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Abstract

In the last three years, mathematical modelling and computational simulations

have been used to discuss and estimate key transmission parameters of the spreading

COVID-19 pandemics. There are several major factors that have played a crucial

role in controlling this disease. These factors include contact tracing, rapid testing,

and vaccination programs. In this study, we use a developed model to understand

the impact of vaccination strategy on the spatiotemporal pattern dynamics of the

COVID-19. We consider a system of diffusion equations of the spreading COVID-19

with vaccinated individuals. Accordingly, we apply the local sensitivity techniques

to identify the model critical parameters. Computational results show spatial distri-

bution of individuals for different initial states and parameters to show association

between vaccination and COVID-19. It can be noticed that the spatio-temporal

distribution of the recovered individuals appears to be reduced by the increased

vaccination rate, as evident in three different normalization results of local sensi-

tivity. Interestingly, the vaccination and contact tracing rate can effectively reduce

the reproduction number of the virus in the population rather than the other pa-

rameters. Numerical results provide a wide range of possible solutions to control

the spreading of this disease.
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1 Introduction

Spreading the COVID-19 disease has become a very difficult global problem, and several

international efforts have been proposed to control this disease. For July 19th, 2023, there

were 768,237,788 confirmed cases, 6,951,677 deaths, and a total of 13,474,348,801 doses

of vaccine have been administered around the world [1].

Therefore, there were many approaches to deal with this issue globally. Emergencies

and preventive measures were declared in infected areas of the world, and at the global

level, public health was seriously challenged. Consequently, it is very important to un-

derstand all critical parameters to control the spread of this disease through surveillance.

Thus, mathematical models and computational simulations are also being performed at

each level to inform the people and policy makers. There are some mathematical tech-

niques to calculate the basic reproduction number depending on the characteristics of the

disease and the population [2, 3]. Other measures proposed by governments throughout

the world to prevent the spread of COVID-19 include social isolation, international travel

restrictions, rapid-test, and even lockdown [4]. An effective way to control this disease

is through lockdown because it can reduce this spreading more quickly among all the

aforementioned control strategies [5] and decrease the mobility of the population [6].

Many ecological interactions and biological processes are modeled by a system of differ-

ential equations with constant rates. Such systems may not have exact analytic solutions,

therefore numerical methods and computational approaches can help in understanding

such problems more widely. Recently, some numerical approaches and computational

tools have been used to study some real world problems, for sample, a fractional-order

predator-prey system with consuming food resource was discussed for stability analysis

given in [7], a predator-prey system with consuming resources and disease in prey species

was studied for self-diffusion and cross-diffusion shown in [8], a fractional explicit-implicit

numerical method was used for solving time-dependent partial differential equations in

[9].

Recently, some models of COVID-19 have been proposed, which represent a good

step forward in understanding the dynamics of this disease [10, 11, 12, 13]. Accordingly,

we have developed some models of COVID-19, we have also identified some important

critical parameters with sensitivity analysis [14, 15, 16, 17, 18, 19]. More recently, we

improved the previous models and added the vaccination compartment. The vaccination

parameters have been considered. The impact of vaccination strategies in controlling this

disease has been discussed, the reader can see more details about the suggested model in

[20].

Although some mathematical approaches have been suggested so far to understand

this disease. Such models can be defined using the mass action law including reaction

rate constants. Then, using local sensitivity methods to evaluate each model state in

relation to model parameters, the results might be improved. Recently, we have applied
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three different techniques of local sensitivities on some suggested models of COVID-19,

they are provided us a wide range for identifying the critical parameters of the model.

In a complicated modeling case such as the new coronavirus, it is required to pay more

attention to the impact of vaccination strategy on the spatiotemporal pattern dynamics

more accurately and widely. The idea of the spatiotemporal pattern of diffusion-equation

was generally suggested for epidemic models in [21], reaction-diffusion epidemic model

[22], geographical analysis of vaccination efforts on COVID-19 [23]. Recently, this idea

was further discussed for epidemiological landscapes vaccination allocation model, this

model includes two main compartments: an age-structured deterministic compartmental

model and a graph-based spatial model, more details about this model explained in [24].

Furthermore, the idea of spatial vaccine distribution strategy suggested to control the

spreading of COVID-19 more effectively [25]. The study proposed a computational model

with different transmission rates, the model is basically based on Brownian agents and

allows deriving a (nonuniform) statistical mean-feld model. The suggested studies dis-

cussed the idea of the spatiotemporal pattern of diffusion-equation in different views, but

they have not studied the vaccination rate association with spatiotemporal distribution

of COVID-19, this rate provides a great role in understanding this pandemics and it gives

a wide range to minimize the total number of infected individuals.

In this work, we have further developed our previous models, we consider a system of

diffusion equations for spreading COVID-19 with vaccinated individuals, all model equa-

tions can be solved numerically using MATLAB for different initial states and model

transmission rates.

The main contribution of work is investigating the influence of COVID-19 vaccinations

parameters as an alternate technique for COVID-19 suppression. Another contribution

here is the identification of the critical model parameters using three techniques of local

sensitivities, which allows biologists to work with less knowledge of mathematical modeling

and also facilitate the improvement of the model for future developments. Furthermore,

using a system of diffusion equations seems to be an attractive approach that provides an

additional technique to properly and thoroughly comprehend the dynamics and transmis-

sion of the virus. This mathematical approach improves the ability to develop efficient

control and prevention strategies by facilitating a more detailed investigation of the many

connections and variables involved in the spread of COVID-19. As a consequence, using

a system of diffusion equations can open another path to understand such issues more

widely and accurately.

2 A Mathematical Model for COVID-19

Infectious diseases spread may be effectively understood by using mathematical models

with their transmission rates. The well defined model to describe the spreading such dis-

eases is ”Susceptible–Exposed–Infectious–Recovered” model. This is how the SEIR model
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is sometimes referred [26]. The main design of this model is related to the clinical pro-

gression, epidemiological individuals and intervention measures. Accordingly, the SEIR

model for infectious diseases can also be developed with the combination of intervention

subjects such as treatment, isolation (hospitalisation), vaccination, and quarantine. The

basic models of epidemic diseases normally include components (individuals) and their

transmissions among population components. In other words, for a given model network

of infectious disease, nodes are individuals, and the edges represents transmission rates.

In terms of a graphical network, this representation helps in understanding infectious

disease models. Currently, the developed modes have been proposed to show all model

compartments and transmission rates in spreading the COVID-19. Accordingly, the vac-

cination component is an effective variable, it plays an important role in controlling this

disease. There are some challenging approaches in using COVID-19 vaccine. Firstly, we

need to analyze the effects of a vaccination before it is actually put into practice. Using

mathematical modelling can help forecast how the vaccination will affect the population.

The model proposed here includes several key aspects: detected and undetected (unre-

ported) cases, contact tracing and rapid testing, quarantined individuals, and vaccination

strategy, we recently studied this model as a system of ordinary differential equations

with constant rates all model equations with their initial states and parameters given in

[20]. The suggested model network with all transmission rates are shown in Figure 1.

In addition, we focus on the system spatially and proceed to the dynamics of the

spatial system Eqs. (1-8) which is described as follows:

∂S

∂t
= DS

∂2S

∂x2
+ Λ− βS(A+ ξ1I + ξ2Q)− µS − u3S + ηV, (1)

∂V

∂t
= DV

∂2V

∂x2
+ u3S − ηV − ϕβV (A+ ξ1I + ξ2Q)− µV, (2)

∂Eu

∂t
= DEu

∂2Eu

∂x2
+ (1− u1)β(S + ϕV )(A+ ξ1I + ξ2Q)− αEu − µEu − u2Eu, (3)

∂Ed

∂t
= DEd

∂2Ed

∂x2
+ u1β(S + ϕV )(A+ ξ1I + ξ2Q)− αEd − µEd + u2Eu, (4)

∂A

∂t
= DA

∂2A

∂x2
+ qαEu − δA− u2A− (µ+ ζ)A, (5)

∂I

∂t
= DI

∂2I

∂x2
+ (1− q)αEu − δI − u2I − (µ+ ζ)I, (6)

∂Q

∂t
= DQ

∂2Q

∂x2
+ αEd + u2(A+ I)− δQ− (µ+ ζ)Q, (7)

∂R

∂t
= DR

∂2R

∂x2
+ δ(A+ I +Q)− µR. (8)

Here we divide the population into seven groups as follows: S = S(x, t) is the suscepti-

ble individuals, V = V (x, t) is the vaccinated individuals, Eu = Eu(x, t) and Ed = Ed(x, t)

are undetected and detected individuals, A = A(x, t) and I = I(x, t) are the asymptomatic
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Table 1: The model states and parameters with their biological definitions, the range of

model parameters was previously shown based on the real data given in [20]

Symbols Biological Definitions

S Susceptible individuals

V Vaccinated individuals

Eu Undetected exposed individuals

Ed Detected exposed individuals

A Asymptomatic infected individuals

I Symptomatic infected individuals

Q Quarantined individuals

R Recovered individuals

Λ Recruitment rate

µ Natural death rate

β Transmission rate

ξ1 Modification parameter to reduce infectiousness of I

ξ2 Modification parameter to reduce infectiousness of Q

α Transition to infected compartment due to incubation period

δ Recovery rate

q Proportion of exposed individuals Eu become asymptomatic A

ζ COVID-19 related mortality rate

u1 Contact trace intervention

u2 Rate of rapid testing

u3 Vaccination rate

η Duration of vaccine still valid

ϕ Vaccine effectiveness
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Figure 1: COVID-19 model transmission diagram.
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and symptomatic individuals and Q = Q(x, t) is quarantined and R = R(x, t) recovered

individuals, respectively at time t and position x.

3 An Algorithm of Model Solution

The model transmission equations for the spreading COVID-19 given in equations 1–8

can simplify and analyze their model dynamics using some steps. The following suggested

steps help us to understand the model solutions and identify the model critical parameters.

The suggested algorithm has the following steps:

1. Define the model transmission rates for the suggested model of COVID-19 as a sys-

tem of reaction-diffusion equations with initial populations given below

∂C

∂t
= DC

∂2C

∂x2
+ F (C,P ), C(0) = C0, (9)

where C ∈ Rn and it is the set of model compartments, P ∈ Rm and it is set of

model parameters, and a finite domain 0 < x < L where L is the domain length.

2. Use an appropriate random perturbation on the systems’ steady states given below:

C = C0 + ϵ ∗ rand, (10)

where ϵ is a random perturbation coefficient, and ”rand” is a one dimensional ar-

ray of random numbers uniformly distributed in the range of [0, 1]. The system

of reaction-diffusion equations are solved numerically for disease compartments in

1D, 2D and 3D for their initial states and suggested parameter values using finite

difference method for zero-flux boundary condition with different mesh steps ∆x

and ∆t.

3. Calculate the model local sensitivities using the following formula

SCi
Pj

=
∂Ci

∂Pj

, (11)

where SCi
Pj

is measured as a sensitivity coefficients of each Ci respect to each param-

eter Pj.

4. Identify a very sensitive set of model parameters called P ∗ ⊆ P from the computa-

tional simulations.

5. Excluding a set of parameters P ∗ from the model when they have a big effect on

model solutions.

6. Repeat Step 3.

All suggested steps here of model analysis algorithm can be presented as a Flowchart

given below:
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Define a system of reaction-

diffusion equations:
∂C
∂t

= DC
∂2C
∂x2 + F (C,P )

Use an appropriate perturbation:

C = C0 + ϵ ∗ rand

Solve equations numerically us-

ing finite difference method

Calculate local sensitivities:

SCi
Pj

=
∂Ci

∂Pj

Identify a very sensitive set of

model parameters, P ∗ ⊆ P

Excluding

parameters P ∗

with high effect

on results

Show all model

sensitivity results

No

Yes

The Flowchart shows all suggested steps of model analysis based on the nu-

merical approaches and local sensitivities.

4 Computational Simulations

Eqs. (1-8) are focused numerically in a finite domain 0 < x < L where L is the domain

length by finite difference method with zero-flux boundary condition and the mesh steps
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are chosen as ∆x = 0.5 and ∆t = 0.01. Note that, further decrease on mesh steps are

checked to prevent any significant artifacts numerically. The system’s initial value is a

random perturbation of the coexistence state [21]. Note that, to generate appropriate

random perturbation on the systems’ steady state, ϵ is used as random perturbation

coefficient, ϵ = 0.02. For example, the initial condition for susceptible individuals is given

by S = S0 + ϵ ∗ rand. The initial starting points for perturbation are as S0 = 1046727,

V0 = 400, Eu0 = 210, Ed0 = 0, A0 = 10, I0 = 40, Q0 = 20, R0 = 90.

We previously discussed the range of parameters based on the real data shown in [20].

Since accurate evaluations of the relative infectivity levels of those with symptomatic and

asymptomatic populations are unclear,DS andDV are considered to be equal [27, 28]. The

rest of the diffusion coefficients are consistent with the study on diffusion-reaction system

application on COVID-19 [29], i.e., DS = DV = 4, 35.10−2, DEu = DEd = 1, 98.10−2,

DA = DR = 0, 75.10−2, DI = 1.10−4 and assuming that quarantined individuals are

immobile, i.e., DQ = 0 [29].

Given that the primary motivation of this work is to demonstrate the influence of

COVID-19 vaccination parameters suppression with the addition of local sensitivity anal-

ysis, we now proceed to numerical simulations for different values of vaccination rate, i.e.,

u3. Figure 2-5 show the spatial distributions obtained at t = 300 and u3 = 0.01. Figure 2

shows spatial distribution of individuals given in Equations 1–8 in 1D for different initial

states and parameters. In addition, Figures 3 and 4 show spatial distribution in 3D for

some given parameters and initial states, however the axes are different. Accordingly,

Figures 4 and 5 are identical, they are presented in 3D and 2D, respectively. The evo-

lution process in time is patchy and the density of infected individuals fluctuates across

different locations.

Interestingly, Figure 6 shows spatial distribution of the recovered individuals under

the effect of increasing vaccination rates i.e., u3 = 0, u3 = 0.02, u3 = 0.4 and u3 = 0.6

from top to bottom for given time t = 300 in both 2D and 3D, different vaccination rates

are computed to simulate the dynamics of the recovered individuals. From the numerical

results, it is clearly observed that the increase in vaccination rate, i.e. u3, the group of

patches shrinks and no regular pattern formation observed.
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Figure 2: Spatial distribution of individuals in 1D for t = 300 for u3 = 0.01 for given

perturbed initial values.
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Figure 3: Corresponding spatio-temporal distribution of individuals in 3D for t = 300 for

u3 = 0.01 for given perturbed initial values.
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Figure 4: Spatial distribution of individuals in 3D for t = 300 for u3 = 0.01 for given

perturbed initial values.
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Figure 5: Corresponding spatial distribution of individuals in 2D for t = 300 for u3 = 0.01

for given perturbed initial values.
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Figure 6: Spatial distribution of recovered individuals under the effect of increasing vac-

cination rate in 3D with its corresponding distribution in 2D for t = 300 for u3 = 0,

u3 = 0.02 u3 = 0.4 and u3 = 0.6, respectively from top to bottom, for given perturbed

initial values. 14



5 Model Sensitivity Analysis

The idea of sensitivity can be used on infectious disease models to determine which vari-

able or parameter is sensitive to a specific condition. Suppose that an infectious disease

model has n compartments Ci for i = 1, 2, ..., n and m parameters Pj for j = 1, 2, ...,m.

The model balanced equations are assumed to be represented as a system of differential

equations, the derivations of local sensitivities with more details are presented in [14, 16]:

dCi

dt
= Fi(C,P ), (12)

where C ∈ Rn and P ∈ Rm. The model sensitivities can be determined using three

different techniques: non–normalizations, half–normalizations, and full–normalizations.

The sensitivity to non–normalization are provided by

SCi
Pj

=
∂Ci

∂Pj

, (13)

where SCi
Pj

is measured as a sensitivity coefficients of each Ci respect to each parameter

Pj. The sensitivity to half–normalization are provided by

SCi
Pj

=
( 1

Ci

)(∂Ci

∂Pj

)
. (14)

Furthermore, the sensitivity to full–normalization are defined by

SCi
Pj

=
(Pj

Ci

)(∂Ci

∂Pj

)
. (15)

Another key element that can be considered for the COVID–19 disease is called the model

sensitive analysis. We recently applied this approach to some suggested models of this

virus in [14, 15, 16, 17, 18]. The method can be used to calculate the local sensitivities

for non–normalizations, half normalizations, and full normalizations in computational

simulations. For the COVID–19 described model provided here, it is crucial to work more

broadly and precisely in order to find the critical model parameters based on sensitivity

analysis. In the computational simulations, we have used the model initial populations

and parameters presented in [20]: S(0) = 1046727, V (0) = 400, Eu(0) = 210, Ed(0) =

0, A(0) = 10, I(0) = 40, Q(0) = 20, R(0) = 90 and the model parameters Λ = 607.7,

µ = 4.214 × 10−5, β = 4.743 × 10−8, ξ1 = 0.9, ξ2 = 0.3, α = 0.196, δ = 0.1, q = 0.6,

ζ = 0.06, u1 = 0.5,u2 = 0.083,u3 = 0.05, η = 0.1, ϕ = 0.8. In our computer simulations,

we used such estimated values and initial variables. The results provided in this work

represent a crucial step forward in understanding the model dynamics to a greater extent.

This helps us in identifying critical model parameters as well as how each model individual

is influenced by the other model individuals.

The model sensitivities are calculated using three distinct techniques: non–normalizations,

half–normalizations and full–normalizations; see Figures 7–9. Interestingly, the results
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provide us with a deeper understanding of the model and help us identify the critical

model parameters. For instance, it appears that the set {β, µ, u3, η} is the most critical

model parameters for the the suggested model whereas the set {Λ, ξ1, ξ2, ϕ, u1} is the less

critical model parameters according to non–normalization technique; see Figure 7. Figure

8 indicates that parameters Λ, ξ1, ξ2, ϕ, u1 are mainly the less critical model parameters

whereas the other model parameters are often model sensitive. According to Figure 9,

the set of parameters {Λ, µ, ξ2, ϕ} is the less sensitive model parameters, but the rest

of the model parameters become sensitive for the model variables. Identifying the crit-

ical model parameters based on local sensitivities using computational simulations can

thus effectively work to further study the model practically and theoretically, and provide

some suggestions for future improvements to the disease and its vaccination programs,

interventions, and virus control.
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(a)

(b)

Figure 7: Local sensitivity analysis with Non-normalizations in computational sim-

ulations for the suggested COVID–19 model using MATLAB, (a) the sensitivity of all

variables to all parameters, (b) the sensitivity of all variables to all model parameters

excluding µ, β, u3, and η.
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(a)

(b)

Figure 8: Local sensitivity analysis with Half normalizations in computational sim-

ulations for the suggested COVID–19 model using MATLAB, (a) the sensitivity of all

variables to all parameters, (b) the sensitivity of all variables to all model parameters

excluding β

18



Figure 9: Local sensitivity of all variables with respect to all parameters with full normal-

izations in computational simulations for the suggested COVID–19 model using MAT-

LAB.

6 Conclusion and Discussion

Only biological principles and healthcare preventions may not adequately explain how

to deal with the COVID-19 pandemic. Mathematical models with computational simula-

tions play a great role to widely understand such issues globally. Therefore, such models

can help ones to identify the model critical parameters and their impacts in reducing this

virus on the community.

It is worth noting that although the vaccination strategies are investigated, the in-

fluence of vaccination rate on spatiotemporal distribution of population with the local

sensitivity analysis has remained unclear, that is the primary motivation for our paper.

From a physical standpoint, our research attempts to bridge the gap between theoretical

frameworks and real-world implications. We want to figure out the complicated processes

that occur when looking at vaccination rates in the context of spatiotemporal distribution.

We hope that by using a physical approach, we will be able to not only reveal the under-

lying mechanisms, but also give practical insights that will help to design more effective

and centred programmes for community health. In the ongoing attempt to address the

problems caused by infectious diseases such as COVID-19, this approach corresponds with

an increasing requirement for comprehensive methods that account for both theoretical
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model and real-world data.

With this approach, the COVID-19 model that is provided in this work helps to effec-

tively describe the dynamics of the model states. Thus, it can be summarized as prime

results. Firstly, we have modeled the dynamics of all possible compartments, i.e., suscep-

tible, vaccinated, undetected exposed infected, detected exposed infected, asymptomatic

infected, symptomatic infected, quarantined and recovered individuals to analyze accu-

rate transmission dynamics of the COVID-19 pandemics. Second, MATLAB has been

used to approximation the numerical solutions of the model states for various parameters

and initial values. Another important result here is that a system of diffusion equations

was considered of the spreading COVID-19 with vaccinated individuals. These equations

have been studied with different vaccination rates, they were simulated in 1D, 2D and 3D

planes. Additionally, three different techniques non–normalizations, half–normalizations,

and full–normalizations are used to compute the local sensitivities. The results based on

the local sensitivities provide a good range to identify the models sensitive parameters in

spreading this disease. In such case, identifying the critical parameters of the model will

help to suggest further interventions and control strategies with lower budget.

Our model practical use extends to real-world scenarios, providing useful insights

for optimising vaccination efforts in the context of infectious diseases. Health authorities

may strategically supply vaccinations to regions most at risk by using our approach, which

incorporates vaccination rates and performs local sensitivity analysis. The proposed model

gives an in-depth knowledge of how vaccination rates impact the spatiotemporal dynamics

of the population, this focused approach confirms a more effective use of resources. Finally,

our model goes beyond theoretical constructions to provide real solutions to improve the

precision and efficiency of public health initiatives in the vaccination strategy against

infectious diseases.

In comparing our results with the other studies, it can be concluded some main points.

First, the proposed model provides an essential range to understand this global issue

theoretically, results can help international efforts to control this disease. In this work, we

mainly focused on vaccination rates to minimize the total number of infected individuals,

some possible strategies are highlighted. Second, identifying the most critical parameters

in spreading this virus is another technique to control this pandemic in the community, we

improved this work by calculating the local sensitivities between model compartments and

parameters. Finally, using a system of diffusion equations for the COVID-19 pandemics

instated of ordinary differential equations can help ones to study this issue more widely

for different initial states, our results here are more improved compared to the previous

studies because we suggest spatial distributions for model compartments for different

initial states and parameters. We added the above details at the end of conclusion.
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