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Abstract

In recent years, the significance of millimeter wave sensors has achieved a
paramount role, especially in the non-invasive and ubiquitous analysis of various
materials and objects. This paper introduces a novel IoT-based fake currency
detection using millimeter wave (mmWave) that leverages machine and deep
learning algorithms for the detection of fake and genuine currency based on their
distinct sensor reflections. To gather these reflections or signatures from differ-
ent currency notes, we utilize multiple receiving (RX) antennae of the radar
sensor module. Our proposed framework encompasses three different approaches
for genuine and fake currency detection, Convolutional Neural Network (CNN),
k-nearest Neighbor (k-NN), and Transfer Learning Technique (TLT). After exten-
sive experiments, the proposed framework exhibits impressive accuracy and
obtained classification accuracy of 96%, 94%, and 98% for CNN, k-NN, and TLT
in distinguishing 10 different currency notes using radar signals.

Keywords: Millimeter Wave, Fake Currency, Machine learning, Deep Learning, Signal
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1 Introduction

In the global march towards modernization, the allure of new technologies remains
undeniable. These advancements have simplified and enriched daily life for many.
However, there’s a downside, some people misuse these new technologies for harmful
reasons. The illicit production of fake currency, facilitated by sophisticated technology,
has burgeoned into a lucrative underhand enterprise. Currently, there are 180 distinct
currencies circulated worldwide, each characterized by its unique security attributes
and dimensions (1). Such features facilitate the identification of a note’s nation of
origin and its value (2), Nasser et al. (2021). Nevertheless, the rampant rise in currency
counterfeiting poses a pressing concern across nations. With the fake notes bearing an
uncanny resemblance to authentic ones, distinguishing the genuine from the fraudulent
has become a formidable challenge for the global community.

Wireless sensing with broadband signals has established Chouat et al. (2023)
its worth in detecting and identifying different materials. For example, Ghiri and
Entesari (2019) demonstrated non-contact chemical sensing using ultra-wideband
(UWB) pulses, relying on the unique dielectric properties of materials. Millimeter-
wave (mmWave) signals, another high-frequency pulse, were utilized to understand
non-dispersive and non-magnetic substances by gauging their complex permittivity
Vakili et al. (2015). By comparing signals received with and without dielectric slabs,
material properties were inferred from perceived signal distortions Tu et al. (2020).
When moving to even higher frequencies, the capabilities of broadband mm-wave sys-
tems enhance multiple sensing applications. Techniques like remote sensing have been
applied to detect minor object vibrations using mm-wave signals, capitalizing on the
micro-Doppler effect Björklund et al. (2012). Moreover, THz frequencies are promis-
ing for high-precision spectroscopy, where a broad-ranging detector can spot various
molecules in a unified manner Jamali et al. (2019). Additionally, with enhanced res-
olution at diminutive wavelengths, mm-wave radars have proven adept at gesture
recognition Hazra and Santra (2018). Several factors, including the thickness of an
object, its dimensions, contaminants, and reflections from nearby testing equipment,
might influence the signals received in radar and sensing applications. This can intro-
duce a degree of ambiguity in detection outcomes. To address this, one can conduct
multiple measurements on the subjects being tested and employ supervised machine
learning to categorize based on the amassed data sets. These learning mechanisms can
pave the way for smart radars and sensors by identifying consistent patterns in the
collected data. As a case in point, applications like heart rate monitoring Saluja et al.
(2019), observing human movement patterns and micro-Doppler distinctions Zhang
and Cao (2018), pinpointing multiple objects at equal distances from a radar Sarkar
and Ghosh (2019), and material categorization at 77-81 GHz Weiß and Santra (2018)
have effectively harnessed supervised learning techniques.

In this research, we explore the mmWave Frequency-Modulated Continuous Wave
(FMCW) radar equipped with multiple antennas to distinguish signal variations
reflected from fake and genuine banknotes. Each receiving antenna functions as an RX
channel, generating four pairs of real and imaginary signal sets. Utilizing these signals,
we proposed a framework of three distinct methodologies for discriminating between
fake and genuine banknotes: deep learning Convolutional Neural Network (CNN);

2



machine learning k-Nearest Neighbors (k-NN) using different statistical features; and
a transfer learning model called AlexNet. In the CNN model, signals from multiple
reception channels in both time and frequency domains are visualized as scalogram
images using CWT. These images then serve as input to the CNN model, which teases
out specific scalogram features to categorize the currency in terms of fake and genuine.
For the machine learning k-NN model, we pinpoint ten standard features from the
time and frequency domain signals and employ a k-NN model with optimized ’k’ val-
ues. Finally, in the transfer learning method, the AlexNet model processes scalograms
of time and frequency domain signals to extract significant features for categorization
purposes. Additionally, we fine-tune each classification model’s parameters to enhance
accuracy. This designed framework is put to the test against five fake (fake-5, fake-10,
fake-20, fake-50, and fake-100) and five authentic (genuine-5, genuine-10, genuine-20,
genuine-50, and genuine-100) currency denominations.

The primary contributions of this research are as follows:

• To our understanding, this research is the ubiquitous, contactless, and innovative
effort to explore mmWave RF signals for fake currency detection.

• We develop a range of sophisticated algorithms that extract salient patterns from
radar signals, further refining the approach to scalogram generation.

• This research proposed a framework that aligns the time and frequency domain sig-
nals of FMCW radar with multiple receiving channels, and applies machine and deep
learning techniques, specifically CNN and transfer learning to detect fake currency.

• We extract a compact set of ten predefined features, enabling the differentiation of
various banknotes through the conventional machine learning technique of the k-NN
classifier.

The rest of the paper is organized as: Section 2 discusses related work done with
mmWave sensors in different areas. Section 3 gives the detailed designs of the proposed
framework and how we put things into action. Sections 4 and 5 cover how we collected
data and the methods we used to extract radar features. Sections 6 and 7 explain the
setup we used for experiments and how we evaluated our framework. Lastly, in Section
8, we discuss the future work that could explore and conclude our findings.

2 Related Work

This study extends upon two distinct domains of prior research: radar-based inter-
active sensing and material identification through radar sensors. We conduct a
comprehensive review of the existing literature in both domains, highlighting the
advancements made, and elucidate the innovative aspects of our methodology in the
context of fake currency detection.

Radar-Based Interactive Sensing has witnessed notable advancements with the
introduction of miniature radar sensors like Soli Lien et al. (2016). These sensors have
paved the way for exploring precise motion sensing in human-computer interaction.
Notably, Soli has been utilized for detecting micro-gestures, as evidenced by Ens et al.
(2018), where such micro-gestures are seamlessly integrated with larger gestures, offer-
ing an intuitive input method for a gesture-based Augmented Reality interface. The
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work by Wang et al. (2016) extensively explores various Soli-detectable micro-gestures,
highlighting the sensors’ versatility. Radar sensors, known for their advantages such
as a small footprint, low power consumption, and fewer privacy concerns compared to
alternative gesture-sensing techniques, enable micro-gestural interaction. As a result,
these sensors have found integration into everyday consumer devices, exemplified by
their incorporation into devices like Google’s Pixel 4 smartphone and the Nest Hub
smart display Eckhardt (1971). Furthermore, radar technology has been explored for
material and object identification. For example, Cubesense Yang and Zhang (2021)
supports radar interactions based on corner reflectors but falls short in distinguishing
between different corner reflectors and objects.

Prior research, as demonstrated by Yeo et al. (2016), has shown the capability
to detect and classify various objects using radar sensors, introducing context-aware
and tangible applications. However, these systems have limitations, as they can only
differentiate materials at a fixed distance from the sensor and rely on changes in mate-
rial properties. The research conducted by McIntosh et al. (2017) utilized an array
of microwave Doppler sensors beneath a table, but this approach requires substan-
tial setup space and multiple antennas, making it impractical for everyday use. An
alternative proposed by Arakawa and Zhang (2021) introduced low-cost origami-based
tangible controllers using mm-wave radar sensors but did not involve the identification
of diverse controllers. In our research, we utilize a single 77-81 GHz radar sensor to dis-
tinguish between counterfeit and genuine banknotes in a desktop setup. Additionally,
Zhao et al. (2019) demonstrated the identification and tracking of human participants
through point cloud data on millimeter-wave radar, while Hsu et al. (2019) achieved
identification using RF reflections from human participants with high accuracy via
a 5.46-7.25 GHz FMCW radio. The research outlined in these papers underscores
radar’s potential to support human-computer interaction and object/material identi-
fication at a fixed distance Yeo and Quigley (2017). However, there is a notable gap
in prior research concerning the use of custom radar reflectors to identify counterfeit
and genuine currency on a tabletop surface where the distance from the radar sen-
sor varies. Our research addresses this gap by leveraging the distinctive properties of
radar reflectors.

Material detection methods conventionally employ techniques such as optical spec-
troscopy, large radar, X-ray, and CT/MRI, among others. While these methods yield
high-resolution results, their reliance on specialized and bulky instruments makes them
costly and confines their use in laboratory settings and critical security applications.
In recent years, there has been a growing interest in advancing material identification
within diverse contexts Yue and Katabi (2019). Various approaches have explored the
use of RF signals, with a particular emphasis on liquid identification. LiquID Dhekne
et al. (2018) achieves remarkable accuracy in liquid testing using UWB radar in a spe-
cialized setup featuring a unique container. TagScan Xie et al. (2019) classifies liquids
by analyzing phase and RSS changes of RFID signals that permeate the target. In sub-
sequent developments, TagTag utilizes the impedance change of RFID tags attached
to the target, enabling the simultaneous sensing of multiple targets. RFIQ Ha et al.
(2020) exploits electromagnetic interactions between RFID tags on containers and the
enclosed materials to assess food quality. TwinLeak Guo et al. (2019) employs RFID
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for detecting liquid leakage without specifying the types of liquids. WiFi signals have
also been employed for material sensing, exemplified by WiMi Feng et al. (2019), which
applies a concept similar to TagScan Xie et al. (2019) on standard WiFi devices for
liquid identification.

In the domain of suspicious object detection, Wang et al. (2018) introduces a
system that identifies liquids and metals, among other objects. Strobe uses a WiFi
receiver buried in the soil to sense soil moisture while employing three mutually per-
pendicular receive antennas (constructed from commodity WiFi cards) to recognize
materials Corradini et al. (2023). Notably, the sole work to date utilizing reflection
signals on WiFi for material recognition. Millimeter-wave radios, including dedicated
radar and networking devices citeqayyum2022assessment, has been applied to object
imaging and recognition. RadarCat utilizes Google Soli to interact with targets but
distinguishes different objects of the same material type as distinct materials. RSA
Zhu et al. (2015) focuses on imaging with 60GHz radios but requires well-separated
and independently moving Tx and Rx components. Ulysses improves upon RSA by
utilizing a single device, although it still demands precise radio movement and is less
suitable for handheld mobile scenarios.

In contrast to existing works, our proposed framework repurposes a single commod-
ity mmWave networking device, harnessing reflection signals to extract explainable
and distinguishable features for the sensing of counterfeit and genuine currency.

3 Framework Overview

mmWave radars are better than other sensor types due to their compact size, making
them suitable for integration into mobile phones Kwon et al. (2021) and small handheld
devices. Unlike vision sensors, radars offer enhanced privacy and are more user-friendly.
Also, these compact radars are energy-efficient compared to many other sensor types.
Building on these advantages, our proposed model employs a readily available FMCW
radar with multi-receiver channel, to capture the signature reflected from both fake
and genuine banknotes. Unlike traditional continuous wave (CW) sensors, FMCW
sensors ascertain the target range R by emitting a continuous frequency-modulated
signal, commonly known as a chirp, with a sweeping bandwidth B. To extract coherent
samples in both the time and frequency domains, the received (RX) signal is subse-
quently converted downward. These samples encapsulate the cumulative attributes of
the currency, reflecting its transmission and reflective properties. The mmWave radar
signal’s reflectivity is influenced by the currency properties and hidden features, such as
composition, distinct texture, embedded security threads, and other common security
features in banknotes. Similarly, hidden attributes within the currency also influence
the absorbed signal strength. Notably, genuine banknotes tend to exhibit stronger sig-
nal reflections than their counterfeit counterparts. As such, based on these currency
properties, features of the received signals, like mean, standard deviation, and power
spectral density, fluctuate. We utilize these unique variations present in the signals of
the time and frequency domains. from different banknotes as key indicators to distin-
guish between genuine and fake notes using mmWave radar. In Fig. 1, our proposed
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(a) Radar Signal Processing (b) Proposed Framework for Currency Detection

Fig. 1: Fig. 1a shows Signal processing of mmWave sensor and Fig. 1b indicates the
proposed framework for fake currency detection

framework for classifaction integrates input from N number of RX channels. The sys-
tem outputs predictions regarding the authenticity of currency, classifying it as either
fake or genuine through the classification network. The mmWave radar’s TX antenna
transmits FMCW chirp signals, with N RX antennas capturing the reflected signals.
Each signal undergoes down-conversion, resulting in both real (R) and imaginary (I)
signal components. Afterward, an analog-to-digital converter (ADC) digitizes all N
signals, which are then sent to a computer for in-depth analysis. The currency classifi-
cation methodology involves three distinct strategies, as illustrated in Fig. 1b. The first
approach employs the CNN model for classifying the target currency based on received
signals. we generate refined signal scalograms for each note using continuous wavelet
transform (CWT) and feed them to the CNN model. In the second approach, we derive
ten predetermined features (Mean, Median, Max, Min, Standard Deviation, Variance,
Peak-to-Peak (Range), Root Mean Square (RMS), Kurtosis, and Skewness) from the
FMCW reflected signals to train the machine learning k-NN algorithm. Finally, a
transfer learning technique (TLT) based on the AlexNet model with the CNN model
is used to classify fake and genuine currency notes using signal scalograms.

4 Data Collection

The data collection process required a carefully orchestrated procedure to capture a
wide variety of both genuine and counterfeit currency samples. At the core of our
dataset are both genuine and fake banknotes that we sourced directly from a regional
Chinese bank. The radar signals are recorded from each genuine and fake note in a
controlled tabletop setup as shown in Fig. 2.
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we utilize the TI IWR1443 FMCW sensor device, as illustrated in Fig. 2, designed
according to the specifications outlined in the TI datasheet (2021). This device con-
sists of three transmission and four receiving antennas. A maximum of two antennas
can transmit signals concurrently, and all receiving antennas can receive reflected sig-
nals simultaneously. This radar sensor is engineered to cover frequency bands within
the 77–81 GHz range. Moreover, it is an all-encompassing chip that incorporates an
RF system, ramp generator, integrated memory chip, digital front end, and signal
processing unit.

(a) Data Collection of Fake and Genuine
Notes (b) IWR1443 FMCW Radar Module

Fig. 2: Fig. 2a Data collection of fake and genuine notes using mmWave sensor and
Fig. 2b shows the Texas Instruments (TI)IWR1443 FMCW Radar Module

Delving deeper into its architecture, power amplifiers (PA) binary phase modula-
tion (BPM) are attached to each transmission antenna (TX) in the RF system. The
ADC, mixer, IF filtering, and low-noise amplifier (LNA) are linked to each receiving
antenna (RX), which then proceeds to a decimation phase. The ramp generator, a
vital component, seamlessly modulates the input voltage of a voltage-controlled oscil-
lator (VCO). This modulation process induces a frequency shift in a local oscillator.
Following this, an RF synthesizer generates a wave, which is subsequently refined by a
4× multiplier to create the necessary ramp chirp waveform. The echo, captured by the
RX antenna, undergoes coherent down-conversion to an intermediate frequency (IF)
at the mixer. This process leverages the same chirp and finally undergoes low pass fil-
tering (LPF). To derive the real (R) and imaginary (I) components of the beat signal,
a 90° phase shifter is employed. These analog beat signals are then individually digi-
tized by two distinct ADCs, subsequently channeling them to the processing unit for
further refinement. The samples collected is contingent upon the count of active RX
channels. Hence, N RX channels will yield N pairs of R and I beat signals, symbol-
ized as X(R)1, X(I)1, X(R)2, X(I)2, ... , X(R)N , and X(I)N . Conventionally, the
ADC output for the beat signal is structured and saved as a series of complex vectors,
effectively forming a complex matrix X. This matrix has dimensions equivalent to (the
count of channels × the sample count per frame), which is represented as N×L. Here,
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N signifies the number of active RX channels, and L indicates the sample count within
each captured frame. Thus, X can be characterized as X[n, l] = X[l](R)n+ jX[l](I)n,
where ’n’ falls within 1, N indicating the antenna index and ’l’ within 1, L pointing
to the time index, showcasing the dimensions of the incoming raw signal. For every
RX channel, the signals undergo further normalization, setting their mean to zero
and adjusting their standard deviation to one. This refined matrix, X, becomes the
cornerstone for currency classification in the methodologies we’ve implemented.

5 Feature Extraction of mmWave Radar Signals

5.1 Convolutional Neural Network (CNN)

For time-series data analysis and pattern recognition, deep learning algorithms have
surged in popularity, and play a vital role in extracting features Xia (2020). CNNs
outperform other machine learning paradigms by virtue of their inherent capability to
autonomously extract spatial-temporal features from datasets, eliminating the need
for manual feature extraction. Within the realm of multi-channel sensor, spatial fea-
tures characterize the interrelations among signals captured via synchronized channels.
Conversely, ’temporal features’ articulate the correlations among ADC time samples,
capturing the material’s radial attributes.

As convolutional layers traverse the input signal, they discern and isolate distinctive
features. These features, once extracted, are then utilized to instruct a fully connected
neural network for carrying out classification tasks. For our study, we processed signal
scalograms of both fake and genuine currency notes (800x300) through our CNN for
intricate feature extraction. This process is visually represented in Table 2. The images
then pass through a fully connected layer dedicated to currency differentiation. The
classification structure we propose encompasses three sequential convolutional layers,
succeeded by a flattening layer. This latter layer restructures the data, This ensures
compatibility with the subsequent fully connected neurons. we set 64 filters in the
initial 2D convolutional layer, each measuring 3x3, while the subsequent layer possesses
32 filters of 2x2 dimensions. Through empirical analysis, we optimized the network
parameters to maximize classification precision, with detailed configurations outlined
in Table 1

5.2 Machine Learning

The k-NN algorithm operates under supervised learning and classifies an input based
on the most common class among its k closest data samples. Despite its simplicity,
k-NN often yields impressively accurate classification results. Indeed, it has been estab-
lished that as both the training samples and k approach infinity, k-NN converges to
emulate the Bayesian classifier Theodoridis (2015). In this methodology, we employ
a distinct strategy to train k-NN, relying on ten features: mean, median, max, min,
standard deviation, variance, peak-to-peak (range), root mean square (RMS), kurto-
sis, and skewness derived from the acquired signals. Each collected raw data instance
possesses dimensions of N × L, where N indicates the number of RX antennas, and
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Table 1: CNN Architecture for the Proposed
Framework

Layer Parameters Value

Input Shape - 300*800*3

2D-CNN
No. of filters 64
Filter Size 3*3
Activation Function ReLu

2D-CNN
No. of filters 32
Filter Size 2*2
Activation Function ReLu

2D-CNN
No. of filters 16
Filter Size 2*2
Activation Function ReLu

Flatten - -

FCDN
Classification Output 10
Activation Function SoftMax

Table 2: Reflected Signal Scalograms from Each Currency
Note

Fake-5 Genuine-5 Fake-10

Genuine-10 Fake-20 Genuine-20

Fake-50 Genuine-50 Fake-100

the number of samples within each frame is denoted by L. The raw sensor data under-
goes careful processing to extract the ten features. For a single currency sample of one
antenna, the features 1 × L dimensions. The predefined features are assessed using
this vector, producing an improved feature vector with dimensions 1 × 10. Hence,
each currency signal produces N feature from every received frame of the RX chan-
nel, resulting in a dimension of N × 10. As a result, The comprehensive feature table
is structured, with rows denoting samples and columns specifying particular features.
To improve the accuracy of classification, the parameter k can be fine-tuned further.
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5.3 Transfer Learning Technique

We utilize the AlexNet Krizhevsky et al. (2012) transfer learning model with simple
CNN to classify between fake and real currency detection. In our research frame-
work for detecting fake currency using mm-wave radar, we leveraged the capabilities
of AlexNet, a renowned pre-trained model. While AlexNet was originally architected
for large-scale image classification, its deep convolutional layers offered the ability to
extract hierarchical features from images making it a prime solution for our task. To
adapt AlexNet for our specific currency classification problem, we refined the output
layer to distinguish between genuine and fake currency. Given the distinctive nature
of the mm-wave signal, we make signal scalograms using CWT, and data augmenta-
tion strategies were introduced to enhance the dataset’s diversity and ensure model
generalization. Importantly, rather than training the model from scratch, we retained
the patterns learned by the initial layers of AlexNet. However, to capture the specific
features of fake currency in the signal scalograms, we fine-tuned the model’s deeper
layers. This strategy of harnessing pre-existing knowledge combined with targeted
training proved effective.

6 Experimental Setup

For the experiments, we used the IWR1443 mmWave FMCW radar sensor module
from TI (2021), which we configured to function within the 77–81 GHz frequency
band. The radar was strategically positioned at the tabletop, to gather experimental
data. Following our setup, both genuine and fake banknotes were systematically posi-
tioned in the radar’s interaction zone to collect signal samples. As per Balanis (2011),
the mmWave radar distance can be estimated using the formula 2d2/λ, where ’d’ sym-
bolizes the maximum linear dimension, and ’λ’ represents the wavelength of the sensor.
The dimension of the MIMO is approximately 4.6λ. Given the operational frequency
of the radar is set to 77 GHz, the wavelength is roughly 0.42 cm. This translates to
a distance of about 20.5 cm. Given these metrics, the currency lies in an interaction
area between the radar’s near-field and far-field regions, with respect to the MIMO
array. The radar module in use possesses an azimuth beamwidth of ±50◦ and an ele-
vation beamwidth of ±20◦, defined by a 6 dB signal drop from the center. As our
identification hinges on the unique RF signature of the reflected signals, any potential
variations between near and far fields shouldn’t impede the signature, especially since
the currency notes maintain a proper distance from the mmWave within its interac-
tion zone. Our designated interaction zone for the experiments measures 20 × 20 cm.
This ensures that the zone surpasses the radar’s illuminative reach, optimizing radar
signal acquisition.

In the experimental setup, illustrated in Fig. 2a, we engaged one TX channel
and four RX channels. This configuration is consistently employed for all banknote
samples. It’s worth noting that any signals introduced by the table’s surface could be
factored into the measurements. However, such interference is likely dismissed by the
classifier and doesn’t notably skew the experimental results, as alluded to in Bishop
and Nasrabadi (2006). Data collection spanned multiple sessions over a week, ensuring
a diverse set of environmental conditions during collection. For each currency note the
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Algorithm 1 Fake and Genuine Currency Detection using mm-Wave

1: Input: RFS - Radar Frequency Signal
2: Output: Prediction - Fake or Genuine
3: Step 1: Preprocess the received signal
4: RFSdetrended ← DetrendSignal(RFS)
5: RFS′

denoised ← RemoveNoise(RFSdetrended)
6: RFS′′ ← ApplyHighPassFilter(RFS′

denoised)
7: Step 2: Create signal scalograms for feature extraction
8: SI ← ScalogramImages(RFS′′)
9: Step 3: Extract features from scalograms

10: Features← FeatureExtractionMethod(SI,method1,method2,method3)
11: Step 4: Use Proposed framework model for prediction
12: Prediction← PredictFakeGenuine(Features)
13: Output: Prediction

data sample is separated into two segments: one for training data samples and the other
for testing. Notably, the testing set is entirely new to the classifier, ensuring a true test
of its performance. Within these training and testing datasets, the physical samples
were further subdivided. For instance, the training segment was arbitrarily split into
three sub-segments. In every data collection session, a sample was placed within the
interaction area for a specific duration and then subsequently removed. In subsequent
sessions, the sample was reintroduced with varied placements to randomize conditions.
To enrich the robustness of our dataset, each physical currency sample underwent
three distinct measurements. These were captured with varying, random orientations
to ensure a comprehensive capture of potential features. Throughout this process, a
uniform measurement approach was adhered to for all ten currency denominations.
This meant that for any given currency type, the alterations in orientation along the
vertical axis remained consistent across samples. After each orientation measurement,
the currency was randomly rearranged within the interaction zone, even if it was the
same physical sample, to enhance variability.

In this research, the frequency peak power of FMCW radar operates is 12 dBm, for
data collection from diverse banknotes. The starting frequency of the FMCW radar
chipset is, fstart, which is started at 77 GHz, sweep bandwidth, B is set at 4 GHz,
and the IF bandwidth of radar is 15-MHz. The duration of chirp is, Tc, we opted
for is 40 µs, translating to a ramp chirp rate, S, of 100 MHz/µs. Consequently, It is
determined by the maximal discernible area Rangemax = (IFmax × c)/(2 × S), where
IFmax signifies the maximal supported IF bandwidth, c, and S denotes the speed of
light and ramp chirp rate. This configuration permits a substantial area of up to 22.5 m.
We specified the ADC sampling rate at 18.75 MHz and configured the frame to envelop
a lone chirp, resulting in a strike range Rd, of 9.6 m. The subsequent count of time
samples is

(
2×Rd×B

c

)
= 256, aligning with the time samples per frame, L (considering

the frame comprises solely one chirp). The information from the four RX channels
is amalgamated into a matrix sized 4 × 256, serving as the primary input for our
detection methodologies. Our focus settled on ten distinct banknotes: fake-5, fake-10,

11



fake-20, fake-50, fake-100, genuine-5, genuine-10, genuine-20, genuine-50, and genuine-
100. This selection ensures a broad examination of notes, each presenting varying
reflective properties, refractive indexes, thicknesses, and dielectric constants. While
gathering samples, we are meticulous in ensuring that each note’s orientation and
placement under the radar sensor is randomized. This approach amplifies the data’s
inherent variability, which proves instrumental in refining the classification network
for real-world applications.

7 Evaluation

In our research, we have developed a fully integrated prototype for fake and genuine
currency notes, employing a commercial off-the-shelf (COTS) sensor. Importantly,
we’ve made no modifications to the hardware or software of the original sensor. The
underlying algorithms are made using Python 3 and Pytorch 1.5, executed on a Mac-
Book equipped with a 2.4GHz Intel Core i5 processor and 8GB of RAM, running the
mac OS operating system. This setup is attached to the DCA1000EVM via an Ether-
net connection. Table. 2 displays an example of the obtained time-frequency domain
signal scalograms, representing the samples extracted from the four RX channels of
the sensor. From this representation, it’s visible that each currency note responds dif-
ferently to an identical transmitted waveform, positioning it for classification using
our varied proposed methodologies. Table 3 shows the classification performance of
the proposed framework. To discover the efficacy of our classification schema, we’ve

Table 3: Proposed Framework
Classification Performance

Classifiers Accuracy(%)

Deep Learning 96%

Machine Learning 94%

Transfer Learning 98%

delineated the following evaluative metrics:

• Accuracy: Denoted as the proportion of correctly discerned samples in relation to
the entirety of samples.

• Precision: Characterized as the fraction of accurately identified counterfeit and
legitimate notes relative to all the notes categorized as such.

• Recall: Defined as the proportion of accurately pinpointed counterfeit and authentic
notes in relation to the complete set of actual counterfeit and legitimate notes.

• F1-score: This metric serves as a harmonized measure of precision and recall, offering
a balanced viewpoint of both aspects.

• False alarm rate (FAR). FAR is the probability of identifying fake notes as genuine
notes.

• Missing alarm rate (MAR). MAR is the probability of identifying a genuine note as
a fake note.
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Method 1 is based on a deep learning approach, our dataset consists of signal scalo-
grams and is partitioned, allocating 80% for training and the residual 20% for testing,
ensuring that the test segment has not been previously exposed to the CNN classi-
fier. The training dataset is further split into two parts, designating 80% for iterative
training and the remaining 20% for validation. The dataset undergoes five rotations,
and each rotation’s training is reinforced using five-fold cross-validation. Ultimately,
the model culminated in a fully connected layer with a softmax function to classify the
ten distinct currency notes. This method achieved a commendable classification accu-
racy of 96%. using method 2, a k-NN Classifier, we utilized 10 pre-defined features

Table 4: Accuracy of different models w.r.t
different distance

Models D-15 D-20 D-25 D-30 D-35

CNN 95.0 96.2 94.8 88.1 85.0
k-NN 93.2 94.0 92.1 86.3 80.9
TLT 96.5 97.9 95.0 88.7 86.0

I-e. mean, median, max, min, standard deviation, variance, peak-to-peak (Range),
root mean square (RMS), kurtosis, and skewness. To enhance the classification out-
come, the parameter ’k’ is varied. The standard practice involves splitting the feature
dataset into 80% for training and 20% for testing, incorporating data that has not
been previously exposed. With this configuration, in all three scenarios, the highest
accuracy is achieved when k = 1, signifying that the training set size is substantial
enough to yield closely matching neighbors. The classification accuracy for different
scenarios 1–3 is 93.2%, 94%, and 92.1%, respectively.

(a) (b)

Fig. 3: Fig.3a shows the confusion matrix for each classification and Fig.3b indicate
Number of Frames Vs. Classification Accuracy(%)
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Finally, Using the transfer learning technique(TLT), We adapted the renowned
AlexNet model, originally trained on the vast ImageNet dataset, to the task of detect-
ing fake currency using mm-wave radar signal scalograms. The AlexNet architecture,
celebrated for its depth, commences with an input layer designed for 227 × 227 × 3
images. It then cascades through five convolutional layers, the first of which employs
96 kernels of an 11×11 size with a stride of four, leading to layers of max-pooling and
normalization. Subsequent convolutional layers utilize kernel sizes primarily of 5 × 5
and 3× 3 dimensions. The convolutional sequences culminate in three fully connected
layers, the first two boasting 4096 neurons each. The original output layer, designed

Table 5: Accuracy of different models w.r.t
to different numbers of chirps

Models C-04 C-08 C-12 C-16 C-20

CNN 92.0 95.8 96.5 94.0 92.4
k-NN 86.5 92.0 93.9 91.2 89.0
TLT 89.4 94.8 98.0 92.05 91.66

for ImageNet, had 1000 neurons which we adapted for our binary classification task
to just two neurons: representing genuine and fake currency classifications. Further-
more, our adaptation included data augmentation techniques specifically optimized for
signal scalograms and fine-tuning of the last layers’ weights while freezing the initial
layers, thus capitalizing on basic feature captures. Training this adapted AlexNet on
our radar dataset yielded an impressive accuracy of 98% on the test set, a feat surpass-
ing the results from both the standalone CNN and KNN approaches. Several factors
contribute to this success. The inherent depth of AlexNet facilitates the capturing
of intricate features, while the foundational weights from a dataset as comprehensive
as ImageNet expedite model convergence and reduce the need for extensive training
data. By tailoring the architecture’s final layers to our task, the model nuanced char-
acteristics of fake currency in radar scalograms. This endeavor underscored the potent
combination of deep transfer learning and mm-wave signal scalograms in discerning
counterfeit currencies with high accuracy.

7.1 Ablation Study

We evaluate the effectiveness of the proposed framework for fake currency detection
in terms of chirp size, the impact of training data size, and moving people around the
radar. Number of Chirps: We conducted a comprehensive performance evaluation of
our proposed framework under various numbers of chirps. Specifically, we examined
the impact of setting the number of chirps to 4, 8, 12, 16, and 20 on the detection
accuracy for the proposed framework, among three, the TLT algorithm results are
89.44%, 94.8%, 96.00%, 92.05%, and 91.66%, respectively. The results in Table 5 and
Fig. 4a revealed interesting patterns in accuracy concerning the number of chirps.
When the number of chirps is relatively low, such as in the case of 4, we observed an
increase in accuracy with the addition of more chirps. The peak accuracy was achieved
when the number of chirps was set to 12 and 16. However, beyond this point, as
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the number of chirps continued to increase, we observed a decrease in accuracy. One
potential explanation for this phenomenon is the concurrent increase in the number
of out-of-order packets as the number of chirps grows. Our analysis uncovered that,
with 16 chirps, the average out-of-order packet index stood at 3. In contrast, when the
number of chirps was extended to 20, the average out-of-order packet index surged to
16. Impact of increasing distance: In our framework, the diverse models we proposed

(a) (b)

Fig. 4: Fig.4a shows Number of chirps Vs. Classification Accuracy(%) and Fig.4b
indicates Increasing Distance(cm) Vs. Classification Accuracy(%)

are intrinsically tied to the distance size, a crucial determinant of system performance.
As shown in Table. 4 and Fig. 4b, there exists a clear correlation between the note and
radar device detection accuracy. Notably, when the distance between the note and the
device is relatively small, the system exhibits a rapid increase in accuracy, particularly
when the size is between 15 to 20cm. However, once the distance increases from 20cm,
the observed loss in accuracy becomes more modest.

Maximum frames per sample: We proceed to assess the impact of the number of
frames and evaluate by examining the impact on recognition performance. In Fig.
3b, we incrementally increase the number of frames from 10 to 50 per sample. The
comprehensive detection accuracy of the proposed framework ranges from approxi-
mately 95.5% to 97.8%. In general, employing more frames leads to improved results.
More specifically, achieving a higher accuracy is observed when utilizing 40 frames
per sample, equivalent to approximately 2 seconds on our current test with a sam-
pling rate of around 20Hz. it is primarily restricted by the file and network I/O of the
existing setup. However, an excessive number of frames might introduce larger delays,
potentially causing distortions that could compromise accuracy. To strike a balance
between accuracy, measuring delay, and computation, we have opted for setting the
number of frames per sample to 40 in the proposed framework. This decision is geared
towards optimizing for a shorter sensing time, thereby enhancing the user experience
and offering more flexibility for the networking aspect in the integrated radar systems.

Moving People around Radar: We assessed the robustness of our framework in
scenarios involving the presence of moving individuals in proximity to the radar. To
examine this, we introduced 1, 2, 3, 4, and 5 individuals moving around a table. The
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average accuracy exhibited a decline to 93.18% in the presence of moving individuals,
in contrast to the 98% accuracy observed when no individuals were in motion. To
further validate our findings, we conducted 1-fold, 3-fold, and 5-fold cross-validations
in scenarios with varying numbers of individuals moving around the table. The results
indicated average accuracy of 93.66%, 94.39%, and 95.30%, respectively. This effect
can be attributed to the introduction of new reflection paths due to the motion of
individuals within the radar’s range.

8 Conclusion and Future Work

In this study, we utilized signals from a multi-antenna mmWave FMCW radar to dis-
tinguish between fake and genuine currency notes. We introduce a framework that
encompasses three distinct methodologies for currency detection, leveraging time-
frequency radar signals acquired from four Rx antennas of a compact mmWave radar
module. Our efforts have resulted in a near-optimal classification precision for ten
unique currency notes. Notably, we have pioneered an innovative application of a
transfer learning model for currency note identification using mmWave radar. The
proposed framework achieved a high accuracy of 98% in detecting counterfeit and gen-
uine currency notes. Given its commendable precision, this framework holds tangible
potential for real-world, non-invasive counterfeit currency detection, especially when
implemented on a Commercial Off-The-Shelf (COTS) device, making it adaptable to
any standard radar capable of producing range-Doppler measurements. In future work,
endeavors may include expanding the study to incorporate currencies from diverse
nations and delving deeper into advanced deep-learning techniques.
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