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ABSTRACT 

To date, published studies of alluvial bar architecture in large rivers have been restricted mostly 

to case studies of individual bars and single locations. Relatively little is known on how the 

depositional processes and sedimentary architecture of km-scale bars vary within a multi-km 

reach or over several 100s km downstream. This study presents Ground Penetrating Radar 

(GPR) and core data from 11, km-scale bars from the Río Paraná, Argentina. The investigated 

bars are located between 30 km upstream and 540 km downstream of the Río Paraná- Río 

Paraguay confluence, where a significant volume of fine-grained suspended sediment is 

introduced into the network.  

 

Bar-scale cross-stratified sets, with lengths and widths up to 600 m and thicknesses up to 12 m, 

enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only 

present in half the surface area of the bars. Up to 90% of bar-scale sets are found on top of 

finer-grained ripple-laminated bar-trough deposits. Bar-scale sets make up as much as 58% of 

the volume of the deposits in small, incipient mid-channel bars, but this proportion decreases 

significantly with increasing age and size of the bars. Contrary to what might be expected, a 

significant proportion of the sedimentary structures found in the Río Paraná is similar in scale to 

those found in much smaller rivers. In other words, large river deposits are not always 
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characterised by big structures that allow a simple interpretation of river scale. However, the 

large scale of the depositional units in big rivers causes small-scale structures, such as ripple 

sets, to be grouped in thicker co-sets, which indicate river scale even when no obvious large-

scale sets are present. 

 

The results also show that the composition of bars differs between the studied reaches 

upstream and downstream of the confluence with the Río  Paraguay. Relative to other controls 

on downstream fining, the tributary input of fine-grained suspended material from the Río 

Paraguay causes a marked change in the composition of the bar deposits. Compared to the 

upstream reaches, the sedimentary architecture of the downstream reaches in the top ~5 m of 

mid-channel bars shows: (i) an increase in the abundance and thickness (up to m-scale) of 

laterally extensive (100s of metres) fine-grained layers; (ii) an increase in the percentage of 

deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in 

bar-trough deposits and a corresponding decrease in bar-scale cross strata (<10%). The 

thalweg deposits of the Río  Paraná are composed of dune sets, even directly downstream from 

the Río Paraguay where the upper channel deposits are dominantly fine-grained. Thus, the 

change in sedimentary facies due to a tributary point-source of fine-grained sediment is 

expressed primarily in the composition of the upper bar deposits.  

 

 

Keywords 

Large rivers, bars, dunes, Río Paraná, facies models, GPR, channel deposits 
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INTRODUCTION 

Although the world’s largest rivers dominate the drainage and continental basin sedimentation 

of the Earth (Potter, 1978; Milliman & Meade, 1983; Schumm & Winkley, 1994; Hovius & 

Leeder, 1998; Gupta, 2007; Fielding et al., 2012; Lewin & Ashworth, 2012), surprisingly little is 

known about how these large rivers evolve over time, how they build km-scale bars, whether 

they produce a characteristic sedimentary architecture, and how this architecture compares to 

that found in deposits of smaller rivers (Miall & Jones, 2003; Fielding, 2007; Gupta, 2007; 

Latrubesse, 2008; Sambrook Smith et al., 2009; Ethridge, 2011). Our understanding of large 

modern rivers underpins our ability to interpret correctly and characterise large rivers in the rock 

record (Potter, 1978; Miall, 1996; Miall & Jones, 2006; Fielding, 2007; Davidson et al., 2011) 

and quantify the heterogeneity of large river deposits in fluvial reservoirs (e.g., Hubbard et al., 

2011). In addition, the number and function of large rivers is an important variable in geological 

time because the increase in land area at times of sea-level low-stand causes rivers to merge 

into large systems that affect long-term variations in the build-up of the continental shelf (Blum 

et al., 2013). In the present-day channel of the Río Paraná, the dynamics of dunes and bars 

affect flood heights, control the supply and size of dredged aggregates, control localised erosion 

and hence damage to infrastructure, determine the navigability of the river, and constrain the 

physical environment of the biota (Amsler & García, 1997; Amsler & Prendes, 2000; Orfeo & 

Steveaux, 2002; Amsler et al. 2007, 2009; Paoli et al., 2010; Blettler et al., 2012).  

 

Whilst recent studies in large rivers have begun to document the internal architecture of 

individual, km-scale, mid-channel bars in generally sandy multi-channel rivers (e.g. Bristow, 

1993; Steveaux, 1994; Best et al., 2003, 2007; Latrubesse & Franzinelli, 2005; Sambrook Smith 

et al., 2009; Horn et al., 2012a,b; Valente & Latrubesse, 2012; Rozo et al., 2012), it remains 

uncertain whether these lithofacies descriptions are representative of the wide range of bar 
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types and channel patterns that characterise large rivers (cf. Lewin and Ashworth, 2013; 

Nicholas, 2013). For example, little work has been undertaken on how the subsurface alluvial 

architecture varies both within a reach, down-river and following mixing with significant tributary 

input of fine-grained material (Lane et al., 2008). Past research has shown that sediment load 

and grain size may be expected to have a pronounced effect on channel and bar stability (Smith 

& Smith, 1980; Federici & Seminara, 2006; Edmonds & Slingerland, 2010; Nicholas, 2013), the 

character of flow and bedforms (e.g., Baas et al., 2009; Kostaschuk et al., 2009) and the relative 

abundance of small-scale bedforms (Van den Berg & Van Gelder, 1993), yet it is unclear how 

these processes affect the heterogeneity of the channel deposits in a large river system with a 

significant tributary input of fine-grained sediment. 

 

This paper presents data from 40 km of Ground Penetrating Radar (GPR) surveys and 30 cores 

collected on eight, km-scale, bars in a 100 km reach of the Upper Río Paraná near Corrientes, 

Argentina, and supplementary data from 10 trenches and 11 cores taken on three bars ~540 km 

further downstream near Santa Fe (Fig. 1). Additionally, ~350 m of Parametric Echo Sounder 

(PES) line are used to illustrate the morphology and composition of the channel bed. The 

objectives of this paper are to: (i) describe the origin and evolution of a range of bar types, 

morphologies and sizes in this large multi-channel river, (ii) describe and quantify the variability 

in alluvial architecture within, and between, bars of different size and origin in a large river, (iii) 

determine the influence of a major fine-grained tributary input on the bar sedimentology, and (iv) 

compare the sedimentary deposits of the Río Paraná to that of smaller (< 1 km wide) rivers, and 

in particular with reference to reservoir properties.  
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THE RÍO PARANÁ, ARGENTINA  

The Río Paraná is one of the world’s largest rivers with a drainage basin of 2.6 x 106 km2 

(Gupta, 2007; Paoli et al., 2010; Fig 1A). The mean annual water discharge of the Río Paraná 

at Itati (Fig. 1C) is ~12,000 m3 s-1, increasing to ~17,000 m3 s-1 at Corrientes, 30 km downstream 

of the confluence with the Río Paraguay (Fig. 1C). Overbank flow upstream of the confluence 

occurs at ~19000 m3 s-1. Mean annual sediment discharge of the Río Paraná increases from 

~19 to ~158 x 106 tons year-1 at the junction with the Río Paraguay, primarily due to the large 

input of suspended sediment (concentrations between 600 and 1100 mg L-1) supplied from the 

Río Bermejo tributary (Bonetto & Orfeo, 1984; Lane et al., 2008; Amsler & Drago, 2009). Bed 

material of the upper reach of the Río Paraná is well sorted, predominantly medium-to-fine sand 

(average D50 of 26 bed samples is 0.35 mm), although some fine gravel is present in the 

channel thalweg and on aeolian deflation surfaces on some exposed bars. Mean bed grain size 

downstream of the confluence near Corrientes ranges from 0.31 to 0.45 mm (Drago & Amsler, 

1998; Amsler et al., 2007). Whilst ~500 km downstream at Santa Fe (Fig. 1D) the mean bed 

grain size is ~0.30 mm, there is a much higher proportion of fines in the suspended load. Mean 

slope near Corrientes ranges from 4.9 *10-5 (m/m, bankfull water-surface slope; Latrubesse, 

2008) to 8.5 *10-5 (m/m, channel slope; Orfeo & Steveaux, 2002). The upper reach of the Río 

Paraná is regulated by a series of large dams (Orfeo & Steveaux, 2002), although the 

hydrograph is still characterised by floods of long duration that are typically associated with 

prolonged rainfall in the headwaters during the austral winter. Channel depths in the thalweg 

vary between 5 and 12 m with maximum outer bend scours of 25 m at discharges of ~11,000 

m3 s-1 (Parsons et al., 2005; Sandbach et al., 2010).  

  

In the studied reach between Itati and Santa Fé, the Río Paraná is a multi-channel river that 

contains mid-channel bars of unconsolidated sand as well as stable vegetated bars that divide 
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flow up to bankfull stage, and could therefore be described as an anabranching river (Nanson & 

Knighton, 1996; Latrubesse, 2008; Ashworth & Lewin, 2012). Near Itati (Fig. 1C), the width of 

the primary channel (1.7 ± 0.7 km) is larger than that of the bars (0.5 ± 0.6 km) and about five 

times the width of smaller secondary channels (0.3 ± 0.2 km). Sandy bars in the Río Paraná are 

typically bank-attached, transverse or medial bars (Santos & Steveaux, 2000) with migration 

rates of ~50 m year-1, that reach up to 130 m year-1 near the Río Paraguay- Río Paraná 

junction. Significant portions of the floodplain and stable mid-channel bars are densely 

vegetated with mature shrubs and trees, with trees establishing themselves on exposed bars 

within decades. The outer bank edges of the primary channel are relatively straight, but a 

bathymetric survey of a 38 km reach immediately upstream of the Río Paraná- Río Paraguay 

junction shows a dominantly sinuous, meandering thalweg with a wavelength of ~12 km 

(Ramonell et al., 2002; Sandbach et al., 2012). Outcrops of cemented Pleistocene sediments 

are found in places throughout the main study reach, notably on the south-east (left) river bank. 

Outcrops can cause local constriction and acceleration of flow and hence accentuate the 

deepest thalweg scours against the left bank. The river bed of the Río Paraná is dominated by 

dunes at all flow stages (Amsler & Prendes, 2000; Parsons et al., 2005; Kostaschuk et al., 

2009; Shugar et al., 2010). Parsons et al. (2005) report large dunes with mean heights of 2 m 

and wavelengths of 64 m with smaller superimposed dunes with heights up to 0.3 m and 

wavelengths up to 10 m in the deeper parts of the channel near Corrientes at a discharge of 

11,000 m3 s-1. However, much larger dunes with heights up to 6.5 m and wavelengths of 320 m 

have been observed in the Río Paraná during the large flood of 1983 (Amsler & Garcia, 1997). 

Ripples are present in shallow water and are common on near-emergent bar tops, and aeolian 

re-working is widespread on sparsely vegetated, exposed bar tops. 
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STUDY REACHES 

Data are presented herein from three study sites: (i) a reach from 30 km upstream of the Río 

Paraná- Río Paraguay confluence to 4 km downstream of the junction, which is not influenced 

by the fine-grained input from the Río Paraguay; (ii) a reach from 9 km to 74 km downstream of 

the confluence where the input of fine sediment is more significant, and (iii) a reach much 

further downstream (520-540 km) near Santa Fe where the Río Paraguay and Río Parana 

waters are fully mixed (Lane et al., 2008) (Fig. 1, Table 1). Previous descriptions of the Río 

Paraná near, or within, the upstream study reach are given in Parsons et al. (2005, 2007, 2009), 

Amsler et al. (2007), Lane et al. (2008), Sambrook Smith et al. (2009), Kostaschuk et al. (2009), 

Shugar et al. (2010) and Nicholas et al., (2012). Five mid-channel bars were investigated in the 

upstream study area (Fig. 2A-E. prefix U): three bars were located upstream from the 

confluence (at distances relative to the Río Paraná- Río Paraguay confluence of -30, -8 and -7.5 

km), and two located close to the confluence (at +1 and +4 km downstream) but with only 

limited influence from the confluence. Three mid-channel bars were studied that were 

influenced by the confluence (Fig. 2F-H, prefix C) and were located +9, +73 and +74 km 

downstream of the confluence. Three more bars much further downstream from the confluence 

(+520 to +537 km; Fig. 2I-K, prefix D) were studied using cores and trenches. The eleven bars 

were selected to maximise the differences in size, age and location with respect to the Río 

Paraná- Río Paraguay confluence and to establish any broader upstream-downstream trends 

(Table 1).  
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METHODS 

Ground Penetrating Radar (GPR) surveys 

Approximately 40 km of common-offset GPR surveys were collected (Table 1) using a Sensors 

and Software SmartCart© carrying a Pulse-EKKO PRO system with 100 MHz antennae. 

Surveys were collected mostly in a rectangular grid except where vegetation blocked access 

(Fig. 2). Eight stacked traces were collected at every shot point, with the shot points being 

triggered by the cart’s odometer wheel at ~0.1 m spacing. GPR lines were corrected for any 

topographic variation by interpolation of points ~100 m apart on lines surveyed using a Leica 

differential Global Positioning System (dGPS) operating in Real-Time Kinematic mode (RTK), 

which had relative positional errors of ±0.02 m horizontally and ±0.03 m vertically. Post-

processing of the GPR data in Seismic Unix included application of a zero-phase, sine-tapered 

bandpass filter with polygon frequency values of 10, 50, 250 and 600 MHz. Loss of reflection 

amplitude with depth was reduced by the application of a time-varying gain. A Stolt-migration 

based on a single subsurface velocity was applied to reduce the effect of refraction hyperbolae. 

The radar velocity was determined from Common Mid-Point surveys (CMP’s) using normal 

move-out corrections as well as velocity semblance analyses, and by comparison of the 

common-offset profiles with core logs. These three different methods yielded consistent results. 

Two-way travel time was then converted to depth using a constant velocity, derived separately 

for the bars upstream and downstream of the confluence, of 0.05 m ns-1 and 0.08 m ns-1 

respectively. The associated wavelengths are in the order of ~0.125 m upstream and ~0.2 m 

downstream, with maximum vertical resolution a quarter of these wavelengths (Sheriff & 

Geldart, 1982). The higher radar velocity in the bars downstream from the confluence is 

attributed to the increase in fine-grained sediment in the deposits (Neal, 2004; Baker et al., 

2007). Strong attenuation of the radar signal prevented collection of GPR profiles of sufficient 
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depth from the bars near Santa Fe and from those dominated by the influence of the Río 

Paraguay (Table 1).  

 

Classification and description of radar facies 

The primary radar facies that characterise the deposits of the Río Paraná in the main study 

reach are shown in Table 2. The three key radar facies used here match previous descriptions 

of the deposits of a km-scale bar by Sambrook Smith et al. (2009), which is bar U4 in the 

present study. The only difference herein is that Facies 1 is subcategorised by the angle of 

reflections rather than set thickness (Sambrook Smith et al., 2009) because this provides a 

better match between the radar reflections and the true sedimentary structures observed in 

cores (cores were not available in the earlier study by Sambrook Smith et al., 2009). A brief 

description of each radar facies and their sedimentary interpretation is given below and 

examples of the radar facies are shown in Table 2 and Fig. 3. 

 

(1A) Large-scale high-angle and (1B) medium-angle inclined reflections 

Facies 1 is characterised by sets of dipping reflections with angles >6º. Sets of facies 1 can 

commonly be traced laterally for several hundreds of metres (up to 600 m) and have 

thicknesses of 2 m on average with a maximum observed thickness of 12 m. The study herein 

subdivides radar facies 1 into high-angle (1A; Table 2; Fig. 3A, C-D, G-H) and medium-angle 

(1B; Table 2; Fig. 3A-C, E-H) reflections. Large-scale (cf. Bridge, 1993a), high-angle reflections 

(facies 1A) exceed 20º and are characteristically straight with low amplitudes. Large-scale, 

medium-angle reflections (facies 1B) vary in angle between 6º and 20º and are typically more 

irregular in shape with higher amplitudes. Facies 1A is associated primarily with angle-of-repose 

cross-strata formed by grainflows on large-scale dune or bar slopes (Reesink & Bridge, 2007, 

2009) and may include compound reflections (Reesink & Bridge, 2011). Facies 1B represents 
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large-scale inclined co-sets: stacks of inclined small- and medium-scale sets. Such co-sets are 

interpreted as formed by ripples and dunes migrating over steep topography (e.g. a unit-bar lee 

slope; Haszeldine, 1982). Thus, both facies 1A and B represent bar-margin accretion, and are 

consequently commonly observed adjacent to one another and grading into one another (Fig. 

3A, C, H, label I).  

 

(2) Near-horizontal, undular, discontinuous and chaotic reflections 

Facies 2 (Fig. 3A-B, D-G, label 2) is composed of near-horizontal (<6º) reflections that may be 

chaotic (Fig. 3C, F, label II), discontinuous (Fig. 3C, E, label III) or contain m-scale trough 

shapes (e.g. Fig. 3A, label IV). The lateral extent of these reflections is less than 60 m and 

amplitudes are not usually higher relative to surrounding reflections. The symmetry and 

continuity of the reflections in facies 2 are highly variable and typically grade both laterally and 

vertically. Trough-shaped reflections within facies 2 are up to 2 m high and 50 m long, less than 

the thicknesses and lengths of sets of facies 1. These trough-shapes are primarily attributed to 

the trough-shapes of dune sets. Facies 2 also includes asymmetrical reflections that resemble 

complete dune profiles (Fig. 3E-F, label V), and are interpreted as trains of dunes that were 

abandoned and did not undergo any great reworking before being buried under subsequent 

sediment. Facies 2 includes reflections from both the individual bounding surfaces of sets with 

sizes larger than the radar wavelength (dunes, small unit bars) and reflections that relate to 

grain-size variations within stacks of sets smaller than the radar wavelength (ripples, small 

dunes).  Thus, facies 2 is associated with near-horizontal medium- and small-scale sets that are 

attributed to dunes and ripples respectively. 
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(3) Laterally-extensive, high-amplitude reflections  

Facies 3 comprises laterally-extensive reflections (up to 1 km and approaching the lengths of 

the bars) that have distinctively higher amplitudes relative to adjacent reflections (Fig. 3A-H, 

label 3). Facies 3 is commonly associated with loss of the radar signal below the reflection. 

These reflections represent laterally-extensive bounding surfaces within the bars that are 

primarily transitions from relatively coarse-grained bar-margin deposits (mean 0.33 mm in 

cores) to underlying layers of finer-grained ripple-sets (mean 0.18 mm in cores), with limited 

thicknesses, which are deposited in the bar troughs and during low-flows. The distinct contrast 

in grain size at the top of the fine-grained bounding surfaces generates high-amplitude GPR 

reflections, with the observed loss in radar amplitude directly underneath these high-amplitude 

reflections being associated with attenuation of the signal by fine-grained sediment such as clay 

(Neal, 2004; Baker et al., 2007).  

 

Calculation of facies distribution  

All GPR data were interpreted as illustrated in Fig. 3H, with reflections assigned a facies 

classification based on the criteria outlined above and summarised in Table 2. The radar facies 

were identified from vertical profiles, and these data were then used to calculate the mean, 

standard deviation and distribution of the facies (% of all facies that were identified in the GPR 

images from different locations, hence representing a volume) and the presence/absence of 

facies (expressed as a percentage of the bar area investigated). Maps of facies distributions 

were constructed by spatial averaging using a 200 x 200 m square window (i.e. larger than the 

spacing of the survey lines) (Fig. 4). The thickness of the reflections associated with facies 3 

has been determined from the cores in this study because GPR alone does not provide 

accurate measurements of the thickness of fine-grained layers, since these are of the same 

order of magnitude as the radar wavelength. The mean thickness of silts and very-fine sands 
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(0.2 ±0.2 m) from the core observations is therefore used to quantify and estimate the 

proportion of fine-grained layers represented by facies 3 in the GPR images. 

 

Coring  

In order to ground-truth the GPR and provide information on the sedimentary architecture of the 

deposits at resolutions higher than provided by the GPR, 30 cores of the bar sediments were 

taken on GPR lines. Cores were obtained using a modified Van der Staay suction corer with a 

diameter of 0.06 m (Van de Meene et al., 1979; see Fig. 2; Table 1). In addition, 11 cores were 

taken from mid-channel bars near Santa Fé (Fig. 1D) in order to sample the bar deposits where 

the water and sediment of the Río Paraguay are more fully mixed with that of the Río Paraná 

and where GPR provided no data. Van der Staay suction coring works well in sand, but did not 

work well in deposits that were dominated by silt and clay. Cores retrieved from the sandy bars 

had an average length of 4 m and a combined length of 149.3 m. The cores were sawn in half 

lengthwise and epoxy peels made of one half. Sediment-samples were taken from selected 

locations within the cores and grain-size distributions determined by dry sieving and grain sizing 

obtained using a Malvern Laser Mastersizer 2000. Detailed logs of the sedimentary structures 

were constructed by analysis of the epoxy peels following the methodology outlined by Bridge 

(2003) (Fig. 5, Fig. 10). 

 

Parametric Echo Sounder (PES) 

To establish if these facies observed in the GPR from the bars are representative of sediments 

lower down within the profile, an InnomarTM (SES-2000 light) Parametric Echo Sounder (PES) 

was used to undertake a preliminary survey in the channel adjacent to C1. The principles of the 

PES are described fully by Wunderlich and Müller (2003) and Sambrook Smith et al. (2013), but 

in brief, its most important feature is an ability to generate a broad array of acoustic frequencies; 
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the lower frequencies provide details of the subsurface structure while the higher frequencies 

are able to record the bed surface as is standard for common echo-sounders. Although this 

acoustic-based technique is fundamentally different from the electromagnetic based GPR 

technique, the reflections generated by contrasting sediment strata generate similar facies 

(Table 2). In this study, the subsurface PES reflections are used to show the bounding surfaces 

of preserved sets below the active dune forms in the channel. 

 

RESULTS 

The development and approximate age of the investigated bars (Fig. 2) were established from 

their appearance in Landsat images (Band 1-3) that were taken between 1972 and 2010 (Fig. 

6). The composition of the bars observed in the GPR images (Figs 3, 7 and 8) and cores (Figs 5 

and 10) is expressed as maps of frequency of occurrence of different facies (Fig. 4). The results 

are summarised in Table 1 and a description of bar composition and its relation to bar 

development is given below.  

 

Evidence from GPR 

Overall, facies 1A, 1B, 2, and 3 make up ~20, 17, 56 and 7 % of the entire investigated volume. 

Most studies suggest that small- and medium-scale sets, and in particular dune sets, are the 

most abundant sedimentary structures in bars within multi-channel rivers (e.g. Best et al., 2003; 

Skelly et al., 2003; Bridge & Lunt, 2006; Sambrook Smith et al., 2006; Bridge, 2009; Ethridge, 

2011). These structures are included here in Facies 2 and 1B, which indeed make up the 

majority of the investigated deposits. In contrast to the volumetric analysis, 2D spatial analysis 

shows that, whereas facies 2 and 3 are found in nearly the entire investigated area (97 and 

98%; Fig. 9), the bar-margin deposits represented by facies 1A and 1B are found in only 

approximately half (45 and 49%) of the investigated area.  
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Subdivision of the results per bar shows that the mean volumes of facies 1A, 1B, 2 and 3 range 

between 4-58, 0-48, 38-70, and 2-12% for different bars (Fig. 9). In contrast, the areal coverage 

of facies 1A, 1B, 2 and 3 ranged between 8-100, 0-90, 87-100 and 92-100% respectively. 

Facies 2 comprises most of the deposits and is ubiquitous. Facies 3 is also found nearly 

everywhere, but represents only a small proportion of the sediments. Facies 1A and 1B, which 

represent horizontal progradation of bar margins, may comprise up to half of the volume of a 

bar, but are spatially limited in their extent (Fig. 4). These spatial contrasts in bar composition 

can be associated with the nature of bar development (Table 1). 

 

Facies 1A and 1B are particularly prominent in the newly-emergent incipient bars (e.g. for U3: 

1A is 58% of volume and 100% of area). Large-scale sets of facies 1A and 1B were also 

present lower down in the centre of the larger bars (U2 and U4). Analysis of satellite images 

(Fig. 6A-C) confirms that these sets formed by downstream-migrating bar margins during the 

earlier stages of bar development. These observations suggest that the downstream migration 

and amalgamation of unit bars is common in the early stages of bar development.  

 

Although facies 1 was also prominent near visible large-scale slopes at the tails of the larger, 

older bars (U1, U2 and U4; Fig. 4), two of the larger, older bars (U5 and C2) had no significant 

bar-tail sets >1 m thick but possessed low-angle slopes at the edge of the bars that represent a 

record of more gradual, vertical aggradation. Thus, although continued growth by horizontal 

progradation of bar-scale slopes is possible (e.g. large set in U1 and bar tails in U1, U2 and 

U4), the style of deposition may change during a development of a bar to include increased 

proportions of vertical aggradation (Bristow, 1987). Bar U1 represents an extreme example of 
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such differing styles of composition: the right half of U1 formed by a migrating bar front and the 

left half formed by in-situ vertical aggradation (Fig. 4; Fig. 5A,B).  

 

Vertical associations of the facies indicate that facies 1A and 1B are mostly underlain by facies 

3 (91, 80%; Table 3). This preferential association indicates that channel deposits 

characteristically comprise bar-scale sets with laterally-extensive fine-grained bottomsets at 

their base (Fig. 5D, F; Fig. 10E, F). Although facies 1A and 1B are nearly always underlain by 

facies 3, facies 3 is also found in association with facies 2 (66 percent). Clearly, fine-grained 

bounding surfaces can have different origins (e.g. low-flow deposits) and need not be formed 

and preserved uniquely in the bar troughs. The observed reduction in the volumetric abundance 

of facies 1A downstream from the confluence (C1-3; only 4% of the deposits) may be caused 

partially by an increase in fine-grained bar-trough deposits. Finer-grained sediment is carried 

further beyond the brink point of bedforms and is commonly deposited on low-angle slopes 

(Facies 1B; 48% in C3) and in the trough (Boersma, 1967; Jopling, 1965). Such a relative 

increase in trough deposits and low-angle slopes is matched by a corresponding decrease in 

facies 1A.  

 

Evidence from cores 

Cores from the upper 5 m of the deposits support observations from the GPR in showing a wide 

diversity of structures within individual bars and an excellent agreement between GPR 

reflections and the sedimentary structures. When viewed as a downstream transition from the 

upstream bars (U1-U5) above the Río Paraguay confluence to those just downstream of it (C1-

C3) and much further away (D1-3), some clear trends can be identified in the bar-top sediments 

from these cores (Table 5). The downstream bars have a larger proportion of ripple sets (mean 

43%, range 15-56%) in comparison to the upstream bars (mean 31%, range 2-43%) and the 
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proportion of dune and bar sets is smaller in the downstream bars (mean 32%, range 19-42%) 

relative to the upstream bars (mean 47%, range 21-98%). This difference in larger-scale sets 

matches to the lower abundance of bar sets in the GPR of the downstream bars (Bars C2,3, 

Table 1), which comprise 8% of the downstream deposits and 20% of the upstream deposits 

(Fig. 9). In addition to differences in the relative proportions of sedimentary structures, grain size 

analyses show that the downstream cores and trenches contain a larger proportion of fine-

grained material (Table 4). Grain size distributions are typically >90% sand with D50 >250 µm in 

the upstream sites where there is no influence from the input of fines from the Río Paraguay. 

Where the waters of the two rivers become well mixed downstream of the junction, the 

percentage of silt/clay in the bar sediments can reach 31% with a D50 as low as 141 µm. This 

increased proportion of fine-grained sediment is found throughout the deposits in the bar-tops 

and occurs both as local deposits of several metres thickness and interbedded with coarser-

grained bedload-dominated deposits (Fig. 10A, C, D). The increased occurrence of interbedded 

fine and coarse deposits is illustrated by the greater number of dunes that occur as solitary sets, 

and interbedded with other structures instead of in stacks of dune sets in the bar-top sediments 

(e.g. Figs 5 and10A). Whereas only 15% of the dune sets in the upstream reach are found as 

solitary sets or interbedded with other sedimentary structures, this proportion rises to 35% in the 

downstream reach. The increased deposition of fines therefore increases the heterogeneity of 

the deposits and reduces the number of dunes in co-sets in the upper portions of channel fill/bar 

sequences. 

 

Additional evidence of channel deposits: Parametric Echo Sounder (PES) 

Because of the limited depth of the cores and GPR penetration in some locations, the 

information contained in the current dataset has a bias towards the upper bar deposits. The 

persistent presence of dunes in the deeper parts of the channel (Amsler & García, 1997; Drago 
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& Amsler, 1998; Amsler & Prendes, 2000; Parsons et al., 2005; Amsler et al., 2007; Kostaschuk 

et al., 2009; Shugar et al., 2010) does provide some evidence to infer that dune sets may be 

abundant in the lower parts of the deposits of the Río Paraná. Yet, in the absence of subsurface 

data, such inference provides only a suggestion. For example, GPR was unsuccessful at bar 

C1, and repeated coring attempts indicated that the upper 5.5 metres were composed of very 

soft silt and mud. The only core retrieved from the coarser-grained bar head of C1 is composed 

primarily of ripple-sets. Thus, the upper bar deposits are dominantly fine-grained and ripple-

laminated. The PES survey shown in Fig. 11 (see Sambrook Smith et al., 2013 for more details) 

indicates that the channel bed is dominated by dunes 1-2 m high with smaller superimposed 

bedforms on their stoss slopes of ~0.2 m height. Distinct dune sets visible in the PES images 

show sets with thicknesses in the order of 0.3 and up to 1.5 m. The PES reflections show that 

the thalweg deposits in the reach that is most strongly influenced by fine sediment input from 

the Río Paraguay are also composed of dune sets, and hence are comparable to the deposits 

of the sandier upstream reach. Clearly, the fine-grained bar tops observed in the field contrast 

with the deposits of the adjacent thalweg observed by the PES. Thus, the sudden increase in 

fine-grained sediment from the Río Paraguay confluence is expressed in a structural change in 

the bar top deposits, but does not necessarily change the nature of the thalweg deposits.  

 

DISCUSSION 

 

Heterogeneity of large river deposits 

As Miall (2006) and Fielding (2007) highlight, the lack of sedimentological data from large rivers 

has meant there are no universally-accepted criteria for the recognition of their deposits in the 

rock record. However, both Miall (2006) and Fielding (2007) point out that the vertical 

dimensions of cross-stratification can be a useful indicator of large rivers. This suggestion is 
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supported by the GPR studies of single bars in the Jamuna River (Best et al., 2003) and Río 

Paraná (Sambrook Smith et al., 2009) where thick sets of bar-margin facies (radar facies 1A in 

this paper) were reported of 8 m and 6 m respectively. Likewise, in one of the most commonly 

quoted examples of large river deposits preserved in outcrop, the Hawkesbury Sandstone, Miall 

and Jones (2003) report that cross-stratified sets of 2-3 m thickness are common with a 

maximum of 7 m. The GPR data in this study confirm that cross-stratified sets with average 

thicknesses of 2 m and up to 12 m are common, comprising up to 20% of the overall deposits. 

Thick cross-stratified sets were readily identified in cores (Figs 5A, D, E and 9E) and can be 

used as indicators of river scale. However, this study also revealed an abundance of 

sedimentary structures with scales similar to those found in smaller rivers and a high degree of 

variability and clustering of structures within the deposits. This heterogeneity poses a significant 

obstacle to interpretations of scale and sedimentary composition of river deposits, which 

underpin facies models, palaeo-environmental interpretations, and predictions of permeability, 

porosity and connectivity of sandstone reservoirs and aquifers. The present paper is based on a 

much broader range of bars than previous studies and therefore permits a fuller consideration of 

the scales and causes of heterogeneity in bar deposits in the Río Paraná. The sedimentology of 

the deposits investigated varies (i) within bars, (ii) between bars of varying morphology, size 

and history, and (iii) as a result of a major fine-grained tributary input. These factors and (iv) the 

similarity with smaller river systems, in particular with reference to reservoir properties, are 

discussed below. 

 

Variability within bars: systematic clustering of facies  

A key point to emerge from the results presented herein is that the presence of thick cross-

stratified sets, which is diagnostic in interpretations of river scale, is spatially-restricted. 

Although radar facies 1A and 1B locally dominate bar composition, their presence is restricted 
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spatially to roughly half the investigated area (Figs 4, 5 and9). Thus, although a sample section 

may have no diagnostic, thick cross-stratified sets, this does not imply that the deposits are not 

related to a large river. This point is illustrated by the contrasting structures found in two cores 

from the upstream bar U1 (Figs 2A and 5A-B). While one core displays a thick set of facies 1 

associated with migration of a bar lee slope (Fig. 5A), the other shows pervasive ripple sets 

associated with slower flow in the lee of the bar (Fig. 5B). Fortunately, the presence of this and 

other thick ripple co-sets suggests that the size of large-scale depositional units, other than bar-

scale cross-strata, can also be used to indicate river scale. Similar to large-scale sets, the 

thickness of ripple co-sets relates to the distribution of large-scale depositional units, which is an 

indicator of river scale. River deposits are generally considered to be composed of a limited 

number of large-scale depositional units (Bridge, 1993b, 2003) and this characteristic is 

supported by the GPR analysis in this study (Fig. 7). The stacking of a limited number of large-

scale units appears scale-independent (Fielding, 2007), and pronounced spatial clustering of 

sedimentary facies related to bar morphology has also been observed in much smaller rivers 

(Sambrook Smith et al., 2006; Horn et al, 2012a,b).  

 

Variability between bars: effects of bar evolution 

The most relevant comparison here is between bars U1, U2 and U3 as these are all located in 

the same reach, are active sandy bars with little vegetation cover and have similar grid-based 

GPR datasets. Hence all aspects of within-bar variability, discussed above, should be 

accounted for. Figure 9 shows that there is a systematic decrease in the percentage of facies 

1A between bars U1-U3, from 20%, to 27% and then 58% with increasing age and size. The 

Landsat images (Fig. 6A-B) show that bars U1 to U3 vary in age, with U1 and U2 being much 

older and larger than U3 (Table 1). Based on an analysis of several rivers, Sambrook Smith et 

al. (2009) and Parker et al. (2013) suggested that the time scale over which bars develop would 
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influence their facies distributions, and this conclusion is supported herein. Small incipient bars 

with a simple morphology and a short history of development, such as U3, are dominated by 

facies 1. As bars grow and age, the abundance of facies 1 in the bars decreases (e.g. U3 and 

U2). This proportional decrease in the occurrence of bar-scale cross strata is attributed to 

erosion of the original bar-scale set, and/or, to further deposition of smaller-scale sets by ripples 

and dunes as bars grow in time. Consequently, larger bars are composed of a mosaic of 

different types of structures and, relative to their larger size, include a larger proportion of small- 

and medium-scale sets. Thus, the angle-of-repose bar-scale sets of the incipient bars are 

progressively reworked, and bar compositions reflect an increasing range of temporal and 

spatial boundary conditions as the bars grow and evolve over time.  

 

Variability between reaches: effects of a fine-grained tributary input 

Downstream variability in the alluvial architecture of large sand-bed rivers over distances of 

hundreds of kilometres and including the effects of tributary inputs has not been studied 

extensively. However, examples from the Rhine, Mississippi and Ganges rivers suggest that 

subtle, downstream fining in large sand bed rivers is a common phenomenon (Frings, 2008). 

For example, for the Ganges River, Singh et al. (2007) demonstrate that over approximately 

2000 km, the grain size distribution of this sand-bed river changes from predominantly medium 

and fine sand upstream to fine sand, very fine sand and silt/clay downstream. Conversely, the 

grain-size differences between the reaches investigated in the Río Paraná can, for a large part, 

be attributed to the tributary input of the Río Paraguay (Table 4). Assessment of the effect of 

this input of fine-grained sediment on the bar sedimentology is complicated by the inherent 

variability of the deposits, which relates to the location within a bar and the age of the bar as 

discussed above. In addition, the onset of any changes in sedimentary composition varies as a 

function of the dynamics that control the mixing of the sediment from the Río Paraná and Río 
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Paraguay (Lane et al., 2008). GPR data from bars C2 and C3, located at 73 and 74 km 

downstream from the confluence, still yield viable GPR data that indicate a change in 

proportional composition relative to the upstream bars (Table 1, Figs 4 and 9). At >520 km 

downstream, near Santa Fé, the evidence from the bars is restricted mostly to the upper bar 

deposits (25-33% of the upper bar/channel fill sequence) because GPR surveys near Santa Fe 

(bars D1-D3) were not possible. The interpretations from this area are based on shallow cores 

and trenches, although it is noted that consistent attenuation of the radar signal itself also 

provides an important clue as to the composition of the upper bar deposits. The most prominent 

changes in sedimentary architecture in the bar-top sediments near Santa Fé relate to the 

introduction of fine-grained material from the Río Paraguay: 

1) an increased proportion of ripple sets (> 40% of deposits), both as thick co-sets and 

interbedded with other sedimentary structures  

2) a decrease of unit-bar foresets (< 10% of deposits) relative to unit-bar trough deposits 

3) an increase in the abundance (> 10% silt/clay in grain size distribution) and thickness of 

fine-grained sediment layers (up to several metres thick), many of which are likely to 

have a bar-scale extent.  

Although thick sets of cross-strata (i.e. facies 1A) normally provide a focus with respect to the 

deposits of large rivers, one of the most striking features of the cores presented herein is the 

relative abundance of ripple sets within the upper 4-5 m of the bar deposits (Table 5). Large 

proportions of ripple-sets are also found in the upstream reach, but are related to localised flow 

deceleration in response to the morphological development of the mid-channel bars. In the 

downstream reach, the presence of ripple-sets is far more pervasive throughout the upper bar 

deposits and is also found in the troughs of individual dune sets.  
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Comparison with smaller rivers and effects on reservoir properties 

The variability of facies in the bars investigated herein has many similarities to that described 

from much smaller rivers (Allen, 1983; Skelly et al., 2003; Lunt & Bridge, 2004; Sambrook Smith 

et al., 2006; Horn et al., 2012a,b), where channel deposits are also composed of a limited 

number of large-scale depositional units and where bar morphology also results in pronounced 

spatial clustering of the sedimentary facies. This potential scale-independent character of the 

large-scale architecture (cf. Fielding, 2007) does not imply a similarity in the relative abundance 

of large-scale elements, nor of sedimentary structures within them, as these are known to vary 

significantly between different systems (Hickin, 1993; Miall, 1996; Bridge, 2009).  

 

The persistent presence of facies 3 as the bounding layers that delineate the large-scale units 

within the bars compares to observations from smaller river systems and has significant 

implications for the connectivity of the higher-permeability elements within the deposits. 

Channel-scale, laterally-continuous, fine-grained deposits are observed in cutbanks near Santa 

Fe (e.g., Fig. 10C), and in the cores (Figs 5 and 10F) and radar facies 3 in the GPR images 

(e.g. Figs 3 and 7). Larue and Hovadik (2006) discuss how connectivity within a reservoir can 

be reduced by compartmentalization associated with local muddy deposits, specifically where: 

(1) a mud drape covers the channel base, (2) laterally-continuous horizontal muds are located 

within a channel, and (3) inclined mud units are found (e.g. Lynds & Hajek, 2006; Martinius & 

Van den Berg, 2010). The dominant association of facies 1 (unit-bar sets) with underlying finer-

grained layers in both the upstream and downstream reaches (Table 3; Fig. 5D,F; Fig. 10F) 

suggests that stacking of unit-bar deposits may play a key role in the development of baffles to 

flow that could ultimately reduce reservoir connectivity in channel deposits. In addition, the 

increased abundance of fine-grained layers found downstream from the confluence with the Río 

Paraguay implies that such a significant point-source change in a large river system with a long 
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downstream-fining distance (cf. Frings, 2008) may result in a marked, and potentially spatially 

rapid, change in reservoir quality. 

 

Finally, the present study identifies multiple controls on the variability in sedimentary 

heterogeneity and highlights the different spatial scales at which they occur. Locally, individual 

bars produce sedimentary architectures that are unique to the local flow and sediment transport 

conditions and that reflect their evolutionary history. In addition, this investigation, of multiple 

bars along a 570 km long reach, allowed an assessment of larger, reach-scale changes in 

boundary conditions. At such reach scales, the sedimentary composition was shown to change 

abruptly in response to a local point-source input in fine-grained sediment, and gradually in 

response to more gradual changes in the mixing of waters. It is well-known that sedimentary 

heterogeneity within bar deposits varies over a range of scales, yet few of the causes have 

been highlighted to date. In this study, the variability in sedimentary heterogeneity within and 

between bars is attributed to their age, size, shape and evolutionary history, and the variability 

between different reaches is attributed to a tributary input and mixing dynamics of two confluent 

flows (Lane et al., 2008). 

 

CONCLUSIONS  

Ground Penetrating Radar and core data from 11, km-scale bars over a ~600 km downstream 

length of the Río Paraná show that the channel deposits are composed of three principal GPR 

facies. Facies 1 represents bar-scale sets with heights up to 12 m and lengths up to 600 m that 

are internally composed of angle-of-repose cross strata (Facies 1A: 8-58% of the investigated 

volume) or inclined dune- and ripple co-sets (Facies 1B: 0-48%). Facies 2 represents significant 

volumes of near-horizontal dune and ripple-scale sets (32-60%). Facies 3 represents laterally-

extensive layers of finer-grained ripple sets (2-12%). Four principal conclusions can be made: 
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1) Between 32 and 91% of the investigated depositional structures of the Río Paraná are 

similar in scale to that found in smaller rivers. In other words, large river deposits are not 

characterised consistently by large sedimentary structures that facilitate a straightforward 

interpretation of river scale. However, many of the smaller dune- and ripple sets are 

stacked in thick co-sets that do scale to river size. 

2) Bar-scale cross-strata and bar-scale inclined co-sets (Facies 1A and B) are found 

overwhelmingly on top of layers of finer-grained ripple-sets (Facies 3) that are deposited 

in the lee of migrating bars. The systematic presence of these laterally-extensive fine-

grained layers will limit the connectivity of depositional units with higher permeabilities. 

3) The bar-scale sets with angle-of-repose cross strata (Facies 1A), which are the most 

reliable indicators of the size of a river, are restricted spatially to half of the bar-surface 

area and occur predominantly in the smaller, more recently formed bars. This reduction 

of bar-scale cross-strata in older and larger bars is attributed to a combination of 

reworking and changes in the styles of accretion as the bars evolve over time.  

4) Relative to other controls on downstream fining, the point-source input of fine-grained 

sediment from the Río Paraguay causes most change to the upper bar deposits. The 

increased presence of fines manifests itself as i) an increased abundance, and thickness, 

of laterally-extensive fine-grained layers, ii) an increased abundance of ripple sets, and 

iii) as a proportional reduction of bar-scale angle-of-repose cross strata. In contrast to the 

bar-top deposits, the thalweg of the Río Paraná is characterised by metre-scale dunes, 

and its deposits are composed of dune sets even in areas where bar-top deposits are 

dominantly fine-grained. Thus, changes in the sedimentary architecture and permeability 

characteristics of km-scale bars due to a fine-grained tributary input are expressed 

primarily in the composition of the bar-top deposits.  
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FIGURE CAPTIONS  

Fig. 1. Location of A) the study site, B) the two study reaches and the study bars within the 

reach that are located near C) the Río Paraguay- Río Paraná confluence and D) near Santa Fe. 

 

Fig. 2. Oblique aerial views of the bars investigated herein also showing the GPR survey lines 

and core locations. Arrows indicate flow direction. More details are given in Table 1. 

 

Fig. 3. GPR profiles with facies interpretations: examples from U1 (A,B), U2 (C), U3 (D), U4 (E), 

U5 (F), C2 (G) and C3 (H). Labels: [I] horizontal transition between facies 1A and 1B. [II], [III] 

and [IV] are facies 2 with chaotic, discontinuous, and trough-shaped geometries of the 
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reflections, and [V] are complete dune profiles. Colours in (H) are facies interpretations: red is 

facies 1A, yellow is facies 1B, green is facies 2, and blue lines are facies 3. 

 

Fig. 4. Maps of spatial averages of GPR facies percentages (vertical sum of a single facies 

divided by the vertical sum of all facies within 200 x 200 m windows shifted in 20 m increments) 

for bars where GPR surveys were undertaken. See text for explanation of labels A-O. 

 

Fig 5. Core logs from the bars investigated herein: (A) bar head of U1, (B) left wing of U1, (C) 

bar head of U2, (D) right bar tail of U2, (E) U3, (F) bar head of U5 and (G) bar tail of C2. Also 

shown are associated photos from each of the cores (H-N). 

 

Fig. 6. Landsat images (Bands 1, 2 and 3) showing the temporal development of bars in area U 

. Note that the flow discharge varies between images but most images are at low flow. 

 

Fig. 7. Along-stream and cross-stream GPR profiles and interpretation of the geometry of the 

bounding surfaces in U1 (A-D), U2 (E-H), U5 (I-L) and C2 (M-P). 

 

Fig. 8. GPR fence-plot and cores of U3 (Fig. 2E) showing an internal composition of a small and 

new bar that is dominated by large-scale cross-strata (facies 1A).  

 

Fig. 9. Matrix of distributions of the percentage of facies within the bars (vertical proportion). 

Means and standard deviations are given per graph and visualized by stars with error bars. The 

percentages of the investigated surface-area where the facies are found are given in the pie-

charts (with values). 

 

Page 37 of 61 Sedimentology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft paper: Variability in bar sedimentology in a large river, Version 6, 09/03/2011 

38 

 

Fig 10. A) Trench from bar D3 showing interbedded dune sets, ripple co-sets and clay layers. 

B) Trench from bar D2 showing angle-of-repose unit-bar sets. Note the contrast in grain-size 

sorting in the cross-strata when compared with that from further upstream (see Fig. 5H). C) 

Cutbank from bar D1. Note the locally deformed cross-strata at the base of the exposure and 

also the fine-grained horizon that extended over hundreds of metres. D) Core log from bar D1. 

E) Core log from bar D2. F) Core log from bar D2. See Fig. 2 for locations of trenches and 

cores. 

 

Fig. 11: A) Parametric Echo Sounder (PES) profile showing channel bed surface morphology 

and subsurface architecture from the channel adjacent to C1. PES reflection surfaces reveal: i) 

reactivation surfaces within dunes and deposits characterised by sets composed of (C,α) high-

angle, relatively straight, low-amplitude reflections: these are interpreted as angle-of-repose 

cross strata formed by dunes; and ii)  co-sets (C,β)composed of lower-angle, higher-amplitude 

internal reflections with less regular geometries: these are interpreted as stacks of inclined 

cross-stratified sets formed by dunes migrating down the reduced lee slope of a larger host 

dune or bar.  
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Fig. 1. Location of A) the study site, B) the two study reaches and the study bars within the reach that are 
located near C) the Río Paraguay- Río Paraná confluence and D) near Santa Fe.  
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Fig. 2. Oblique aerial views of the bars investigated herein also showing the GPR survey lines and core 
locations. Arrows indicate flow direction. More details are given in Table 1.  
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Fig. 3. GPR profiles with facies interpretations: examples from U1 (A,B), U2 (C), U3 (D), U4 (E), U5 (F), C2 
(G) and C3 (H). Labels: [I] horizontal transition between facies 1A and 1B. [II], [III] and [IV] are facies 2 
with chaotic, discontinuous, and trough-shaped geometries of the reflections, and [V] are complete dune 

profiles. Colours in (H) are facies interpretations: red is facies 1A, yellow is facies 1B, green is facies 2, and 
blue lines are facies 3.  
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Fig. 3. GPR profiles with facies interpretations: examples from U1 (A,B), U2 (C), U3 (D), U4 (E), U5 (F), C2 
(G) and C3 (H). Labels: [I] horizontal transition between facies 1A and 1B. [II], [III] and [IV] are facies 2 
with chaotic, discontinuous, and trough-shaped geometries of the reflections, and [V] are complete dune 

profiles. Colours in (H) are facies interpretations: red is facies 1A, yellow is facies 1B, green is facies 2, and 
blue lines are facies 3.  
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Fig. 4. Maps of spatial averages of GPR facies percentages (vertical sum of a single facies divided by the 
vertical sum of all facies within 200 x 200 m windows shifted in 20 m increments) for bars where GPR 

surveys were undertaken. See text for explanation of labels A-O.  
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Fig 5. Core logs from the bars investigated herein: (A) bar head of U1, (B) left wing of U1, (C) bar head of 
U2, (D) right bar tail of U2, (E) U3, (F) bar head of U5 and (G) bar tail of C2. Also shown are associated 

photos from each of the cores (H-N).  
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Fig. 6. Landsat images (Bands 1, 2 and 3) showing the temporal development of bars in area U. Note that 
the flow discharge varies between images but most images are at low flow.  
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Fig. 6. Landsat images (Bands 1, 2 and 3) showing the temporal development of bars in area U. Note that 
the flow discharge varies between images but most images are at low flow.  
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Fig. 7. Along-stream and cross-stream GPR profiles and interpretation of the geometry of the bounding 
surfaces in U1 (A-D), U2 (E-H), U5 (I-L) and C2 (M-P).  
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Fig. 7. Along-stream and cross-stream GPR profiles and interpretation of the geometry of the bounding 
surfaces in U1 (A-D), U2 (E-H), U5 (I-L) and C2 (M-P).  
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Fig. 7. Along-stream and cross-stream GPR profiles and interpretation of the geometry of the bounding 
surfaces in U1 (A-D), U2 (E-H), U5 (I-L) and C2 (M-P).  

151x99mm (300 x 300 DPI)  

 
 

Page 49 of 61 Sedimentology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Fig. 7. Along-stream and cross-stream GPR profiles and interpretation of the geometry of the bounding 
surfaces in U1 (A-D), U2 (E-H), U5 (I-L) and C2 (M-P).  

151x99mm (300 x 300 DPI)  

 
 

Page 50 of 61Sedimentology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Fig. 8. GPR fence-plot and cores of U3 (Fig. 2E) showing an internal composition of a small and new bar that 
is dominated by large-scale cross-strata (facies 1A).  
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Fig 10. A) Trench from bar D3 showing interbedded dune sets, ripple co-sets and clay layers. B) Trench from 
bar D2 showing angle-of-repose unit-bar sets. Note the contrast in grain-size sorting in the cross-strata 
when compared with that from further upstream (see Fig. 5H). C) Cutbank from bar D1. Note the locally 

deformed cross-strata at the base of the exposure and also the fine-grained horizon that extended over 
hundreds of metres. D) Core log from bar D1. E) Core log from bar D2. F) Core log from bar D2. See Fig. 2 

for locations of trenches and cores.  
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Page 52 of 61Sedimentology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Fig. 11. A) Parametric Echo Sounder (PES) profile showing channel bed surface morphology and subsurface 
architecture from the channel adjacent to C1. PES reflection surfaces reveal: i) reactivation surfaces within 
dunes and deposits characterised by sets composed of (C,α) high-angle, relatively straight, low-amplitude 

reflections: these are interpreted as angle-of-repose cross strata formed by dunes; and ii)  co-sets 
(C,β)composed of lower-angle, higher-amplitude internal reflections with less regular geometries: these are 
interpreted as stacks of inclined cross-stratified sets formed by dunes migrating down the reduced lee slope 

of a larger host dune or bar.  
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Table 1. Background details of the investigated bars, their development observed in LandSat images, key observations from the GPR results, 
and sedimentary structures observed in cores. 

Bar Geomorphology & historical development  

(Figs 2 and 6) 

Ground Penetrating Radar (Figs  3, 4, 7, 8) Sedimentary structures  in cores 

(Figs 5, 10) 

U1 

• 30 km 
upstream

a
 

• ~6 years
b
 

• 0.58 km
2 c
 

• 8.3 km GPR 

• 13 cores 
 

• Amalgamation in 1997 of two bars 0.5x0.3 
and 0.3x1.7 km, approx. 1 km upstream is 
followed by migration of a bar front 
towards vegetated islands (Fig. 6 A1-3) 

• Stalling of the bar front just upstream of 
vegetated islands forms the current bar’s 
right wing (Fig. 6 A3) 

• Gradual in-situ growth of the left bar wing 
causes enclosure and decrease in 
through-flow of water in the lee of the bar 
(Fig. 6 A3-5) 

• Set of facies 1A with a thickness of ~8 m is 
present in the right wing (Figs. 3A, 7A-D), lateral 
extent of >600 x >300 m (Fig. 4 label A) 

• Downstream decrease in facies 1A thickness and 
increase of near-horizontal reflectors that can be 
traced to the inclined reflectors: association of the 
bar trough with the foresets (Fig. 7C-D) 

• The left wing contains a 4 m thick unit of 
upstream-dipping facies 1B (Fig. 3B) with a lateral 
extent of 550 x 200 m (Fig 4, label C) and 
associated with complete dune forms, facies 2 

• The right wing is composed of a 
large set of angle-of-repose strata 
of which the base is not observed 
in the cores overlain by some small 
and medium-scale sets (Fig. 5A) 

• The left wing and bar centre are 
composed of thick units of ripple-
sets with some medium-scale dune 
sets (Fig. 5B) 

• Trenches and cutbanks are 
dominated by dune deposits 

U2 

• 8 km 
upstream

a
 

• ~7 years
b
 

• 0.43 km
2 c
 

• 13.3 km GPR 

• 10 cores 
 

• Developed from a 0.1 x 1 km, elongated 
bar that detached from the left bank in 
1997 (Fig. 6B) 

• Coalesced with one or more unit bars 
migrating towards the left bank in 1999-
2001, generating a winged shape 

• Continues to migrate downstream and 
develop its own elongated wings 

• Large-scale sets of facies 1A lower in the bar 
head (Fig. 4 label E) 

• Stacking of units of facies 1A and 1B migrating to 
the bar centre from left and right (Fig. 7G-H)  

• Wings dominated by facies 1A (Fig 4. label D) 

• Facies 2 is dominant in the upper deposits and 
the bar flanks (Fig 4, label G) 

• Local abundance of facies 3 (Fig. 4 label H) likely 
an artefact of GPR attenuation in the bar centre 
(Fig. 7G) 

• Cores from bar head and flanks 
characteristic contain a variety of 
ripple-co-sets and larger-scale sets 
associated with dunes and small 
unit bars 

• Distinct association of unit-bar 
forests with underlying fine-grained 
trough-deposits that include clay 
layers 

 

U3 

• 7.5 km 
upstream

a
 

• ~2 years
b
 

• 0.025 km
2 c
 

• 1.5 km GPR 

• 2 cores 

• Initially attached to U2 during low flow (Fig. 
6 B4)  

• Likely detached by a chute cut-off after 
2001 

 

• The internal structure is dominated (58%) by two 
amalgamated sets of facies 1A (Fig. 3D, Fig. 8) 

• Cores composed of a large-scale 
set overlain by a few medium- and 
small-scale sets and underlain by 
fine-grained trough-deposits that 
include clay layers 

U4* 

• 1 km 
a
 

downstream 

• ~15 years
b
 

• Developed by amalgamation of bars in the 
period of 1977-1991 (Fig. 6 C1-2) 

• Remained in present location since mid 
1970’s 

• Two sets of facies 1A and 1B in the bar head of 4 
and 5 m thick respectively below 4-6 m of facies 2 
(Fig. 4 label J) 

• Facies 1 dominates the bar tail (Fig. 4 label K) 

• No cores  
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• 2.5 km
2 c
 

• 4.4 km GPR 

• no cores 

• Dune forms common on flanks and bar 
head (Szupiany et al., 2009) 

• Lateral accretion of large bedforms onto 
the bar develops its wings in 1995-96 and 
2001 (Fig. 6 C3-4) 

• Facies 2 dominant in the bar head and flanks 

U5 

• 4 km 
a 

downstream 

• ~27 years
b
 

• 1.0 km
2 c
 

• 5.5 km GPR 

• 1 core 

• Not reached by Río Paraguay sediment 

• Formed from symmetrical bar 1km 
upstream in 1973 

• Remained in present location since 1981 

• Characterised by amalgamation of unit 
bars – mosaic-like development (Fig. 6 C2-
5) 

• Data restricted to unvegetated right side  

• Facies 3 more abundant than other upstream 
bars (Fig. 4 label L), characteristically laterally 
extensive (Fig. 7I-L), and dissecting the deposits 
into bar-scale units with typical sizes of 30-600 m 

• Facies 2 dominant 
 

• Bottomsets of unit-bar deposits 
contain clay (Fig. 5M) 

• Large-scale unit (unit bar) 
composed internally of a mix of 
dune- and ripple-sets (Fig. 5F) 

C1 

• 9 km 
a 

downstream 

• ~1 year
b
 

• 0.085 km
2 c
 

• - km GPR 

• 1 core 

• Developed in 2007 in a <1km wide 
anabranch that is dominated by the silt-
laden waters of the Río Paraguay  (Fig. 
2H) 

• Has remained in place since 2007, 
gradually elongated to ~1km 

• Bar surface dominated by silt 

• GPR attempted, but radar signal was attenuated • Unsuccessful  coring attempts in 
too soft sediments 

• Retrieved core contained 36% 
ripple sets, 30% unidentifiable 
disturbed sediments, and cross-
stratified sands 

• Abundant deformation observed in 
trench faces 

C2 

• 73 km 
a 

downstream 

• ~4 years
b
 

• 1.4 km
2 c
 

• 5.8 km GPR 

• 3 cores 

• Located where Río Paraná and Río 
Paraguay are intermittently mixed (Fig. 1) 

• Bar head appeared in 1999, became 
vegetated in 2004 when the bar tail 
developed (Fig. 6D) 

• The present size of the bar tail was 
reached in 2007 

• GPR on 1.3 x 0.7 km bar tail, part of a 2.0 x 1.0 
km compound bar (Fig. 2F) 

• Facies 1A uncommon and restricted to small 10-
100 m sets, facies 1B more common (Fig. 4 label 
N) 

• Facies 3 common and laterally extensive as in 
upstream bars (Fig. 4 label O; Fig. 7M-P) 

• Cores show abundance of ripple 
sets (67%) and only one 0.5 m 
thick large-scale set (Fig. 5G,N) 
underlain by a thick ripple co-set 

C3 

• 74 km 
a 

downstream 

• <1 year
b
 

• 0.025 km
2 c
 

• 0.5 km GPR 

• no cores 

• Exposed during low flow in 2008 

• This incipient bar developed as an 
elevated part of a lobate lee slope that 
extends from the tail of C2 (Fig. 2G) 

• Composed of a single large scale set that is 
dominated by facies 1B (Fig. 3H) 

• Underlain by a strong laterally extensive reflector 
below which no structures are observed 

• No cores 
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D1 

• 520 km 
a 

downstream 

• >38 years
b
 

• 1.25 km
2 c
 

• - km GPR 

• 6 cores 

• Located where waters of the Río Paraná 
and Río Paraguay are mixed 

• Submerged bars visible in early images, 
but first emerged in 1999 as a relatively 
short and wide bar and gradually became 
elongated 

• Vegetated from 2000 onwards (Fig. 6E) 

• Sandy parts restricted to bar head and left 
side 

• GPR attempted, but radar signal was attenuated • The 6 cores contained 46% ripples 
sets and 32% larger-scale sets but 
no bar-scale sets 

• Dune-sets were typically 
interbedded with finer-grained 
ripple sets (Fig. 10D) 

• Cut-banks on the right side 
contained more dune sets (Fig. 
10C) and laterally-extensive clay 
layers and soil horizons of up to 0.4 
m  

D2 

• 535 km 
a 

downstream 

• <1 year
b
 

• 0.09 km
2 c
 

• - km GPR 

• 5 cores 

• Low-lying bar exposed at low flow has 
been in its current location since 2006 

 

• GPR attempted, but radar signal was attenuated • 5 cores contained 32% ripples and 
23% dune sets. 

• 2 bar-scale sets (20% of core 
length) were underlain by fine-
grained bottomsets that coarsen-
upward into its angle-of-repose 
strata (Fig. 10 E,F) 

• Trenches revealed bar-scale cross 
strata with contrast in grain size 
between 50-60 µm and 190-310 
µm (Fig. 10B)  

D3 

• 537 km 
a 

downstream 

• >38 years
b
 

• 1.25 km
2 c
 

• - km GPR 

• no cores 

• Sandy bar tail attached to large vegetated 
island 2 km downstream from D2 and has 
been in its current location since the 
earliest satellite images 

 

• GPR attempted, but radar signal was attenuated • Two trenches revealed medium-
scale sets interbedded with co- and 
return-flow ripple-sets  and clay 
layers with grain sizes of 40, 230, 
and 280 µm respectively (Fig. 10A) 

a
 relative to the confluence of the Río Paraná and Río Paraguay; 

b
 approximate age at the time of the survey (2008);  

c
 Bar area measured at 11400 m

3
 s

-1 
in 

December 2008; * Studied by Sambrook Smith et al. (2009) 

 

Page 56 of 61Sedimentology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2. Classification scheme of GPR facies described in this study (see also Fig. 3) 

Facies GPR facies 
description 

Sedimentary 
interpretation  
- structures 

Genetic 
interpretation  
- bedforms 

Examples of GPR lines*  Conceptual sketch of 2D 
structures 

1 A >50% of reflections 
are steeper than 20º 
Commonly straight 
and relatively low 
amplitude 

Large-scale angle-of-
repose cross strata with 
complex pre/re-sorting 
patterns (see text) 

Primarily avalanche 
deposition at angle-of-
repose bar slopes. 
Could also include 
some very large 
dunes 

 

 
 

 

 

B >50% of reflections 
>6 º and <20 º 
Commonly irregular 
and higher 
amplitude 

Co-sets of inclined 
small- and medium-
scale sets  

Primarily dunes and 
ripples migrating over 
bar-scale slopes 
below-the angle-of-
repose 

 

 
 

 

 

2 >50% of reflections 
<6 º with undular, 
discontinuous, 
or chaotic shapes 

Near-horizontal small- 
and medium-scale sets, 
may include large-scale 
cross strata with 
insufficient contrast in 
properties to generate 
reflections 

Primarily dunes and 
ripples migrating over 
near-horizontal 
surfaces (e.g. channel 
floor, bar-top) 

 

 
 

 
 
 

 

3 High-amplitude, 
laterally-extensive 
reflections, 
commonly 
associated with loss 
of radar signal 

Primarily near-
horizontal fine-grained 
layers of small-scale 
sets, distinct contrasts 
in grain size 

Large-scale bounding 
surfaces such as unit-
bar bottomsets and 
low-flow stage 
deposits, commonly 
finer-grained, not 
limited to clay 

 

 
 

 
 
 
 
 
 

 

(ripple-sets) 

* Images have heights of 2 m and lengths of 20 m  

 

Complex sorting 

patterns 
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Table 3. Percentages of vertical associations of facies calculated from the ~0.1 m 
spaced vertical profiles. 

(a) 
Overlying facies 

1A 1B 2 3 

U
n
d
e
rl
y
in
g
 

F
a
c
ie
s
 

1A  2 17 17 

1B 2  17 18 

2 7 18  65 

3 91 80 66  
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Table 4: Percentages silt and clay, sand and gravel, number of samples, and 
median grain sizes of the investigated bars. Note the downstream increase in clay. 

bar silt/clay% sand% gravel% n D50 (µm) 

U1 1 99 0 26 263 

U2 2 96 2 56 315 

U3 0 99 1 16 361 

U5 9 90 1 27 348 

C1 31 69 0 13 141 

C2 11 89 0 26 244 

D1 13 87 0 37 237 

D2 12 88 0 25 251 

D3 23 77 0 3 181 
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Draft paper: Variability in bar sedimentology in a large river, Version 6, 09/03/2011 

1 

 

Table 5: Core lengths and percentages of sedimentary structures in the cores.  
Cores core 

length 

ripples dunes bars low-stage 

plane bed 

upper-

stage 

plane bed 

unknown 

or 

deformed 

all 152.95 35 26 16 1 0 22 

upstream 95.37 31 27 20 0 0 22 

downstream 57.58 43 24 8 2 0 24 

U1 51.09 43 11 22 0 0 23 

U2 35.33 19 51 12 0 0 18 

U3 4.99 2 26 72 0 0 0 

U5 3.96 16 21 0 0 3 60 

C1 4.20 36 25 0 8 0 30 

C2 13.01 15 15 4 1 0 24 

D1 19.93 46 32 0 2 0 20 

D2 20.44 32 23 20 1 0 25 
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