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Abstract: The technologies of model-based design and dependability analysis in the design of dependable 
systems, including software intensive systems, have advanced in recent years. Much of this development 

can be attributed to the application of advances in formal logic and its application to fault forecasting and 
verification of systems. In parallel, work on bio-inspired technologies has shown potential for the 
evolutionary design of engineering systems via automated exploration of potentially large design spaces. 
We have not yet seen the emergence of a design paradigm that combines effectively and throughout the 
design lifecycle these two techniques which are schematically founded on the two pillars of formal logic 
and biology. Such a design paradigm would apply these techniques synergistically and systematically 

from the early stages of design to enable optimal refinement of new designs which can be driven 
effectively by dependability requirements. The paper sketches such a model-centric paradigm for the 
design of dependable systems that brings these technologies together to realise their combined potential 
benefits.   
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

1. INTRODUCTION 

Dependability is an umbrella term that covers safety, 
reliability, availability, maintenability and security. 
Integrated and effective dependability assessment has 
become increasingly important as modern safety-critical 
systems become more heterogeneous and complex. 

Dependability  assessment should  begin  early  in  the  
design  so  that potential  problems  can  be  identified  and 
rectified  early  to  avoid  expensive  changes  later  in  the  
system lifecycle. Traditional dependability analysis 
techniques like fault tree analysis (FTA) and Failure Modes 
and Effects Analysis (FMEA) are well-established and 

widely used during the design phase of safety-critical 
systems. However, these techniques are manual processes 
and often performed on informal system models which may 
rapidly become out of date as the system design evolves. This 
presents challenges in maintaining the consistency and 
completeness of the assessment process.  

Over the past 20 years, new developments in the field of 
dependability engineering have led to a body of work on 
model-based assessment and prediction of dependability 
which has come to be known as Model-Based Safety 
Assessment (MBSA). MBSA focuses on safety but extends 
to other attributes of dependability including reliability, 

availability as well as assessment of implications of security 
on safety. Model-based techniques offer significant 
advantages over traditional approaches as they utilise 
software automation and integration with design models to 
simplify the analysis of complex safety-critical systems.  

The various MBSA techniques generally fall into two leading 

paradigms. The first focuses on the automatic construction of 
predictive system failure analyses, such as fault trees or 

FMEAs, from  local failure logic stored in the architectural 
model of the system, or a parallel error model. This approach 
is typically compositional, meaning that  system-level failure 
analyses can be generated from component-level failure logic  
and the topology of the system. This compositionality lends 
itself well to automation and reuse of component failure logic 

across applications, and this is beneficial to dependability 
analysis in ways similar to those introduced by reuse of 
trusted software components in software engineering. 
Techniques which are based upon this paradigm include the 
Failure Propagation and Transformation Notation (Fenelon 
and McDermid, 1993)  and Calculus (Wallace, 2005), 

Hierarchically Performed Hazard Origin and Propagation 
Studies (HiP-HOPS) (Papadopoulos and McDermid, 1999), 
Component Fault Trees (Kaiser et al., 2003) and State-Event 
Fault Trees (Grunske et al., 2005).  

The second prominent MBSA paradigm focuses on 
automatically analysing potential failures in a system model, 

typically represented as a state machine, using formal 
verification  techniques such as model-checking. This 
generally works by injecting possible faults into an 
executable formal specification of a system and studying the 
effects of faults on the system behaviour. The results are then 
used by model checking tools to verify whether system 

dependability requirements are being satisfied or whether 
violations of the requirements exist in normal or faulty 
conditions. Techniques in this category include Altarica 
(Arnold et al., 2000), FSAP-NuSMV (Bozzano and 
Villafiorita, 2007), and SAML (Ortmeier et al., 2012).  

Much of this recent work on dependability analysis has a 

natural synergy with a wider trend towards model-based 
design, particularly domain-specific languages. In many 
industries, particularly transport and aerospace, designers are 



 

 

     

 

increasingly adopting Architecture Description Languages 
(ADLs) to capture architectural and behavioural information 
about the system. Such ADLs may not only represent the 

architecture of the system, but also its functional and non-
functional requirements; they may also provide facilities for 
the refinement of the system throughout the design lifecycle, 
showing how the requirements are being met at each stage. 
One aspect of such ADLs is to represent safety requirements 
and the failure logic of the system, and this has naturally led 

to integration with MBSA techniques.  

Some of this work has been transferred to the context of 
model-based design. For instance, ADLs have incorporated 
error modelling semantics that enable dependability analysis. 
Recent work has demonstrated that dependability analysis of 
EAST-ADL models (Chen et al., 2011) and SysML models 

(Andrews et al., 2013) is possible via HiP-HOPS while 
dependability analysis of AADL models is possible via 
conversion to combinatorial (Joshi et al., 2007)  and 
temporal/ dynamic fault trees  (Mahmud et al., 2012) (Merle 
et al., 2014) or Generalised Stochastic Petri Nets (GSPN) 
(Feiler and Rugina, 2007). 

This work in very much ongoing and there are specific 
challenges to be addressed within individual techniques and 
the field as a whole.  

In this paper, firstly, I discuss a set of challenges that in my 
view cannot be addressed by MBSA in its current state. 
These challenges mainly refer to design problems where 

there are potentially many design options to be considered. 
Secondly, I argue that a synthesis of these techniques with 
modern metaheuristics for search and optimisation can 
potentially address these challenges. Finally, I describe my 
work towards this goal within the HiP-HOPS method and 
tool, and show how this work can support  cost optimal, 

dependability-directed design refinement and optimisation of 
system architectures.  

The paper is structured as follows: in Section 2, I discuss 
challenges; in Section 3, I present an extension of MBSA 
with metaheuristics; in Section 4, I discuss related work and, 
in Section 5, I conclude discussing how this work could 

inform the evolution of MBSA.  

2. CHALLENGES 

MBSA techniques can answer important questions regarding 
the quality of individual design proposals, and in that sense 
they can enrich a model-driven development process. 
However, MBSA is neither a panacea in its various forms nor 

it is a static field of research. It is rather a set of techniques 
which are evolving to address current and new challenges. I 
identify four  such challenges which MBSA techniques 
cannot fully address. 

2.1. Controlling dependability from the early stages  

There is increasing agreement that to achieve high 

dependability in complex systems, design processes should 
move in a direction where dependability and other quality 
attributes are controlled from the early stages rather than left 
to emerge (or not) at the end. This is clearly a very desirable 
goal that would greatly benefit several industries, and it is 

enshrined in contemporary standards like the aerospace and 
the automotive safety standards. These documents prescribe 
processes in which dependability requirements, captured 

early through system level hazard analysis and risk 
assessment, are rationally allocated to progressively more 
refined subsystem elements of the architecture  in the form of 
Development Assurance Levels, Safety Integrity Levels, or 
other similar concepts.  

A study of the problem (Parker et al., 2013) has shown that 

the manual processes described in the standards become 
complex when applied to large networked architectures 
which deliver multiple functions; such systems lead to huge 
numbers of potential allocation solutions and exploring these 
manually is infeasible. Current standards do not advise on 
how this type of allocation can be done effectively, for 

example with the support of automated algorithms and tools. 
This is an area where research opportunities arise to address 
important questions: for instance, which architectural 
proposals will fulfil dependability requirements better in the 
context of design refinement, and, given a proposed 
architecture, how can integrity requirements be optimally 

allocated to its elements.   

2.2 Controlled design refinement over a complex value chain  

The controlled refinement of a design for new dependable 
systems must be achieved in the context of a value chain 

upon which the design and procurement of subsystems and 
components is typically distributed. Indeed, in practice, 
complex systems are developed in value chains using a 
combination of existing and commissioned subsystems and 
components that become parts of the overall architecture. 
Distributing a design in such a way that properties are 

verifiably maintained is a significant challenge that 
encompasses two aspects: On the one hand, effective top-
down mechanisms are needed to ensure that the allocation 
and transmission of requirements during refinement is done 
in a way that satisfies overall requirements at the end. On the 
other hand, bottom-up mechanisms are needed to provide 

evidence that requirements have been met when the system is 
finally put together in its final form. 

2.3 Dealing with the inevitable design changes  

There is always a degree of uncertainty in early design, which 

often contributes to disruptive design changes. Some of the 
uncertainty comes as existing requirements are modified and 
new requirements are added, causing changes in the current 
design and allocation of requirements. These changes need to 
propagate in a top-down manner through the design 
refinement as new and modified requirements for the 

elements of the design. For example, a previously 
undiscovered hazard may cause design changes aimed at 
addressing the hazard and these may need to propagate 
through subsystems to the low levels of design and to the low 
level tiers of the value chain. Uncertainties in design may 
also propagate bottom up, in cases where assumptions about 

certain properties of elements cannot be satisfied. The 
challenge here is in being able to respond effectively and 
efficiently to the changes that need to follow. Not only does 



 

 

     

 

the impact of these changes need to be localised, but any 
design change and reallocation of requirements that follow 
must be done efficiently so that the temporary imbalance 

caused by the design iteration is addressed with minimum 
disruption in the contractual relationships between 
stakeholders in the tiers of the value chain. 

2.4 Trading off dependability versus cost & other properties. 

In complex distributed systems, rich functionalities and their 
distribution across shared hardware and communication 
channels allow a large number of configuration options at 
design time and a large number of reconfigurations options at 
runtime. This creates difficulties in design because, as 
potential design spaces expand, their exploration for suitable 

or optimal designs becomes increasingly more difficult.  

When a number of different architectural configurations can 
potentially deliver the functions of a system, designers are 
faced with a difficult optimisation problem. Assuming that it 
is technically and economically possible to fulfil all 
dependability requirements, they must find an architecture 

that entails minimal development and other lifecycle costs. 
On the other hand, if fulfilling or optimising all dependability 
and other requirements is infeasible, then they must find the 
architecture or architectures that achieve the best possible 
tradeoffs among quality attributes and cost. The problem is 
compounded by the fact that attributes are often conflicting, 

e.g. improving safety often means not only increasing costs 
but also reducing availability.  

It is widely accepted that the various formulations of the 
above represent hard, multi-objective optimisation problems 
that can only be approached systematically with the aid of 
optimisation algorithms that can search in large potential 

design spaces.  

Whilst many design problems can only be tackled effectively 
by the human intellect, clearly, as potential design spaces 
expand, their exploration for suitable or optimal designs in 
terms of quality and cost becomes increasingly difficult, and 
some automation is needed. Modelling languages, emerging 

ADLs and MBSA techniques, therefore, could benefit from 
concepts and technological support that enable this type of 
optimization. 

3. SYNTHESIS OF MBSA WITH METAHEURISTICS 

The above challenges go beyond the capabilities of current 
MBSA techniques. I believe that one step towards addressing 

them is by achieving a synthesis of MBSA and contemporary 
metaheuristics, i.e. moving into an area where formal logic 
can meet biology and nature-inspired techniques.  

In recent  years, with my colleagues I have been working in 
this direction in the context of HiP-HOPS, an MBSA 
technique known which I have pioneered since the late 90s 

(Papadopoulos and McDermid, 1999). While HiP-HOPS has 
started as a technique for model-based synthesis of fault trees 
and FMEAs, it has progressively evolved into a more 
sophisticated method in which heuristics are used to address 
the design problems highlighted in section 2 - see for instance  
(Papadopoulos and Grante, 2003 & 2006), (Zeng et al., 

2007), (Adachi et al., 2011), (Papadopoulos et al., 2011) 
(Walker et al., 2013) and (Azevedo et al., 2014).   

3.1 Scope of HiP-HOPS  

HiP-HOPS aspires to support both sides of the V engineering 
lifecycle with techniques that are  model-based and 
automated (Fig. 1).   

 

Fig. 1. Scope of HiP-HOPS in the V-lifecycle 

At the early stages, HiP-HOPS supports a dependability 
driven mode of design in which system requirements 
captured early are allocated to sub-systems and components 
of the architecture as this is refined. In a typical design the 
possibilities for allocation are numerous, so the process is 

partly automated via use of metaheuristics. The goal is to find 
an optimal allocation of system requirements to elements of 
the architecture within the space of all possible such 
allocations. Optimality here is mainly defined in terms of 
minimising the projected costs that would be associated with 
the different levels of integrity demanded from components 
to meet system requirements  (Azevedo et al., 2014). 

As the architecture of the system is being refined and detailed 
models of the system are being produced with specific 
components selected and developed, detailed qualitative and 
quantitative dependability analysis can be done to produce 
evidence that system requirements have been met. The 
process is automated via algorithms for synthesis and 

analysis of fault trees and FMEAs (Papadopoulos et al., 1999 
& 2011).  

Moving to the right of the V-lifecycle, and assuming that 
dependability analysis shows that requirements cannot be met 
by the current system architecture, it is possible to initiate a 
process of architecture and maintenance optimisation in 

which the goal is to arrive at an improved architecture which 
meets dependability and other requirements with minimal 
additional costs. The process is once more driven by meta-
heuristics and can be used to address problems such as the 
optimal selection of components and subsystems between 
available alternatives, decisions on the location and level of 

replication of components (Adachi et al., 2011) and decisions 
on maintenance scheduling (Nggada, et al., 2013)  

I will now outline the three steps in this process starting from 
modelling and dependability analysis in HiP-HOPS. This 



 

 

     

 

capability is central to the method and provides the 
fundamentals that  underpin the more advanced 
metaheuristic-driven processes of design refinement and   

optimisation. 

3.2 Modelling and Dependability Analysis  

All analysis and optimisation processes in HiP-HOPS are 
performed on a architectural system model which identifies 

material energy and data transactions among components 
(Fig. 2).  

 

Fig. 2. Modelling and Dependability Analysis in HiP-HOPS. 

The model can be hierarchical if necessary to manage 
complexity. In the case of a hierarchical model, subsystems 
enclose architectures of more basic subsystems and  

components. The first step in the analysis of such models is 
the annotation of each component in the model with its local 
error logic. HiP-HOPS defines a language for the description 
of this error logic. In the basic version of this language, the  
error logic of a component can be specified as a list of 
internal failure modes of the component and a list of errors or 

deviations as they can be observed at component outputs. 
Each component failure mode is optionally accompanied by 
quantitative data, for example a failure and a repair rate. 
Output errors carry Boolean expressions which describe their 
causes as a logical combination of component faults and 
similar errors observed at component inputs. 

Input and output errors referenced in the error logic are 
described qualitatively and typically represent conditions 
such as the omission or commission of parameters or 
qualitative deviations from correct value (i.e. hi-low) and 
expected timing behaviour (i.e. early-late). Collectively, a set 
of failure expressions that logically explain all possible errors 

at all output ports of a component provides a model of the 
error logic of the component under examination. This model 
can be stored in a library. For simple components, e.g. 
sensors and actuators, such models could be re-used across 
different applications to simplify the manual part of the 
analysis and the overall application of the proposed 

technique.   

We should note that experimental versions of the tool use an 
extended language where it is also possible to use temporal 
operators to describe sequencing of faults (Walker et al., 
2007) and wildcards to describe more abstract patterns of 
relationships between output and input deviations, for 

instance to allow statements such as "there will be an 
omission of all outputs in response to any input error" 
(Wolforth et al., 2010).    

Once the model has been augmented with error logic, then 
computerised algorithms are used to automatically determine 
how errors propagate through connections in the model and 
cause functional failures at system outputs. Those failures are 
the ones that analysts are typically interested to identify and 
analyse. For example, in a car, such functional failures would 

include the loss or incorrect steering and braking.  

Via the automated analysis algorithms of HiP-HOPS, it is 
possible to move from a local component view of failure to a 
global system view of failure. This global view is captured in 
a set of fault trees which show how the component failure 
modes representing the leaf nodes of the trees and their local 

effects logically combine and propagate though the system to 
cause functional failures that represent the top events of the 
fault trees. Note that these trees are interconnected and share 
branches and leaf nodes which represent dependencies in 
model, e.g. the failure of a common power supply or a global 
condition that may affect more than one system functions. 

HiP-HOPS can perform qualitative cut-set analysis of fault 
trees. Quantitative analysis is also feasible when probabilistic 
parameters have been provided at component level, and is 
used to predict the reliability and availability of the system.  

In the final stage of the analysis, the complex body of logic 
encoded in the set of interconnected fault trees is simplified  

by an automated algorithm which translates it into a simple 
table of direct relationships between component and system 
failures. In a similar way to a classical FMEA, this table 
determines for each component in the system and for each 
failure mode of that component, the effect of the failure mode 
on the system. The table shows whether, and how, each 

failure mode causes one or more system failures (i.e. top 
events of fault trees) by itself or in conjunction with other 
events.   

Note that in a classical manual FMEA only the effects of 
single failures are typically assessed. Thus, one advantage of 
generating an FMEA from fault trees is that fault trees record 

the effects of combinations of component failures and this 
useful information can also be transferred into the FMEA. 
The FMEA shows all functional effects that a particular 
component failure mode causes. The latter is particularly 
useful as a failure mode that contributes to multiple system 
failures is potentially more significant than those that only 

cause a single top event. Precisely because it records the 
effects of combinations of component failures, this type of 
FMEA can, in practice, help analysts not only to locate 
problems in the design, but also to determine the level of 
fault tolerance in the system, i.e. to determine whether the 
system can tolerate any single or any combination of two, 

three or more component failures.   

It is clear that both quantitative and qualitative analyses in 
HiP-HOPS can play a dual role: either to help verify 
requirements or stimulate useful design iterations by 
highlighting weak areas of the design. 

 



 

 

     

 

3.3 Architecture and Maintenance Optimisation  

Let us assume now that a team of analysts is designing a 
system and that an MBSA tool suggests that the system does 
not meet all dependability requirements. How should the 
analysts proceed? Should they start a radical redesign or 

explore simpler options first? And is manual redesign the 
only option or can there be some automation in design 
improvements. There is typically a range of options that 
designers will try whilst improving a design, and these 
include: a) replacing a component with a more reliable and 
expensive component b) replacing part of the architecture 

with a more dependable  alternative c) replicating 
components in fault tolerant schemes so that failures are 
tolerated, and d) increasing the frequency of maintenance, an 
action that prolongs the useful life of components and thereby 
increases the reliability of the system. 

However a difficulty encountered here is that, in a typical 

design, the options for substitution, replication and 
maintenance scheduling are too many.  For instance, in a 
system of n components, if there are two suppliers for each 
component then there are 2

n
 potential different configurations 

of components. For n=100, there are 1.26e
30

 configurations, 
each representing a different system configuration with its 

own dependability and cost performance.  It is clear that in 
such situations analysts are confronted with a range of multi-
objective optimisation problems, where the objectives are 
many and include dependability, cost, weight and other 
properties.  

To provide a solution to this range of problems we have 

developed an extension of HiP-HOPS that employs genetic 
algorithms to enable multi-objective optimisation of 
architectures with respect to dependability and other 
attributes (Papadopoulos and Grante, 2006) (Papadopoulos et 
al., 2011). The concept is illustrated in Fig. 3. 

 

 Fig. 3. Architecture optimisation in HiP-HOPS. 

As with dependability analysis in HiP-HOPS, the process 
starts from a model of the system. However,  this time the 
model is not fixed - it has variability. Components can have 

multiple alternative implementations. For example, a sensor 
can have two options from two different suppliers, with each 
option having its own cost, weight and failure characteristics.   
Subsystems can also carry alternatives, e.g. a subsystem can 
have two different implementations that provide the functions 
using different sets of components and architecture. There 

can be options for replication of components with known 
patterns of fault tolerance, e.g. a primary-standby 
configuration, or multiple parallel channels with majority 

voting. Finally, there can be options for the scheduling of 
component maintenance.  

Once the system model has included these possibilities, the 
model with its variants, failure data and cost data is given to 
HiP-HOPS which applies an evolutionary optimisation 
process. In the context of this process HiP-HOPS creates a 

population of candidate designs by resolving the variability 
of the model, i.e. fixing variation points selecting particular 
design options. Each candidate design is then evaluated with 
respect to the objectives of the optimisation. The process is 
aided by the automated algorithms of HiP-HOPS. The 
reliability or availability of a candidate design are calculated 

from fault trees. A quantitative measure of safety is 
established from the FMEA, for instance from the number of 
single points of failures that contribute to severe system 
failures. HiP-HOPS includes simple summative cost and 
weight functions. However, external plugins can also be 
designed to enable more precise evaluation of cost, weight or 

other objective functions. Experiments with timing and 
schedulability have been reported in (Walker et al., 2013).  

Once candidate designs have been evaluated, they are ranked 
according to performance, and a Pareto frontier is formed 
showing the best designs in the current population. Roulette 
selection that favours better performing designs is used to 

select candidates that form the parents of the next generation. 
Through application of classic genetic operators such as 
mutation and crossover,  a new population is then formed and 
the process of evaluation and ranking is iterated. The result of 
this process over a number of successive generations is a 
gradual improvement of the performance of the population 

that is evident in the progressive improvement of the Pareto 
frontier. The process is terminated on meeting certain 
constraints or after a specified number of generations. The 
result is a set of models that give optimal or near optimal 
tradeoffs among the objectives of the optimisation.  

Via this process, designers can take informed decisions about 

the selection of  components, subsystems, the location and 
type of replication, and about maintenance scheduling 
making sure that dependability requirements can be met 
whilst minimising costs. 

3.4 Dependability-driven Design Refinement with HiP-HOPS 

The processes described so far are bottom up, i.e. they rely on 
the existence of detailed system models that can be subjected 
to analysis or optimisation. At this point, I would like to pose 
a set of more fundamental questions about design.  

a)  Why should designers need to produce detailed designs 

before they can assess whether dependability 
requirements have been met, e.g. via MBSA analysis?  

b)  Why should they risk failing to meet requirements and 
then need to redesign?   

c)  Why not imagine a top-down dependability-driven 
design process in which dependability requirements can 



 

 

     

 

be optimally allocated to sub-systems and components 
during refinement of the architecture?  

The aspirations implied in the above questions concur with 

those expressed in modern standards. Indeed many standards 
express the desire for a top-down design process driven by 
requirements. However, the guidance provided by these 
standards is based on manual processes of requirements 
allocation. I believe that an automated approach can better 
support the application of these standards and yield important 

improvements in the ongoing pursuit of improved design 
processes for dependable systems. 

Standards, such as IEC 61508, ISO 26262, and ARP4754-A, 
introduce a system of classification for different levels of 
safety-integrity. IEC 61508 popularised the Safety Integrity 
Level (SIL), while ISO 26262 and ARP4754-A introduced 

domain-specific versions of this concept — the Automotive 
Safety Integrity Level (ASIL) for the automotive domain and 
the Development Assurance Level (DAL) for the aerospace 
domain. Integrity levels serve as a qualitative indication of 
the required level of safety or integrity of a function or 
component, and generally they are broken down into 5 levels, 

ranging from strict requirements (e.g. SIL4, ASIL D, DAL A) 
to no special requirements (e.g. SIL0, QM, DAL E). In some 
cases, quantitative targets are also associated with different 
levels, e.g. maximum failure rates for random hardware 
faults. 

These integrity levels are employed as part of a top-down 

requirements process as well as the bottom-up verification of 
those requirements. For example, ISO 26262 describes a 
detailed safety process to be applied to automotive systems; 
the first step is a hazard analysis which identifies the various 
malfunctions that may take place and what hazards may arise 
as a result. The severity, likelihood, and controllability of 

these hazards are then considered, and on the basis of this 
risk analysis, safety requirements — with associated ASILs 
— are applied to the various top-level functions of the 
system. The higher the risk of the hazard, the higher the ASIL 
that gets applied.  

During subsequent development of the system, traceability to 

these original ASILs must be maintained at all times. As the 
system design is refined into more detailed architectures, 
those original ASILs are allocated and decomposed to the 
subsystems and terminal components of the design. Then, 
during the verification and validation, analyses (e.g. fault 
trees) must be produced to ensure that the refined system 

meets original requirements. 

However, the process of allocating and decomposing ASILs 
across the architecture is far from straightforward. The 
integrity levels of elements should be derived in such a way 
that the integrity level of their parent system is maintained, 
and thus in general the sub-components inherit the integrity 

level of their parent. To avoid every element of the entire 
system having to meet the highest level of integrity, fault 
tolerant architectures (e.g. parallelism, redundancy, 
monitoring etc.) can be employed to spread the burden of 
meeting the SIL across a number of components. While in 
some cases there is guidance on how this is to be done, 

achieving it in practice is often significantly more difficult. 

For example, ISO 26262 provides an "ASIL algebra", which 
indicates how a strict integrity level like ASIL D can be met 
by two independent subsystems which each individually  

meet ASILs (B, B) or (C, A) or (A, C) or (D, QM) or (QM, 
D). In practical design these options multiply and the 
question arises which design option is cost-effective. In 
general, an element of the system architecture should be 
allocated a SIL that corresponds to the SIL of the most severe 
failure it causes at system level. In simple systems, it may be 

easy to establish this fact. However, the correct, cost-optimal 
allocation of SILs in complex, networked architectures 
delivering multiple functions is far from trivial. Problems 
may include ensuring that independence constraints are met, 
whilst working through the many possible allocations, and 
ensuring that the decomposed low-level requirements still 

add up to the original high-level requirements. The above add 
to the time, expense, and complexity of following safety 
standards like ISO 26262 and ARP4754-A when dealing with 
the types of detailed electronic architectures that are common 
in modern safety-critical systems, often to the extent that 
performing the process manually is practically impossible. 

In HiP-HOPS the above process has been largely automated 
by using the  framework presented in section 3.2. HiP-HOPS 
can establish the potential contribution of assumed 
component faults and combinations of such faults to system 
level failures. From this information, it is then possible to 
automatically do a rational allocation and decomposition of 

requirements. HiP-HOPS is aware of which components are 
dependent by means of the propagation model and the fault 
tree analysis, and it can automatically apply the type of SIL 
'algebra' described by e.g. ISO 26262 and ARP4754-A. The 
result is an allocation of SILs to individual components, 
component ports, or even component failure modes, in such a 

way that the overall high-level requirements are still fulfilled. 

Work in this area has shown that the number of different 
potential allocation schemes that can meet a complex set of 
system requirements often produces a vast search space, and 
exploring this exhaustively with deterministic algorithms for 
a cost-optimal allocation can been problematic (Parker et al., 

2013). Therefore, recent work in HiP-HOPS has focused on 
the use of metaheuristics in order to efficiently explore this 
large space. This allows the generation of optimal or near 
optimal allocations of SILs that meet the system requirements 
with minimal costs for procurement, development and 
verification of components. Work in this area has included 

the use of genetic algorithms (Parker et al., 2013) and Tabu 
search (Azevedo et al., 2014), while more recently we are 
investigating particle swarm-based approaches. All this effort 
has produced promising results that are far more efficient and 
scalable than deterministic solutions, and a prototype 
implementation has been incorporated into the HiP-HOPS. 

HiP-HOPS now calculates optimal or near optimal 
allocations of dependability requirements to  subsystems and 
components of a system, taking into account their 
dependencies and assumptions about their intended behaviour 
in conditions of failure. Stakeholders in a value chain are able 
to apply this capability iteratively in order to specify 

contracts that define increasingly refined dependability 
requirements to suppliers in lower tiers of a value chain. The 



 

 

     

 

process guarantees that a system will meet its dependability 
at the end of the design refinement process if the contracts 
have been met and basic components of the architecture meet 

their assigned requirements; assuming of course that any 
assumptions of independence made in the model have not 
been violated.  

It is worth noting that the concept is recursive and can be 
applied in exactly the same fashion between any two tiers of 
a value chain. It is independent of industry, and can operate 

on adjustable rules and algebras which makes it compatible 
with a variety of contemporary standards. Compatibility has 
already been demonstrated with the ISO2626 automotive 
(Azevedo et al., 2014) and the ARP4754-A aerospace 
standards (Sorokos et al,, 2015). 

4. RELEVANT WORK 

There is very little work reported in linking MBSA to 
metaheuristics. In (Konak et al., 2007) systems are 
represented as Reliability Block Diagrams (RBDs) which 
were then optimised using meta-heuristics. HiP-HOPS 
supersedes this work by enabling optimization of models 
which may have networked architecture, i.e. they are not 

necessarily in parallel/series configurations as RBDs, and 
overcome the traditional assumption made in RBDs that a 
component or system either works or fails in a single failure 
mode.  

HiP-HOPS has been the first approach to direct optimisation 
of dependability on an architectural model. Other tools for 

architecture optimisation, with the possibility of adding 
arbitrary quality properties as objectives, include 
ArcheOpteryx (Aleti et al., 2009) and PerOpteryx (Koziolek, 
2011). The scope of these tools includes architecture 
optimisation but does not include the requirements allocation 
problem. These tools require a reliability evaluation model 

like a fault tree, RBD or Markov Chain for evaluating 
reliability. HIP-HOPS re-synthesises this model during the 
evolution of the system architecture by operating directly on 
an architectural model augmented with failure data.  

HiP-HOPS has been the first effort towards automatic 
allocation of dependability requirements (Papadopoulos et 

al., 2010) and remains the only application of metaheuristics 
in this area. Mader et al. (2012) proposed an approach for 
ASIL allocation  where a linear programming optimization 
problem is formulated to discover a solution that minimizes 
the sum of ASILs as-signed across the system architecture. 
Zhang et al. (2010) proposed a workflow for embedded 

system development, which includes fault trees, FMEA, and 
ASIL allocation based on a qualitative risk graph method. 
Dhouibi et al. (2014) introduced a method for ASIL 
allocation which is based on interpreting the allocation 
problem as a system of linear equations. Bieber et al. (2011) 
presented a theory to formalize the ARP 4754a DAL 

allocation rules and the DALculator tool to support automatic 
DAL allocation. The starting point for these approaches are 
minimal cutsets of fault trees. HiP-HOPS starts from 
architectural models, offering the advantage of being able to 
assess dependencies in the model.  

 

5. CONCLUSIONS 

The technologies of model-based design, dependability 
analysis, and the application of heuristics in the design of 

dependable systems, including software intensive systems, 
have advanced in recent years. However, we have not yet 
seen the emergence of a design paradigm that employs these 
techniques synergistically and systematically from the early 
stages of design to enable cost-effective dependability-driven 
optimal refinement of new designs.  

I have outlined four challenges that remain unaddressed and 
sketched a model-centric paradigm for the design of 
dependable systems that brings these technologies together to 
realise their potential benefits which include: controlling 
dependability from the early stages via optimal allocation of 
requirements; effective top-down distribution and then 

bottom-up composition of dependable designs in 
collaborative environments distributed across complex value 
chains; automation in the assessment of design proposals and 
prediction of dependability; decision support on optimisation 
of architectures for components selection, fault tolerance and 
maintenance scheduling; effective reuse of repositories of 

models and analyses both during design refinement and 
across projects. I have sketched this model-based design 
paradigm and outlined potential benefits. I have also shown 
that this is a feasible idea by discussing its embryonic 
incarnation within the HiP-HOPS method and tool. HiP-
HOPS is presently the only MBSA method that applies 

metaheuristics across the lifecycle from very early stages 
addressing both requirements and architecture. The 
transferability of this work in model-based design has been 
demonstrated in the context of architecture description 
languages such as EAST-ADL (Walker et al., 2013) and 
AADL (Mian et al.,. 2014).   

There are of course many challenges that remain to be 
addressed as this work develops further within the field of 
model-based design and MBSA. These include the 
representativeness and completeness of models, the relation 
of models to code, the modelling and analysis of commercial 
off-the-shelf or legacy systems, the efficacy of automatic 

model-transformations in the context of optimisation, the 
scalability of models and computationally expensive 
analyses, and obstacles in the practicability and uptake of this 
work. 
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