-inertia 0.00011 kgm2 

𝑔 Acceleration due to Gravity 9.810 m/s2 

 

 

FIGURE 2.  Block diagram representation of the state space model. 
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B. LQR FORMULATION 

The LQR uses the state space model and full state feedback of 

a linear dynamic system to stabilize and control its behavior 

[1, 18]. The quadratic cost function of states and input, given 

by (10), is minimized by using the Hamilton-Jacobi-Bellman 

equation [30]. 

𝐽𝑙𝑞 =
1

2
∫ [𝑥(𝑡)𝑇𝑴𝑥(𝑡) + 𝑢(𝑡)𝑇𝑺𝑢(𝑡)]

∞

0

𝑑𝑡           (10) 

where, 𝑴 ∈ ℝ4×4 is the positive semidefinite state cost matrix, 

and 𝑺 ∈ ℝ is the positive-definite control input cost matrix. For 

the given RIP system, the 𝑴 and 𝑺 matrices are symbolically 

denoted as follows. 

𝑺 = 𝜌, 𝑴 = diag(𝑞𝛼 𝑞𝜃 𝑞�̇� 𝑞�̇�)          (11) 

The parametrization of the 𝑴 and 𝑺 matrices is discussed in 

the following subsection. The linear optimal control law 

acquired by minimizing the cost function is expressed in (12). 

𝑢(𝑡) = −𝑲𝑥(𝑡)                                    (12) 

where, 𝑲 = [𝑘𝛼 𝑘𝜃 𝑘�̇� 𝑘�̇�] is the state compensator gain 

vector. The LQR law can also be written as shown below. 

𝑢(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘�̇��̇�(𝑡) − 𝑘�̇��̇�(𝑡)  (13) 

The gain vector is calculated as shown in (14). 

𝑲 = 𝑺−1𝑩𝑇𝑷                                      (14) 

where 𝑷 is a positive-definite symmetric matrix, which is 

obtained by solving the continuous-time Algebraic Riccati 

Equation given by (15). 

𝑨𝑇𝑷 + 𝑷𝑨 − 𝑷𝑩𝑺−1𝑩𝑇𝑷 + 𝑴 = 0                (15) 

Stability proof: The Lyapunov-stability of the LQR is proven 

via the function expressed in (16). 

𝑍(𝑡) = 𝑥(𝑡)𝑇𝑷(𝑡)𝑥(𝑡) > 0,   where 𝑥(𝑡) ≠ 0   (16) 

The first derivative of 𝑍(𝑡) is derived as follows [7]. 

�̇�(𝑡) = 2(𝑥(𝑡)𝑇𝑷�̇�(𝑡))                                                         (17) 

= 𝑥(𝑡)𝑇(𝑨𝑇𝑷 + 𝑷𝑨)𝑥(𝑡) − 2𝑥(𝑡)𝑇(𝑷𝑩𝑺−𝟏𝑩𝑻𝑷)𝑥(𝑡) 

The expression �̇�(𝑡) is simplified by inserting equation (15) 

in (17), as shown below. 

�̇�(𝑡) = −𝑥(𝑡)𝑇𝑴𝑥(𝑡) − 𝑥(𝑡)𝑇(𝑷𝑩𝑺−1𝑩𝑇𝑷)𝑥(𝑡)    (18) 

The derivative �̇�(𝑡) < 0 as long as 𝑴 = 𝑴𝑇 ≥ 0 and 𝑺 =
𝑺𝑇 > 0, which guarantees the LQR’s asymptotic stability. 

C. CONTROLLER PARAMETERIZATION 

The cost function indicated in (19) is minimized in order to 

effectively optimize the controller parameters offline. 

𝐽𝑒 = ∫ [(𝑒𝛼(𝑡))
2

+ (𝑒𝜃(𝑡))
2

+ (𝑢(𝑡))
2

] 𝑑𝑡
T

0

    (19) 

where, 𝑒𝛼(𝑡) = 𝛼(𝑡) − 𝛼(0) and 𝑒𝜃(𝑡) = 𝜃(𝑡) − 𝜋 

represent the error in the arm’s position and rod’s position, 

relative to the reference, respectively. The rod’s reference 

positions is 𝜋 rad., and the arm’s reference is its initial 

position, 𝛼(0). The state and control costs are selected 

between 0 and 100 [1]. An illustration of the procedure used 

to tune the parameters is provided in Fig. 3 [1]. Section IV 

discusses the procedure used to conduct the experimental trials 

for parameter tuning. The tuning is initiated with 𝑺 = 1 and 

𝑴 = diag(1 1 1 1).  

 

 

FIGURE 3.  Parameter selection process [1]. 

 

Every trial involves updating the parameters suitably, 

manually erecting the pendulum rod, and balancing it for a 

period of 10.0 sec. to calculate the cost of the present trial 𝐽𝑒,𝑘; 

where, 𝑘 is the trial number. The tuning process searches the 

parameter range while tracking the cost function’s descending 

gradient [31]. The local minimum-cost 𝐽𝑒,𝑚𝑖𝑛  is updated if the 

current cost (𝐽𝑒,𝑘) is less than the cost of the prior trial (𝐽𝑒,𝑘−1). 

Once the maximum number of trials (𝑘𝑚𝑎𝑥) are completed or 

the 𝐽𝑒,𝑚𝑖𝑛 attains a pre-determined threshold value, the 

exploration for the optimum solutions is concluded.  

The said threshold is determined based on empirical testing via 

pilot algorithmic runs. By conducting preliminary runs of the 

tuning algorithm with various thresholds and evaluating the 

resulting parameters, the aforementioned thresholds are 

selected that balance computational resource utilization and 

solution quality while avoiding premature termination of the 

tuning algorithm. In this research, the 𝐽𝑒,𝑚𝑖𝑛 for initial settings 

of 𝑺 and 𝑴 is recorded as 𝐽𝑒,𝑚𝑖𝑛
0 ≈ 0.89 × 106. A scaled-

down value of 𝐽𝑒,𝑚𝑖𝑛
0  is then used as the stopping criteria. A 

scale of 0.01 is empirically selected to avoid unnecessary 

computational burden and ensure quicker convergence of the 

algorithm. A larger scale value puts an excessive recursive 

computational burden while a smaller one leads to premature 

termination. Thus, the algorithm is terminated when 𝐽𝑒,𝑚𝑖𝑛 

approaches 0.01 𝐽𝑒,𝑚𝑖𝑛
0 . Correspondingly, the values of the 

threshold for 𝐽𝑒,𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are preset at 1 × 104 and 30, 

respectively [1].  

The optimized set of control and state costs are 𝑺 = 1.02 and 

𝑴 = diag(32.8 52.2 6.1 2.5), respectively. The state 

compensator gains thus computed using (13) are 𝑲 =
[−6.21 130.56 −4.22 17.83]. 

III. PROPOSED CONTROL PROCEDURE 

This section systematically formulates the proposed phase-

based adaptive FO-LQR law for the RIP system.  

A. FRACTIONAL-ORDER LQR 

Fractional calculus generalizes the traditional calculus 

operators of differentiation and integration to non-integer 

orders or fractional orders [32]. It provides a more nuanced 

understanding of systems with complex dynamics. The 

incorporation of fractional-order elements into the control 

system aids in addressing various challenges to achieve 

improved performance in complex dynamical systems [33]. 
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The symbol 𝐷λ represents the fractional mathematical 

operator; where, λ is the operator’s FO. The definitions of FO 

operators, given by Gruunwald-Letnikov, Riemann-Liouville, 

and Caputo, are expressed as follows [32]. 

𝐷λ𝑓(𝑡) = lim
ℎ→0

1

ℎ𝑖
∑ (−1)𝑖 (

λ
𝑖
)

(𝑡−𝑎) ℎ⁄

𝑖=0

𝑓(𝑡 − 𝑖ℎ)           (21) 

where, (
λ
𝑖
) = 𝛤(λ + 1) 𝛤(𝑖 + 1)⁄ 𝛤(λ − 𝑖 + 1), and ℎ is the 

step size. 

𝐷λ𝑓(𝑡) =
1

𝛤(𝑛 − λ)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)λ−𝑛+1
𝑑𝜏

𝑡

𝑎

          (20) 

where, 𝛤(𝑥) is the Euler gamma function, 𝑛 is an integer such 

that 𝑛 − 1 < λ < n. 

𝐷λ𝑓(𝑡) =
1

𝛤(λ − 𝑛)
∫

𝑓𝑛(𝜏)

(𝑡 − 𝜏)λ−𝑛+1
𝑑𝜏

𝑡

𝑎

              (22) 

In FO control systems, the control law includes fractional-

order integrators and differentiators instead of their traditional 

integer-order counterparts [23]. This approach increases the 

flexibility in controller design, which enables it to exhibit 

behaviors that are not achievable with integer-order 

controllers. Thus, the fractional calculus is combined with the 

nominal LQR to realize the FO-LQR law [24]. The FO-LQR 

law is expressed in (23). 

𝑢(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘�̇� (𝐷𝛽𝛼(𝑡))
− 𝑘�̇�(𝐷𝛾𝜃(𝑡))                                        (23) 

Apart from the original state-compensator gains, the fractional 

calculus introduces two additional parameters in the modified 

control scheme in the form of the FOs of the differential 

operators, 𝛽 and 𝛾. The inclusion of these parameters further 

enhances the controller’s agility. The FO-LQR law can also be 

written as given by (24). 

𝑢(𝑡) = 𝑢𝛼(𝑡) + 𝑢𝜃(𝑡)                             (24) 

where, 𝑢𝛼(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘�̇� (𝐷𝛽𝛼(𝑡)) 

and,              𝑢𝜃(𝑡) = −𝑘𝜃𝜃(𝑡) − 𝑘�̇�(𝐷𝛾𝜃(𝑡)) 

The schematic of the AFO-LQR structure is illustrated in Fig. 

4. The transfer functions of 𝑢𝛼(𝑡) and 𝑢𝜃(𝑡) are given below. 
𝑈𝛼(𝑠)

𝛼(𝑠)
= −𝑘𝛼 − 𝑘�̇�𝑠𝛽 ,

𝑈𝜃(𝑠)

𝜃(𝑠)
= −𝑘𝜃 − 𝑘�̇�𝑠𝛾      (25) 

The fractional elements 𝑠𝛽 and 𝑠𝛾 are difficult to implement 

due to their non-integer nature. The Oustaloup filter is thus 

used to approximate these fractional elements [25]. 

 

 

FIGURE 4.  Schema of the FO-LQR scheme. 

 

The approximation of the fractional element 𝑠λ via the 

Oustaloup filter is presented in (26). 

𝑠λ = 𝑉 ∏
1 + (𝑠

𝑤𝑧,𝑖⁄ )

1 + (𝑠
𝑤𝑝,𝑖⁄ )

𝑁

𝑖=1

                          (26) 

such that, 𝑤𝑧,𝑖 = 𝑤𝑙(
𝑤ℎ

𝑤𝑙
⁄ )

2𝑖−1−λ
2𝑁⁄

,  

                            𝑤𝑝,𝑖 = 𝑤𝑙(
𝑤ℎ

𝑤𝑙
⁄ )

2𝑖−1+λ
2𝑁⁄

 

where, 𝑁 is the filter’s order, 𝑤ℎ is the upper cut-off 

frequency, and 𝑤𝑙  is the lower cut-off frequency of the filter. 

The 𝑉 is evaluated such that (𝑗𝑤)λ = 1 at 1.0 rad/s. The 

specifications of the said filter utilized in this work are 𝑁 = 5, 

𝑤𝑙 = 10−2 rad/s, and 𝑤ℎ = 102 rad/s [25].  

The LQR’s asymptotic stability is guaranteed as long as 𝑴 =
𝑴𝑇 ≥ 0 and 𝑺 = 𝑺𝑇 > 0. These stability conditions are also 

sufficient for FO-LQR because the proposed scheme is not 

targeting the state compensator gains, instead the estimates of 

the state derivatives being fed to the LQR are being modified 

by the FO operation, as shown in Fig. 4. 

To realize the fixed FO-LQR law, the parameters 𝛽 and 𝛾 are 

optimized offline using the procedure prescribed in Section II 

(C). The values of 𝛽 and 𝛾 are chosen from the range [–1, 1]. 

The FOs thus selected are 𝛽 = 0.755 and 𝛾 = 0.782. 

However, the fixed setting of FOs does not always yield a 

robust-optimal control effort as they lack the necessary 

degrees of freedom to address the abrupt variations system’s 

phase [33]. This problem can be potentially addressed by 

adaptively modulating the FOs, 𝛽 and 𝛾, as discussed below. 

B. PROPOSED ADAPTIVE FRACTIONAL-ORDER LQR  

The FOs linked with the FO-LQR law are dynamically 

adjusted in response to changes in the system’s state error 

phase, which flexibly reshapes the control trajectory [34]. The 

knowledge of the state error phase enables the control law to 

realize whether the system’s states (𝛼 and 𝜃) are deviating 

from or returning to the setpoint [35]. The knowledge of the 

error phase is used in conjunction with the following set of 

rules to constitute the FO adaptation mechanism [36]. 

1. When the states deviate from the reference, the FOs are 

varied between 0 and 1 to enhance the proportional-

derivative (PD) driven control action, which improves the 

transient response speed, dampens the overshoots, and 

efficiently reverts their direction of motion.  

2. When the states are returning to the reference, the FOs are 

varied between –1 and 0 to strengthen the proportional-

integral (PI) driven control action, which improves the 

system’s tracking by accelerating the state’s convergence 

to the reference while attenuating the steady-state 

oscillations.  

These rules increase the system’s adaptability to reject 

disturbances [35]. They are mathematically realized via a 

smooth and odd-symmetric nonlinear function that is bounded 

between –1 and +1. Hence, the HTF is used to implement the 

FO adaptation law because its waveform complies with the 
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aforementioned properties [36]. The general expression used 

to online adapt an FO is presented in (27). 

λ(𝑡) = tanh(𝛿𝑥 𝑔𝑥(𝑡))                          (27) 

where λ(𝑡) is an arbitrary time-varying FO, tanh(. ) 

represents the HTF, 𝛿𝑥 is the HTF’s variation rate. Since the 

waveform of the HTF is restricted between –1 and +1, the 

variations in the FOs are also confined within this range. The 

variable 𝑔𝑥(𝑡) is a phase detector of the following form [26]. 

𝑔𝑥(𝑡) = (𝑒𝑥(𝑡))
3

 sign(�̇�𝑥(𝑡))                    (28) 

 where sign(. ) is a signum function as shown below.  

sign(�̇�𝑥(𝑡)) = {

+1,            𝑖𝑓 �̇�𝑥(𝑡) > 0

0,               𝑖𝑓 �̇�𝑥(𝑡) = 0

−1,            𝑖𝑓 �̇�𝑥(𝑡) < 0

           (29) 

The waveform of λ(𝑡) is shown in Fig. 5 [36]. The variable 

𝑔𝑥(𝑡) notifies the FO-LQR regarding the error phase [36]. An 

arbitrary under-damped system’s error profile, shown in Fig. 

6, can be chopped up into four distinct phases; namely, A, B, 

C, and D. The variables 𝑒𝑥 and �̇�𝑥 have the same polarities in 

phases A and C, which suggests that states are deviating from 

the reference. Hence, 𝑔𝑥(𝑡) becomes positive and contributes 

to a PD-driven control effort. Contrarily, the 𝑒𝑥 and �̇�𝑥 

variable have opposite polarities in phases B and D, which 

suggests that the states are returning towards the reference. 

Hence, 𝑔𝑥(𝑡) becomes negative and contributes to a PI-driven 

control effort. The inclusion of 𝑔𝑥(𝑡) in λ(𝑡) guarantees 

enhanced response speed with strong damping against 

disturbances. A map correlating the FO variations in response 

to phase changes is shown in Table II. 

The error-cube signal (𝑒𝑥(𝑡))
3
 in 𝑔𝑥(𝑡) creates distinctive 

amplified and suppressed error zones (as shown in Fig. 3), 

which renders a sharp increase in the FO’s magnitude under 

large error conditions, and vice versa [37].  

  

 

FIGURE 5.  Waveform of the FO adaptation function [36]. 

 

FIGURE 6.  Error variation in an arbitrary under-damped system [36]. 

 

TABLE II 

FO VARIATION IN RESPONSE TO PHASE CHANGES 

Phase 𝑒𝑥 �̇�𝑥 𝑔𝑥 Response Action FO variation 

A > 0 > 0 > 0 Deviating PD-type 
0 ≤ 𝛽 ≤1, 

0 ≤ 𝛾 ≤1 

B > 0 < 0 < 0 Converging PI-type 
−1 ≤ 𝛽 ≤ 0, 

−1 ≤ 𝛾 ≤ 0 

C < 0 < 0 > 0 Deviating PD-type 
0 ≤ 𝛽 ≤1, 

0 ≤ 𝛾 ≤1 

D < 0 > 0 < 0 Converging PI-type 
−1 ≤ 𝛽 ≤ 0, 

−1 ≤ 𝛾 ≤ 0 

 

The cube operation also serves to maintain the odd symmetry 

of the error variable. The formulae thus designed to adaptively 

modify 𝛽(𝑡) and 𝛾(𝑡) are presented in (30). 

𝛽(𝑡) = tanh(𝛿𝛼 𝑔𝛼(𝑡)) ,    𝛾(𝑡) = tanh(𝛿𝜃 𝑔𝜃(𝑡))  (30) 

where, 𝑔𝛼(𝑡) = (𝑒𝛼(𝑡))
3

 sign(�̇�𝛼(𝑡)), 

and,              𝑔𝜃(𝑡) = (𝑒𝜃(𝑡))
3

 sign(�̇�𝜃(𝑡)) 

The variances 𝛿𝛼 and 𝛿𝜃 are determined from the span [0, 1] 

by using the afore-described optimization scheme. The 

variances thus chosen are 𝛿𝛼 = 0.082 and 𝛿𝜃 = 0.215. The 

proposed adaptive FO-LQR (or AFO-LQR) law is expressed 

in (31). 

�̂�(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘�̇� (𝐷𝛽(𝑡)𝛼(𝑡))
− 𝑘�̇� (𝐷𝛾(𝑡)𝜃(𝑡))                                  (31) 

The smooth commutation of the FOs between –1 and +1 aids 

in autonomously mutating the control law from a PD-type to a 

PI-type controller as the error phase changes. The schematic 

of the AFO-LQR structure is illustrated in Fig. 5. 

 

IV. EXPERIMENTAL ANALYSIS 

The experimental cases employed to benchmark the AFO-

LQR’s behavior with nominal LQR are discussed below. 

A. HARDWARE PLATFORM  

The controllers are investigated by conducting customized 

experiments on the Quanser RIP depicted in Fig. 8. The NI-

ELVIS DAQ board records the encoder measurements of 𝛼 

and 𝜃 at a sampling frequency of 1000 Hz. The control 

application receives this data serially at a baud rate of 9600 

bps. 

 

 

FIGURE 7.  Schema of the proposed AFO-LQR scheme. 
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FIGURE 8.  Quanser rotary inverted pendulum setup. 

 

The LabVIEW software, operating on a 64-bit, 1.70 GHz 

Intel® personal computer with 12.0 GB RAM, is used to 

implement the customized control application. The control 

application also comprises a customized graphical user 

interface that illustrates the state and control variations. To 

prevent the DC motor from overheating and saturation, the 

control scheme uses a saturation function to confine the 

consequent voltage control commands within ±18.0 V (See 

Fig. 7). The onboard motor driver circuit receives the 

modulated control signals serially to actuate the motor 

appropriately, and thus, self-balance the RIP. 

B. EXPERIMENTAL CASES AND OUTCOMES  

The following experiments are carried out to determine each 

controller’s effectiveness. Every experiment involves setting 

up the rod and letting it self-balance vertically. 

 

1. Reference tracking: In this experiment, the ability of the 

arm and rod to track their respective reference positions in 

the absence of disturbances is evaluated. The profiles of 

𝛼(𝑡), 𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) and 𝛾(𝑡) are depicted in Fig. 9. 

 

2. Impulse disruptions: In this experiment, a pulse signal with 

a peak voltage of –5.0 V and a duration of 100 msec. is 

injected in 𝑉𝑚(𝑡) at discrete intervals to test the controller’s 

resistance to impulsive forces. To conduct this experiment, 

the “pulse pattern” block is chosen from the function's 

palette in Labview’s block diagram tool [38]. The input 

parameters of the pulse generator are appropriately 

configured to attain the desired pulse width and amplitude. 

When activated, the said generator injects a pulse directly 

into the system's control input signal. The profiles of 𝛼(𝑡), 

𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) and 𝛾(𝑡) are shown in Fig. 10. 

 

3. Step disruption: In this experiment, a step signal of –5.0 V 

is injected in 𝑉𝑚(𝑡) at t ≈ 6.0 sec to test the controller’s 

resilience to load changes. The profiles of 𝛼(𝑡), 𝜃(𝑡), 

𝑉𝑚(𝑡), 𝛽(𝑡) and 𝛾(𝑡) are shown in Fig. 11. 

 

4. Sinusoidal disruption: In this experiment, a sinusoidal 

signal d(t) = sin(20πt), is introduced in 𝑉𝑚(𝑡) to 

examine the controller’s robustness against sensor and 

mechanical noise. The profiles of 𝛼(𝑡), 𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) 

and 𝛾(𝑡) are shown in Fig. 12. 

 

5. Model uncertainties: In this experiment, a 0.1 kg mass is 

manually attached with the hook underneath the 

pendulum’s rod-arm assembly at t ≈ 6.0 sec, as shown in 

Fig. 13, to evaluate the controller’s adaptability against the 

state fluctuations caused by the model variations. This 

arrangement creates a loading effect on the motor and 

changes the mass of the pendulum-arm assembly, which 

sets up the desired model uncertainty. The consequent 

modification incurred in the coefficients of the matrices 𝑨 

and 𝑩 leads to a sudden variation in the system’s actual 

model, creating a difference between the actual and 

simulated models of the system. The profiles of 𝛼(𝑡), 𝜃(𝑡), 

𝑉𝑚(𝑡), 𝛽(𝑡) and 𝛾(𝑡) are shown in Fig. 14. 

 

 

FIGURE 9.  System’s position regulation in disturbance-free conditions. 
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FIGURE 10.  System’s position regulation under impulsive disruptions. 

C. COMPARATIVE PERFORMANCE ASSESSMENT  

The results of the aforesaid experiments are comparatively 

examined via the following seven Key Benchmarking Metrics 

(KBMs): the root-mean-squared value of state error (ex,RMS) in 

𝛼 and 𝜃, the rod’s transient recovery span (tset,θ), the magnitude 

of peak overshoot or undershoot (|OSθ|) in rod, the step 

disruption-induced offset (αoff) in the arm, the amplitude of the 

step disruption-induced fluctuations (αp-p) in the arm, the mean 

squared value of motor voltage (MSVm), the peak motor 

voltage (Vp) under transient disturbances [34]. Table III 

quantifies the experimental results in terms of the aforesaid 

KBMs. The quantitative data analysis validates the significant 

improvement contributed by the proposed AFO-LQR in the 

system’s position regulation behavior. 

Experiment 1 (Fig. 9) shows that the AFO-LQR outperforms 

the fixed-gain controllers by minimizing the tracking error 

while delivering a reasonably better control-input efficiency. 

The proposed AFO-LQR reduces the system’s eθ,RMS by 

32.72%, eα,RMS by 29.23%, and control energy expenditure by 

33.56%, in comparison to the baseline LQR.   

 

FIGURE 11.  System’s position regulation under step disruptions. 

 

Experiment 2 (Fig. 10) shows that AFO-LQR delivers a 

comparatively faster transient recovery speed than the LQR 

and the FO-LQR while robustly attenuating the overshoots 

and economizing the control energy requirements. The 

proposed AFO-LQR reduces the system’s transient recovery 

time by 35.8% and the magnitude of peak overshoots by 

35.1%, in comparison to the LQR.  

Experiment 3 (Fig. 11) shows that the AFO-LQR surpasses 

the LQR and FO-LQR by rendering a relatively larger 

reduction in αoff and αp-p without degrading the control energy 

efficiency. The proposed AFO-LQR reduces the system’s αoff 

by 38.2% and αp-p by 34.0%, compared to the LQR.  

Experiment 4 (Fig. 12) shows that the AFO-LQR effectively 

reduces the chattering content, tracking errors to dampen the 

sinusoidal disturbances without substantially compromising 

the control input economy. As compared to the LQR, the 

proposed AFO-LQR dampens the chattering in the pendulum 

rod’s response by 42.6%.  
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FIGURE 12.  System’s position regulation under sinusoidal disruptions. 

 

 
FIGURE 13.  Pendulum setup with 0.10 kg mass attached to arm [34] 

 

 

FIGURE 13.  System’s position regulation under model uncertainties. 

 

Experiment 5 (Fig. 13) shows that the AFO-LQR yields 

relatively stronger damping against the perturbations caused 

by model variations while curbing large servo demands, in 

comparison to the other two fixed gain controller variants. As 

compared to the baseline LQR, the proposed AFO-LQR 

reduces the system’s eθ,RMS by 31.52%, eα,RMS by 39.72%, and 

control energy expenditure by 36.53%. 

The performance of the proposed AFO-LQR is compared with 

the CFO-LQIR controller proposed in [25] to verify its 

efficacy against the state-of-the-art controllers. The CFO-

LQIR is chosen because its real-time behavior is analyzed on 

the same RIP experimental setup as used in this research under 

the same testing scenarios. The comparative performance 

analysis is quantified in Table IV. The quantitative analysis 

justifies that the AFO-LQR manifests a significantly improved 

position regulation behavior and disturbance rejection 

capability than the CFO-LQIR in almost every testing 

scenario. 
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TABLE III 

OVERVIEW OF THE EXPERIMENTAL OUTCOMES 

Experiment 
KBM Control Procedure 

Symbol Units LQR FO-LQR AFO-LQR 

1 

eθ,RMS deg. 0.55 0.42 0.35 

eα,RMS deg. 13.34 11.29 9.44 

MSVm V2 7.42 6.57 4.93 

2 

eθ,RMS deg. 0.71 0.58 0.38 

|OSθ| deg. 2.62 2.24 1.70 

tset,θ sec. 0.81 0.73 0.51 

eα,RMS deg. 13.49 10.34 8.87 

MSVm V2 9.81 8.22 6.16 

Vp V -9.73 -9.62 -7.25 

3 

eθ,RMS deg. 0.77 0.62 0.52 

eα,RMS deg. 30.97 24.18 18.27 

αoff deg. -36.68 -29.71 -20.44 

αp-p deg. 29.05 27.68 19.18 

MSVm V2 25.78 20.35 19.34 

Vp V -11.67 -10.93 -8.98 

4 

eθ,RMS deg. 0.54 0.37 0.30 

eα,RMS deg. 10.98 9.33 6.61 

MSVm V2 10.91 9.39 7.33 

5 

eθ,RMS deg. 0.92 0.84 0.63 

eα,RMS deg. 15.46 12.93 9.32 

MSVm V2 12.73 9.97 8.08 

 

The outcomes of these experiments validate the improved 

adaptability and resilience to the exogenous disturbances 

provided by the AFO-LQR. The AFO-LQR’s flexible control 

yield is credited to the rule-based abrupt changes in the 

controller’s FOs in response to state error-phase variations, 

which systematically mutates the nominal FO-LQR structure 

from a predominantly PD-type to PI-type controller.  

 
TABLE IV 

EXPERIMENTAL COMPARISON WITH CFO-LQIR [25] 

Experiment 

KBM Control Procedure 

Percentage 

Improvement Symbol Units 

CFO-

LQIR 

[25] 

AFO-

LQR 

1 

eθ,RMS deg. 0.36 0.35 2.8 % 

eα,RMS deg. 10.08 9.44 6.3 % 

MSVm V2 7.18 4.93 31.3 % 

2 

eθ,RMS deg. 0.47 0.38 19.1 % 

|OSθ| deg. 2.23 1.70 23.8 % 

tset,θ sec. 0.51 0.51 0.0 % 

eα,RMS deg. 9.68 8.87 8.4 % 

MSVm V2 6.39 6.16 3.6 % 

Vp V -8.47 -7.25 14.4 % 

3 

eθ,RMS deg. 0.42 0.52 -23.8 % 

eα,RMS deg. 22.06 18.27 17.2 % 

αoff deg. -23.72 -20.44 13.8 % 

αp-p deg. 21.61 19.18 11.2 % 

MSVm V2 25.35 19.34 23.7 % 

Vp V -10.34 -8.98 13.2 % 

4 

eθ,RMS deg. 0.29 0.30 -3.4 % 

eα,RMS deg. 9.53 6.61 30.6 % 

MSVm V2 10.50 7.33 30.2 % 

5 

eθ,RMS deg. 0.78 0.63 19.2 % 

eα,RMS deg. 11.78 9.32 20.9 % 

MSVm V2 9.48 8.08 14.8 % 

 

Adaptive FOs are more responsive to the system’s error 

conditions or external disturbances, allowing the system to 

maintain robust-optimal performance under varying 

conditions. By adapting the FO as needed, the closed-loop 

system operates more efficiently, effectively reducing the 

overshoots, improving the response time, economizing the 

control energy application, and reducing wear and tear on the 

actuator. This behavior is evident in the experimental results 

as well. The aforementioned traits enable the AFO-LQR to 

robustly compensate for bounded external disturbances and 

model variations. 

The proposed control procedure can contribute immensely to 

the field of under-actuated robotics and mechatronics. The 

AFO-LQR’s structure provides more degrees of freedom, 

which enhances the system’s robustness against disturbances 

that are commonly encountered in robotic applications, such 

as variations in payload, changing environmental conditions, 

or mechanical wear and tear. Furthermore, robotic 

applications often involve systems with complex dynamics 

that may exhibit non-integer order behavior. The proposed 

controller is better equipped to capture such a system's 

dynamics accurately, leading to improved performance and 

stability. The adaptability of the proposed control law enables 

it to flexibly manipulate the stiffness of the applied control 

input as per the variations in the system’s state error phase. 

Apart from the robotic applications, the AFO-LQR can be 

used in aircraft flight control systems to provide superior 

handling of turbulent conditions and unexpected disturbances. 

It can be used in satellite attitude control systems to manage 

the orientation of satellites more effectively, accounting for the 

complex dynamics and external perturbations in space. This 

scheme can also be beneficial in robustly handling the vehicles 

by dynamically adjusting their suspension and steering 

systems. Finally, it can optimize the performance of renewable 

energy converters by quickly adapting to changing 

environmental conditions. 

V. CONCLUSION 

This article proposes a novel self-tuning AFO-LQR scheme 

driven by a phase-based adaptation law to improve the 

adaptability of inverted-pendulum-type robots. To achieve the 

desired control objectives, the nominal LQR for RIP systems 

is augmented with fractional calculus. Fractional calculus is 

widely used to model and control complex dynamical systems 

that cannot be accurately described by traditional integer-order 

calculus. The experimental results affirm that the AFO-LQR 

provides better position regulation, disturbance attenuation, 

and cost-effective control activity. The proposed control 

structure provides more degrees of freedom, which enhances 

the system’s robustness against disturbances commonly 

encountered in robotic applications, such as variations in 

payload, changing environmental conditions, or mechanical 

wear and tear. Furthermore, robotic applications often involve 

systems with complex dynamics that may exhibit non-integer 

order behavior. The proposed controller is better equipped to 
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capture such a system’s dynamics accurately, leading to 

improved performance and stability. The AFO-LQR is 

scalable and can work with various systems, provided that the 

new system’s nominal state space model and its tailored FO 

adaptation functions are attainable beforehand.  

There is indeed a lot of room for future enhancements. In the 

future, the proposed AFO-LQR scheme can be extended and 

applied to energy conversion or flight control systems to 

ascertain its efficacy with other potential applications. state-

of-the-art soft computing techniques can be used to adaptively 

modulate the FOs and evaluate the consequent implications. 

Relative rate feedback can be augmented with the traditional 

FO-LQR to investigate its impact on the execution of online 

self-tuning of FOs. 
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