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Abstract: This paper presents a novel fuzzy-augmented model reference adaptive voltage regula-
tion strategy for the DC–DC buck converters to enhance their resilience against random input vari-
ations and load-step transients. The ubiquitous proportional-integral-derivative (PID) controller is 
employed as the baseline scheme, whose gains are tuned offline via a pre-calibrated linear-quadratic 
optimization scheme. However, owing to the inefficacy of the fixed-gain PID controller against par-
ametric disturbances, it is retrofitted with a model reference adaptive controller that uses Lyapunov 
gain adaptation law for the online modification of PID gains. The adaptive controller is also aug-
mented with an auxiliary fuzzy self-regulation system that acts as a superior regulator to dynami-
cally update the adaptation rates of the Lyapunov gain adaptation law as a nonlinear function of 
the system’s classical error and its normalized acceleration. The proposed fuzzy system utilizes the 
knowledge of the system’s relative rate to execute better self-regulation of the adaptation rates, 
which in turn, flexibly steers the adaptability and response speed of the controller as the error con-
ditions change. The propositions above are validated by performing tailored hardware experiments 
on a low-power DC–DC buck converter prototype. The experimental results validate the improved 
reference tracking and disturbance rejection ability of the proposed control law compared to the 
fixed PID controller. 

Keywords: buck converter; PID controller; model reference adaptive system; Lyapunov gain  
adjustment law; fuzzy inference; relative rate 
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1. Introduction 
A buck converter is a DC–DC power converter that steps down the voltage from a 

higher level to a lower level [1]. It is widely used for efficient power conversion and volt-
age regulation in electronic systems owing to their compact size, improved conversion 
efficiency, minimal drop-out voltage, affordable manufacturing expenses, and substantial 
output power supply [2]. Some of the key applications of the buck converter include 
power supplies [3], LED lighting systems [4], electronic subsystems in electric vehicles [5], 
renewable energy conversion systems [6], etc. To eliminate the error between the reference 
voltage (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟) and actual output voltage (𝑣𝑣𝑜𝑜) of the buck converter, negative feedback con-
trol schemes are typically used to continuously change the duty cycle (𝑑𝑑) of the circuit’s 
primary switch [7]. The closed-loop control procedures for DC–DC buck converters aim 
to regulate the output voltage by adjusting the duty cycle of the converter’s switch [8]. 
Nonetheless, the researchers have faced significant difficulty in optimizing the converter’s 
output regulation at the intended reference while considering the input variations and 
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load fluctuations that affect the system’s transient response [9]. The bilinear property of 
the buck converter poses another challenging control problem. The sudden changes in the 
circuit configuration within each switching interval are caused by the variations in the 
state of the switching transistor [10]. Conventional control approaches are ineffective in 
compensating for the nonlinear discontinuous behavior and the switching losses caused 
by the high-frequency switching phenomenon in the system [11]. In summary, buck con-
verters play a crucial role in modern power electronic systems, offering efficient voltage 
conversion. However, addressing control problems is essential to ensure optimal perfor-
mance and reliability in various applications. 

1.1. Literature Review 
Several control laws have been proposed in the scientific literature. The proportional–

integral–derivative (PID) control scheme, and its variants, are one of the most widely used 
techniques due to their reliable control yield and simple structure [12]. The proportional 
term provides an immediate response to the error, the integral term eliminates steady-
state errors, and the derivative term anticipates future errors [13]. These actions synergis-
tically aid the controller in rejecting the bounded exogenous disturbances. However, with-
out auxiliary augmentations, their limited degrees of freedom restrict them from address-
ing un-modeled nonlinearities [14]. The fractional complex order PID controllers tend to 
show enhanced robustness towards uncertainties than the linear and fractional PID con-
trollers [15]. However, the offline tuning and optimization of a multitude of controller 
parameters introduced in the control law by the said techniques is a laborious process 
[16]. The sliding mode controller (SMC) is a nonlinear control technique that ensures ro-
bustness against parameter variations and disturbances [17]. It creates a sliding surface in 
the state space such that the system dynamics are confined to this surface. However, the 
continuous switching in the control law renders a discontinuous control behavior, which 
unavoidably increases the ripple content in the state response(s) [18]. The higher-order 
sliding mode controllers (HOSMCs) tend to effectively reduce chattering in systems as 
proposed in [19]. However, their reliance upon complex algorithms to compute the 
higher-order state derivatives adds excessive computation burden and makes them highly 
sensitive to high-frequency sensor noise [20]. 

The neural controllers require training data to formulate an accurate inverse control 
law [21]. Despite its resilience against disturbances, its dependence on large training data 
sets increases the algorithm’s computation burden [22]. The integration of the CNN ap-
proximation tool with the conventional backstepping scheme yields a robust regulatory 
control of output voltage in DC–DC converters [23]. However, its computational realiza-
tion is quite complex and can be problematic in systems with limited computational abil-
ities. The fuzzy logic control schemes are particularly useful when the system’s nonlinear 
dynamics are difficult to model accurately or when precise mathematical control laws are 
impractical [24]. In DC–DC converters, the fuzzy logic controller tends to adjust the duty 
cycle based on fuzzy rules that map input variables (such as output voltage error and 
change in error) to output control actions [25]. 

The linear quadratic regulator (LQR) provides optimal control in terms of minimiz-
ing a quadratic cost function, which can result in superior performance compared to other 
control techniques [26]. However, it relies on an accurate system model and deviations 
from the model under disturbances lead to suboptimal performance or instability [27]. 
The model predictive control (MPC) scheme uses the system’s dynamic model to predict 
future behavior and optimize control actions over a finite time horizon [28]. However, 
despite its robustness, solving an optimization problem at each control step can be com-
putationally intensive [29]. The nonlinear H-infinity controllers are renowned for their 
robust control yield [30]. However, their formulation requires an accurate mathematical 
model of the system, and they impose mathematical complexity in design and implemen-
tation [31]. The backstepping controllers are used to deal with nonlinearities occurring in 
multi-variable systems [32]. However, to ensure stability, backstepping designs can 
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sometimes be overly conservative, leading to suboptimal performance in terms of re-
sponse time and control effort [33]. 

The adaptive controllers dynamically adjust the critical controller parameters to op-
timize the controller’s flexibility and adaptability to disturbances and parametric uncer-
tainties [34]. The model reference adaptive controllers (MRACs) are designed to adapt to 
uncertainties and variations in the system, making them suitable for systems with un-
known or time-varying dynamics [35]. They adaptively re-adjust the controller gains to 
maintain robust performance even when the system parameters change or deviate from 
the nominal values. The gain adjustment law is derived using the Lyapunov stability the-
orem [36]. Despite their inherent flexibility, the designing and tuning of critical parame-
ters in the MRAC law can be complex, especially for systems with high-order dynamics 
or complex nonlinearities [37]. An ill-postulated MRAC law results in slow convergence 
of the adaptive gains, affecting the overall control performance [38]. The fuzzy-augmented 
MRAC procedures are formulated by employing a fuzzy adaptive system, which acts as 
a superior regulator to dynamically reconfigure the critical controller parameters of the 
traditional MRAC law [39]. This augmentation improves the controller’s flexibility, which 
enhances the adaptability and robustness of MRAC by leveraging the fuzzy self-regula-
tor’s capability to handle controller design imprecisions as well as the intrinsic nonlinear-
ities and parametric variations in the system [40]. This scheme is especially suitable for 
application in dynamic and uncertain environments where precise mathematical model-
ing is challenging. 

1.2. Main Contribution 
The main contribution of this article is the formulation of an online model reference 

adaptive optimal PID control procedure that robustifies the performance of buck convert-
ers against load transients and input fluctuations. The ubiquitous LQR-based PID control-
ler is employed as the baseline control technique owing to its optimal and asymptotically 
stable control yield. To enhance the robustness and flexibility of the control scheme 
against exogenous disturbances, a pre-calibrated state space MRAC is designed that tracks 
the output of the aforementioned LQ-PID controller output as its reference. To further 
optimize the MRAC-driven PID controller’s error convergence rate and damping control 
strength against disturbances, it is retrofitted with an auxiliary fuzzy self-regulation sys-
tem that acts as a superior regulator to dynamically adjust the adaptation rates linked with 
the MRAC’s Lyapunov gain adjustment law. The online updates in the adaptation rates 
are dictated by the real-time variations in the system’s relative rate. The three salient con-
tributions of the paper are thus listed below: 
1. Formulation of a well-postulated MRAC-based PID control law for the buck con-

verter that tracks the output of the baseline LQ-PID control law. 
2. Robustification of the designed MRAC-based PID control law by augmenting it with 

a pre-configured fuzzy self-regulating system that uses the system’s output voltage 
error and its relative rate to dynamically adjust the MRAC’s inner adaptation rates. 

3. Experimental validation of the proposed fuzzy-augmented MRAC-based PID control 
law by performing tailored hardware experiments on a low-power DC–DC buck con-
verter prototype. 

1.3. Innovative Features of the Proposed Control Law 
The proposed control scheme undertakes to address several challenges faced by con-

ventional control schemes. Firstly, the proposed MRAC tracks the output of an optimal 
and inherently stable LQ-PID controller as its reference to adaptively modulate the gains. 
This provision aids the controller in preserving the system’s asymptotic stability while 
mimicking the optimum behavior to maintain a reasonable control input economy and 
avoid chattering in the state response(s). However, unlike the LQ-PID controller, the 
online gain adjustment makes the MRAC more robust to model inaccuracies. Unlike the 
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fractional order controllers, the proposed scheme does not depend on a multitude of pa-
rameters that have to be tuned offline. Secondly, the fixed adaptation rates of the MRAC 
law limit its operability, rendering it ineffective against abrupt state error variations. The 
aforesaid problem is addressed by augmenting the MRAC with a model-free fuzzy infer-
ence system that is driven by the system’s relative rate. The fuzzy self-regulation of the 
adaptation rates obviates the necessity to predefine and affix the adaptation rates, thus 
increasing the controller’s design flexibility. Instead of depending on mere magnitudes of 
the state error variables, the fuzzy self-regulation system relies upon the relative rate feed-
back. This augmentation adaptively modulates the said adaptation rates in response to the 
variations in the fastness (or sluggishness) of the state response as it moves away or towards 
the reference voltage signal. The fuzzy nonlinear scaling of the adaptation rates further in-
creases the controller’s agility, allowing it to flexibility adapt the applied control tightness as 
per the requirements. The fuzzy function can be computed to update the gains in a single step 
after the sampling interval. Thus, unlike neural adaptive systems, fuzzy nonlinear scaling does 
not put any recursive computational burden on the embedded processor. 

As a result of all these features, the system exhibits a faster response speed with 
strong damping against disturbances. Furthermore, this configuration also avoids com-
promise between the system’s steady-state and transient performance. The comparative 
analysis of the proposed control law with existing state-of-the-art controllers based on 
different parameters is summarized in Table 1. 

Table 1. Comparative analysis of the proposed work with existing state-of-the-art. 

Performance Parameter COPID 
[15] 

HOSMC 
[20] 

CNN 
[23] 

LQ-PID 
[26] 

H-inf 
[30] 

Backstep 
[32] 

MRAC 
[35] 

Proposed 
Scheme 

Error minimization Good Better Good Bad Good Fair Good Good 
Asymptotic stability Yes Yes Yes Yes Yes Difficult Yes Yes 
Control economy Fair Bad Bad Better Fair Bad Fair Better 
Disturbance rejection Good Best Better Bad Good Fair Good Better 
Chattering suppression Good Fair Fair Good Good Good Better Better 
Mathematical complexity Medium High High Low High High Low Low 
Computation burden Medium High High Low High High Low Medium 
Parameter tuning needed High Medium High Low Low High Low Medium 

The idea of enhancing the MRAC-driven PID controller’s flexibility and robustness 
against the exogenous disturbances occurring in DC–DC buck conversion applications, by 
using the system’s relative rate information to online adjust its inner adaptation rates, has 
never been proposed in the scientific literature thus far. Hence, this paper mainly focuses 
on the execution of this novel idea. 

The remaining paper is organized as follows. The system’s state space model and the 
baseline LQ-PID compensator design are discussed in Section 2. The formulation of the 
basic MRAC-based PID control law and the design of the fuzzy inference system for the 
systematic constitution of the proposed fuzzy-augmented MRAC-based PID controller 
are respectively presented in Sections 3 and 4. The experimental analysis and validation 
of the proposed control procedure are presented in Section 5. Finally, the article is con-
cluded in Section 6. 

2. System Description 
The DC–DC buck converter serves to step down the higher DC voltage input to a 

lower voltage level at the output. Figure 1 displays the schematic of the synchronous buck 
converter circuit [41]. The rapid switching of the primary transistor 𝑄𝑄1 serves to control 
the flow of current through the circuit. To deliver and regulate the desired value of aver-
age voltage at the output, the duty–cycle ratio, 𝑑𝑑, of the switching period of 𝑄𝑄1’s gating 
signal is suitably adjusted [41]. The relationship between the input voltage 𝑣𝑣𝑖𝑖𝑖𝑖 and the 
output voltage 𝑣𝑣𝑜𝑜 is expressed in (1). 
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𝑣𝑣𝑜𝑜 = 𝑑𝑑𝑣𝑣𝑖𝑖𝑖𝑖 (1) 

such that, 𝑑𝑑 = 𝑡𝑡𝑜𝑜𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜

, where 𝑡𝑡𝑜𝑜𝑖𝑖 is the on-time and 𝑡𝑡𝑜𝑜𝑟𝑟𝑟𝑟 is the off-time of the switching 

period. The transistor 𝑄𝑄1 is connected to an inductor, 𝐿𝐿. When 𝑄𝑄1 is turned on, current 
flows through the inductor and stores energy in its magnetic field. The output capacitor, 
𝐶𝐶, helps to smooth out the ripples in 𝑣𝑣𝑜𝑜. When 𝑄𝑄1 is turned off, the magnetic field col-
lapses and causes the inductor to release stored energy. This energy is transferred to the 
output capacitor and load. The secondary transistor 𝑄𝑄2 is placed in parallel with the load 
and turned on to provide a path for the inductor current when the switching element is 
turned off. To complete the circuit loop during 𝑡𝑡𝑜𝑜𝑖𝑖 and 𝑡𝑡𝑜𝑜𝑟𝑟𝑟𝑟, transistor 𝑄𝑄1 is operated 
during 𝑡𝑡𝑜𝑜𝑖𝑖 while 𝑄𝑄2 is operated during 𝑡𝑡𝑜𝑜𝑟𝑟𝑟𝑟. In this research, a state feedback voltage 
control law is formulated that operates on the state error variables; namely, the error in 
𝑣𝑣𝑜𝑜 with respect to a reference 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟, error integral, and error derivative to optimally control 
the aforementioned switching transistors, which aids in regulating the converter’s output 
under disturbances. The system’s closed-loop control block diagram is shown in Figure 2. 

 
Figure 1. Simplified schematic of the buck converter [41]. 

 
Figure 2. Closed-loop control block diagram of the system. 

2.1. State Space Model 
The second-order small signal model of the DC–DC buck converter has already been 

derived in previous works [26,41]. The second-order transfer function representing the 
dynamics between the input duty cycle to output voltage, in the frequency domain, is 
given in (2), [26]. 

𝑣𝑣𝑜𝑜(𝑠𝑠)
𝑑𝑑(𝑠𝑠) = �

𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶��

𝑠𝑠𝐶𝐶𝑟𝑟𝑐𝑐 + 1

𝑠𝑠2 + � 1
𝑅𝑅𝐿𝐿𝐶𝐶

+ 𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿 � 𝑠𝑠 + 1

𝐿𝐿𝐶𝐶
� (2) 
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where 𝑠𝑠 is the Laplace operator, and 𝑣𝑣𝑜𝑜(𝑠𝑠) and 𝑑𝑑(𝑠𝑠) represents the output voltage sig-
nal and duty cycle signal in the frequency domain, respectively. The converter model also 
includes the parasitic impedances 𝑟𝑟𝑐𝑐 and 𝑟𝑟𝐿𝐿, which represent the circuit’s equivalent-se-
ries-resistance (ESR) and equivalent-series-inductance (ESL), respectively. The model pa-
rameters of the buck converter c, used in this research, are identified in Table 2. As shown 
in Table 2, the magnitudes of the parameters C and rc are quite small. Hence, the contri-
bution of these parameters in the numerator of the expression is ignored. The simplified 
transfer function is expressed in (3). 

𝑣𝑣𝑜𝑜(𝑠𝑠)
𝑑𝑑(𝑠𝑠)

=
𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶

𝑠𝑠2 + � 1
𝑅𝑅𝐿𝐿𝐶𝐶

+ 𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿 � 𝑠𝑠 + 1

𝐿𝐿𝐶𝐶
 (3) 

The tracking error between the reference voltage and the output voltage of the buck 
regulator is expressed as follows. 

𝑒𝑒(𝑡𝑡) = 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑣𝑣𝑜𝑜(𝑡𝑡) (4) 

where 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 is the reference voltage. It is to be noted that the reference (setpoint) signal 
does not influence control law design in typical regulatory control problems. Therefore, 
the expression becomes 𝑣𝑣𝑜𝑜(𝑡𝑡) = −𝑒𝑒(𝑡𝑡) when the value of 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 is ignored. The system’s 
transfer function is thus modified by the aforementioned substitution. 

−𝑒𝑒(𝑠𝑠)
𝑑𝑑(𝑠𝑠)

=
𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶

𝑠𝑠2 + � 1
𝑅𝑅𝐿𝐿𝐶𝐶

+ 𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿 � 𝑠𝑠 + 1

𝐿𝐿𝐶𝐶
 (5) 

Table 2. Model parameters of the buck converter prototype [41]. 

Parameters Description Value Units 
𝑅𝑅𝐿𝐿 Load resistor 10 Ω 
𝐿𝐿 Inductor 220 mH 
𝐶𝐶 Capacitor 2700 µF 
𝑟𝑟𝑐𝑐  Capacitor’s ESR 0.04 Ω 
𝑟𝑟𝐿𝐿  Capacitor’s ESL 0.06 Ω 
𝑣𝑣𝑖𝑖𝑖𝑖 Input voltage 24.0 V 
𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 Output voltage 10.0 V 

The said transfer function can be rewritten as shown in (6). 

�𝑠𝑠2 + �
1
𝑅𝑅𝐿𝐿𝐶𝐶

+
𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿

� 𝑠𝑠 +
1
𝐿𝐿𝐶𝐶
� 𝑒𝑒(𝑠𝑠) = −�

𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶�

𝑑𝑑(𝑠𝑠) (6) 

This equation’s inverse Laplace transform yields the following second-order differ-
ential Equation (7). The system is considered to have zero initial conditions. 

�̈�𝑒(𝑡𝑡) + �
1
𝑅𝑅𝐿𝐿𝐶𝐶

+
𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿

� �̇�𝑒(𝑡𝑡) + �
1
𝐿𝐿𝐶𝐶
� 𝑒𝑒(𝑡𝑡) = −�

𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶�

𝑑𝑑(𝑡𝑡) (7) 

To derive the state equations, the following state variables are selected [41]. 

𝑥𝑥1(𝑡𝑡) = �𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡, 𝑥𝑥2(𝑡𝑡) = 𝑒𝑒(𝑡𝑡), 𝑥𝑥3(𝑡𝑡) = �̇�𝑒(𝑡𝑡)  (8) 

Finally, the aforementioned differential equation is used to derive the following set 
of state equations. 
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�̇�𝑥1(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡), 
�̇�𝑥2(𝑡𝑡) = 𝑥𝑥3(𝑡𝑡), 

�̇�𝑥3(𝑡𝑡) = −�
1
𝐿𝐿𝐶𝐶
�𝑥𝑥2(𝑡𝑡) − �

1
𝑅𝑅𝐿𝐿𝐶𝐶

+
𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿

� 𝑥𝑥3(𝑡𝑡) − �
𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶�

𝑑𝑑(𝑡𝑡). 
(9) 

For a linear dynamical system, the state space representation is expressed in (10). 

�̇�𝑥(𝑡𝑡) = 𝑨𝑨𝑥𝑥(𝑡𝑡) + 𝑩𝑩𝑢𝑢(𝑡𝑡), 𝑦𝑦(𝑡𝑡) = 𝑪𝑪𝑥𝑥(𝑡𝑡) + 𝑫𝑫𝑢𝑢(𝑡𝑡) (10) 

where 𝑥𝑥(𝑡𝑡) is the state vector, 𝑦𝑦(𝑡𝑡) is the output vector, 𝑢𝑢(𝑡𝑡) is the control input signal, 
𝑨𝑨 is the system matrix, 𝑩𝑩 is the input matrix, 𝑪𝑪 is the output matrix, and 𝑫𝑫 is the feed-
forward matrix. The system’s state and input vector are provided in (11). 

𝑥𝑥(𝑡𝑡) = �� 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 𝑒𝑒(𝑡𝑡) �̇�𝑒(𝑡𝑡)�
𝑇𝑇

, 𝑢𝑢(𝑡𝑡) = 𝑑𝑑(𝑡𝑡) (11) 

The nominal linear state space model of the buck converter is given by (12). 

𝐴𝐴 = �
0 1 0
0 0 1
0 𝑎𝑎1 𝑎𝑎2

� , 𝐵𝐵 = �
0
0
𝑏𝑏
� , 𝐶𝐶 = �

1 0 0
0 1 0
0 0 1

� , 𝐷𝐷 = �
0
0
0
� (12) 

where 

𝑎𝑎1 = −�
1
𝐿𝐿𝐶𝐶
� , 𝑎𝑎2 = −�

1
𝑅𝑅𝐿𝐿𝐶𝐶

+
𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿
𝐿𝐿

� , 𝑏𝑏 = −�
𝑣𝑣𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶�

.  

2.2. Baseline LQ-PID Compensator Design 
In this section, an LQR-driven PID controller is developed for the DC–DC buck con-

verter system [41,42]. The LQR is a popular optimal control technique used for regulating 
the linear systems described by state space equations [1]. It is a state feedback control law, 
which means that the control input is determined as a linear function of the state variables. 
The optimal control law is designed to minimize the quadratic cost function (QCF) over 
an infinite time horizon while ensuring stability and satisfying any constraints on the sys-
tem [43]. The QCF, expressed in (13), is typically defined as the sum of the quadratic var-
iations in the system’s states and the control effort. 

𝐽𝐽𝑙𝑙𝑙𝑙 =
1
2
� (𝑥𝑥(𝑡𝑡)𝑇𝑇𝑸𝑸𝑥𝑥(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑇𝑇𝑹𝑹𝑢𝑢(𝑡𝑡))
∞

0
𝑑𝑑𝑡𝑡 (13) 

where 𝑸𝑸 ∈ ℝ4×4 ≥ 0 is a pre-calibrated state penalty matrix while 𝑹𝑹 ∈ ℝ > 0 is a pre-cal-
ibrated control penalty matrix. Each element of the 𝑸𝑸  and 𝑹𝑹  matrices represent the 
weight or cost associated with the corresponding state variable or control input, respec-
tively. A higher value of an element implies that minimizing the deviation of that state 
variable or input carries more importance in the control objective [26]. The penalty matri-
ces constituted for the buck converter system used in this research are defined as 

𝑸𝑸 = diag(𝑞𝑞𝐼𝐼 𝑞𝑞𝑃𝑃 𝑞𝑞𝐷𝐷),   𝑹𝑹 = 𝜌𝜌 (14) 

where 𝑞𝑞𝑥𝑥 ≥ 0  and 𝜌𝜌 > 0  are the elements of the 𝑸𝑸  and 𝑹𝑹  matrices, respectively. The 
tuning procedure covered in Section 2.3 is used to precisely calibrate the elements of each 
matrix offline. The solution to the LQR problem involves solving an algebraic Riccati equa-
tion (ARE) using the pre-calibrated set of 𝑸𝑸 and 𝑹𝑹 matrices, which provides a symmetric 
positive definite matrix 𝑷𝑷. The ARE is expressed in (15), [43]. 

𝑨𝑨𝑇𝑇𝑷𝑷 + 𝑷𝑷𝑨𝑨 − 𝑷𝑷𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷 + 𝑸𝑸 = 0 (15) 

where 𝑷𝑷 ∈ ℝ4×4. This solution yields the following state feedback gain vector 𝑲𝑲. 

𝑲𝑲 = 𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷     (16) 

where 𝑲𝑲 = [𝐾𝐾𝐼𝐼 𝐾𝐾𝑃𝑃 𝐾𝐾𝐷𝐷]. The optimal linear control law is expressed as follows: 
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𝑢𝑢(𝑡𝑡) = −𝑲𝑲𝑥𝑥(𝑡𝑡)  (17) 

The expansion of the said control law yields the following LQ-PID controller. 

𝑢𝑢(𝑡𝑡) = −𝐾𝐾𝑃𝑃𝑒𝑒(𝑡𝑡) − 𝐾𝐾𝐼𝐼 �𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 − 𝐾𝐾𝐷𝐷�̇�𝑒(𝑡𝑡)       (18) 

The block diagram of the LQ-PID control law is shown in Figure 3. The asymptotic 
stability of the derived LQ-PID control law is demonstrated via the following Lyapunov 
function [43]. 

𝑉𝑉(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑇𝑇𝑷𝑷(𝑡𝑡)𝑥𝑥(𝑡𝑡) > 0,     for 𝑥𝑥(𝑡𝑡) ≠ 0 (19) 

The Lyapunov function’s first derivative is represented as shown below. 
 �̇�𝑉(𝑡𝑡) = 2𝑥𝑥(𝑡𝑡)𝑇𝑇𝑷𝑷�̇�𝑥(𝑡𝑡)                                                                              

= 2𝑥𝑥(𝑡𝑡)𝑇𝑇𝑷𝑷�𝑨𝑨 − 𝑩𝑩𝑲𝑲(𝑡𝑡)�𝑥𝑥(𝑡𝑡)                                                     
= 2𝑥𝑥(𝑡𝑡)𝑇𝑇𝑷𝑷(𝑨𝑨 − 𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷)𝑥𝑥(𝑡𝑡)                                              
= 𝑥𝑥(𝑡𝑡)𝑇𝑇(𝑷𝑷𝑨𝑨 + 𝑨𝑨𝑻𝑻𝑷𝑷)𝑥𝑥(𝑡𝑡) − 2𝑥𝑥(𝑡𝑡)𝑇𝑇(𝑷𝑷𝑩𝑩𝑹𝑹−𝟏𝟏𝑩𝑩𝑻𝑻𝑷𝑷)𝑥𝑥(𝑡𝑡)   

(20) 

By substituting the Equation (14), the derivative �̇�𝑉(𝑡𝑡) simplifies as given in (21). 

�̇�𝑉(𝑡𝑡) = −𝑥𝑥(𝑡𝑡)𝑇𝑇𝑸𝑸𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)𝑇𝑇(𝑷𝑷𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷)𝑥𝑥(𝑡𝑡)    < 0 (21) 

If 𝑸𝑸 = 𝑸𝑸𝑇𝑇 ≥ 0 and 𝑹𝑹 = 𝑹𝑹𝑇𝑇 > 0, then �̇�𝑉(𝑡𝑡) is always negative semi-definite. This cri-
terion is sufficient to ensure the proposed controller’s closed-loop stability. The switching 
transistor control input, 𝑢𝑢(𝑡𝑡), is saturated between 0 and 1 via the following formulation. 

𝑠𝑠𝑎𝑎𝑡𝑡�𝑢𝑢(𝑡𝑡)� = �
1,                                     𝑢𝑢(𝑡𝑡) ≥ 1
𝑢𝑢(𝑡𝑡),                       0 < 𝑢𝑢(𝑡𝑡) < 1
0,                                    𝑢𝑢(𝑡𝑡) ≤ 0

                                         (22) 

 
Figure 3. Block diagram of the LQ-PID control law. 

2.3. Parameter Tuning Procedure 
According to 𝐽𝐽𝑙𝑙𝑙𝑙, the LQ-PID regulator’s formulation is dependent on the changes in 

the system’s control input and states. However, to guarantee an optimum control yield, it 
is crucial to provide the aforementioned variables with the proper weights. Due to poor 
engineering intuition or the designer’s experience limitations, the trial-and-error-based 
configurations of 𝑸𝑸 and 𝑹𝑹 matrices might not always yield precise position regulation 
and transient recovery behavior [26]. Therefore, a new objective function is presented in 
this section that considers the settling time 𝑡𝑡𝑠𝑠, magnitude of the peak overshoot 𝑀𝑀𝑝𝑝, track-
ing error variations, and the input variations in the system’s time domain response. 

𝐽𝐽𝑑𝑑 = 𝑡𝑡𝑠𝑠2 + |𝑂𝑂𝑂𝑂|2 + � (|𝑒𝑒(𝑡𝑡)|2 + |𝑢𝑢(𝑡𝑡)|2)
∞

0
𝑑𝑑𝑡𝑡 (23) 

This objective function is minimized to acquire the best-fit solutions of the 𝑸𝑸 and 𝑹𝑹 
matrices. 

To impose an equal impact on all the minimization criteria, equal weights are set for 
each component of the cost function represented above. The search range for all the 
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elements of the 𝑸𝑸 and 𝑹𝑹 matrices is [0, 10]. Equal (unity) weight is applied to each state 
variable to start the offline tuning procedure. Hence, the initial matrix is set at 𝑸𝑸 =
diag(1 1 1) and 𝑹𝑹 = 1. The exploration for the best-fit parameters is then coordinated 
by the tuning algorithm in the direction of the steepest gradient descent of the cost func-
tion 𝐽𝐽𝑑𝑑. Figure 4 demonstrates the process used to tune the parameters [44]. The method 
for carrying out the trial experiments for parameter adjustment is detailed in Section 5.1. 

 
Figure 4. Flow chart of the parameter tuning process. 

In every tuning iteration, the LQ-PID controller gains are empirically tweaked and 
the controller is assigned to regulate the converter’s 𝑣𝑣𝑜𝑜 at 10.0 V for 5.0 sec to solve the 
cost function 𝐽𝐽𝑑𝑑 and evaluate the cost of the current iteration 𝐽𝐽𝑑𝑑,𝑖𝑖; where 𝑛𝑛 is the iteration 
number. The process of minimizing the objective cost function is discussed as follows: If 
the cost of the current iteration 𝐽𝐽𝑑𝑑,𝑖𝑖 is found to be lower than the cost of the previous 
iteration 𝐽𝐽𝑑𝑑,𝑖𝑖−1, then the local minimum cost variable 𝐽𝐽𝑚𝑚𝑖𝑖𝑖𝑖 is altered. This arrangement 
ensures that the search is proceeding along the declining gradient of 𝐽𝐽𝑑𝑑. When the algo-
rithm achieves the maximum number of iterations (𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥) allowed or 𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖 < 𝛿𝛿, where 𝛿𝛿 
is a predefined cost threshold, the search for the optimal parameter values is terminated 
[44]. The said threshold is determined heuristically via preliminary runs of the algorithm. 
By conducting pilot runs with various thresholds and evaluating the resulting parameters, 
the aforementioned thresholds are selected to balance the algorithm’s computational bur-
den and solution quality while avoiding its premature termination. In this research, the 
𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖 for initial settings of 𝑸𝑸 and 𝑅𝑅 is recorded as 𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖

0 ≈ 1.28 × 106. A scaled-down 
value of 𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖

0  is then used as the termination condition. A scale of 0.008 is thus selected 
to avoid unnecessary computational burden and ensure faster convergence of the algo-
rithm. A larger scale value places an excessive iterative computational burden while a 
smaller one leads to premature termination. Thus, the algorithm is terminated when 
𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖  approaches 0.008 𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖

0  . Correspondingly, the values of the threshold for 𝐽𝐽𝑑𝑑,𝑚𝑚𝑖𝑖𝑖𝑖 
and 𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 are preset at 1 × 104 and 40, respectively, in this study.  

The optimal set of state costs and control costs are 𝑸𝑸 = diag(9.64 1.55 0.21) and 
𝑹𝑹 = 1.05 , respectively. The corresponding state feedback gain vector is 𝑲𝑲 =
[−3.17 −1.82 −0.24]. 

3. Basic MRAC-Based PID Control Law 
The traditional MRAC law minimizes the tracking error between the outputs of the 

LQ-PID-regulated reference model and the real system by updating the controller gain 
vector 𝑲𝑲 online using a Lyapunov function [45]. The linear system presented in (10) is 
considered to formulate the traditional MRAC law. 

The objective is to build an adaptive control rule that mimics the response exhibited 
by LQ-PID-regulated reference model (𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟), as represented by the following autonomous 
system [46]. 
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�̇�𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) (24) 

The formulation of MRAC law necessitates an asymptotically stable reference model. 
Thus, the LQ-PID-regulated closed-loop buck converter system is employed as a reference 
model. The adaptive controller thus designed optimality tracks and attains using the base-
line established by 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟, which is identified by the LQ-PID controller constituted previ-
ously. The proposed adaptive control law is given in (25). 

𝑢𝑢(𝑡𝑡) = −𝑲𝑲(𝒕𝒕)𝑥𝑥(𝑡𝑡)  (25) 

where 𝑲𝑲(𝒕𝒕) = [𝐾𝐾𝐼𝐼(𝑡𝑡) 𝐾𝐾𝑃𝑃(𝑡𝑡) 𝐾𝐾𝐷𝐷(𝑡𝑡)] represents the time-varying state feedback gain vec-
tor whose elements are adaptively modified online via the MRAC scheme [40]. The actual 
system’s closed-loop description is provided in (26). 

�̇�𝑥(𝑡𝑡) = (𝑨𝑨 − 𝑩𝑩𝑲𝑲𝑆𝑆)𝑥𝑥(𝑡𝑡) = 𝑨𝑨𝑆𝑆(𝑲𝑲𝑆𝑆)𝑥𝑥(𝑡𝑡) (26) 

where the system matrix 𝑨𝑨𝑆𝑆 is driven by the vector 𝑲𝑲𝑆𝑆. 
Compatibility condition: In general, it is quite hard to obtain a gain vector 𝑲𝑲𝑆𝑆 such that 

the actual system’s model becomes identical to that of the reference model. However, 
there exists another vector 𝑲𝑲�𝑆𝑆 that can be stated as follows to provide a sufficient condi-
tion for tracking the reference model [47]: 

𝑨𝑨𝑐𝑐�𝐾𝐾�𝑚𝑚�  = 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑨𝑨 − 𝑩𝑩𝑲𝑲�𝑆𝑆 (27) 

This criterion indicates that the columns of 𝑨𝑨 − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟 are linear combinations of ma-
trix 𝑩𝑩 columns. In this study, the gain vector 𝑲𝑲�𝑆𝑆 = 𝑲𝑲 is used to identify the 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟. The 
difference between the state vectors of the real system and the reference system is calcu-
lated by the tracking error vector, 𝜀𝜀(𝑡𝑡), expressed in (28).  

𝜀𝜀(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) (28) 

The convergence rate of the online adaptation mechanism is directed by the said 
tracking error vector. The tracking error’s derivative is expressed as shown in (29). 

𝜀𝜀̇(𝑡𝑡) = �̇�𝑥(𝑡𝑡) − �̇�𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) (29) 

This derivative can also be written by substituting the Equations (10) and (24). 

𝜀𝜀̇(𝑡𝑡) = 𝑨𝑨𝑥𝑥(𝑡𝑡) + 𝑩𝑩𝑢𝑢(𝑡𝑡) − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) (30) 

The tracking error derivative’s formulation is as modified by concurrently adding 
and eliminating the term 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥(𝑡𝑡), on the right-hand side of (30), as shown below. 

𝜀𝜀̇(𝑡𝑡) = 𝑨𝑨𝑥𝑥(𝑡𝑡) + 𝑩𝑩𝑢𝑢(𝑡𝑡) − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) + 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥(𝑡𝑡) − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥(𝑡𝑡)                             
= 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥(𝑡𝑡) − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) + 𝑩𝑩𝑢𝑢(𝑡𝑡) + 𝑨𝑨𝑥𝑥(𝑡𝑡) − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥(𝑡𝑡)                             
= 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)� + 𝑩𝑩𝑢𝑢(𝑡𝑡) + �𝑨𝑨 − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟�𝑥𝑥(𝑡𝑡) 

(31) 

Using the substitutions, 𝑨𝑨 − 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑩𝑩𝑲𝑲�𝑆𝑆 from (15), 𝑢𝑢(𝑡𝑡) = −𝑲𝑲(𝒕𝒕)𝑥𝑥(𝑡𝑡) from (13), the 
tracking error derivative’s expression is rewritten as shown in (32). 

𝜀𝜀̇(𝑡𝑡) = 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝜀𝜀(𝑡𝑡) − 𝑩𝑩𝑲𝑲(𝒕𝒕)𝑥𝑥(𝑡𝑡) + 𝑩𝑩𝑲𝑲�𝑆𝑆𝑥𝑥(𝑡𝑡)                                                        
= 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝜀𝜀(𝑡𝑡) − 𝑩𝑩�𝑲𝑲(𝒕𝒕) −𝑲𝑲�𝑆𝑆�𝑥𝑥(𝑡𝑡)                    (32) 

Using the property of matrix algebra, 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑇𝑇𝑋𝑋𝑇𝑇; where 𝑋𝑋 and 𝑋𝑋 are arbitrary ma-
trices, the expression of 𝜀𝜀̇(𝑡𝑡) is modified as shown in (33). 

𝜀𝜀̇(𝑡𝑡) = 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝜀𝜀(𝑡𝑡) −𝑩𝑩𝑥𝑥(𝑡𝑡)𝑇𝑇 �𝑲𝑲(𝒕𝒕)𝑻𝑻 − 𝑲𝑲�𝑆𝑆
𝑻𝑻� (33) 

Using the substitution 𝛿𝛿 = −𝑩𝑩𝑥𝑥(𝑡𝑡)𝑇𝑇, the tracking error derivative is finally expressed 
as shown in (34). 

𝜀𝜀̇(𝑡𝑡) = 𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓𝜀𝜀(𝑡𝑡) + 𝛿𝛿 �𝑲𝑲(𝒕𝒕)𝑻𝑻 − 𝑲𝑲�𝑆𝑆
𝑻𝑻�   (34) 

While simplifying the tracking error derivative’s formula, it is assumed that all re-
quirements for accurate model tracking have been satisfied. The online model reference 
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gain adjustment law that dynamically updates the state feedback gains 𝑲𝑲(𝒕𝒕)  is con-
structed using the following Lyapunov function [40]. 

𝑊𝑊(𝜀𝜀,𝐾𝐾𝑚𝑚) =
1
2
�𝜶𝜶𝒐𝒐𝜀𝜀(𝑡𝑡)𝑇𝑇𝑷𝑷�𝜀𝜀(𝑡𝑡) + �𝑲𝑲(𝒕𝒕)𝑻𝑻 − 𝑲𝑲�𝑆𝑆

𝑻𝑻�
𝑇𝑇
�𝑲𝑲(𝒕𝒕)𝑻𝑻 − 𝑲𝑲�𝑆𝑆

𝑻𝑻�� (35) 

where 𝜶𝜶𝒐𝒐  is the preconfigured positive semi-definite diagonal matrix representing the 
adaptation rates associated with each state feedback gain, and 𝑷𝑷�  is a positive definite 
symmetric matrix that is evaluated by solving the following equation. 

𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓𝑇𝑇 𝑷𝑷� + 𝑷𝑷�𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 = −𝑸𝑸 (36) 

The matrix 𝛼𝛼 is represented as shown below.  

𝜶𝜶𝒐𝒐 = diag(𝛼𝛼𝐼𝐼,𝑜𝑜 𝛼𝛼𝑃𝑃,𝑜𝑜 𝛼𝛼𝐷𝐷,𝑜𝑜) (37) 

The adaptation rates 𝛼𝛼𝐼𝐼,𝑜𝑜, 𝛼𝛼𝑃𝑃,𝑜𝑜, and 𝛼𝛼𝐷𝐷,𝑜𝑜 are heuristically optimized by using the pa-
rameter tuning methodology discussed in Section 2.3. The search space of these adapta-
tion rates is bounded between [0, 10]. The initial matrix is set at 𝜶𝜶𝒐𝒐 = diag(1 1 1). The 
values of adaptation rates thus optimized and used in this work are given by, 𝜶𝜶𝒐𝒐 =
diag(2.78 1.15 0.18). It is to be noted that if 𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 is stable, then there would always be 
two positive definite matrices, 𝑷𝑷� and 𝑸𝑸. The expression for the derivative of 𝑊𝑊(. ) is pre-
sented as follows [40]: 

�̇�𝑊(𝜀𝜀,𝐾𝐾𝑚𝑚) = −
1
2
𝜶𝜶𝒐𝒐𝜀𝜀(𝑡𝑡)𝑇𝑇𝑸𝑸𝜀𝜀(𝑡𝑡) + �𝑲𝑲(𝒕𝒕)𝑻𝑻 − 𝑲𝑲�𝑆𝑆

𝑻𝑻�
𝑇𝑇
��̇�𝑲(𝒕𝒕)𝑻𝑻 + 𝜶𝜶𝒐𝒐𝛿𝛿𝑇𝑇𝑷𝑷�𝜀𝜀(𝑡𝑡)� (38) 

The Lyapunov function’s derivative �̇�𝑊(𝜀𝜀,𝐾𝐾𝑚𝑚) is always negative definite if, 

�̇�𝑲(𝒕𝒕)𝑻𝑻 = −𝜶𝜶𝒐𝒐𝛿𝛿𝑇𝑇𝑷𝑷�𝜀𝜀(𝑡𝑡) (39) 

This condition satisfies the convergence of 𝜀𝜀(𝑡𝑡) to zero, and thus, acts as the stable 
adaptive gain adjustment mechanism for the control law. After appropriate substitutions, 
the derived online gain adjustment law is rewritten as shown below. 

�̇�𝑲(𝒕𝒕) = �𝜶𝜶𝒐𝒐𝑥𝑥(𝑡𝑡)𝑩𝑩𝑇𝑇𝑷𝑷�𝜀𝜀(𝑡𝑡)�𝑇𝑇 (40) 

The gain adaptation law is implemented in the control software by programming the 
following solution of the first-order differential equation, expressed below. The control 
software calculates the updated controller gains, after every sampling interval, by compu-
ting the solution of the following first-order differential equation. 

𝑲𝑲(𝒕𝒕) = 𝑲𝑲(0) + ��𝜶𝜶𝒐𝒐𝑥𝑥(𝑡𝑡)𝑩𝑩𝑇𝑇𝑷𝑷�𝜀𝜀(𝑡𝑡)�𝑇𝑇
𝑡𝑡

0

𝑑𝑑𝑡𝑡 (41) 

The state feedback gain vector 𝑲𝑲 = [−3.17 −1.82 −0.24] , prescribed in Section 
2.3, serves as 𝑲𝑲(0) in (28). The time-varying gain vector 𝑲𝑲(𝒕𝒕) thus acquired is used to 
realize the baseline MRAC law, 𝑢𝑢(𝑡𝑡) = −𝑲𝑲(𝒕𝒕)𝑥𝑥(𝑡𝑡). This MRAC law is expanded, and the 
corresponding adaptive PID controller formulation is expressed as shown in (42). 

𝑢𝑢(𝑡𝑡) = −𝐾𝐾𝑃𝑃(𝑡𝑡)𝑒𝑒(𝑡𝑡) − 𝐾𝐾𝐼𝐼(𝑡𝑡)�𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 − 𝐾𝐾𝐷𝐷(𝑡𝑡)�̇�𝑒(𝑡𝑡) (42) 

The block diagram of the traditional MRAC-based PID (MRA-PID) control law is 
shown in Figure 5. 
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Figure 5. Block diagram of the MRA-PID control law. 

4. Proposed Control Methodology 
The Lyapunov gain adjustment law’s sensitivity and convergence rate are directly 

impacted by the adaptation rate matrix 𝜶𝜶 [38]. The selection of a trivial set of fixed adap-
tation rates typically establishes a compromise between the system’s tracking perfor-
mance, robustness against disturbances, transient speed, and energy efficiency [40]. A 
higher adaptation rate allows the controller to respond more quickly to changes in the 
system, leading to faster transient response, better tracking of desired references, and im-
proved overall performance. However, it also requires more computational resources and 
energy for parameter updates. On the contrary, a lower adaptation rate slows the response 
speed and prevents the controller from keeping up with rapid changes in the system, lead-
ing to poor tracking performance. However, it also consumes less control energy and po-
tentially yields better noise rejection. 

To synergistically combine the benefits of the higher and lower values of the adapta-
tion rates in the MRA-PID design, the adaptation rates are dynamically adjusted online as 
the state error conditions change by using a pre-calibrated fuzzy self-regulation (FSR) sys-
tem. The FSR system ensures smooth and bounded commutation of the adaptation rates 
as the system’s operating conditions vary. The proposed methodology obviates the neces-
sity to preset the adaptation rates offline that only yield a sub-optimal performance. This 
also makes the design process relatively less labor-intensive. The augmentation of the 
MRA-PID controller with a pre-calibrated FSR system is simple yet effective in compen-
sating for uncertainties and random disturbances. The proposed procedure upholds the 
original structure of the MRA-PID controller while retrofitting the critical controller pa-
rameters with auxiliary tools to address the nonlinear disturbances. This arrangement in-
creases the controller’s degrees of freedom, thus harnessing its ability to handle a wider 
range of operating conditions as compared to its traditional counterpart. This makes it 
more adaptable and flexible to efficiently manipulate the damping control activity as the 
error conditions vary. The proposed augmentation does not necessitate the requirement 
of a separate set of stability proofs or conditions. The traditional MRA-PID controller is 
still operating at the core while FSR assists in robustifying its behavior under perturba-
tions; therefore, it is sufficient to uphold the originally prescribed stability conditions. 

The fuzzy adaptive system is employed in this research primarily because it can be 
easily integrated with traditional control methods to create a hybrid control system that 
leverages the strengths of multiple approaches. Augmentation of a customized fuzzy sys-
tem with linear controllers helps them manage and adapt to the nonlinear behavior of 
complex systems. The fuzzy augmented systems are robust in environments where exact 
mathematical models are difficult to obtain or where system parameters are subject to 
variation. Unlike neural adaptive systems, fuzzy systems are not computationally inten-
sive as they do not require large training data sets to yield robust control effort. Instead, 
they can be easily implemented in real time using the available open software and 
toolboxes. Unlike traditional adaptation schemes that require precise mathematical 
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models or closed-form solutions, fuzzy adaptive systems can be designed with minimal 
mathematical modeling. This simplifies the development process, especially for complex 
systems where accurate models are hard to derive. Furthermore, the fuzzy systems use 
linguistic variables, which allow for the incorporation of expert knowledge and human 
reasoning into the control strategy. This makes the design of the adaptation scheme more 
intuitive and flexible, as it can mimic human decision-making processes. This design flex-
ibility also helps in empirically configuring the shape and form of the consequent nonlin-
ear scaling function, which yields smooth transitions between control actions, reducing 
the risk of abrupt changes that could destabilize the system. This behavior is typically 
hard to track with hyperbolic or sigmoidal functions [38]. 

The fuzzy rules are constituted based on the normalized absolute value of the voltage 
error, 𝑒𝑒𝑣𝑣(𝑡𝑡), and the normalized relative rate of the response, 𝑟𝑟𝑣𝑣(𝑡𝑡). By incorporating rel-
ative rate feedback, the controller can react quickly and accurately to changes in the sys-
tem’s response speed. This leads to improved transient response and helps the system 
reach its desired state more efficiently. Moreover, the relative rate helps the controller an-
ticipate the system’s dynamic speed (fastness or sluggishness) as well as future error 
trends, allowing it to make more informed adjustments. This predictive capability can re-
duce the magnitude of overshoot (or undershoot), leading to a more robust system with 
fewer oscillations. The detailed design of the proposed control scheme is methodically 
discussed in the following sub-sections. 

4.1. Relative Rate Calculation 
The relative rate feedback directs the fuzzy self-regulation mechanism regarding the 

dynamic speed (fastness or sluggishness) of the system’s response as it deviates from the 
reference signal during initial start-up and transient disturbances, or vice versa [48]. 

As illustrated in Figure 6, the system’s relative rate typically varies from fast to mod-
erate to slow as the response drifts away from the reference signal and transits from equi-
librium (or steady state) to transient state [49]. Self-regulating the adaptation rates of the 
MRAC law as per the changes in the system’s relative rate tends to further improve the 
controller’s agility and responsiveness, which in turn aids in efficiently reconfiguring the 
control trajectory under exogenous disturbances. The correlation of the system’s error ve-
locity and error acceleration with the system’s response is described in Table 3 [48]. 

 
Figure 6. Changes in the system’s relative rate [48]. 
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Table 3. Correlation between error velocity, error acceleration, and response. 

�̇�𝒓(𝒕𝒕) �̈�𝒓(𝒕𝒕) System’s Response 
Positive Positive Fast 
Positive Zero Moderate 
Positive Negative Slow 

Negative Positive Slow 
Negative Zero Moderate 
Negative Negative Fast 

It is evident from Table 3 that the system’s response is characterized as slow when 
the error velocity and acceleration have opposite polarities. Conversely, the system is 
characterized as fast when the two error variables have the same polarity. 

The response is characterized as moderate when the error velocity is constant. Hence, 
the system’s relative rate at a given time can be computed simply by multiplying the sys-
tem’s instantaneous error velocity �̇�𝑒(𝑡𝑡)  with its instantaneous error acceleration �̈�𝑒(𝑡𝑡) 
[49]. This product is then fed to a bounded and odd symmetric nonlinear function to up-
hold the aforementioned rationale while normalizing the output between 0 and +1. The 
system’s normalized relative rate, 𝑟𝑟𝑣𝑣(𝑡𝑡), is thus computed as follows: 

𝑟𝑟𝑣𝑣(𝑡𝑡) = 0.5 + 0.5 tanh��̇�𝑒(𝑡𝑡) × �̈�𝑒(𝑡𝑡)� (43) 

where tanh(. ) is the tangent hyperbolic function. This formulation informs the system, 
such that the response is slow when 𝑟𝑟𝑣𝑣(𝑡𝑡)  approaches zero, it is fast when 𝑟𝑟𝑣𝑣(𝑡𝑡)  ap-
proaches unity, and it is moderate otherwise. 

4.2. Fuzzy Self-Regulation of Adaptation Rates 
The FSR system uses fuzzy logic to dynamically adjust the MRAC’s inner adaptation 

rates in response to changes in its error dynamics [50]. It uses a set of empirically defined 
fuzzy logical rules and pre-calibrated membership functions (MFs) to infer accurate deci-
sions based on the input data. Keeping in view the requirements of the buck energy con-
version system, the following meta-rules are considered to devise the rule base for the FSR 
of the adaptation rates [48]: 
1. When the system response is fast, but the error magnitude is small, large adaptation 

rates are selected that efficiently change the controller gains to quickly counteract the 
disturbance by reducing the transit speed and rejecting the overshoots.  

2. When the error magnitude is large and the system response is also fast, moderate 
adaptation rates are selected to avoid highly disruptive (and aggressive) control ap-
plication, which prevents unnecessary increment in the overshoot of the response 
that has already drifted significantly away from the reference. 

3. When the system response is slow, irrespective of the error magnitude, the adapta-
tion rates are reduced to decelerate the responsiveness of the controller gains. This 
helps apply a gentle control effort for eliminating any residual steady-state fluctua-
tions while maintaining an accurate and smooth tracking of the reference signal.  
The aforementioned rules are computationally implemented by employing a two-

input FSR system that derives its input data from the error dynamics of 𝑣𝑣0(𝑡𝑡). The nor-
malized absolute error 𝑒𝑒𝑣𝑣(𝑡𝑡) and the normalized relative rate 𝑟𝑟𝑣𝑣(𝑡𝑡) act as the inputs of 
the FSR system. The normalized absolute error is computed as shown below. 

𝑒𝑒𝑣𝑣(𝑡𝑡) = tanh(|𝑒𝑒(𝑡𝑡)|2)  (44) 

Squaring the error term aids in amplifying the value of 𝑒𝑒𝑣𝑣(𝑡𝑡) under large error con-
ditions and attenuating its impact under small error conditions. The fuzzification module 
converts the crisp input data into fuzzy linguistic variables. The input 𝑒𝑒𝑣𝑣(𝑡𝑡) is fuzzified 
into four linguistic variables defined as S—Small, SM—Small Medium, M—Medium, and 
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Large—Large. The input 𝑟𝑟𝑣𝑣(𝑡𝑡) is fuzzified into three linguistic variables defined as SL—
Slow, M—Medium, MF—Medium Fast, and F—Fast. The variations in 𝑒𝑒𝑣𝑣(𝑡𝑡) and 𝑟𝑟𝑣𝑣(𝑡𝑡) 
are naturally normalized between 0 and 1. The output of the FSR system is denoted as 
λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣). It is fuzzified into four linguistic variables defined as S—Small, SM—Small Me-
dium, M—Medium, and L—Large. The variations in λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣) are bounded between 0 and 
1. The rule base constructed to realize the FSR system is shown in Table 4 [48]. A total of 
16 fuzzy rules are used to carry out the fuzzy implication. To execute the fuzzy implica-
tion, the following max–min inference method is adopted. 

𝜇𝜇𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑛𝑛�𝑔𝑔𝑖𝑖(𝑒𝑒𝑣𝑣),𝑔𝑔𝑖𝑖(𝑟𝑟𝑣𝑣)� (45) 

where 𝜇𝜇 is the degree of the MF, 𝑚𝑚 is the number of rule, and 𝑔𝑔𝑖𝑖(. ) is the triangular input 
MF of the following form. 

(𝑓𝑓) =

⎩
⎪
⎨

⎪
⎧1 +

𝑓𝑓 − 𝑐𝑐𝑖𝑖
𝑏𝑏𝑖𝑖
− , −𝑏𝑏𝑖𝑖

− ≤ 𝑓𝑓 − 𝑐𝑐𝑖𝑖 ≤ 0

1 −
𝑓𝑓 − 𝑐𝑐𝑖𝑖
𝑏𝑏𝑖𝑖
+ ,            0 ≤ 𝑓𝑓 − 𝑐𝑐𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖

+

0,                   otherwise

 (46) 

where 𝑓𝑓  is the generalized representation of the input variable 𝑒𝑒𝑣𝑣  or 𝑟𝑟𝑣𝑣 , and 𝑏𝑏𝑖𝑖
− , 𝑏𝑏𝑖𝑖

+ , 
and 𝑐𝑐𝑖𝑖, are the left half width, right half width, and centroid of the input MF, respectively. 
In this work, symmetrical MFs are employed to perform the fuzzy implication and aggre-
gation. The input and output fuzzy MF waveforms are shown in Figures 7 and 8, respec-
tively. The crisp output, λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣), is computed by using the centroid method of defuzzifi-
cation as shown in (47), [50]. 

λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣) =  
∑ 𝜇𝜇𝑖𝑖 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1
∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (47) 

where 𝑤𝑤 is the centroid of output MF, and 𝑁𝑁 = 16 is the total number of rules. The crisp 
output is fed to the following functions to deliver the time-varying adaptation rates. 

𝛼𝛼𝐼𝐼(𝑡𝑡) = 𝛼𝛼𝐼𝐼,𝑜𝑜 �𝜑𝜑𝐼𝐼,𝑙𝑙 + 𝜑𝜑𝐼𝐼,ℎ λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣) � (48) 

𝛼𝛼𝑃𝑃(𝑡𝑡) = 𝛼𝛼𝑃𝑃,𝑜𝑜 �𝜑𝜑𝑃𝑃,𝑙𝑙 + 𝜑𝜑𝑃𝑃,ℎ λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣) � (49) 

𝛼𝛼𝐷𝐷(𝑡𝑡) = 𝛼𝛼𝐷𝐷,𝑜𝑜 �𝜑𝜑𝐷𝐷,𝑙𝑙 + 𝜑𝜑𝐷𝐷,ℎ λ(𝑒𝑒𝑣𝑣, 𝑟𝑟𝑣𝑣) � (50) 

The parameters 𝜑𝜑𝑧𝑧,𝑙𝑙  and 𝜑𝜑𝑧𝑧,ℎ  (where 𝑧𝑧 = 𝑃𝑃, 𝐼𝐼, 𝑜𝑜𝑟𝑟 𝐷𝐷 ) are predetermined ratios that 
help decide the lower and upper limit of each adaptation rate, respectively. The selection 
ranges of 𝜑𝜑𝑧𝑧,𝑙𝑙 and 𝜑𝜑𝑧𝑧,ℎ are [0, 0.5] and [0, 5], respectively. 

Table 4. Fuzzy rule base for the FSR system [48]. 

𝒓𝒓𝒗𝒗 ↓          𝒓𝒓𝒗𝒗⁄ → SL M MF F 
S M M L L 

SM SM M M L 
M S SM M M 
L S S SM M 
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Figure 7. (a) Input fuzzy MF representing 𝑒𝑒𝑣𝑣, (b) Input fuzzy MF representing 𝑟𝑟𝑣𝑣. 

 
Figure 8. Output fuzzy MF representing λ. 

These parameters are calibrated offline by using the tuning method discussed in Sec-
tion 2.3. The selected values are 𝜑𝜑𝐼𝐼,𝑙𝑙 = 0.11, 𝜑𝜑𝐼𝐼,ℎ = 2.15, 𝜑𝜑𝑃𝑃,𝑙𝑙 = 0.14, 𝜑𝜑𝑃𝑃,ℎ = 1.92, 𝜑𝜑𝐷𝐷,𝑙𝑙 =
0.08, and 𝜑𝜑𝐷𝐷,ℎ = 1.71. The self-adjusting matrix 𝜶𝜶(𝒕𝒕) is expressed as follows: 

𝜶𝜶(𝒕𝒕) = diag(𝛼𝛼𝐼𝐼(𝑡𝑡) 𝛼𝛼𝑃𝑃(𝑡𝑡) 𝛼𝛼𝐷𝐷(𝑡𝑡)) (51) 

4.3. FA-MRAC Law Formulation 
The Lyapunov gain adjustment law uses the time-varying adaptation rate matrix 

𝜶𝜶(𝒕𝒕) to enhance the adaptability of the control law. The modified Lyapunov gain adjust-
ment law is constituted as shown in (52). 

𝑲𝑲�(𝒕𝒕) = 𝑲𝑲�(0) + ��𝜶𝜶(𝒕𝒕) 𝑥𝑥(𝑡𝑡)𝑩𝑩𝑇𝑇𝑷𝑷�𝜀𝜀(𝑡𝑡)�𝑇𝑇
𝑡𝑡

0

𝑑𝑑𝑡𝑡 (52) 

where 𝑲𝑲�(𝒕𝒕) = [𝐾𝐾�𝐼𝐼(𝑡𝑡) 𝐾𝐾�𝑃𝑃(𝑡𝑡) 𝐾𝐾�𝐷𝐷(𝑡𝑡)]  represents the time-varying state feedback gain. 
The state feedback gain vector 𝑲𝑲 = [−3.17 −1.82 −0.24] , prescribed in Section 2.3, 
serves as 𝑲𝑲�(0) in (28). The proposed FA-MRAC law is presented below. 

𝑢𝑢(𝑡𝑡) = −𝑲𝑲�(𝒕𝒕)𝑥𝑥(𝑡𝑡) (53) 

The expansion of the control law yields the following adaptive PID control equation. 

𝑢𝑢(𝑡𝑡) = −𝐾𝐾�𝑃𝑃(𝑡𝑡)𝑒𝑒(𝑡𝑡) − 𝐾𝐾�𝐼𝐼(𝑡𝑡)�𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 − 𝐾𝐾�𝐷𝐷(𝑡𝑡)�̇�𝑒(𝑡𝑡) (54) 

The MRA-PID control law equipped with the FSR system is denoted as the FA-MRA-
PID controller. The block diagram of FA-MRA-PID control law is shown in Figure 9. 

From a computational point of view, the FA-MRA-PID controller does not require 
large training data sets for its constitution. It does not rely upon complex algorithms to 
compute closed-form solutions. Instead, the parameters can be updated online in a single 
step after every sampling interval, which allows for optimal computational resource allo-
cation. Unlike iterative learning algorithms, the scheme does not put excessive recursive 
computational burden on the embedded processor. With the availability of various 
toolboxes and software, the implementation of the proposed control procedure is compu-
tationally viable. Each rule base comprises only 16 rules, thus, the scheme is not memory-
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intensive. The digital computer’s processing power (discussed in Section 5.1) can suffi-
ciently handle the fuzzification and defuzzification process. The scheme has no potential 
latency issues, since it is a two-dimensional rule base with only 16 rules. 

 
Figure 9. Block diagram of the proposed FA-MRA-PID control law. 

5. Experimental Evaluation and Discussions 
This section presents the results of the hardware experiments carried out to examine 

the efficacy of the proposed controllers under disturbances in the physical environment. 

5.1. Experimental Setup 
A commercial 250-watt DC–DC converter module is used to test the designed control 

technique experimentally. Using a variable dual output lab bench DC power supply, two 
+12.0 V sources are connected in series to provide a supply input of +24.0 V to the con-
verter module. Figure 10 presents the complete hardware schematic [41]. Dedicated volt-
age divider circuits are used to measure the real-time fluctuations in 𝑣𝑣𝑜𝑜 and 𝑣𝑣𝑖𝑖𝑖𝑖. An 8-bit 
embedded microcontroller is used to obtain the raw analog sensor readings at a 0.5 kHz 
sampling frequency. The digitized sensor data are serially transmitted to a MATLAB-
based computer application for control computations at a baud rate of 9600 bps. The 
MATLAB/Simulink R2018b software is used to implement the control application and to 
carry out the simulations. For this purpose, a 32-bit and 900 MHz computer with 1.0 GB 
RAM is adopted. The real-time voltage fluctuations are also graphically represented by 
using MATLAB software. After every sampling instant, the computed control signal is 
serially transmitted to the microcontroller, which converts it into an equivalent pulse-
width-modulated (PWM) signal and applies it to drive the transistor 𝑄𝑄1. A logically in-
verted command of this PWM signal is applied to transistor 𝑄𝑄2. The transistors are driven 
at a switching frequency of 100 kHz. The disturbance rejection capacity of the prescribed 
controllers is examined via customized experiments that are designed to emulate practical 
disturbance scenarios for the buck converter system. To administer a +12.0 V step fluctu-
ation in the system’s 𝑣𝑣𝑖𝑖𝑖𝑖, the supply voltage can be adjusted by flipping the switch “S” 
between positions A and B, as seen in Figure 6. Typically, the switch 𝑄𝑄3 is inactive, which 
allows only a single load resistor to stay coupled with the circuit. To introduce a 50% step 
decrement in the system’s load 𝑅𝑅𝐿𝐿, the switch 𝑄𝑄3 is turned, which brings the two identi-
cal resistances in parallel to each other. This arrangement reduces the overall load re-
sistance to 0.5𝑅𝑅𝐿𝐿. Figure 11 depicts the hardware setup used for the experimentation [41]. 
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Figure 10. Block diagram of the experimental setup [41]. 

 
Figure 11. DC–DC buck converter experimental setup [41]. 

5.2. Tests and Results 
The performance comparison of the LQ-PID, MRA-PID, and FA-MRA-PID control strat-

egies is completed by carrying out the following three customized hardware experiments: 
A. Voltage regulation: This test case serves to analyze the control procedure’s transient 

response as well as its reference tracking accuracy under nominal conditions. The 
controllers are tasked to track the reference signal of +10.0 V DC while the 𝑣𝑣𝑖𝑖𝑖𝑖 and 
𝑅𝑅𝐿𝐿 are kept constant at +24.0 V and 10 Ω, respectively. The resulting time domain 
profiles of 𝑣𝑣𝑜𝑜(𝑡𝑡) yielded by each controller are illustrated in Figure 12. 
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Figure 12. Response of the system under nominal conditions. 

B. Load disturbance rejection: This test case is used to examine the controller’s ability to 
reject step disturbances in the converter’s load. The said experiment is conducted by 
activating the switch 𝑄𝑄3 at 𝑡𝑡 = 0.6 s, which administers a 50% step decrement in the 
system’s load resistance. The corresponding fluctuations recorded in 𝑣𝑣𝑜𝑜(𝑡𝑡)  are 
shown in Figure 13. 

C. Input disturbance compensation: This test case is used to examine the controller’s adapt-
ability to compensate for step disturbances in the converter’s 𝑣𝑣𝑖𝑖𝑖𝑖. The said experi-
ment is conducted by flipping the switch 𝑂𝑂 at 𝑡𝑡 = 0.6 s from the position A to posi-
tion B, as shown in Figure 5, which decreases the converter’s 𝑣𝑣𝑖𝑖𝑖𝑖 from +24.0 V to 
+12.0 V. The consequent perturbations in the system’s 𝑣𝑣𝑜𝑜(𝑡𝑡) are shown in Figure 14. 
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Figure 13. Response of the system under load step disturbances. 

 
Figure 14. Response of the system under input step fluctuations. 
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5.3. Discussion 
The results of the aforementioned experiments are examined in terms of the follow-

ing key performance metrics (KPMs). 

• erms: The root mean squared value of error in 𝑣𝑣𝑜𝑜, ∑��𝑟𝑟(𝑖𝑖)�2

𝑖𝑖
. 

• trise: The time taken by 𝑣𝑣𝑜𝑜 to commute from 10% to 90% of the 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟. 
• tset: The time taken by 𝑣𝑣𝑜𝑜 to settle within ±2% of 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 after the initial startup. 
• OS: The peak overshoot in 𝑣𝑣𝑜𝑜 contributed by the initial startup. 
• Mp: The peak overshoot in 𝑣𝑣𝑜𝑜 contributed by the load or input disturbance. 
• trec: The time taken by 𝑣𝑣𝑜𝑜  to recover and settle within ±2%  of 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟  after disturb-

ance. 
These KPMs are typically used to accurately assess the buck converter system’s time 

domain behavior [41]. Table 5 presents the quantitative analysis of the experimental out-
comes of the FA-MRA-PID controller (formulated in Section 4) benchmarked against the 
traditional MRA-PID controller (formulated in Section 3) and the LQ-PID controller (for-
mulated in Section 2). The enhanced resilience of the FA-MRA-PID control law in each 
experiment is benchmarked and validated by the experimental results. 

In Experiment A (Figure 12), the LQ-PID control manifests the slowest transient re-
covery behavior followed by prolonged steady-state fluctuations. The time domain per-
formance is improved by the MRA-PID controller, which shows comparatively faster tran-
sient recovery speed followed by smaller overshoots and steady-state fluctuations. The 
proposed FA-MRA-PID controller offers the most time-efficient response. It transits 
quickly to the reference signal while robustly damping the overshoot and ensuing oscil-
lations. The rapid yet consistent fluctuations in the time-varying controller gains, evident 
during the initial start-up phase of the response, validate the proposed controller’s en-
hanced responsiveness to the changes in the system’s operating conditions. The gains var-
iations are large and disruptive at the beginning of the transient state. These variations 
gradually decay when the response approaches the steady state. Under nominal condi-
tions, the proposed controller reduces the system’s erms by 22.9%, trise by 33.3%, tset by 
47.5%, and OS by 3.4% as compared to the baseline LQ-PID controller. The proposed con-
troller improves the system’s erms by 16.7%, trise by 28.6%, tset by 30.1%, and OS by 39.1% as 
compared to the traditional MRA-PID controller. 

In Experiment B (Figure 13), the modeling uncertainties caused by the load step dis-
turbance severely impair the performance of the fixed gain LQ-PID controller, which re-
sults in the system exhibiting the slowest transient response speed and significant over-
shoots and undershoots. 

Table 5. Summary of experimental results. 

Experiment 
KPM Control Law 

Symbol Unit LQ-PID MRA-PID FA-MRA-PID 

A 

erms V 0.055 0.042 0.035 
trise sec. 0.21 0.14 0.10 
OS V 0.29 0.46 0.28 
tset sec. 0.40 0.30 0.21 

B 
erms V 0.085 0.062 0.046 
Mp V 7.74 5.40 3.09 
trec sec. 0.26 0.21 0.16 

C 
erms V 0.054 0.042 0.029 
Mp V 5.07 3.65 2.63 
trec sec. 0.35 0.31 0.27 
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It minimizes the peak magnitude of the overshoots and undershoots brought on by 
load disturbance. The controller gains demonstrate a rapid rate of change during the per-
turbed state, and vice versa, which significantly increases the adaptability of the control 
law under bounded exogenous disturbances. Under load disturbance conditions, the pro-
posed controller reduces the system’s erms by 43.5%, Mp by 60.1%, and trec by 38.5% as com-
pared to the baseline LQ-PID controller. Moreover, the proposed controller reduces the 
system’s erms by 25.8%, Mp by 42.8%, and trec by 23.8% as compared to the traditional MRA-
PID controller. 

In Experiment C (Figure 14), the introduction of input step disturbance causes abrupt 
state fluctuations, to which the FSR system of the proposed controller reacts swiftly and 
efficiently adapts the controller gains. The variation rate of the controller gains becomes 
highly disruptive under the disturbance condition, which helps the control law to quickly 
react by flexibly tightening the damping control effort, and vice versa. This arrangement 
results in a reasonably robust disturbance rejection behavior, which delivers relatively 
faster transit times and minimal post-disturbance oscillations. The LQ-PID and MRA-PID 
controllers exhibit poor and mediocre performances in this experiment as well, respec-
tively. The suggested FA-MRA-PID controller precisely tracks the reference voltage while 
successfully damping oscillations brought on by the external disturbance. Under load dis-
turbance conditions, the proposed controller reduces the system’s erms by 46.3%, Mp by 
48.1%, and trec by 22.8% as compared to the LQ-PID controller. Moreover, the proposed 
controller reduces the system’s erms by 30.9%, Mp by 27.9%, and trec by 12.9% as compared 
to the traditional MRA-PID controller. 

The suggested FA-MRA-PID controller precisely tracks the reference voltage while 
successfully damping oscillations brought on by the external disturbance. The enhanced 
robustness and response speed are credited to the relate-rate-derived FSR system used 
with the MRA-PID controller. The FSR system increases the system’s self-learning ability 
and enables it to execute effective autonomous self-tuning of the controller gains as the 
error conditions vary. The improved responsiveness of the proposed controller is evident 
from the abrupt and persistent fluctuations displayed by the gains of the FA-MRA-PID 
controller in Figures 12–14. 

The proposed FA-MRA-PID control procedure is highly scalable. It can be easily 
modified and applied to control the output voltage of any class of DC–DC power elec-
tronic converter, since it only requires the nominal state space model of the conversion 
system to formulate the LQ-PID-regulated reference model, along with a customized set of 
adaptation rate adjustment functions, as the a priori information. With the aforementioned 
requirements fulfilled, apart from the DC–DC converters, the proposed control scheme can be 
extended and applied to control under-actuated robotic and mechatronic systems. 

5.4. Comparison with a State-of-the-Art Control Law 
To confirm the effectiveness of the proposed FA-MRA-PID controller in comparison 

to the modern controllers, its performance is compared with a fractional-order LQ-opti-
mized PID voltage controller tasked with robust compensation of disturbances in DC–DC 
buck converters [41]. The fractional order PID control law is presented as shown below. 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑖𝑖�𝐺𝐺−𝛼𝛼𝑒𝑒(𝑡𝑡)� + 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑑𝑑 �𝐺𝐺𝛽𝛽𝑒𝑒(𝑡𝑡)� (55) 

where 𝐾𝐾𝑖𝑖 = −3.162 , 𝐾𝐾𝑝𝑝 = −1.977 , and 𝐾𝐾𝑑𝑑 = −0.315  are the integral, proportional, and 
derivative gains of the PID control law, respectively. The terms 𝐺𝐺−𝛼𝛼 and 𝐺𝐺𝛽𝛽 represent 
the fractional order integral and differential operators, respectively. The terms 𝛼𝛼 = 0.92 
and 𝛽𝛽 = 0.74 are the pre-calibrated fractional orders of the said operators [41]. The said 
fractional-order PID (denoted as PIαDβ) controller is selected for comparative analysis 
with the proposed FA-MRA-PID controller because its real-time behavior is examined us-
ing the same experimental setup and test cases as this study. Table 6 quantifies the com-
parative performance analysis along with the percentage improvement recorded for every 
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performance metric being analyzed. The KPM erms,ss in Table 6 represents the root mean 
squared value of error recorded for the steady-state portion of the response only. The 
quantitative study validates that in nearly all testing scenarios, the FA-MRA-PID control-
ler exhibits a relatively better reference tracking accuracy and disturbance rejection capa-
bility than the PIαDβ controller. 

Table 6. Comparison with PIαDβ controller. 

Experiment 
KPM Control Law 

Percentage  
Improvement Symbol Unit PIαDβ 

[41] 
FA-MRA-PID 

(proposed) 

A 

erms,ss mV 6.56 6.15 6.3 % 
trise msec. 0.15 0.10 33.3 % 
OS V n/a 0.28 n/a 
tset sec. 0.23 0.21 8.7 % 

B 
Mp V 3.48 3.09 11.2 % 
trec sec. 0.18 0.16 11.1 % 

C Mp V 4.66 2.63 43.5 % 
trec sec. 0.35 0.27 22.9 % 

n/a, not available. 

6. Conclusions 
This article methodically designs and implements a novel self-regulating MRA-PID 

control law that aims to improve the robustness of DC–DC energy conversion systems 
against modeling uncertainties and disturbances. To concurrently improve the system’s 
response speed as well as error rejection, a pre-calibrated two-input FSR is augmented 
with the MRA-PID control law that self-regulates the adaptation rates as the system trans-
its from transient to steady-state, and vice versa. The FSR is formulated as a nonlinear 
function of the error and relative rate of the system’s output voltage response. The inclu-
sion of relative rate feedback is very beneficial in this application as it optimizes the sys-
tem’s self-learning, and thus, self-reasoning capability. Consequently, it helps the system 
execute effective parameter adjustment decisions as per the changes in the dynamic speed 
of the response when it drifts away from the reference, or converse. 

The proposed augmentation considerably increases the degrees of freedom of the 
MRAC law. The time domain profiles and gain variations exhibited by the proposed con-
troller, under different experimental conditions, clearly validate its enhanced adaptability, 
temporal efficiency, superior reference tracking accuracy, and stronger robustness against the 
model variations caused by the input and load step fluctuations. In the future, the proposed 
control scheme can be extended and applied to other types of DC–DC converter systems. Fur-
thermore, neural and neuro-fuzzy adaptation mechanisms can be used, instead of the pro-
posed FSR, to self-regulate the inner adaptation rates of MRACs and investigate their impli-
cations on the system’s response speed and sensitivity to disturbances. 
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