
IFAC-DCDS Plenary Paper, IFAC-PapersOnLine, Volume 48, Issue 7, 2015, Pages 1-8

A Synthesis of Logic and Biology in the Design of Dependable Systems

Yiannis Papadopoulos

University of Hull, Hull, HU6 7RX, UK
(+44 (0)1482 465981, e-mail: Y.I.Papadopoulos@hull.ac.uk).

Abstract: The technologies of model-based design and dependability analysis in the design of dependable
systems, including software intensive systems, have advanced in recent years. Much of this development

can be attributed to the application of advances in formal logic and its application to fault forecasting and
verification of systems. In parallel, work on bio-inspired technologies has shown potential for the
evolutionary design of engineering systems via automated exploration of potentially large design spaces.
We have not yet seen the emergence of a design paradigm that combines effectively and throughout the
design lifecycle these two techniques which are schematically founded on the two pillars of formal logic
and biology. Such a design paradigm would apply these techniques synergistically and systematically

from the early stages of design to enable optimal refinement of new designs which can be driven
effectively by dependability requirements. The paper sketches such a model-centric paradigm for the
design of dependable systems that brings these technologies together to realise their combined potential
benefits.

Keywords: dependability, safety integrity levels, genetic algorithms, MBSA, HiP-HOPS



1. INTRODUCTION

Dependability is an umbrella term that covers safety,
reliability, availability, maintenability and security.
Integrated and effective dependability assessment has
become increasingly important as modern safety-critical
systems become more heterogeneous and complex.

Dependability assessment should begin early in the
design so that potential problems can be identified and
rectified early to avoid expensive changes later in the
system lifecycle. Traditional dependability analysis
techniques like fault tree analysis (FTA) and Failure Modes
and Effects Analysis (FMEA) are well-established and

widely used during the design phase of safety-critical
systems. However, these techniques are manual processes
and often performed on informal system models which may
rapidly become out of date as the system design evolves. This
presents challenges in maintaining the consistency and
completeness of the assessment process.

Over the past 20 years, new developments in the field of
dependability engineering have led to a body of work on
model-based assessment and prediction of dependability
which has come to be known as Model-Based Safety
Assessment (MBSA). MBSA focuses on safety but extends
to other attributes of dependability including reliability,

availability as well as assessment of implications of security
on safety. Model-based techniques offer significant
advantages over traditional approaches as they utilise
software automation and integration with design models to
simplify the analysis of complex safety-critical systems.

The various MBSA techniques generally fall into two leading

paradigms. The first focuses on the automatic construction of
predictive system failure analyses, such as fault trees or

FMEAs, from local failure logic stored in the architectural
model of the system, or a parallel error model. This approach
is typically compositional, meaning that system-level failure
analyses can be generated from component-level failure logic
and the topology of the system. This compositionality lends
itself well to automation and reuse of component failure logic

across applications, and this is beneficial to dependability
analysis in ways similar to those introduced by reuse of
trusted software components in software engineering.
Techniques which are based upon this paradigm include the
Failure Propagation and Transformation Notation (Fenelon
and McDermid, 1993) and Calculus (Wallace, 2005),

Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) (Papadopoulos and McDermid, 1999),
Component Fault Trees (Kaiser et al., 2003) and State-Event
Fault Trees (Grunske et al., 2005).

The second prominent MBSA paradigm focuses on
automatically analysing potential failures in a system model,

typically represented as a state machine, using formal
verification techniques such as model-checking. This
generally works by injecting possible faults into an
executable formal specification of a system and studying the
effects of faults on the system behaviour. The results are then
used by model checking tools to verify whether system

dependability requirements are being satisfied or whether
violations of the requirements exist in normal or faulty
conditions. Techniques in this category include Altarica
(Arnold et al., 2000), FSAP-NuSMV (Bozzano and
Villafiorita, 2007), and SAML (Ortmeier et al., 2012).

Much of this recent work on dependability analysis has a

natural synergy with a wider trend towards model-based
design, particularly domain-specific languages. In many
industries, particularly transport and aerospace, designers are

increasingly adopting Architecture Description Languages
(ADLs) to capture architectural and behavioural information
about the system. Such ADLs may not only represent the

architecture of the system, but also its functional and non-
functional requirements; they may also provide facilities for
the refinement of the system throughout the design lifecycle,
showing how the requirements are being met at each stage.
One aspect of such ADLs is to represent safety requirements
and the failure logic of the system, and this has naturally led

to integration with MBSA techniques.

Some of this work has been transferred to the context of
model-based design. For instance, ADLs have incorporated
error modelling semantics that enable dependability analysis.
Recent work has demonstrated that dependability analysis of
EAST-ADL models (Chen et al., 2011) and SysML models

(Andrews et al., 2013) is possible via HiP-HOPS while
dependability analysis of AADL models is possible via
conversion to combinatorial (Joshi et al., 2007) and
temporal/ dynamic fault trees (Mahmud et al., 2012) (Merle
et al., 2014) or Generalised Stochastic Petri Nets (GSPN)
(Feiler and Rugina, 2007).

This work in very much ongoing and there are specific
challenges to be addressed within individual techniques and
the field as a whole.

In this paper, firstly, I discuss a set of challenges that in my
view cannot be addressed by MBSA in its current state.
These challenges mainly refer to design problems where

there are potentially many design options to be considered.
Secondly, I argue that a synthesis of these techniques with
modern metaheuristics for search and optimisation can
potentially address these challenges. Finally, I describe my
work towards this goal within the HiP-HOPS method and
tool, and show how this work can support cost optimal,

dependability-directed design refinement and optimisation of
system architectures.

The paper is structured as follows: in Section 2, I discuss
challenges; in Section 3, I present an extension of MBSA
with metaheuristics; in Section 4, I discuss related work and,
in Section 5, I conclude discussing how this work could

inform the evolution of MBSA.

2. CHALLENGES

MBSA techniques can answer important questions regarding
the quality of individual design proposals, and in that sense
they can enrich a model-driven development process.
However, MBSA is neither a panacea in its various forms nor

it is a static field of research. It is rather a set of techniques
which are evolving to address current and new challenges. I
identify four such challenges which MBSA techniques
cannot fully address.

2.1. Controlling dependability from the early stages

There is increasing agreement that to achieve high

dependability in complex systems, design processes should
move in a direction where dependability and other quality
attributes are controlled from the early stages rather than left
to emerge (or not) at the end. This is clearly a very desirable
goal that would greatly benefit several industries, and it is

enshrined in contemporary standards like the aerospace and
the automotive safety standards. These documents prescribe
processes in which dependability requirements, captured

early through system level hazard analysis and risk
assessment, are rationally allocated to progressively more
refined subsystem elements of the architecture in the form of
Development Assurance Levels, Safety Integrity Levels, or
other similar concepts.

A study of the problem (Parker et al., 2013) has shown that

the manual processes described in the standards become
complex when applied to large networked architectures
which deliver multiple functions; such systems lead to huge
numbers of potential allocation solutions and exploring these
manually is infeasible. Current standards do not advise on
how this type of allocation can be done effectively, for

example with the support of automated algorithms and tools.
This is an area where research opportunities arise to address
important questions: for instance, which architectural
proposals will fulfil dependability requirements better in the
context of design refinement, and, given a proposed
architecture, how can integrity requirements be optimally

allocated to its elements.

2.2 Controlled design refinement over a complex value chain

The controlled refinement of a design for new dependable
systems must be achieved in the context of a value chain

upon which the design and procurement of subsystems and
components is typically distributed. Indeed, in practice,
complex systems are developed in value chains using a
combination of existing and commissioned subsystems and
components that become parts of the overall architecture.
Distributing a design in such a way that properties are

verifiably maintained is a significant challenge that
encompasses two aspects: On the one hand, effective top-
down mechanisms are needed to ensure that the allocation
and transmission of requirements during refinement is done
in a way that satisfies overall requirements at the end. On the
other hand, bottom-up mechanisms are needed to provide

evidence that requirements have been met when the system is
finally put together in its final form.

2.3 Dealing with the inevitable design changes

There is always a degree of uncertainty in early design, which

often contributes to disruptive design changes. Some of the
uncertainty comes as existing requirements are modified and
new requirements are added, causing changes in the current
design and allocation of requirements. These changes need to
propagate in a top-down manner through the design
refinement as new and modified requirements for the

elements of the design. For example, a previously
undiscovered hazard may cause design changes aimed at
addressing the hazard and these may need to propagate
through subsystems to the low levels of design and to the low
level tiers of the value chain. Uncertainties in design may
also propagate bottom up, in cases where assumptions about

certain properties of elements cannot be satisfied. The
challenge here is in being able to respond effectively and
efficiently to the changes that need to follow. Not only does

the impact of these changes need to be localised, but any
design change and reallocation of requirements that follow
must be done efficiently so that the temporary imbalance

caused by the design iteration is addressed with minimum
disruption in the contractual relationships between
stakeholders in the tiers of the value chain.

2.4 Trading off dependability versus cost & other properties.

In complex distributed systems, rich functionalities and their
distribution across shared hardware and communication
channels allow a large number of configuration options at
design time and a large number of reconfigurations options at
runtime. This creates difficulties in design because, as
potential design spaces expand, their exploration for suitable

or optimal designs becomes increasingly more difficult.

When a number of different architectural configurations can
potentially deliver the functions of a system, designers are
faced with a difficult optimisation problem. Assuming that it
is technically and economically possible to fulfil all
dependability requirements, they must find an architecture

that entails minimal development and other lifecycle costs.
On the other hand, if fulfilling or optimising all dependability
and other requirements is infeasible, then they must find the
architecture or architectures that achieve the best possible
tradeoffs among quality attributes and cost. The problem is
compounded by the fact that attributes are often conflicting,

e.g. improving safety often means not only increasing costs
but also reducing availability.

It is widely accepted that the various formulations of the
above represent hard, multi-objective optimisation problems
that can only be approached systematically with the aid of
optimisation algorithms that can search in large potential

design spaces.

Whilst many design problems can only be tackled effectively
by the human intellect, clearly, as potential design spaces
expand, their exploration for suitable or optimal designs in
terms of quality and cost becomes increasingly difficult, and
some automation is needed. Modelling languages, emerging

ADLs and MBSA techniques, therefore, could benefit from
concepts and technological support that enable this type of
optimization.

3. SYNTHESIS OF MBSA WITH METAHEURISTICS

The above challenges go beyond the capabilities of current
MBSA techniques. I believe that one step towards addressing

them is by achieving a synthesis of MBSA and contemporary
metaheuristics, i.e. moving into an area where formal logic
can meet biology and nature-inspired techniques.

In recent years, with my colleagues I have been working in
this direction in the context of HiP-HOPS, an MBSA
technique known which I have pioneered since the late 90s

(Papadopoulos and McDermid, 1999). While HiP-HOPS has
started as a technique for model-based synthesis of fault trees
and FMEAs, it has progressively evolved into a more
sophisticated method in which heuristics are used to address
the design problems highlighted in section 2 - see for instance
(Papadopoulos and Grante, 2003 & 2006), (Zeng et al.,

2007), (Adachi et al., 2011), (Papadopoulos et al., 2011)
(Walker et al., 2013) and (Azevedo et al., 2014).

3.1 Scope of HiP-HOPS

HiP-HOPS aspires to support both sides of the V engineering
lifecycle with techniques that are model-based and
automated (Fig. 1).

Fig. 1. Scope of HiP-HOPS in the V-lifecycle

At the early stages, HiP-HOPS supports a dependability
driven mode of design in which system requirements
captured early are allocated to sub-systems and components
of the architecture as this is refined. In a typical design the
possibilities for allocation are numerous, so the process is

partly automated via use of metaheuristics. The goal is to find
an optimal allocation of system requirements to elements of
the architecture within the space of all possible such
allocations. Optimality here is mainly defined in terms of
minimising the projected costs that would be associated with
the different levels of integrity demanded from components
to meet system requirements (Azevedo et al., 2014).

As the architecture of the system is being refined and detailed
models of the system are being produced with specific
components selected and developed, detailed qualitative and
quantitative dependability analysis can be done to produce
evidence that system requirements have been met. The
process is automated via algorithms for synthesis and

analysis of fault trees and FMEAs (Papadopoulos et al., 1999
& 2011).

Moving to the right of the V-lifecycle, and assuming that
dependability analysis shows that requirements cannot be met
by the current system architecture, it is possible to initiate a
process of architecture and maintenance optimisation in

which the goal is to arrive at an improved architecture which
meets dependability and other requirements with minimal
additional costs. The process is once more driven by meta-
heuristics and can be used to address problems such as the
optimal selection of components and subsystems between
available alternatives, decisions on the location and level of

replication of components (Adachi et al., 2011) and decisions
on maintenance scheduling (Nggada, et al., 2013)

I will now outline the three steps in this process starting from
modelling and dependability analysis in HiP-HOPS. This

capability is central to the method and provides the
fundamentals that underpin the more advanced
metaheuristic-driven processes of design refinement and

optimisation.

3.2 Modelling and Dependability Analysis

All analysis and optimisation processes in HiP-HOPS are
performed on a architectural system model which identifies

material energy and data transactions among components
(Fig. 2).

Fig. 2. Modelling and Dependability Analysis in HiP-HOPS.

The model can be hierarchical if necessary to manage
complexity. In the case of a hierarchical model, subsystems
enclose architectures of more basic subsystems and

components. The first step in the analysis of such models is
the annotation of each component in the model with its local
error logic. HiP-HOPS defines a language for the description
of this error logic. In the basic version of this language, the
error logic of a component can be specified as a list of
internal failure modes of the component and a list of errors or

deviations as they can be observed at component outputs.
Each component failure mode is optionally accompanied by
quantitative data, for example a failure and a repair rate.
Output errors carry Boolean expressions which describe their
causes as a logical combination of component faults and
similar errors observed at component inputs.

Input and output errors referenced in the error logic are
described qualitatively and typically represent conditions
such as the omission or commission of parameters or
qualitative deviations from correct value (i.e. hi-low) and
expected timing behaviour (i.e. early-late). Collectively, a set
of failure expressions that logically explain all possible errors

at all output ports of a component provides a model of the
error logic of the component under examination. This model
can be stored in a library. For simple components, e.g.
sensors and actuators, such models could be re-used across
different applications to simplify the manual part of the
analysis and the overall application of the proposed

technique.

We should note that experimental versions of the tool use an
extended language where it is also possible to use temporal
operators to describe sequencing of faults (Walker et al.,
2007) and wildcards to describe more abstract patterns of
relationships between output and input deviations, for

instance to allow statements such as "there will be an
omission of all outputs in response to any input error"
(Wolforth et al., 2010).

Once the model has been augmented with error logic, then
computerised algorithms are used to automatically determine
how errors propagate through connections in the model and
cause functional failures at system outputs. Those failures are
the ones that analysts are typically interested to identify and
analyse. For example, in a car, such functional failures would

include the loss or incorrect steering and braking.

Via the automated analysis algorithms of HiP-HOPS, it is
possible to move from a local component view of failure to a
global system view of failure. This global view is captured in
a set of fault trees which show how the component failure
modes representing the leaf nodes of the trees and their local

effects logically combine and propagate though the system to
cause functional failures that represent the top events of the
fault trees. Note that these trees are interconnected and share
branches and leaf nodes which represent dependencies in
model, e.g. the failure of a common power supply or a global
condition that may affect more than one system functions.

HiP-HOPS can perform qualitative cut-set analysis of fault
trees. Quantitative analysis is also feasible when probabilistic
parameters have been provided at component level, and is
used to predict the reliability and availability of the system.

In the final stage of the analysis, the complex body of logic
encoded in the set of interconnected fault trees is simplified

by an automated algorithm which translates it into a simple
table of direct relationships between component and system
failures. In a similar way to a classical FMEA, this table
determines for each component in the system and for each
failure mode of that component, the effect of the failure mode
on the system. The table shows whether, and how, each

failure mode causes one or more system failures (i.e. top
events of fault trees) by itself or in conjunction with other
events.

Note that in a classical manual FMEA only the effects of
single failures are typically assessed. Thus, one advantage of
generating an FMEA from fault trees is that fault trees record

the effects of combinations of component failures and this
useful information can also be transferred into the FMEA.
The FMEA shows all functional effects that a particular
component failure mode causes. The latter is particularly
useful as a failure mode that contributes to multiple system
failures is potentially more significant than those that only

cause a single top event. Precisely because it records the
effects of combinations of component failures, this type of
FMEA can, in practice, help analysts not only to locate
problems in the design, but also to determine the level of
fault tolerance in the system, i.e. to determine whether the
system can tolerate any single or any combination of two,

three or more component failures.

It is clear that both quantitative and qualitative analyses in
HiP-HOPS can play a dual role: either to help verify
requirements or stimulate useful design iterations by
highlighting weak areas of the design.

3.3 Architecture and Maintenance Optimisation

Let us assume now that a team of analysts is designing a
system and that an MBSA tool suggests that the system does
not meet all dependability requirements. How should the
analysts proceed? Should they start a radical redesign or

explore simpler options first? And is manual redesign the
only option or can there be some automation in design
improvements. There is typically a range of options that
designers will try whilst improving a design, and these
include: a) replacing a component with a more reliable and
expensive component b) replacing part of the architecture

with a more dependable alternative c) replicating
components in fault tolerant schemes so that failures are
tolerated, and d) increasing the frequency of maintenance, an
action that prolongs the useful life of components and thereby
increases the reliability of the system.

However a difficulty encountered here is that, in a typical

design, the options for substitution, replication and
maintenance scheduling are too many. For instance, in a
system of n components, if there are two suppliers for each
component then there are 2

n
 potential different configurations

of components. For n=100, there are 1.26e
30

 configurations,
each representing a different system configuration with its

own dependability and cost performance. It is clear that in
such situations analysts are confronted with a range of multi-
objective optimisation problems, where the objectives are
many and include dependability, cost, weight and other
properties.

To provide a solution to this range of problems we have

developed an extension of HiP-HOPS that employs genetic
algorithms to enable multi-objective optimisation of
architectures with respect to dependability and other
attributes (Papadopoulos and Grante, 2006) (Papadopoulos et
al., 2011). The concept is illustrated in Fig. 3.

 Fig. 3. Architecture optimisation in HiP-HOPS.

As with dependability analysis in HiP-HOPS, the process
starts from a model of the system. However, this time the
model is not fixed - it has variability. Components can have

multiple alternative implementations. For example, a sensor
can have two options from two different suppliers, with each
option having its own cost, weight and failure characteristics.
Subsystems can also carry alternatives, e.g. a subsystem can
have two different implementations that provide the functions
using different sets of components and architecture. There

can be options for replication of components with known
patterns of fault tolerance, e.g. a primary-standby
configuration, or multiple parallel channels with majority

voting. Finally, there can be options for the scheduling of
component maintenance.

Once the system model has included these possibilities, the
model with its variants, failure data and cost data is given to
HiP-HOPS which applies an evolutionary optimisation
process. In the context of this process HiP-HOPS creates a

population of candidate designs by resolving the variability
of the model, i.e. fixing variation points selecting particular
design options. Each candidate design is then evaluated with
respect to the objectives of the optimisation. The process is
aided by the automated algorithms of HiP-HOPS. The
reliability or availability of a candidate design are calculated

from fault trees. A quantitative measure of safety is
established from the FMEA, for instance from the number of
single points of failures that contribute to severe system
failures. HiP-HOPS includes simple summative cost and
weight functions. However, external plugins can also be
designed to enable more precise evaluation of cost, weight or

other objective functions. Experiments with timing and
schedulability have been reported in (Walker et al., 2013).

Once candidate designs have been evaluated, they are ranked
according to performance, and a Pareto frontier is formed
showing the best designs in the current population. Roulette
selection that favours better performing designs is used to

select candidates that form the parents of the next generation.
Through application of classic genetic operators such as
mutation and crossover, a new population is then formed and
the process of evaluation and ranking is iterated. The result of
this process over a number of successive generations is a
gradual improvement of the performance of the population

that is evident in the progressive improvement of the Pareto
frontier. The process is terminated on meeting certain
constraints or after a specified number of generations. The
result is a set of models that give optimal or near optimal
tradeoffs among the objectives of the optimisation.

Via this process, designers can take informed decisions about

the selection of components, subsystems, the location and
type of replication, and about maintenance scheduling
making sure that dependability requirements can be met
whilst minimising costs.

3.4 Dependability-driven Design Refinement with HiP-HOPS

The processes described so far are bottom up, i.e. they rely on
the existence of detailed system models that can be subjected
to analysis or optimisation. At this point, I would like to pose
a set of more fundamental questions about design.

a) Why should designers need to produce detailed designs

before they can assess whether dependability
requirements have been met, e.g. via MBSA analysis?

b) Why should they risk failing to meet requirements and
then need to redesign?

c) Why not imagine a top-down dependability-driven
design process in which dependability requirements can

be optimally allocated to sub-systems and components
during refinement of the architecture?

The aspirations implied in the above questions concur with

those expressed in modern standards. Indeed many standards
express the desire for a top-down design process driven by
requirements. However, the guidance provided by these
standards is based on manual processes of requirements
allocation. I believe that an automated approach can better
support the application of these standards and yield important

improvements in the ongoing pursuit of improved design
processes for dependable systems.

Standards, such as IEC 61508, ISO 26262, and ARP4754-A,
introduce a system of classification for different levels of
safety-integrity. IEC 61508 popularised the Safety Integrity
Level (SIL), while ISO 26262 and ARP4754-A introduced

domain-specific versions of this concept — the Automotive
Safety Integrity Level (ASIL) for the automotive domain and
the Development Assurance Level (DAL) for the aerospace
domain. Integrity levels serve as a qualitative indication of
the required level of safety or integrity of a function or
component, and generally they are broken down into 5 levels,

ranging from strict requirements (e.g. SIL4, ASIL D, DAL A)
to no special requirements (e.g. SIL0, QM, DAL E). In some
cases, quantitative targets are also associated with different
levels, e.g. maximum failure rates for random hardware
faults.

These integrity levels are employed as part of a top-down

requirements process as well as the bottom-up verification of
those requirements. For example, ISO 26262 describes a
detailed safety process to be applied to automotive systems;
the first step is a hazard analysis which identifies the various
malfunctions that may take place and what hazards may arise
as a result. The severity, likelihood, and controllability of

these hazards are then considered, and on the basis of this
risk analysis, safety requirements — with associated ASILs
— are applied to the various top-level functions of the
system. The higher the risk of the hazard, the higher the ASIL
that gets applied.

During subsequent development of the system, traceability to

these original ASILs must be maintained at all times. As the
system design is refined into more detailed architectures,
those original ASILs are allocated and decomposed to the
subsystems and terminal components of the design. Then,
during the verification and validation, analyses (e.g. fault
trees) must be produced to ensure that the refined system

meets original requirements.

However, the process of allocating and decomposing ASILs
across the architecture is far from straightforward. The
integrity levels of elements should be derived in such a way
that the integrity level of their parent system is maintained,
and thus in general the sub-components inherit the integrity

level of their parent. To avoid every element of the entire
system having to meet the highest level of integrity, fault
tolerant architectures (e.g. parallelism, redundancy,
monitoring etc.) can be employed to spread the burden of
meeting the SIL across a number of components. While in
some cases there is guidance on how this is to be done,

achieving it in practice is often significantly more difficult.

For example, ISO 26262 provides an "ASIL algebra", which
indicates how a strict integrity level like ASIL D can be met
by two independent subsystems which each individually

meet ASILs (B, B) or (C, A) or (A, C) or (D, QM) or (QM,
D). In practical design these options multiply and the
question arises which design option is cost-effective. In
general, an element of the system architecture should be
allocated a SIL that corresponds to the SIL of the most severe
failure it causes at system level. In simple systems, it may be

easy to establish this fact. However, the correct, cost-optimal
allocation of SILs in complex, networked architectures
delivering multiple functions is far from trivial. Problems
may include ensuring that independence constraints are met,
whilst working through the many possible allocations, and
ensuring that the decomposed low-level requirements still

add up to the original high-level requirements. The above add
to the time, expense, and complexity of following safety
standards like ISO 26262 and ARP4754-A when dealing with
the types of detailed electronic architectures that are common
in modern safety-critical systems, often to the extent that
performing the process manually is practically impossible.

In HiP-HOPS the above process has been largely automated
by using the framework presented in section 3.2. HiP-HOPS
can establish the potential contribution of assumed
component faults and combinations of such faults to system
level failures. From this information, it is then possible to
automatically do a rational allocation and decomposition of

requirements. HiP-HOPS is aware of which components are
dependent by means of the propagation model and the fault
tree analysis, and it can automatically apply the type of SIL
'algebra' described by e.g. ISO 26262 and ARP4754-A. The
result is an allocation of SILs to individual components,
component ports, or even component failure modes, in such a

way that the overall high-level requirements are still fulfilled.

Work in this area has shown that the number of different
potential allocation schemes that can meet a complex set of
system requirements often produces a vast search space, and
exploring this exhaustively with deterministic algorithms for
a cost-optimal allocation can been problematic (Parker et al.,

2013). Therefore, recent work in HiP-HOPS has focused on
the use of metaheuristics in order to efficiently explore this
large space. This allows the generation of optimal or near
optimal allocations of SILs that meet the system requirements
with minimal costs for procurement, development and
verification of components. Work in this area has included

the use of genetic algorithms (Parker et al., 2013) and Tabu
search (Azevedo et al., 2014), while more recently we are
investigating particle swarm-based approaches. All this effort
has produced promising results that are far more efficient and
scalable than deterministic solutions, and a prototype
implementation has been incorporated into the HiP-HOPS.

HiP-HOPS now calculates optimal or near optimal
allocations of dependability requirements to subsystems and
components of a system, taking into account their
dependencies and assumptions about their intended behaviour
in conditions of failure. Stakeholders in a value chain are able
to apply this capability iteratively in order to specify

contracts that define increasingly refined dependability
requirements to suppliers in lower tiers of a value chain. The

process guarantees that a system will meet its dependability
at the end of the design refinement process if the contracts
have been met and basic components of the architecture meet

their assigned requirements; assuming of course that any
assumptions of independence made in the model have not
been violated.

It is worth noting that the concept is recursive and can be
applied in exactly the same fashion between any two tiers of
a value chain. It is independent of industry, and can operate

on adjustable rules and algebras which makes it compatible
with a variety of contemporary standards. Compatibility has
already been demonstrated with the ISO2626 automotive
(Azevedo et al., 2014) and the ARP4754-A aerospace
standards (Sorokos et al,, 2015).

4. RELEVANT WORK

There is very little work reported in linking MBSA to
metaheuristics. In (Konak et al., 2007) systems are
represented as Reliability Block Diagrams (RBDs) which
were then optimised using meta-heuristics. HiP-HOPS
supersedes this work by enabling optimization of models
which may have networked architecture, i.e. they are not

necessarily in parallel/series configurations as RBDs, and
overcome the traditional assumption made in RBDs that a
component or system either works or fails in a single failure
mode.

HiP-HOPS has been the first approach to direct optimisation
of dependability on an architectural model. Other tools for

architecture optimisation, with the possibility of adding
arbitrary quality properties as objectives, include
ArcheOpteryx (Aleti et al., 2009) and PerOpteryx (Koziolek,
2011). The scope of these tools includes architecture
optimisation but does not include the requirements allocation
problem. These tools require a reliability evaluation model

like a fault tree, RBD or Markov Chain for evaluating
reliability. HIP-HOPS re-synthesises this model during the
evolution of the system architecture by operating directly on
an architectural model augmented with failure data.

HiP-HOPS has been the first effort towards automatic
allocation of dependability requirements (Papadopoulos et

al., 2010) and remains the only application of metaheuristics
in this area. Mader et al. (2012) proposed an approach for
ASIL allocation where a linear programming optimization
problem is formulated to discover a solution that minimizes
the sum of ASILs as-signed across the system architecture.
Zhang et al. (2010) proposed a workflow for embedded

system development, which includes fault trees, FMEA, and
ASIL allocation based on a qualitative risk graph method.
Dhouibi et al. (2014) introduced a method for ASIL
allocation which is based on interpreting the allocation
problem as a system of linear equations. Bieber et al. (2011)
presented a theory to formalize the ARP 4754a DAL

allocation rules and the DALculator tool to support automatic
DAL allocation. The starting point for these approaches are
minimal cutsets of fault trees. HiP-HOPS starts from
architectural models, offering the advantage of being able to
assess dependencies in the model.

5. CONCLUSIONS

The technologies of model-based design, dependability
analysis, and the application of heuristics in the design of

dependable systems, including software intensive systems,
have advanced in recent years. However, we have not yet
seen the emergence of a design paradigm that employs these
techniques synergistically and systematically from the early
stages of design to enable cost-effective dependability-driven
optimal refinement of new designs.

I have outlined four challenges that remain unaddressed and
sketched a model-centric paradigm for the design of
dependable systems that brings these technologies together to
realise their potential benefits which include: controlling
dependability from the early stages via optimal allocation of
requirements; effective top-down distribution and then

bottom-up composition of dependable designs in
collaborative environments distributed across complex value
chains; automation in the assessment of design proposals and
prediction of dependability; decision support on optimisation
of architectures for components selection, fault tolerance and
maintenance scheduling; effective reuse of repositories of

models and analyses both during design refinement and
across projects. I have sketched this model-based design
paradigm and outlined potential benefits. I have also shown
that this is a feasible idea by discussing its embryonic
incarnation within the HiP-HOPS method and tool. HiP-
HOPS is presently the only MBSA method that applies

metaheuristics across the lifecycle from very early stages
addressing both requirements and architecture. The
transferability of this work in model-based design has been
demonstrated in the context of architecture description
languages such as EAST-ADL (Walker et al., 2013) and
AADL (Mian et al.,. 2014).

There are of course many challenges that remain to be
addressed as this work develops further within the field of
model-based design and MBSA. These include the
representativeness and completeness of models, the relation
of models to code, the modelling and analysis of commercial
off-the-shelf or legacy systems, the efficacy of automatic

model-transformations in the context of optimisation, the
scalability of models and computationally expensive
analyses, and obstacles in the practicability and uptake of this
work.

REFERENCES

Adachi M., Papadopoulos Y., Sharvia S., Parker D., Tohdo T.

2011. An approach to optimization of fault tolerant
architectures using HiP-HOPS, Software Practice and
Experience, 41:1303-1327, Wiley.

Aleti A., Bjoernander S., Grunske L., Meedeniya I. 2009.
ArcheOpterix: An extendable tool for architecture
optimization of AADL models, ICSE 2009: 61-71.

Andrews Z., Fitzgerald J. S., Payne R., Romanovsky A.
2013. Fault modelling for systems of systems, 11th Int'l
Symposium on Autonomous Decentralized Systems,
ISADS 2013:1-8, IEEE.

Arnold A., Griffault A., Point G. and Rauzy A. 2000. The
AltaRica formalism for describing concurrent systems.

Fundamentae Informatica, 40 (2-3):109-124, IOS Press.

Azevedo L., Parker D., Walker M., Papadopoulos Y., Araujo
R. 2014. Assisted Assignment of Automotive Safety
Requirements. IEEE Software 31(1):62-68, 2014, 1EEE.

Bieber P., Delmas R., Seguin C. 2011. DALculus: Theory
and Tool for Development Assurance Level Allocation,
Lecture Notes in Computer Science 6894:43-56,
Springer.

Bozzano M. and Villafiorita A. 2007. The FSAP/NuSMV-
SA Safety Analysis Platform. Journal of Software Tools

for Technology Transfer, 9(1):5-24, Springer.
Chen D., Johansson R., Lönn H., Blom H., Walker M.,

Papadopoulos Y., Torchiaro S., Tagliabo F., Sandberg A.
2011. Integrated Fault Modelling for Safety-Critical
Automotive Embedded Systems, IE&I elektrotechnik
und informationstechnik, 128(6): 196-202, Springer.

Dhouibi M.S., Perquis J. M., Saintis L., Barreau M. 2014.
Automatic Decomposition and Allocation of Safety
Integrity Level Using System of Linear Equations. 4th
Int'l Conf. on Performance, Safety and Robustness in
Complex Systems and Applications, PESARO:1-5.

Feiler P. H. and Rugina A.E. 2007. Dependability Modelling

with the Architecture Analysis and Design Language
(AADL), Technical report, CMU/SEI-2007-TN-04.

Fenelon, P., & McDermid, J. 1993. An integrated toolset for
software safety analysis. The Journal of Systems and
Software 21(3):279-290, Elsevier.

Grunske L., Kaiser B. and Papadopoulos Y. (2005) Model-

driven Safety Evaluation with State-Event-Based
Component Failure Annotations, CBSE'05, Lecture
Notes in Computer Science 3489:33-48, Springer.

Joshi A., Vestal S., Binns P. 2007. Automatic Generation of
Static Fault Trees from AADL Models, DSN’07
Workshop on Architecting Dependable Systems.

Kaiser, B., Liggesmeyer, P., & Mäckel, O. 2003. A new
component concept for fault trees, 8th Australian
Workshop on Safety Critical Systems, 33:37-46.

Konak, A., Coit, D.W., Smith, A.E. 2007. Multi-objective
optimization using genetic algorithms, Reliability
Engineering & System Safety, 91(9):992-1007.

Koziolek A., Koziolek H., Reussner R. 2011. PerOpteryx:
automated application of tactics in multi-objective
software architecture optimization, ACM SIGSOFT
symposium on Quality of Software Architectures,
ISARCS:33-42, ACM.

Mader R., Armengaud E., Leitner A., Steger C. 2012.

Automatic and optimal allocation of safety integrity
levels, Reliability and Maintainability Symposium,
RAMS: 1-6, IEEE.

Mahmud N., Walker M., Papadopoulos Y. 2012,
Compositional synthesis of Temporal Fault Trees from
State Machines, ACM SiGMETRICS Performance

Evaluation Review, 39 (4):79-88.
Merle G., Roussel J.-M., Lesage J.-J. 2014. Quantitative

Analysis of Dynamic Fault Trees based on the Structure
Function, Quality and Reliability Engineering Int'l, 30(1)
143–156.

Mian Z., Bottaci L., Papadopoulos Y., Sharvia S., Mahmud

N. 2014. Model Transformation for Multi-objective
Architecture Optimisation of Dependable Systems,

Advances in Intelligent Systems and Computing 307:91-
110, Springer.

Nggada, S. H., Papadopoulos, Y., Parker, D. J. 2013.

Combined Optimisation of System Architecture and
Maintenance. IFAC DCDS'13: 4:1 (25-30).

Ortmeier F., Güdemann M., Lipaczewski M.. 2012. Unifying
Probabilistic and Traditional Formal Model Based
Analysis. 8th Dagstuhl-Workshop on MBEES:123-132.

Papadopoulos Y., McDermid J. A., 1999. Hierarchically

Performed Hazard Origin and Propagation Studies,
Lecture Notes in Computer Science 1698:139-152.

Papadopoulos Y., Grante C. 2003. Techniques and tools for
automated safety analysis & decision support for
redundancy allocation in automotive systems, 27

th
 Int’l

Conf. on Computer Software and Applications,

COMPSAC’03: 105-110.
Papadopoulos Y., Walker M., Reiser M.-O., Weber M., Chen

D., Törngren, Servat D., Abele A., Stappert F., Lönn H.,
Berntsson L., Johansson R., Tagliabo F., Torchiaro S.,
Sandberg A. 2010. Automatic Allocation of Safety
Integrity Levels, CARS'10: 7-10, ACM.

Papadopoulos Y., Walker M., Parker D., Rüde E., Hamann
R., Uhlig A., Grätz U., Lien R. 2011. Engineering
Failure Analysis & Design Optimisation with HiP-
HOPS, Journal of Engineering Failure Analysis, 18 (2):
590-608, Elsevier Science.

Parker D., Walker M., Azevedo L., Papadopoulos Y., Araujo

R. 2013. Automatic Decomposition and Allocation of
Safety Integrity Levels using a Penalty-based Genetic
Algorithm., Lecture Notes in Computer Science
7906:449-459. Springer.

Sorokos I., Papadopoulos Y., Azevedo L., Parker D., Walker
M., Automating Allocation of Development Assurance

Levels: an extension to HiP-HOPS, IFAC Dependable
Control of Discrete Systems, Cancun, 2015.

Walker M., Bottaci L., Papadopoulos Y. 2007.
Compositional Temporal Safety Analysis, Lecture Notes
in Computer Science 4680:105-119, Springer.

Walker M., Reiser M-O., Tucci S., Papadopoulos Y., Lonn

H., Parker D., Chen D.-J. 2013. Automatic Optimisation
of System Architectures using EAST-ADL, Journal of
Systems & Software, 86(10): 2467–2487.

Wallace M. 2005. Modular architectural representation and
analysis of fault propagation and transformation,
Electronic Notes Theoretical Computer Science,

141(3):53–71.
Wolforth I., Walker M., Grunske L., Papadopoulos Y. 2010.

Generalisable Safety Annotations for Specification of
Failure Patterns, Software Practice and Experience,
40(5):453-483.

Zeng W., Papadopoulos Y., Parker D. (2007), Reliability

Optimization of Series-Parallel Systems Using
Asynchronous Heterogeneous Hierarchical Parallel
Genetic Algorithm, Mind and Computation, 1(4): 403-
412, China Academic Electronic Publishing House.

Zhang H., Li W., Qin J. 2010. Model-based Functional
Safety Analysis Method for Automotive Embedded

System Applications, Int'l Conf. on Intelligent Control
and Information Processing: 761-765.

